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HOGDA: Boosting Semi-supervised Graph Domain Adaptation
via High-Order Structure-Guided Adaptive Feature Alignment

Anonymous Authors

ABSTRACT
Semi-supervised graph domain adaptation, as a subfield of graph
transfer learning, seeks to precisely annotate unlabeled target graph
nodes by leveraging transferable features acquired from the limited
labeled source nodes. However, most existing studies often directly
utilize GCNs-based feature extractors to capture domain-invariant
node features, while neglecting the issue that GCNs are insufficient
in collecting complex structure information in graph. Considering
the importance of graph structure information in encoding the com-
plex relationship among nodes and edges, this paper aims to utilize
such powerful information to assist graph transfer learning. To
achieve this goal, we develop an novel framework called HOGDA.
Concretely, HOGDA introduces a high-order structure information
mixing module to effectively assist the feature extractor in captur-
ing transferable node features. Moreover, to achieve fine-grained
feature distributions alignment, the AWDA strategy is proposed
to dynamically adjust the node weight during adversarial domain
adaptation process, effectively boosting the model’s transfer abil-
ity. Furthermore, to mitigate the overfitting phenomenon caused
by limited source labeled nodes, we also design a TNC strategy
to guide the unlabeled nodes to achieve discriminative clustering.
Extensive experimental results show that our HOGDA outperforms
the state-of-the-art methods on various transfer tasks.

KEYWORDS
Graph Transfer Learning, Adversarial Domain Adaptation, High-
Order Moment, Node Clustering

1 INTRODUCTION
In multimodal applications, graphs are often used to model the
correlation between different modal data. Among them, graph node
classification techniques play a crucial role in analyzing nodes from
different modalities. However, due to the distribution shift problem,
well-trained models suffer severe performance degradation when
applied straight to new domains, limiting the large-scale imple-
mentation of deep models in actual applications. Graph transfer
learning (GTL) [6, 24] has been proposed as a paradigm to address
such a problem by transferring some invariant features from a la-
beled source graph to an unlabeled target graph, greatly improving
the model’s generalization ability on the target graph.
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Figure 1: Illustration of the semi-supervised graph domain
adaptation (SGDA) task.

Most existing studies [7, 18, 28] on GTL tends to focus on unsu-
pervised domain adaptation, assuming that all nodes in the source
graph are labeled, while overlooking the fact that this ideal scenario
is not common in real-world applications, as annotating the entire
source graph is a time-consuming task, especially for large-scale
graphs. Therefore, in this paper, we focus on a more practical appli-
cation scenario known as semi-supervised graph domain adaptation
(SGDA) [24], where the source graph contains only a limited number
of labeled nodes, as shown in Figure 1. The most crucial challenge
for SGDA is to effectively leverage the transferable features learned
from the label-scarce source graph to precisely annotate nodes in
the target graph.

Unlike images and time series data, graph data usually con-
tains rich structure information that encodes complex relationships
among nodes and edges. Most existing GTL models [6, 24, 36]
usually adopt graph convolutional network (GCN)-based feature
extractors to learn domain-invariant node features. However, recent
studies [5, 21, 40] have demonstrated that GCNs are insufficient in
capturing the sophisticated structure information in graph, which
may potentially affect the transfer of domain-invariant knowledge
and consequently limit the model’s generalization capability.

To address this problem, inspired by the effectiveness of high-
order moment features in characterizing the data structure [9],
we propose an novel SGDA framework named HOGDA that em-
ploys a High-order Structure Information Mixing (HSIM) module
to effectively capture graph structure information. In order to fur-
ther explain our motivation, we plot a point cloud (sampled from
three Gaussian distributions) and visualize the moment features
of different orders in Figure 2. As can be seen, the structure of the
point cloud can be captured more accurately by using high-order
moment features than by using low-order features. To this end,
HSIM module seek to employ multi-view structure information
to assist the feature extractor in extracting more discriminative
domain-invariant node features.

Recent studies [4, 19, 42] on TL have demonstrated that different
samples have different levels of transferability. However, many
existing GTLmethods usually assign equal weight to different nodes
during adversarial domain adaptation process, ignoring the fact that
hard-to-transfer nodes may harm the learning of transferable node

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: 240 data points sampled from three Gaussian dis-
tributions. And the level sets denotes the moment features
with different orders. In comparison to low-order features,
high-order moment features can more accurately capture
the underlying structure of the point cloud.

features and even cause negative transfer. To remedy this issue, we
propose a AdaptiveWeighted Domain Alignment (AWDA) strategy.
Specifically, AWDA adaptively estimates the node transferability
by jointly leveraging entropy information from the classifier and
discriminator, and dynamically adjusts the weight of node based on
its transferability. By prioritizing easy-to-transfer nodes with higher
weights during domain alignment process, the model can learn
more domain-invariant features, thereby significantly improving
its transfer ability on the target domain.

Furthermore, in the SGDA scenarios, due to the label scarcity
of source graph, well-trained model on only a few labeled source
nodes is prone to overfitting. Consequently, it may make ambigu-
ous or even incorrect predictions for certain target graph nodes
located near the decision boundaries or far from their correspond-
ing class centers. To alleviate this overfitting phenomenon, we
devise a Trust-aware Node Clustering (TNC) strategy to enhance
the model’s generalization performance. Specially, TNC aims to
guide the discriminative clustering of unlabeled nodes by mini-
mizing the discrepancy between the current cluster assignment
distribution and the ideal cluster distribution, effectively promoting
the alignment of category distributions across domains.

The following are the primary contributions of this paper:
(1) A novel HSIM module is devised to assist the feature extractor
in capturing the graph structure information.
(2)A node re-weighted adversarial adaption strategy named AWDA
is proposed to facilitate the alignment of feature distributions.
(3) To remedy overfitting issue, a simple but effective TNC strategy
is introduced to guide the clustering of unlabeled nodes.
(4) Experimental results on various transfer tasks demonstrate the
superiority of our HOGDA over the state-of-the-art methods.

2 RELATEDWORKS
Graph Transfer Learning (GTL). GTL has attracted substantial
attention as a promising solution for effectively alleviating the
burden of collecting labeled data for novel tasks. A series of early
studies commonly utilize available source labeled nodes to build a
pre-train graph model for different but related tasks in the target
domain [13, 23, 26]. However, due to the presence of distribution
shift, this training paradigm inevitably causes the model to suffer
severe performance degradation in the target domain. To solve this
problem, recent studies have shifted their focus towards domain
adaptation [7, 18, 28]. These works aims to boost the model’s gen-
eralization ability by transferring some invariant features from a

label-rich source domain to a label-scarce target domain. Meth-
ods for achieving domain adaptation can be roughly divided into
two categories: (1) Extracting transferable features by minimizing
the statistical metrics between two domains [10, 29]; (2) Leverag-
ing adversarial training to enforce domain confusion to capture
domain-invariant features [6, 24, 28, 36, 41].
Semi-supervised Learning onGraphs. Semi-supervised learning
on graphs aims to tackles the node classification task by utilizing
only a small fraction of labeled nodes. Early works, such as GCN
[16], GraphSAGE [12] and GAT [34], typically employ the message
passing paradigm to capture discriminative node features [12, 16,
34]. In recent studies, researchers have investigated a variety of
techniques, such as adversarial training [14, 38], data augmentation
[35], continuous graph [37], and meta-learning [25] to further boost
the model’s generalization performance.

3 METHODOLOGY
3.1 Problem Formulation
Source Domain Graph: Let G𝑠 = (V𝑠,𝑙 ,V𝑠,𝑢 , 𝐴𝑠 , 𝑋𝑠 , 𝑌𝑠,𝑙 ) be the
source graph, whereV𝑠,𝑙 denotes the labeled node set, andV𝑠,𝑢

denotes the remaining unlabeled node set in G𝑠 . The adjacency
matrix 𝐴𝑠 ∈ R𝑁 𝑠×𝑁 𝑠

represents the connectivity of nodes in G𝑠 ,
where 𝑁 𝑠 = |V𝑠,𝑙 | + |V𝑠,𝑢 | denotes the total number of nodes. If
there exists an edge between nodes 𝑛𝑖 and 𝑛 𝑗 , the corresponding
element 𝐴𝑠

𝑖 𝑗
is assigned a value of 1; otherwise, it is set to 0. 𝑌 𝑠,𝑙 ∈

R |V
𝑠,𝑙 |×𝐶 indicates the label matrix ofV𝑠,𝑙 , where𝐶 is the number

of node classes. If a node𝑛𝑠
𝑖
∈ V𝑠,𝑙 belongs to the 𝑐-th class,𝑦𝑠

𝑖,𝑐
= 1;

otherwise, 𝑦𝑠
𝑖,𝑐

= 0. 𝑋𝑠 ∈ R𝑁 𝑠×𝑒 represents an attribute matrix,
where 𝑒 is the dimension of node attributes. In the SGDA setting,
|V𝑠,𝑙 | is much smaller than |V𝑠,𝑢 |.
TargetDomainGraph: The target graph, denoted asG𝑡 = (V𝑡 , 𝐴𝑡 , 𝑋 𝑡 ),
is a completely unlabeled graph with an unlabeled node set V𝑡 .
Similarly, the adjacency matrix 𝐴𝑡 ∈ R𝑁 𝑡×𝑁 𝑡

indicates the con-
nections between nodes in G𝑡 , and the node attribute matrix 𝑋 𝑡 ∈
R𝑁

𝑡×𝑒 stores the attribute information for each target node. Here,
𝑁 𝑡 = |V𝑡 | denotes the number of nodes in G𝑡 .
Semi-Supervised Graph Domain Adaptation (SGDA): Given
a partially labeled source graph G𝑠 and an unlabeled target graph
G𝑡 , the key challenge in SGDA is how to accurately annotate target
graph nodes by leveraging the transferable knowledge learned from
the limited source labeled nodes.

3.2 Network Architecture
The architecture of our HOGDA model is composed of four com-
ponents: a GCN-based feature extractor F , a high-order structure
information mixing (HSIM) module H , a domain discriminator D,
and a node classifier C, as shown in Figure 3.

For brevity, we omit the domain-specific notation to describe
the data flow through our model. Mathematically, given an input
graph G = (V, 𝐴, 𝑋 ), the node features extracted by F is denoted
as 𝑍 = F (G) ∈ R |V |×𝑒 , and it is subsequently fed into the HSIM
module to capture the corresponding high-order structure features
𝐻 = H(𝑍 ) ∈ R |V |×𝑒 , where 𝑒 is the feature dimension and |V|
denotes the number of nodes in G. Then, the node features 𝑍 are
concatenated with their corresponding structure features 𝐻 and
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Figure 3: Global overview of the proposed HOGDA model.

passed through a learnable 1 × 1 convolution filter W1×1 to ob-
tain the mixed node features R ∈ R |V |×𝑒 . These mixed features
are then passed into the classifier C for the final classification pre-
diction C(R) ∈ R |V |×𝐶 . The domain discriminator D is trained
to distinguish between the source and target domains, while the
feature extractor F is optimized to confuse D in order to capture
domain-invariant node features 𝑍 .

To better model the adjacency relationships among nodes in
graph G, we calculate the positive point-wise mutual information
(PPIM) between nodes following [24, 36]. Concretely, for a given
graph G = (V, 𝐴, 𝑋 ), we employ random walk to sample a set
of paths on 𝐴 and construct a frequency matrix Ψ. Here, each
entry Ψ𝑖 𝑗 represents the occurrence count of node 𝑛 𝑗 within a
predefined window in the context of node 𝑛𝑖 . Then the PPIMmatrix
P is computed as:

P𝑖 𝑗 =
Ψ𝑖 𝑗∑
𝑖, 𝑗 Ψ𝑖 𝑗

, P𝑖,∗ =

∑
𝑗 Ψ𝑖 𝑗∑
𝑖, 𝑗 Ψ𝑖 𝑗

, P∗, 𝑗 =

∑
𝑖 Ψ𝑖 𝑗∑
𝑖, 𝑗 Ψ𝑖 𝑗

,

𝑃𝑖 𝑗 = max{log(
P𝑖 𝑗

P𝑖,∗ × P∗, 𝑗
), 0},

(1)

where 𝑃𝑖 𝑗 denotes the positive mutual information between nodes
𝑛𝑖 and 𝑛 𝑗 , which quantifies the topological proximity between
nodes. A higher value of 𝑃𝑖 𝑗 indicates a strong connection between
𝑛𝑖 and 𝑛 𝑗 , while a value of 𝑃𝑖 𝑗 = 0 indicates the absence of such a
connection. Then, the output of the 𝑙-th GCN layer 𝐶𝑜𝑛𝑣 (𝑙 ) (·) is
denoted as:

𝑍 (𝑙 ) = 𝐶𝑜𝑛𝑣 (𝑙 ) (𝑃, 𝑍 (𝑙−1) ) = 𝜎 (𝐷− 1
2 𝑃𝐷− 1

2𝑍 (𝑙−1)𝑊 (𝑙 ) ), (2)

where 𝜎 (·) is an activation function, and 𝐷 is the diagonal degree
matrix of 𝑃 (i.e., 𝐷𝑖𝑖 =

∑
𝑗 𝑃𝑖 𝑗 ). Moreover, 𝑃 = 𝑃 + 𝐼 , where 𝐼 is an

identity matrix.𝑊 (𝑙 ) denotes the learnable parameters of the 𝑙-th
layer, and 𝑍 (0) = 𝑋 . Note that the feature extractor F consists of
sequentially stacked 𝐿 layers of GCN 𝐶𝑜𝑛𝑣 (𝑙 ) (𝑙 = 1, 2, · · · , 𝐿).

3.3 High-order Structure Information Mixing
Asmentioned in Section 1, in contrast to images and time series data,
graph data (e.g., social network and academic network) typically

encompasses abundant structure information that encodes intricate
relationships among nodes and edges. However, most existing GTL
models [6, 24, 36] typically employ GCN-based feature extractors
to learn domain-invariant node features, neglecting the issue that
GCNs are insufficient in collecting complex structure information in
graph [5, 21, 40]. This limitation may potentially affect the transfer
of domain-invariant knowledge and consequently limit the model’s
generalization capability.

To address this issue, motivated by the effectiveness of high-order
moment information in capturing the structure of data (as shown in
Figure 2), we introduce a high-order structure information mixing
(HSIM) module to capture the graph structure information from
multiple views. Specially, HSIM module seeks to leverage these
multi-view structure information to assist the feature extractor F
in learning more discriminative transferable node features.

Let J𝑘 (𝑍 ) denote a 𝑘-th order moment feature, where 𝑍 ∈
R |V |×𝑒 is the deep node features extracted by F . Most current
works commonly adopt Kronecker product-based approach to cal-
culate high-order moment features of data [3, 11, 33]. However, con-
sidering the numerous nodes contained in the graph (e.g., ACMv9
has over 9000 nodes), directly calculating the Kronecker product of
node features is computationally expensive and time-consuming,
making it unsuitable for GTL tasks.

To solve this problem, we utilize the RandomMaclaurin factoriza-
tion scheme [15] to achieve the efficient computation of high-order
moment. Concretely, as depicted in Figure 3, we employ multiple
1 × 1 convolution kernels as several random projectors to estimate
the 𝑘-th order moment features:

J𝑘 (𝑍 ) ≈ B1 (𝑍 ) ⊙ B2 (𝑍 ) ⊙ · · · ⊙ B𝑘 (𝑍 ) ∈ R |V |×𝑒 (3)

where ⊙ is the Hadamard product, and B1, B2, · · · , B𝑘 refer to
𝑘 randomly initialized 1 × 1 convolution kernels. However, since
the estimators generated by Random Maclaurin scheme are inde-
pendently of the analyzed distributions [27], which may result in
the estimated high-order moment features containing some non-
informative high-order components (i.e., noisy components).
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To eliminate the impact of these noisy components, we choose to
learn the parameters of these projectors (i.e., the 1 × 1 convolution
kernels) directly from the input data. Note that because the calcula-
tion of high-order moments involves a large number of Hadamard
product operations, it may cause the estimated high-order fea-
tures degrade into low-order features. To prevent this degradation
phenomenon, we employ a recursive mechanism to progressively
approximate the high-order moment features:

J𝑘 (𝑍 ) = J𝑘−1 (𝑍 ) ⊙ B𝑘 (𝑍 ). (4)

Because different order statistics can capture the graph structure
information from different views, we mix various order moment
features to more comprehensively capture the graph structure fea-
tures:

𝐻 = H(𝑍 ) = (
𝐾∑︁
𝑘=1

J𝑘 (𝑍 )) ∈ R |V |×𝑒 (5)

To leverage such powerful structure information to assist the
feature extractor F in capturing discriminative transferable fea-
tures, we concatenate the multi-view structure features 𝐻 with the
deep node features 𝑍 extract by F to obtain the augmented node
features [𝐻 ;𝑍 ] ∈ R |V |×𝑒×2. After that, to adaptively combine the
advantages of the node features and the structure features, a learn-
able 1 × 1 convolution filter W1×1 is utilized to integrate these
features:

R = W1×1 ( [𝐻 ;𝑍 ]) ∈ R |V |×𝑒 . (6)

Then the mixed node features R will be fed into the classifier
C for the final prediction. Given the source labeled node setV𝑠,𝑙 ,
the supervised classification loss on the source graph G𝑠 can be
formulated as:

L𝑐𝑙𝑠 =
1

|V𝑠,𝑙 |

∑︁
𝑛𝑠
𝑖
∈V𝑠,𝑙

L𝑐𝑒 (C(𝑟𝑠𝑖 ), 𝑦
𝑠
𝑖 ) . (7)

where L𝑐𝑒 is the standard cross-entropy loss, and 𝑟𝑠
𝑖
∈ R𝑒 denotes

the 𝑖-th node feature in node features matrix R𝑠 .
It is worth mentioning that the integration of graph structure

information is beneficial in guiding unlabeled nodes to achieve dis-
criminative clustering, thus facilitating the learning of fine-grained
domain-invariant features, as verified in Figure 4.

3.4 Adaptive Weighted Domain Alignment
Transferability denotes the ability of sample feature to bridge the
discrepancy across domains. It has recently been demonstrated
that, in real scenarios, different samples have different levels of
transferability [4, 19, 42]. Specially, some samples contain more
transferable features, which we term easy-to-transfer samples, and
generally have higher transferability. In contrast, hard-to-transfer
samples are difficult for the model to capture their transferable
features and generally exhibit lower transferability.

Adversarial training has been widely adopted by existing GTL
models to extract domain-invariant node features. However, most
existing methods [6, 24, 28, 41] typically assign equal weight to
different nodes during adversarial domain adaption, ignoring the
fact that hard-to-transfer nodes may harm the learning of domain-
invariant features and even lead to negative transfer.

To address this issue, motivated by curriculum learning [2], we
propose an Adaptive Weighted Domain Alignment (AWDA) strat-
egy, which dynamically adjusts the weight of each node based on
its transferability. Specially, (1) During the early training stage,
the model aims to roughly align the marginal feature distributions
through adversarial training. Therefore, at this stage, node trans-
ferability should primarily be estimated by the discriminator D.
The entropy E𝐷 of discriminator output can be regarded as a good
indicator to measure node transferability. At such stage, easy-to-
transfer nodes generally have significantly higher entropy E𝐷 than
hard-to-transfer nodes. (2) During the mid and late training
stages, the model primarily focuses on aligning the category distri-
butions across domains. In such case, node transferability should
mainly be estimated based on the entropy E𝐶 of the classifier out-
put. Concretely, at these stages, easy-to-transfer samples generally
have relatively certain classification predictions (i.e., low entropy
E𝐶 ) since they are close to the corresponding class centers. Hard-to-
transfer samples scattered near the decision boundaries, typically
have uncertain predictions (i.e., high entropy E𝐶 ) and are prone to
misclassification.

Based on the above analysis, we design a mixed entropy-aware
weighted mechanism𝑤 (𝑛𝑖 ) that combines both the classifier and
the discriminator information to adaptively estimate the transfer-
ability for each node 𝑛𝑖 :

𝑤 (𝑛𝑖 ) = 1 + 𝑒−[ (2−𝑑A ) E𝐶−𝑑A E𝐷 ] , (8)

where 𝑑A denotes the A-distance [1] 𝑑A = 2(1 − 𝜖 (𝑓 )), which is
used to measure distribution discrepancy across domains, where
𝜖 (𝑓 ) is the test error of a binary kernel SVM classifier 𝑓 trained to
distinguish the source and target nodes.

Concretely, (1) during the early training stage, the source and
target domains exhibit significant discrepancy in the deep feature
space, and the binary classifier 𝑓 can almost perfectly distinguish
between them (i.e., 𝜖 (𝑓 ) → 0 and 𝑑A → 2). In this way, node
transferability is primarily determined by the discriminator D,
i.e., 𝑤 (𝑛𝑖 ) ≈ 1 + 𝑒𝑑A E𝐷 . (2) As training progresses, when the
marginal distributions of two domains almost coincide, the binary
classifier ℎ cannot distinguish between them, and thus 𝜖 (𝑓 ) → 0.5
and 𝑑A → 0. In such case, node transferability is mainly estimated
by the classifier C, i.e.,𝑤 (𝑛𝑖 ) ≈ 1 + 𝑒−(2−𝑑A ) E𝐶 .

Notably, easy-to-transfer nodes usually contain more transfer-
able features, while hard-to-transfer nodes tend to have fewer trans-
ferable features. To facilitate the fine-grained alignment of fea-
ture distributions and accelerate the learning of domain-invariant
features, we encourage the model to pay more attention to easy-
to-transfer nodes during adversarial domain adaptation process.
Therefore, the node transferability weighted adversarial training
loss L𝑎𝑤𝑑𝑎 can be defined as:

L𝑎𝑤𝑑𝑎 =
1
𝑁 𝑠

𝑁 𝑠∑︁
𝑖=1

𝑤 (𝑛𝑠𝑖 ) log[D(𝑇 (𝑞𝑠𝑖 ))]+
1
𝑁 𝑡

𝑁 𝑡∑︁
𝑗=1

𝑤 (𝑛𝑡𝑗 ) log[1−D(𝑇 (𝑞𝑡𝑗 ))] .

(9)
where 𝑞𝑖 = (𝑟𝑖 , C(𝑟𝑖 )) is the joint variable of mixed node feature
𝑟𝑖 and its corresponding classifier prediction C(𝑟𝑖 ). 𝑇 (·) is a multi-
linear map employed to promote the alignment of multi-modal
category distributions as previous study [19].
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In this way, the model will focus on the learning of easy-to-
transfer samples to roughly align the two domains during the early
training stage. As the distribution discrepancy decreases, hard-to-
transfer samples get more attention in the adversarial alignment
process and are gradually turned into easy-to-transfer ones.

3.5 Trust-aware Node Clustering
Due to the limited number of labeled nodes in G𝑠 , the model is
likely to encounter overfitting issue if it simply relies onL𝑐𝑙𝑠 for op-
timization, which may severely degrades the model’s generalization
performance on G𝑡 . Existing studies usually adopt pseudo-labels
strategy [24] or conditional entropy term [36] to guide the learning
of unlabeled nodes to mitigate this overfitting phenomenon.

However, there is a concern that the pseudo-labels based strategy
inevitably introduces noise into the model and minimizing the con-
ditional entropy term may lead to degenerate clustering solutions
(i.e., all unlabeled nodes are assigned to the same cluster), which
severely affect the alignment of feature distributions.

To alleviate this overfitting issue, we devise a innovative Trust-
aware Node Clustering (TNC) strategy to enhance the model’s
robustness. Considering that both the spatial prototype information
and the classifier prediction information can estimate the cluster
assignment of node from different views during training, TNC aims
to adaptively combine these information to guide the discriminative
clustering of unlabeled nodes.

Specially, we first utilizes source labeled nodes to approximate
the class centers (i.e., prototypes) 𝜇𝑠𝑐 of the source domain:

𝜇𝑠𝑐 =
1
𝑀

|V𝑠,𝑙 |∑︁
𝑖=1

𝑟𝑠𝑖 · 𝜙 (𝑦
𝑠
𝑖 , 𝑐), (10)

where𝜙 (𝑦𝑠
𝑖
, 𝑐) = 1 if𝑦𝑠

𝑖
= 𝑐 , otherwise𝜙 (𝑦𝑠

𝑖
, 𝑐) = 0. 𝑐 ∈ {1, 2, · · · ,𝐶}

is the class indicator and𝑀 =
∑ |V𝑠,𝑙 |
𝑖=1 𝜙 (𝑦𝑠

𝑖
, 𝑐).

On one hand, the spatial prototype information can estimate
cluster assignment for each node 𝑛𝑖 by measuring the similarity
between the node feature 𝑟𝑖 and the class center 𝜇𝑠𝑐 :

S(𝑖, 𝑐) = exp−𝛾 (𝑟𝑖 ,𝜇
𝑠
𝑐 )

𝐶∑︁
𝑐′=1

exp−𝛾 (𝑟𝑖 ,𝜇
𝑠
𝑐′ )
, (11)

where S(𝑖, 𝑐) denotes the probability of assigning node 𝑛𝑖 to the
𝑐-th cluster, and 𝛾 (𝑟𝑖 , 𝜇𝑠𝑐 ) denotes the similarity between the node
features 𝑟𝑖 and the 𝑐-th class centers 𝜇𝑠𝑐 . In our experiment, we
employ the Student’s 𝑡-distribution based kernel strategy [32] as
the similarity metric 𝛾 (·, ·), which can be defined as:

𝛾 (𝑟𝑖 , 𝜇𝑠𝑐 ) =
exp((1 + ∥𝑟𝑖−𝜇𝑠𝑐 ∥2

𝛼 ))−
𝛼+1
2

𝐶∑︁
𝑐′=1

exp((1 +


𝑟𝑖 − 𝜇𝑠𝑐′

2

𝛼
))−

𝛼+1
2

, (12)

where 𝛼 is the degree of freedom of the Student’s 𝑡-distribution. In
this work, 𝛼 is set to 1 for all experiments.

One the other hand, the classifier C can also predict the cluster
assignment for each input node 𝑛𝑖 :

W(𝑖, 𝑐) = 𝑃𝑟𝑜 (𝑦𝑖 = 𝑐 |C(𝑟𝑖 )), (13)

whereW(𝑖, 𝑐) denotes the probability of node 𝑛𝑖 belonging to class
𝑐 .

Although both S(𝑖, 𝑐) andW(𝑖, 𝑘) can measure the probability of
assigning node𝑛𝑖 to cluster 𝑐 , their confidence changes dynamically
during training. To this end, we introduce a trustworthy weighted
mechanism to dynamically adjust their importance:

Ω(𝑖, 𝑐) = 𝑑AS(𝑖, 𝑐) + (2 − 𝑑A )W(𝑖, 𝑐)∑𝐶
𝑐′=1 (𝑑AS(𝑖, 𝑐

′) + (2 − 𝑑A )M(𝑖, 𝑐′))
, (14)

where Ω(𝑖, 𝑐) can estimate the probability of node 𝑛𝑖 belonging
to the 𝑐-th cluster in a more robust manner, and 𝑑A denotes the
A-distance between two domains. Specially, during the early
training stage, as the classifier C is learned from scratch, S(𝑖, 𝑐)
is much more reliable than W(𝑖, 𝑘). In such case, the clustering
assignment of node is primarily estimated by the spatial prototype
information(i.e., 𝜖 (𝑓 ) → 0 and 𝑑A → 2). During the mid and
late training stages, as the category distributions are gradually
aligned (i.e., 𝜖 (𝑓 ) → 0.5 and 𝑑A → 0), the classifier C can provide
more precise estimations for cluster assignment. In such case, the
termW(𝑖, 𝑐) in Ω(𝑖, 𝑐) becomes the main contributor.

Notably, the ideal clustering should satisfy these two conditions:
i) The clustering assignment Ω of each node should be sufficiently
certain; ii) Each cluster should contain some nodes (i.e., degenerate
solutions will not occur). Here, Ω ∈ R |V |×𝐶 is the clustering as-
signment matrix of all nodes, which can be viewed as a distribution.

To achieve this goal, we define a ideal clustering distribution
Φ ∈ R |V |×𝐶 and encourage the current cluster assignment distribu-
tion Ω to approach the ideal distribution Φ by using the following
objective function I:
I = 𝐾𝐿(Φ| |Ω) + 𝐾𝐿(𝜌 | |𝑢)

=


1
|V|

|V |∑︁
𝑖=1

𝐶∑︁
𝑐=1

Φ(𝑖, 𝑐) log Φ(𝑖, 𝑐)
Ω(𝑖, 𝑐)

 +
[

1
|V|

𝐶∑︁
𝑐=1

𝜌𝑐 log
𝜌𝑐

𝑢𝑐

]

=
1
|V|

|V |∑︁
𝑖=1

𝐶∑︁
𝑐=1

Φ(𝑖, 𝑐) log Φ(𝑖, 𝑐)
Ω(𝑖, 𝑐) + Φ(𝑖, 𝑐) log 𝜌𝑐

𝑢𝑐
,

(15)

where 𝐾𝐿 represents the Kullback-Leiber divergence, 𝑢 is the uni-
form prior, and 𝜌𝑐 denotes the soft frequency of cluster assignments
in the ideal distribution Φ:

𝜌𝑐 =
1
|V|

∑︁
𝑖

Φ(𝑖, 𝑐). (16)

Specially, in Eq. 15, the first 𝐾𝐿 term denotes the discrepancy be-
tween the current cluster assignment Ω and the ideal target Φ. The
second 𝐾𝐿 term is used to promote balanced cluster assignments
in order to avoid degenerate solutions.

To estimate Φ, we employ iterative learning mechanism to op-
timize this objective function I. Concretely, in each training iter-
ation, assuming the network parameters 𝜃 are fixed, we can infer
the variable Φ by solving the following optimization problem:

min
Φ

1
|V|

|V |∑︁
𝑖=1

𝐶∑︁
𝑐=1

Φ(𝑖, 𝑐) log Φ(𝑖, 𝑐)
Ω(𝑖, 𝑐) + Φ(𝑖, 𝑐) log 𝜌𝑐

𝑢𝑐
,

𝑠 .𝑡 .
∑︁
𝑐

Φ(𝑖, 𝑐) = 1.
(17)
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As this optimization problem can be effectively solved by uti-
lizing several gradient-based algorithms [22] (such as Nesterov
optimal and projected gradient descent methods), we can calculate
the partial derivative of function I with respect to variable Φ as:

𝜕I
𝜕Φ(𝑖, 𝑐) ∝ log(Φ(𝑖, 𝑐)𝜌𝑐

Ω(𝑖, 𝑐) ) + Φ(𝑖, 𝑐)
|V |∑︁
𝑖′=1

Φ(𝑖′, 𝑐)

+ 1, (18)

Since the number of nodes |V| is typically very large, we can
approximate the gradient in Eq. 18 by neglecting the second term.
In this way, we obtain an approximate closed-form solution for Φ
by setting the gradient to zero:

Φ(𝑖, 𝑐)∗ = Ω(𝑖, 𝑐)/(∑𝑖′ Ω(𝑖′, 𝑐))
1
2∑︁

𝑐′
Ω(𝑖, 𝑐′)/(∑𝑖′ Ω(𝑖′, 𝑐′))

1
2
. (19)

In TNC strategy, both source and target domain nodes V𝑠,𝑙 ∪
V𝑠,𝑢 ∪V𝑡 are used to compute the clustering assignment matrix Ω.
Therefore, the loss function L𝑡𝑛𝑐 of TNC strategy can be defined
as:

L𝑡𝑛𝑐 = 𝐾𝐿(Φ∗ | |Ω) + 𝐾𝐿(𝜌∗ | |𝑢). (20)
The reason we employ source labeled nodesV𝑠,𝑙 in TNC strat-

egy is because they can effectively guide the discriminative clus-
tering of unlabeled nodes towards the desired direction. Notably,
our TNC strategy does not involve any pseudo-labels, which not
only enhances the model’s robustness, but also promotes the pre-
cise alignment of category distributions (see Figure 5 for further
analysis).

3.6 Model Optimization
To sum up, the total loss function of HOGDA can be formulated as:

min
F,C,H,W1×1

max
D

L𝑐𝑙𝑠 + 𝜂L𝑎𝑤𝑑𝑎 + 𝛽L𝑡𝑛𝑐 (21)

where hyper-parameters 𝜂 and 𝛽 are used to balance the contribu-
tions of the corresponding term.

4 EXPERIMENTS
4.1 Setup
Datasets. Our experiments encompass three real-world graphs[31]:
ACMv9 (A), Citationv1 (C), and DBLPv7 (D). In these graphs, every
node corresponds to a paper, and the attribute of each paper is a
sparse bag-of-words vector derived from its title. The edges in these
graphs depict citation relationships among the papers. Considering
that these graphs contain diverse sets of node attributes, we merge
their attribute sets and resize the attribute dimension to 6775 fol-
lowing [24]. Each node is assigned a 5-class label, determined by
its relevant research areas, including Artificial Intelligence, Com-
puter Vision, Database, Information Security, and Networking. Six
typical cross-domain tasks will be carried out in our experiments:
A→C, A→D, C→A, C→D, D→A and D→C. Further settings and
implementation can be found in the Supplementary Materials.
ComparedMethods.Wemainly compare our method with several
SOTA (1) graph semi-supervised learning methods and (2) graph
domain adaptation methods following the pioneering work [24]:
(1) GCN [16], GSAGE [12], GAT [34], GIN [39], (2) DANN [8],

CDAN [20], UDA-GCN [36], AdaGCN [6] and SGDA [24]. Note
that DANN𝐺𝐶𝑁 and CDAN𝐺𝐶𝑁 are two variants that replace the
MLP-based encoders with GCN-based feature extractors.
Evaluation Metrics. Following previous works [24, 28], we em-
ploy Micro-F1 and Macro-F1 as evaluation metrics. We repeat
each experiment 5 times and record the average accuracy along
with standard deviation. Additionally, to address the impact of
randomness, we sample different label sets for each experiment.

4.2 Results and Discussion
To demonstrate the superiority of our HOGDA, we follow [24] to
evaluate its performance in the challenging scenario, where only
5% of the nodes in the source graph are labeled. Table 1 lists the
classification results of different methods on the target graph.

We can observe that our model obtains the overall best results
on all transfer tasks. Concretely, HOGDA significantly outperforms
the SOTA competitor SGDA [24] by +8.1% and +10.3% on "Micro-
F1" and "Macro-F1" respectively for the C→A task, indicating the
advantage in extracting discriminative transferable features. Fur-
thermore, HOGDA achieves substantial performance gains in some
hard transfer scenarios, such as D→A and C→A, where the size
of target domain is larger than source domain, implying the ro-
bustness of our model in face of some small-scale dataset scenarios.
Notably, we find that most methods, especially adversarial training-
based methods, perform poorly because they can only roughly
align the marginal distributions and cannot effectively utilize unla-
beled nodes. In contrast, our method addresses these limitations.
Additionally, the results with a smaller fluctuation range imply the
stability of our model, which further confirms the importance of
adaptively guiding domain alignment and node clustering.

4.3 Ablation Study and Analysis
Due to page size limitation, more experiments and analysis are
given in the Supplementary Materials.
1) Ablation Study: To analyze the contribution of each component
in our model, we compare HOGDA and its 7 variants on different
transfer tasks. Table 2 describes the variants of HOGDA, and Table 1
shows the results of ablation study.
Contribution of Each Component: The results in Table 1 reflect
the following observations: (1) Due to the label scarcity in source
domain, HOGDA-S (baseline) inevitably suffers from overfitting
issues, resulting in poor generalization performance on all tasks. (2)
Variants HOGDA-H, HOGDA-A and HOGDA-T greatly outperform
HOGDA-S on all tasks, implying that incorporating high-order
structure information, conducting node weighted domain align-
ment, and guiding discriminative clustering of unlabeled nodes all
effectively promote the learning of domain-invariant node features.
Correlation of Our Strategies: The results in Table 1 show that
combining different strategies can significantly boost the model’s
transfer ability, suggesting a distinct complementary relationship
among the HSIM, AWDA, and TNC strategies.
2) Node Features Visualization: To showcase the superior trans-
fer ability of our model, we utilize t-SNE [32] to visualize the node
features on task A→C under the same 5% label rate setting, as
depicted in Figure 4. As for the SOTA method SGDA, the category
distributions are not well aligned and the decision boundary is not
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Table 1: Transfer performance (%) on six tasks with a source graph label rate of 5% for semi-supervised graph domain adaptation.

Methods A→C A→D C→A C→D D→A D→C
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

MLP 41.3±1.15 35.8±0.72 42.8±0.88 36.3±0.77 39.4±0.57 33.7±0.58 43.7±0.69 36.7±0.55 37.3±0.32 30.8±0.37 39.4±0.99 32.8±0.99
GCN 54.4±1.52 52.0±1.62 56.9±2.33 53.4±2.81 54.1±1.40 52.3±1.98 58.9±0.99 54.5±1.55 50.1±2.14 48.0±3.28 56.0±1.24 51.9±1.49
GSAGE 49.3±2.18 46.4±2.06 51.8±1.35 47.4±1.62 46.8±2.56 45.0±2.78 51.7±1.95 48.1±1.97 41.7±2.17 37.4±4.59 45.4±2.11 39.3±3.45
GAT 55.1±3.22 50.8±1.45 55.3±2.52 51.8±2.60 50.0±1.20 45.6±2.36 55.4±2.73 49.2±2.59 44.8±2.74 38.3±4.84 50.4±3.35 42.0±4.46
GIN 64.6±2.47 56.0±2.73 60.0±2.09 51.3±3.99 57.1±1.19 54.4±2.57 62.0±1.05 56.8±1.40 51.9±2.00 45.4±2.16 60.2±3.05 53.0±2.10
DANN 44.3±2.03 39.3±1.86 44.0±1.42 38.7±1.47 41.8±1.95 37.6±1.24 45.5±0.71 39.6±1.55 37.8±3.66 33.2±2.23 41.7±2.32 35.6±2.55
CDAN 44.6±1.30 38.6±1.07 45.5±0.85 38.0±0.86 42.4±0.64 36.2±1.17 46.7±1.17 39.2±0.96 39.0±1.08 32.3±1.09 41.7±1.55 34.8±1.56
DANN𝐺𝐶𝑁 63.0±6.75 59.6±6.02 62.2±1.90 57.7±3.16 56.7±0.38 55.2±1.03 65.3±2.04 59.0±2.39 52.3±2.59 48.6±4.52 58.1±2.78 52.4±3.81
CDAN𝐺𝐶𝑁 70.3±0.84 66.5±0.66 65.0±1.00 61.3±0.96 56.3±1.78 53.6±2.70 65.2±2.19 58.8±2.38 53.0±1.34 48.7±3.51 59.0±1.52 53.3±1.99
UDA-GCN 72.4±2.75 65.2±6.51 68.0±6.38 64.3±7.12 62.9±0.33 62.2±1.44 71.4±2.56 67.5±2.25 55.8±3.50 52.4±2.68 65.2±4.41 60.7±6.84
AdaGCN 70.8±0.95 68.5±0.73 68.2±3.84 64.2±3.91 61.5±2.20 60.4±3.15 69.1±1.96 65.8±2.87 56.1±1.75 53.8±2.95 64.1±0.91 62.8±1.56
SGDA 75.6±0.57 71.4±0.82 69.2±0.73 64.7±2.36 66.3±0.68 62.3±0.96 72.9±1.26 68.9±1.83 60.6±0.86 56.0±0.90 73.2±0.59 69.3±1.01
HOGDA-S 55.8±1.76 53.6±1.84 54.2±2.11 44.9±2.04 58.2±1.52 48.9±1.94 57.0±1.03 46.3±1.60 49.8±2.33 41.0±3.46 55.9±1.41 45.2±1.72
HOGDA-H 73.5±0.51 67.1±0.79 67.4±0.82 63.8±1.27 66.0±0.76 62.7±0.85 67.3±0.98 62.2±1.37 57.9±0.81 55.3±0.85 70.6±0.52 68.4±0.94
HOGDA-A 76.7±0.42 71.2±0.65 71.8±0.59 68.1±1.02 69.1±0.66 64.0±0.94 72.6±0.92 68.7±1.01 63.4±0.76 59.6±0.81 74.8±0.53 71.5±0.90
HOGDA-T 74.9±0.42 70.8±0.71 69.0±0.49 64.5±0.92 65.8±0.50 62.1±0.83 70.6±0.89 66.6±1.17 62.9±0.65 57.2±0.81 72.7±0.46 69.0±0.73
HOGDA-HA 80.7±0.53 78.3±0.59 74.7±0.82 72.2±1.25 72.6±0.64 71.5±0.83 75.2±1.07 72.1±1.26 65.7±0.71 63.3±0.80 77.4±0.59 73.8±0.87
HOGDA-HT 80.3±0.62 77.5±0.50 74.2±0.57 71.6±1.09 72.2±0.53 71.1±0.87 74.8±1.05 71.7±1.61 64.9±0.63 62.4±0.75 78.5±0.49 74.0±0.76
HOGDA-AT 81.5±0.43 78.7±0.51 75.4±0.50 73.3±0.87 73.1±0.55 72.0±0.89 75.8±0.97 72.4±1.26 66.7±0.51 64.2±0.63 79.1±0.46 74.5±0.82
HOGDA 82.4±0.36 79.2±0.43 76.5±0.47 73.8±0.82 74.4±0.46 72.6±0.78 77.1±0.93 72.9±1.21 68.2±0.47 65.1±0.56 80.3±0.41 75.0±0.82

Table 2: Different variants of HOGDA.

Variant L𝑐𝑙𝑠 HSIM L𝑎𝑤𝑑𝑎 L𝑡𝑛𝑐
HOGDA-S ✓
HOGDA-H ✓ ✓
HOGDA-A ✓ ✓
HOGDA-T ✓ ✓
HOGDA-HA ✓ ✓ ✓
HOGDA-HT ✓ ✓ ✓
HOGDA-AT ✓ ✓ ✓
HOGDA ✓ ✓ ✓ ✓

clear enough. We can see noticeable overlaps between different
clusters, which increases the risk of misclassifying hard-to-transfer
nodes. In contrast, our HOGDA precisely align the category distri-
butions across domains and achieves exactly 5 clusters with clean
decision boundaries, implying that our method can promote trans-
ferable node features become more discrimative.
3) Effect of HSIM: To demonstrate the effectiveness of HSIM,
we conduct in-depth experiments from both quantitative and vi-
sual aspects: (1) As reported in Table 1, variants HOGDA-HA and
HOGDA-HT greatly surpass HOGDA-A andHOGDA-T respectively,
implying that the injection of structure information can facilitate
the learning of transferable features. (2) As illustrated in Figure 4,
compared to HOGDA-T, variant HOGDA-HT exhibits better intra-
class compactness and inter-class separability in the feature space,
indicating that the graph structure information can guide the dis-
criminative clustering of unlabeled nodes, thereby promoting the
learning of domain-invariant features.

4) Effect of TNC: To showcase the superiority of TNC strategy,
we conduct a comparative analysis with existing nodes cluster-
ing strategies, including conditional entropy minimization strat-
egy (ENT) [36] and the recently proposed posterior scores-based
pseudo-labeling strategy (PSPL) [24]. We record the trend of Micro-
F1 score during training on tasksA→C andA→D, respectively. The
curves in Figure 5 reflect the following observations: (1) HOGDA-
T exhibits smoother and faster convergence, leading to superior
transfer performance, which implies that our TNC strategy can
effectively guide the discriminative clustering of unlabeled nodes
and promote the fine-grained alignment of category distributions.
(2) Compared to HOGDA-S (baseline), HOGDA-S + ENT suffers
from severe performance degradation, as ENT causes the unlabeled
nodes to fall into a degenerate clustering solution. (3) PSPL strat-
egy inevitably introduces some pseudo-label noise to the model
during training, making it difficult to further improve the model’s
generalization ability.
5) Effect of Label Rate: We investigate the model’s performance
under different label scarcity settings on two typical transfer tasks:
A→C and A→D. Specially, the source graph is assigned label rates
of 1%, 5%, 7%, 9%, and 10% respectively, as depicted in Figure 6. We
can find that HOGDA surpasses other competitors by a significant
margin, even in the most challenging environment of 1% label rate,
which indicating the robustness of HOGDA when facing different
challenging transfer scenarios.
6) Effect of AWDA: To demonstrate the effectiveness of our AWDA
strategy, we compare it with existing domain alignment strate-
gies, including the standard adversarial domain alignment strategy
(AD) [6], sliced Wasserstein distance-based alignment strategy
(SWD)[17], class-conditional MMD strategy (CMMD) [30], and the
recently proposed shifting-guided adversarial domain alignment
strategy (SAD) [24]. We employ variant HOGDA-S as the baseline
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Figure 4: The t-SNE visualization of node features learned by SGDA, HOGDA and its two variants on the A→C task (5 classes)
with 5% label rate. In all subfigures, the marks • and × denotes the source domain nodes and target domain nodes, respectively.
Fig 4(a-d) illustrate category distributions alignment (Different colors represents different classes). Fig 4(e-h) depict domain
alignment (Red: Source domain; Blue: Target domain). Best viewed in color.

0 10 20 30 40 50
Number of Epochs (× 4)

20

30

40

50

60

70

80

M
ic

ro
-F

1 
(%

)

A C

HOGDA-T
HOGDA-S + ENT
HOGDA-S + PSPL
HOGDA-S

0 10 20 30 40 50
Number of Epochs (× 4)

20

30

40

50

60

70

M
ic

ro
-F

1 
(%

)

A D

HOGDA-T
HOGDA-S + ENT
HOGDA-S + PSPL
HOGDA-S

Figure 5: The trend of Micro-F1 during model training.
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Figure 6: Transfer performance with different label rates.

and evaluate the performance gains brought by these strategies on
A→C and A→D tasks, as shown in Figure 7.

We can find that our AWDA strategy significantly outperforms
all compared strategies. This is because the compared strategies
can only roughly align marginal distributions, while the proposed
AWDA can align feature distributions at the class level, which facil-
itate the model to extract more fine-grained transferable features.
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Figure 7: Comparison with different domain alignment
strategies on A→C and A→D tasks.

5 CONCLUSION
In this paper, we propose a novel model called HOGDA for SGDA.
Specially, we introduce a HSIM module to capture high-order struc-
ture information in graph in order to better assist the GCN-based
feature extractor in learning transferable node features. Addition-
ally, we propose a novel AWDA strategy to encourage the model
to pay more attention to easy-to-transfer nodes during adversarial
domain alignment, significantly boosting the model’s generaliza-
tion ability on the target domain. More importantly, to address the
overfitting issue, a simple but effective TNC strategy is devised
to guide the clustering of unlabeled nodes. Comprehensive exper-
iments validate the superiority and stability of our HOGDA on
various popular benchmarks.
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