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Abstract

The problem of learning to defer with multiple
experts consists of optimally assigning input in-
stances to experts, balancing the trade-off between
their accuracy and computational cost. This is a
critical challenge in natural language generation,
but also in other fields such as image process-
ing, and medical diagnostics. Recent studies have
proposed surrogate loss functions to optimize de-
ferral, but challenges remain in ensuring their con-
sistency properties. This paper introduces novel
surrogate loss functions and efficient algorithms
with strong theoretical learning guarantees. We
address open questions regarding realizable J-
consistency, H-consistency bounds, and Bayes-
consistency for both single-stage (jointly learning
predictor and deferral function) and two-stage
(learning only the deferral function with a fixed
expert) learning scenarios. For single-stage de-
ferral, we introduce a family of new realizable
H-consistent surrogate losses and further prove
H-consistency for a selected member. For two-
stage deferral, we derive new surrogate losses that
achieve realizable J-consistency, H-consistency
bounds, and Bayes-consistency for the two-expert
scenario and, under natural assumptions, multiple-
expert scenario. Additionally, we provide en-
hanced theoretical guarantees under low-noise
assumptions for both scenarios. Finally, we re-
port the results of experiments using our proposed
surrogate losses, comparing their performance
against existing baselines.
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1. Introduction

The performance of learning algorithms can be substantially
improved by redirecting uncertain predictions to domain spe-
cialists or advanced pre-trained systems. These specialists
may include individuals with deep expertise in specific areas
or highly capable, though computationally intensive, pre-
trained models. Selecting the appropriate expert requires
careful consideration of both accuracy and computational
cost, which may vary depending on the instance or class
label in question.

How can input instances be optimally assigned to the most
suitable expert from a diverse set, balancing these consider-
ations? Can allocation strategies be learned from past expe-
rience? These questions form the core challenge of learning
to defer with multiple experts, a problem that comes up
across various fields. In natural language generation, partic-
ularly with large language models (LLMs), this challenge
has been highlighted as a critical issue (Wei et al., 2022;
Bubeck et al., 2023), essential both for reducing halluci-
nations and improving efficiency. However, the problem
extends to other domains, including image annotation, med-
ical diagnostics, economic forecasting, and computer vision,
among others.

The problem of learning to defer accurately has been inves-
tigated in a number of recent studies (Mozannar & Sontag,
2020; Verma & Nalisnick, 2022; Charusaie et al., 2022;
Mozannar et al., 2023; Mao et al., 2024a;i). It is typically
formulated using a deferral loss function that incorporates
instance-specific costs associated with each expert. Direct-
ing optimizing this loss function is intractable for the hypoth-
esis sets commonly used in applications. Thus, learning-to-
defer algorithms rely on optimizing a surrogate loss function
instead, that serves as a proxy for the original target loss
function. Yet, what guarantees can we rely on when opti-
mizing such surrogate loss functions?

This question, which involves analyzing the consistency
guarantees of surrogate losses with respect to the defer-
ral loss, has been studied under two main scenarios (Mao,
2025): the single-stage scenario, where a predictor and a
deferral function are jointly learned (Mozannar & Sontag,
2020; Verma & Nalisnick, 2022; Charusaie et al., 2022;



Mozannar et al., 2023; Mao et al., 2024a), and a two-stage
scenario, where the predictor is pre-trained and fixed as an
expert, and while only the deferral function is subsequently
learned (Mao et al., 2023a).

In particular, Mozannar & Sontag (2020), Verma & Nalis-
nick (2022), and Charusaie et al. (2022) proposed surrogate
loss functions for the single-stage single-expert case by
generalizing the cross-entropy loss, the one-versus-all loss,
and, more generally, a broad family of surrogate losses for
multi-class classification in the context of learning to defer.
However, Mozannar et al. (2023) later showed that these sur-
rogate loss functions do not satisfy realizable J-consistency.
They suggested an alternative surrogate loss that achieves
this property but left open the question of whether it was
also Bayes-consistent. This was later resolved by Mao et al.
(20241), who introduced a broader family of surrogate losses
that simultaneously achieve Bayes-consistency, realizable
H-consistency, and H-consistency bounds.

For the single-stage multiple-expert setting, Verma et al.
(2023) were the first to extend the surrogate loss proposed in
(Verma & Nalisnick, 2022) and (Mozannar & Sontag, 2020)
to accommodate multiple experts. Building on this, Mao
et al. (2024a) further generalized the surrogate loss from
(Mozannar & Sontag, 2020), introducing a broader family
of surrogate losses tailored to the multiple-expert case. Fur-
thermore, Mao et al. (2024a) proved that their surrogate
losses benefit from J{-consistency bounds in the multiple-
expert case, thereby ensuring Bayes-consistency. However,
these loss functions are not realizable J{-consistent even in
the single-expert case, as they are extensions of the earlier
loss functions. Can surrogate loss functions for single-stage
multiple-expert deferral be derived that admit realizable J-
consistency, along with J{-consistency bounds and Bayes-
consistency?

In the rwo-stage scenario, Mao et al. (2023a) introduced
surrogate losses that are Bayes-consistent and realizable
JH-consistent for constant costs. However, their realizable
H-consistency does not extend to cost functions of inter-
est, which are based on classification error. Can we derive
surrogate loss functions for two-stage multiple-expert de-
ferral that achieve realizable J{-consistency J{-consistency
bounds, and Bayes-consistency for cost functions based on
classification error?

It is also important to analyze properties beyond realizable
H-consistency whose guarantees hold under deterministic
assumptions, while H-consistency bounds extend to arbi-
trary distributions. Can we offer guarantees for intermediate
cases, particularly for distributions satisfying low-noise as-
sumptions?

This work addresses all of these questions. Note that these
challenges are more significant and more complex in the

multiple-expert case than the single-expert case. In Sec-
tion 3, we derive realizable surrogate losses for single-stage
multiple-expert deferral. We begin by deriving an alternative
formulation for the deferral loss, which serves as the foun-
dation for defining a novel family of surrogate losses (Sec-
tion 3.1). We then establish the realizable JH{-consistency of
these loss functions under a mild assumption (Section 3.2).
Finally, we prove J{-consistency bounds for a specific sur-
rogate loss within this family (Section 3.3).

In Section 4, we define realizable surrogate losses for two-
stage multiple-expert deferral. We first prove that a family
of surrogate losses is realizable R-consistent, R-consistent,
and Bayes-consistent in the two-expert case (Section 4.1).
Next, we extend this family of surrogate losses and their
consistency guarantees to the multiple-expert case under
natural assumptions (Section 4.2).

In Section 5, we present enhanced bounds for the intermedi-
ate case of distributions satisfying low-noise assumptions.
We provide guarantees for both the single-stage (Section 5.1)
and two-stage (Section 5.2) scenarios.

Finally, in Section 6, we report the results of experiments
using the proposed surrogate losses, comparing their perfor-
mance against existing baselines.

For a summary of previous work on consistent multiple-
expert deferral and a more detailed discussion of related
work, see Table 1 and Appendix A, respectively. We begin
with a formal introduction to the learning problems and key
concepts.

2. Preliminaries

Single-stage multiple-expert deferral. Let X denote an
input space, and let Y = [n] == {1,...,n} represent a label
space with n > 2 labels, as in the standard multi-class classi-
fication setting. In the single-stage multiple-expert deferral
scenario, the learner has the option to predict the true label
or defer the prediction to one of n. pre-defined experts.
In this scenario, the label space Y is augmented with n,
additional labels, {n+1,...,n+n.}, corresponding to
the n. experts g1,...,9n.. Each expert may represent a
human expert or a pre-trained model. Specifically, each
expert can be expressed as a function mapping X x Y to R.
Let Y = [n + n.] denote the augmented label set, and let I
be a hypothesis set of functions mapping X x Y to R. Let
Han represent the family of all such measurable functions.
The goal of the learner is to select a hypothesis h € 3{ that
minimizes the following single-stage deferral loss function,
Lqet, defined for any h € 3, and (x;ly) € X x Y as follows:

def(ha Z, y) = ]lh(w)iyﬂh(:v)E[n] + Z Cj(ma y)]lh(:v):’rwjv
j=1

where h(x) = argmax,(,,.,, 1 1(x,y) is the prediction as-
sociated with h € J{ for an input x € X, using an arbitrary



Table 1. Summary of Previous Work on Consistent Multiple-Expert Deferral.

‘Deferral Setting  Realizable J{-Consistency Bayes-Consistency J{-Consistency Bounds

Related Work

(Verma et al., 2023) | Single-stage No
(Mao et al., 2024a) | Single-stage No
(Mao et al., 2023a) | Two-stage No

Yes Yes
Yes Yes
Yes Yes

but fixed deterministic strategy for breaking ties. When the
prediction h(z) is in Y, the incurred loss coincides with the
multi-class zero-one classification loss. When the prediction
h(z) equals n + 7, the incurred loss is the cost of deferring
to expert g;, denoted by ¢;(x,y). The choice of this cost is
highly flexible. A common choice is to define it as g;’s clas-
sification error (Verma et al., 2023): ¢;(z,y) = g, (2)2ys
where g; () = argmax,(,] 9;(z,y) represents the predic-
tion made by expert g; for input x.

Two-stage multiple-expert deferral. In the two-stage
multiple-expert deferral scenario, a label predictor is as-
sumed to have been learned during the first stage. The
second stage involves a set of n. > 2 predefined experts,
denoted g1, . . ., gn,, which includes the first-stage label pre-
dictor. We define Y as [n.] :=1,...,n.. In this setup, the
learner’s objective is to select a suitable expert g; for each
instance, considering both the expert’s accuracy and infer-
ence cost. More formally, let R represent a hypothesis set
of functions mapping X x [n.] to R, and let R,; denote
the family of all such measurable functions. The goal is to
choose a predictor r € R that minimizes the following rwo-
stage deferral loss function, Liqet, defined for any r € R,y
and (z,y) € X x Y as follows:

Ltdef(ra €z, y) = Z Cj (‘I7 y)ﬂ"(z)=j’
j=1

where r(z) = argmax,, 7(,y) represents the predic-
tion associated with r € R for an input « € X, using an
arbitrary but fixed deterministic strategy for breaking ties.
The cost ¢;(z, y) is incurred when the learner chooses to de-
fer to expert g;. As in the single-stage scenario, the choice
of the cost is flexible and can be defined as g;’s classification
error (Mao et al., 2023a): ¢;(x,y) = Ly, (2)2y-

Learning with surrogate losses. Minimizing the single-
stage or two-stage deferral losses is computationally in-
tractable for most hypothesis sets due to their non-continuity
and non-differentiability, as for the multi-class zero-one loss.
Instead, we will consider surrogate losses for the deferral
loss. Let D be a distribution over X x Y and let L be a loss
function. The generalization error of a hypothesis h € H
is defined by €(h) = E(4 )~ [L(h,2,7)] and the best-in-
class generalization error by £; (H) = infpeqc E (R). We
refer to the difference €, (h) — & (J) as the estimation
error. When H = H,y), we refer to € (H,n1) as the Bayes
error and & (h) — £ (Han) as the excess error. In the two-

stage case, these definitions extend naturally by replacing
the hypothesis i with 7 and the hypothesis set H with R.
For clarity, we will introduce these concepts in the single-
stage setting as an example, though they also apply to the
two-stage case.

A necessary and fundamental property of a surrogate loss
is Bayes-consistency (Zhang, 2004a; Bartlett et al., 2006;
Zhang, 2004b; Tewari & Bartlett, 2007; Steinwart, 2007;
Mozannar & Sontag, 2020; Verma & Nalisnick, 2022),
which means that minimizing the excess error of the sur-
rogate loss L leads to minimizing the excess error of the
deferral loss Lgef.

Definition 2.1. A surrogate loss L is Bayes-consistent
with respect to Lqger if for any sequence of predictors
{(hn)} ey © Han such that [E(hy,) — EL(FHan)] con-
verges to zero as n — +00, [Er,., (hn) — €1y (Han)] con-
verges to zero too.

Bayes-consistency does not take into account the specific
hypothesis set H{ adopted in practice and assumes that op-
timization is performed over the family of all measurable
functions. Consequently, a hypothesis-dependent guarantee,
such as realizable H-consistency (Long & Servedio, 2013;
Zhang & Agarwal, 2020; Mozannar et al., 2023; Mao et al.,
2024i) and H-consistency bound (Awasthi et al., 2022a;b;
Mao et al., 2023f) (see also (Awasthi et al., 2021a;b; 2023;
2024; Mao et al., 2023b;e; Zheng et al., 2023; Mao et al.,
2023c;d; 2024f;g; Cortes et al., 2024; 2025; Mao et al.,
2025; Zhong, 2025)), is more informative and relevant.
Definition 2.2. We will say that a surrogate loss L is realiz-
able H-consistent with respect to Lyt if for any realizable
distribution (a distribution for which there exists h* € H
satisfying &, (h*) = 0), if h is in argmin, .4 & (h) then
&L (h)=0.

Realizable J{-consistency is an asymptotic guarantee and
is independent of Bayes-consistency. An JH-consistency
bound, on the other hand, is non-asymptotic and always
implies Bayes-consistency.

Definition 2.3. A surrogate loss L is said to admit an JH-
consistency bound, if there exists a non-decreasing concave
function I: R, — R, with I'(0) = 0, such that the following
inequality holds for all h € J{ and all distributions:

Edef(h) - Elfdcf(}(j) + Mdef (:}C)
<P(EL(h) = EL(H) + ML(H)),



where the minimizability gap M (H) is defined as
ML(H) = & (H) - Eg[infpeac Eyu[L(h, 2, 9)]].

For convenience, we refer to C(h,z) = Ey,[L(h,z,y)]
and C (3, z) = infreg CL(h, ) as the conditional error
and best-in-class conditional error, respectively. We refer
to the difference, C(h,x) — infeqc CL(h,x), as the con-
ditional regret and denote it by ACy g¢(h,z). The mini-
mizability gap is the difference between the best-in-class
generalization error and the expected best-in-class condi-
tional error. It can be upper-bounded by the approximation
error and vanishes when H = H,;; (Awasthi et al., 2022a;b;
Mao et al., 2024d). Thus, an H-consistency bound implies
Bayes-consistency. However, in the deferral setting, the min-
imizability gap may not vanish for a realizable distribution.
Therefore, J{-consistency bounds do not imply realizable
H-consistency (Mao et al., 20241).

3. Single-Stage Multiple-Expert Deferral

In this section, we derive realizable surrogate losses for
single-stage multiple-expert deferral. We begin by proving
an alternative formulation for Ly.¢, which serves as the
foundation for defining a novel family of surrogate losses.
Next, we establish the realizable J{-consistency of these loss
functions under a mild assumption. Finally, we establish
H-consistency bounds for a specific surrogate loss within
this family.

3.1. New Surrogate Losses

We first prove that the following alternative expression holds
for Lges. The proof is included in Appendix B.1.

Lemma 3.1. The deferral loss can be expressed as follows:
V(h,z,y) € Han x X x Y,

Ne

Ldef(hvxvy) = I:Z Cj(xay) +1- ne]lh(x)iy (D
j=1

+ 2 [1=¢(2,9) Tn(ay ey Ingaynss-
Pt

We use this formulation to derive a new family of surro-
gate losses by replacing the indicator functions in (1) with
smooth loss functions. The first indicator function, Th(z)=y
corresponds to the multi-class zero-one loss. Thus, a nat-
ural approach is to substitute it with a surrogate loss used
in standard multi-class classification. In particular, we fo-
cus on the broad class of comp-sum losses (Mao et al.,
2023f), which includes many well-known loss functions,
such as the logistic loss. Comp-sum losses are defined for
all (h,z,y) e H xX xY as:

(@)
W5 oo ) @)

where U:[0,1] - R, U {+o0} is a non-increasing func-
tion. A specific choice of ¥ is the family ¥, defined
for all w € (0,1] by U (u) = %(1—uq) for ¢ > 0, and
U, (u) = —log(u) for ¢ = 0. For ¢ = 0, ¥, corresponds to
the (multinomial) logistic loss (Verhulst, 1838; 1845; Berk-
son, 1944; 1951), while ¢ € (0, 1) corresponds to the gen-
eralized cross-entropy loss (Zhang & Sabuncu, 2018), and
q = 1 to the mean absolute error loss (Ghosh et al., 2017).
For the indicator function 1y(z)+y lh(z)2n+;> We adopt the

following modified comp-sum surrogate loss, as in (Mao
etal,, 2024i); W £ 20T ). This leads to the follow-
y'ey € Y

ing new family of surrogate losses for the deferral loss:

Ne

(@)
Lothaany) = | 3 eslw) 1 =ne (9| s

J=1

+ 2[1 - cj(a:,y)]\Il(

@) 4 phlnts)
, 3

_ ph(z,y’
Zy’e‘j eh(z.y")

where W:[0,1] » R, U {+oo} is a decreasing function.

3.2. Realizable H{-Consistency

A hypothesis set H is said to be closed under scaling if,
(h € 3) implies (ah € H) for any « € R. This property is
satisfied by many broad function classes, including linear
functions and various families of neural networks. The
following result shows that, under mild assumptions, our
proposed surrogate losses are realizable J{-consistent when
H is closed under scaling.

Theorem 3.2. Assume n. > 2 and H closed under scaling.
Then, if U satisfies lim,,,1- U(u) = 0 and lim,, o+ ¥(u) =
1, then the surrogate loss Ly is realizable H-consistent with
respect to Lget.

The proof is given in Appendix B.2. Note that for n, = 1,
our surrogate loss formulation (3) coincides with that of
Lrr2p in the single-expert case by Mao et al. (20241). In
this special case, the following result holds.

Theorem 3.3 (Theorem 4.1 in (Mao et al., 2024i)). Assume
ne = 1 and H closed under scaling. Then, if VU satisfies
lim,1- ¥(u) =0, then, the surrogate loss Ly is realizable
H-consistent with respect to Lye.

Compared to the single-expert case where n. = 1, an addi-
tional condition, lim, o+ ¥ (u) = 1, is required for Ly to
be realizable H-consistent with respect to Lget, as stated
in Theorem 3.2. This condition rules out the case where
U(u) = -log(u) but is satisfied by functions ¥ = ¥, when
q > 0. We will verify in a simulated example in Section 6
that the surrogate loss Ly with ¥ = U, (¢ > 0) is realizable
H-consistent.



3.3. H-Consistency Bounds

We now show that in the special case of ¥ = ¥y, that is
U(u) = 1-u, Ly admits an H-consistency bound and is
Bayes-consistent with respect to Lges. For this case, the
conditions lim,_,1- ¥(u) = 0 and lim, o+ ¥(u) = 1 also
hold. We denote the resulting surrogate loss as Lye. It is
defined as follows for any (h,z,y) € Hay x X x Y:

Lmae(ha Z, y)

Ne eh(w,y)
= ch(x,y)+1—ne 1—m

j:l yley
Ne h(z,y) h(z,n+7)
e + e
+ 1-ci(z,y)||1- - . @
;[ J ] Zy’eg eh(m,y )

We say that a hypothesis set is symmetric if there exists
a family J of functions mapping from X to R such that
{[h(z,1),...,h(z,n +ne)]:h e H} = F*" We say that
a hypothesis set 3 is complete if for any (x,y) € X x Y,
the set of scores generated by J{ spans all real numbers:
{h(z,y) | h e H} = R. Commonly used hypothesis sets
such as families of neural networks, linear functions, and

all measurable functions, are both symmetric and complete.

Theorem 3.4. Assume that H is symmetric and complete.
Then, for all h € H and any distribution, the following
H-consistency bound holds:

E’Ldef(h) - ELdef (J{) + MLdef(g{)
< (n+ne) (€ (h) = €L, (F0) + My, (F0)).

The proof is given in Appendix B.3.2. Theorem 3.4 in-
cludes the single-expert case (Theorem 4.3 in (Mao et al.,
20241)) as a special instance when n. = 1. In the proof,
we first characterize the conditional regret of the defer-
ral loss, which is determined by the key quantities p,,.; =
Yyey P(ylz)(1 = cj(x,y)) for j € [n.]. For the multiple-
expert case, the proof becomes more complex because
argmax;e[,, ] Pn+; may differ from argmax;[,, h(z,n+
7). In contrast, these quantities coincide in the single-expert
case. Moreover, the more complicated forms of both the
surrogate loss and the deferral loss in the multiple-expert
setting introduce further layers of complexity to the proof.

When I = J{,y;, the family of all measurable functions,
the minimizability gaps vanish. In this case, Theorems 3.4
implies the excess error bounds and Bayes-consistency guar-
antees of L. Along with Theorem 3.2, we conclude that
Lae 1s both realizable H-consistent and benefits from H-
consistency bounds (thus ensuring Bayes-consistency) for
single-stage multiple-expert deferral.

4. Two-Stage Multiple-Expert Deferral

Recall that in the two-stage multiple-expert deferral setting,
the goal is to find a deferral function 7: X x [n.] - R that
minimizes the following two-stage deferral loss:

I—tdef(’rv x, y) = Z Cj (Z‘, y)lr(x)=]
j=1

We denote by ¢; > 0 and ¢; > 0 the lower and upper bounds
of the cost ¢;, forany j € {1,...,n.}.

4.1. Two Experts

We first consider the two-expert case (n. = 2). The two-
stage deferral loss can be then be written as follows:

Ltdef(rwra y) = Cl(l'vy)lr(w)=1 + CZ(za y)lr(a:)=2-

A natural surrogate loss admits the following form:

L‘P(T7 x, y) =C (.13, y)(I)(T'(J}, 2) - T(l’, 1))
+02(.’L',y)(1)(7"($71)—7"(1',2)), (5)
where ®:R — R, is a decreasing function that defines a
margin-based loss in binary classification. As an exam-

ple, for ®(t) = log(1 + e™*), Lg can be expressed as the
following cost-sensitive logistic loss:

L@(T, z, y) _ Cl(l‘, y) log(l + ev‘(w,l)ﬂ“(m,?))

+ca(z,y) log(l + er(w’z)_T(I’l)). 6)
Next, we show that this surrogate loss is realizable J(-
consistent with respect to Lqer-

Theorem 4.1. Assume that R is closed under scaling and
that ® satisfies limy_, .o, P(t) = 0 and ®(t) > li<o. Then,
the surrogate loss Lo is realizable R-consistent with respect
10 Ligef.

The proof is provided in Appendix C.1. The following result
further establishes that L satisfies an R-consistency bound
with respect to Lyqef, provided that @ is associated with an
R-consistency bound in binary classification.

Theorem 4.2. Assume that the following R-consistency
bound holds in binary classification:

8%—1 (h) - 8%—1 (:R) + Mfo—l (:R)
<T'(Ea(h) - Ea(R) + Ma(R)).

Then, the following R-consistency bound holds in two-stage,
two-expert deferral:

SLtdet’(r) - g’Ltdef (:R) + MLtdef(R)
< (¢ + CQ)F( ELs (T) ~ L (:R) M, (R) )7

€ tCo

where constant factors (¢, + ¢;) and (¢1 +C2) can be re-
moved when 1 is linear.



The proof is presented in Appendix C.2. Note that, as shown
by Awasthi et al. (2022a), when I consists of common
function classes such as linear models, neural network fam-
ilies, or the family of all measurable functions, and for
®(t) = et or () =log(1 +e?), T can be chosen as the
square-root function. Similarly, for ®(¢) = max{0,1-1¢},
T" can be chosen as the identity function, resulting in a linear
bound. Combining this with Theorem 4.1, we conclude
that L is not only realizable R-consistent but also benefits
from R-consistency bounds, thereby also ensuring Bayes-
consistency, in the two-stage two-expert deferral setting.

4.2. Multiple Experts

Next, we consider the general multiple-expert case where
ne > 2. Motivated by the formulation of the surrogate loss
in the two-expert case and the comp-sum losses (Mao et al.,
2023f) in standard multi-class classification, we propose the
following surrogate loss for the multiple-expert case:

L\I’(r7x7y) (7)

ne o )o er(@.3)
= -/ —Ne + o
Z Z Cj (x;y) n Zj’e er(z,j ))

J=1\j'#j [ne]

where ¥:[0,1] - R, u {+oco} is a decreasing function,
such as U(u) = 1 -wu or ¥(u) = —log(u), as discussed
in Section 3.1. Note that when n. = 2, this formulation
coincides with the one in the two-expert case, as shown in

(5), with ®: ¢ — \Il( e’ ) As an example, in the case where

et+1
U(u) = —log(u), Ly can be expressed as follows:

Z( > cjr(x,y) = ne + 2) log(l £ 3 em,j')r(z,j)).

J=1\j"#j J'#j

When n, = 2, this formulation coincides with the one in the
two-expert case, as shown in (6). Next, we show that the
surrogate loss Ly is realizable H-consistent with respect
to Lyger under natural assumptions about the cost functions
and the auxiliary function .

Theorem 4.3. Assume that R is closed under scaling and
that c;(x,y) = lg, (2)2y,J € [ne]. Further, assume that for
any (x,y), there is at most one expert j* € [n.| for which
¢;+(2,y) = 0 and that VU satisfies lim,,_,1- ¥ (u) = 0. Then,
the surrogate loss Ly is realizable R-consistent with respect
to Lider.

The proof is included in Appendix C.3. Next, we consider
the case where ¥ (u) = ¥, which satisfies the conditions
lim,1- ¥(u) = 0. The following result shows that Ly
also admits an R-consistency bound with respect to L¢get.

Theorem 4.4. Assume that R is symmetric and complete
and that the inequality ;. cj(x,y) > n. — 2 holds for
all j € [ne] and (z,y) € X xY. Then, the following R-

consistency bound holds:
ELtdef (T) - Ettdef (:R) + MLtdef (:R)
<T(&ry, () - &, (R) + My, (R),

_ 1
where C = (ne—1) maXe[,,1¢;—ne+2, T'(t) =2(C) >Vt
when q = 0, T'(t) = 2(ne9)2 (C) 2/t when q € (0,1), and
T(t) =net when g = 1.

Appendix C.4 contains the proof. Collectively, Theo-
rems 4.3 and 4.4 show that for two-stage multiple-expert
deferral, Lq;q is both realizable R-consistent, and admits
R-consistency bounds, thus ensuring Bayes-consistency.

5. Enhanced Bounds under Low-Noise
Assumptions

In the previous sections, we established guarantees for re-
alizable JH-consistency and H-consistency bounds in the
context of learning with multiple-expert deferral. Realizable
H-consistency provides guarantees under deterministic as-
sumptions, while J{-consistency bounds extend to arbitrary
distributions. This raises a natural question: can we offer
guarantees for intermediate cases, particularly for distribu-
tions satisfying low-noise assumptions? In what follows,
we address this question separately for the single-stage and
two-stage scenarios.

5.1. Single-Stage Scenario

‘We first characterize the conditional error and conditional
regret of the deferral loss. Let ymax = argmax, .y p(y|z),

Pymax = p(ymaX‘x) and pp4; = Zye‘é p(y|x)(1 - Cj(l'vy))’
j € [ne]. For any h € H,y, define:

e - {p<h<x>|x> h(x) € [n]

Pn+j h(z) =n+j.

Lemma 5.1. Assume that H is symmetric and complete.
Then, for any h € H and input x € X, the conditional error
and conditional regret of the deferral loss are given by:

el—def(h’ax) =1 = Ph(z)

Aeltdef7g{ (h’a 33) = max{pymax ) jr?[gx] pn+j} ~ Ph(z)-

The proof of Lemma 5.1 is included in Appendix B.3.1.

The original Tsybakov noise definition was introduced and
further studied in the context of standard classification
(Mammen & Tsybakov, 1999; Mao et al., 2024e). We ex-
tend this definition to the setting of the deferral loss with
multiple experts and establish new J{-consistency guaran-
tees under this noise assumption.



This extension relies on the concept of the Bayes classifier
for the deferral loss. By (Mao et al., 2024d, Lemma 2.1),
there exists a measurable function h* that satisfies py«(5) =
max{pymx,maxje["e] pn+j}, for all € X which identi-
fies h* as the Bayes classifier for the deferral loss. We
can now define the minimal margin for a point © € X as
Y(T) = Phe(z) = SUDyzn+ () Py and the single-stage deferral
Tsybakov noise assumption as follows: there exist B > 0
and « € [0, 1) such that the following inequality holds:

Vt>0, P[y(X)<t]<Btra. )

Thus, this noise assumption posits that the probability of
observing a small margin is relatively low. Note that when
a — 1, tTa — 0, which corresponds to an analogue of
Massart’s noise assumption in the deferral setting. The
following lemma establishes basic properties of single-stage
deferral Tsybakov noise assumption, extending a similar
result from the classification setting by Mao et al. (2024e).

Lemma 5.2. The single-stage deferral Tsybakov noise as-
-«
sumption implies that there exists a constant ¢ = Baa >0
such that the following inequalities hold for any h € 3(:
E[1h(z)eh+(2)] < CE[Y(X) In(a)ehe (2) ]
< C[ELdef(h) - ELdef(h’*)]Oé‘

The proof of Lemma 5.2 can be found in Appendix D.1.1.
We first derive an JH-consistency bound in terms of the
quantity 1p,(,)+h (), Which appears on the left-hand side of
the statement of Lemma 5.2.

Theorem 5.3. Consider the setting of single-stage multiple-
expert deferral. Assume that the following holds for all
heHand z € X: AeLdefyg{(hﬁU) < P(AGLyﬁ(hw)),
with T(z) = x*, for some s > 1 with conjugate number
t > 1, that is % + % = 1. Then, for any h € H,

ELaer () = €L, (FO) + My, (3)

< E[Tnx)ene (0] (EL(R) = € (90 + ML(30) "

def

The proof of Theorem 5.3 is included in Appendix D.1.2.
Theorem 5.3 offers a stronger theoretical guarantee
compared to standard IJ{-consistency bounds, under
the assumption AC_ ., 5 (h,z) < T(ACL 5 (h,x)).
This bound includes the hypothesis-dependent factor
]EX[lh(X)*h*(X)]% < 1, which is more favorable than the
constant factor of one in standard bounds.

Next, we assume that the Tsybakov noise assumption
holds and also that there is no approximation error, that
is Mdef(g—(:) =0.

Theorem 5.4. Consider the setting of single-stage multiple-
expert deferral where the Tsybakov noise assumption holds,
and no approximation error occurs, that is, Sfdef(ﬂ-f) =

&l .. (3an). Assume that the following holds for all h €
Hand x € X: ACL, ;. 5c(h,x) < T(ACL 5c(h,z)), with
I(z) = =, for some s > 1. Then, for any h € K,

ELar (h) — €L (30)
< e [E (h) - &1 () + M (H)]7=GD.

The proof is given in Appendix D.1.3. Note that as o — 1,
where the Tsybakov noise corresponds to Massart’s noise
assumption, this result yields an J{-consistency bound with
a linear functional form, improving upon the standard
H-consistency bounds, which have the functional form
I'(z) = x+, when such bounds exist. This shows that
for any smooth surrogate losses with an J{-consistency
bound, under Massart’s noise assumption, we can obtain J-
consistency bounds as favorable as those of L = L5, which
always admit a linear dependency, as shown in Theorem 3.4.

For example, in the special case of a single-expert, Mao et al.
(20241, Theorem 4.2) shows that square-root J{-consistency
bounds hold (s = 3) for L = Ly, with ¢ € [0,1). Theo-
rem 5.4 provides refined J{-consistency bounds for these
surrogate losses: linear dependence when Massart’s noise
assumption holds (av — 1) and an intermediate rate between
linear and square-root for other values of v € (0,1).

Furthermore, we know that the realizability assumption can
be viewed as a special case of Massart’s noise assumption.
Thus, Theorem 5.4 provides intermediate guarantees be-
tween realizable J{-consistency and J{-consistency bounds
for single-stage deferral surrogate losses, such as Ly op con-
sidered in (Mao et al., 202441).

5.2. Two-Stage Scenario

We now extend our results to the two-stage scenario. As
in the single-stage case, we begin by characterizing the
best-in-class conditional error and the conditional regret of
the two-stage deferral loss function Liger (Lemma C.1 in
Appendix C.4.1). In particular, the Bayes conditional error
is eztdef (:Ralh :C) = minje[ne] Zyey p(y‘x)cj (I, y)

By (Mao et al., 2024d, Lemma 2.1), there exists a measur-
able function r* such that

> oyl 2y (2, y) = min Y p(ylz)e; (z,y),
yeY Jelnel yeyY

for all x € X. This function * thus defines a Bayes classifier
for the two-stage deferral loss. Define the minimal margin
Sor a point x € X as follows: y(z) =

. inf Z p(y|l’)C](£L', y) - Z p(y|x)cr*(w) (;L" y) > 0.
g#r (@) yey yey

The two-stage Tsybakov noise assumption can then be de-
fined as follows: there exist B > 0 and « € [0, 1) such that



the following inequality holds:

Vt>0, P[y(X)<t]<Btrs. 9)

As in the single-stage setting, Lemma D.2 in Appendix D.2.1
establishes fundamental properties of the Tsybakov noise
assumption within the context of the two-stage scenario. We
also derive the enhanced bounds (Theorems D.3 and D.4)
for the two-stage scenario, with their detailed presentation
deferred to Appendix D.2.2 due to space limitations.

6. Experiments

In this section, we evaluate the empirical performance of
our proposed surrogate loss, comparing it against existing
baselines in both single-stage and two-stage learning-to-
defer scenarios with multiple experts. Our objective is to
confirm that our loss functions match the best-known results
in non-realizable settings for both single- and two-stage
cases while outperforming them in realizable settings, as
predicted by our theoretical analysis.

Experimental setup. For our experiments, we used four
widely used datasets: CIFAR-10, CIFAR-100 (Krizhevsky,
2009), SVHN (Netzer et al., 2011), and Tiny ImageNet (Le
& Yang, 2015). Each dataset was trained for 200 epochs.
We adopted ResNet-16 (He et al., 2016) for the predic-
tor/deferral models. The Adam optimizer (Kingma & Ba,
2015) was used with a weight decay of 1 x 1072 and a batch
size of 1024. Following (Mozannar et al., 2023; Mao et al.,
2024a), we define the cost function as the expert’s classifi-
cation error: ¢;(z,y) = 1g, (x)+y In our empirical analysis.
We reported the means and standard deviations over five
runs. For simplicity, we omitted the standard deviations of
the deferral ratios.

Single-stage multiple-expert deferral. In the single-stage
scenario, we compared our proposed surrogate Ly (3) with
U(u) = 1 — u with the baseline surrogate losses proposed
in (Verma et al., 2023) and (Mao et al., 2024a). While
these surrogate losses are Bayes-consistent, they are not
realizable J-consistent. For both surrogate losses, we used
the logistic loss function as their auxiliary function in our
experiments. Building on the setup described in (Mao et al.,
2024a), we used two experts, each with a distinct domain
of expertise. Expert 1 always predicts from the first 30% of
classes and is correct whenever the true label falls within
this range. Similarly, Expert 2 predicts from the next 30%
of classes, following the same criterion for accuracy. As
shown in Table 2, our method achieves comparable single-
stage system accuracy (SA), defined as the average value of
[1 - Lget(h,z,y)] on the test data, to the baselines. Due to
the specific realizable form of our surrogate losses, it also
defers significantly more and exhibits a greater tendency to
choose expert 2 compared to the baselines. This highlights
a key effect of our proposed surrogate: it induces deferral

Table 2. Comparison of Our Method with Single-Stage Baselines.
Ratio of Deferral (%)
PRED EXP1 EXP2

Verma et al. (2023) 91.85£0.08 62.88 1123 2589
Mao et al. (2024a)  CIFAR-10 9198 £0.09 66.63 13.65 19.72
Ours 9221 +£0.18 38.79 3045 30.76

Verma et al. (2023) 64.13 £0.15 39.77 3595 2428
Mao et al. (2024a)  CIFAR-100 6493 £0.22 49.19 2769 23.12
Ours 65.39 £ 0.31 3438 3052 35.10

Verma et al. (2023) 9591 £0.08 64.66 2596 9.38
Mao et al. (2024a) SVHN 9578 £0.06 7893 10.09 10.98
Ours 96.08 £ 0.11 27.11 4342 2947

Verma et al. (2023) 50.61 +0.50 46.96 2559 2745
Mao et al. (2024a)  Tiny ImageNet 50.89 + 0.49 4556 37.88  16.56
Ours 51.13+0.56 21.68 32.60 4572

Method Dataset SA (%)

Table 3. Comparison of Our Method with Two-Stage Baselines.
Ratio of Deferral (%)

Method Dataset SA (%)

EXP1 EXP2 EXP3
Mao et al. (2023a) 9292 +0.14 3023 3049 39.28
Ours CIFAR-10 93.34+0.18 2934 3090 39.76
Mao et al. (2023a) 67.99 £0.19 3244 3442 3314
Ours CIFAR-100 68.70 + 0.23 31.34  29.89 38.77
Mao et al. (2023a) 96.30 £ 0.06 4238  29.68  27.94
Ours SVHN 96.47 +0.08 4252 2970 27.78
Mao et al. (2023a) 4581 +0.17 36.64 28.64 3472
Ours Tiny ImageNet 46.62 + 0.24 26.82 38.15 35.03

behavior that is qualitatively different from prior approaches,
particularly on the SVHN and Tiny ImageNet datasets.

Two-stage multiple-expert deferral. In the two-stage sce-
nario, we compared our proposed surrogate loss Ly (7)
with U(u) = —log(u) with the baseline surrogate losses
proposed in (Mao et al., 2023a). While the baseline sur-
rogate losses are Bayes-consistent, they are not realizable
H-consistent with cost functions based on classification er-
ror: ¢j(x,y) = lg, (x)+y- In our experiments, we used the
multinomial logistic loss as the multi-class classification
surrogate for the baseline surrogate losses. As in the single-
stage scenario, we considered a setting where multiple ex-
perts are available, each with a clear domain of expertise.
We used three experts, with two of them the same as those
adopted in the single-stage setting. Additionally, we intro-
duced a third expert that predicts from the remaining 40% of
classes and is accurate if the true label is within this range.
As shown in Table 3, our method achieves comparable fwo-
stage system accuracy (SA), defined as the average value of
[1 - Liger(h, z,y)] on the test data, to the baselines. The
different deferral ratios it achieves, compared to the baseline,
demonstrate the effect of our proposed surrogate loss.

Realizable multiple-expert deferral. We also conducted
an additional experiment in the realizable scenario, by ex-
tending the synthetic Mixture-of-Gaussians dataset from
(Mozannar et al., 2023) to the multiple-expert setting. This
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Figure 1. System Accuracy vs. Training Sample Size.

extended dataset is realizable by linear functions, as there
exists a randomly selected linear hypothesis h* € J that
achieves zero single-stage deferral loss, £, (h*) = 0. We
set the true label to match the predictor’s prediction when
deferral does not occur according to ~A*. Otherwise, the
true label is generated uniformly at random. We used two
experts whose predictions align with the true label only
when they are chosen by i* to make the prediction. For
our surrogate loss Ly (3), we selected ¥ = ¥, with ¢ = 0.7
and ¢ = 1. We compared these surrogate losses to those
introduced in (Verma et al., 2023) and (Mao et al., 2024a).
Figure 1 shows system accuracy as a function of training
samples on the realizable Mixture-of-Gaussians distribution,
verifying our theoretical results that both choices of Ly are
realizable H-consistent, while the two baselines are not.

The behavior for lower values of ¢ is similar to that ob-
served for ¢ = 0.7 and ¢ = 1. Note that for any ¢ > 0, The-
orem 3.2 guarantees realizable J{-consistency. We chose
q = 0.7 and ¢ = 1 in Figure 1 because they correspond to
standard choices in prior work, ¢ = 0.7 is a commonly sug-
gested value within the generalized cross-entropy family
(e.g., (Zhang & Sabuncu, 2018); (Mao et al., 2024a)), and
q = 1 corresponds to the mean absolute error loss, as used
in ((Ghosh et al., 2017); (Mao et al., 2024a)). In this real-
izable distribution, we observe that our proposed surrogate
losses achieve close to 100% system accuracy, while all
other baselines fail to find a near-zero-error solution. This
demonstrates that our surrogates are realizable J{-consistent,
whereas the compared baselines are not.

Note that the goal of our experiments on non-realizable data
is not to claim that our proposed surrogate losses outperform
the baselines (Verma et al., 2023; Mao et al., 2024a; 2023a)
in such settings. Rather, our results show that our surrogate
losses match the performance of these state-of-the-art base-
lines in non-realizable settings in terms of system accuracy,
as both are supported by consistency bounds. The strength
of our approach lies in the realizable setting, where our sur-
rogate losses are guaranteed to be realizable JH-consistent,

unlike the baselines, as illustrated in Figure 1.

7. Future Work

Our paper primarily focuses on theoretically principled sur-
rogate losses for learning to defer with multiple experts,
grounded in realizable J{-consistency and J{-consistency
bounds, within the learning theory framework. While
we have empirically shown that minimizing our proposed
loss functions outperforms the baselines in realizable set-
tings and matches the best-known results in synthetic non-
realizable settings, as predicted by our theoretical analysis,
we recognize the importance of further empirical explo-
ration. Accordingly, we plan to dedicate future work to con-
ducting a more extensive empirical analysis in real-world
settings, particularly in important scenarios where expert
domains overlap and the data is heterogeneous.

We also acknowledge the relevance of more realistic and
challenging scenarios, such as those where expert predic-
tions are unavailable during training. Extending our meth-
ods to these scenarios is a promising direction for future
work. For example, it would be interesting to adapt our
framework to handle previously unseen experts at test time,
as studied by Tailor et al. (2024) and to incorporate post-
processing frameworks for learning to defer under con-
straints such as OOD detection and long-tail classification,
as explored by Charusaie & Samadi (2024).

Our deferral framework also offers promising applications
in the context of large language models (LLMs). Given
the significant resources required to retrain LLMs, a two-
stage method is a practical and scalable solution (Mao et al.,
2023a). This does not require modifying LLMs or the loss
function used to train them. Our proposed two-stage surro-
gate loss is particularly well-suited for use with pre-trained
LLMs. In the presence of multiple LLMs (or experts), using
our method, uncertain predictions can be deferred to more
specialized or domain-specific pre-trained models, thereby
both improving the reliability and accuracy of the overall
system and improving efficiency.

8. Conclusion

We presented novel surrogate losses functions and algo-
rithms for multiple-expert deferral, offering strong theoreti-
cal guarantees for both single- and two-stage scenarios. Our
results, including realizable J-consistency, JH-consistency
bounds, and Bayes-consistency, extend to multiple-expert
settings and provide enhanced guarantees under low-noise
assumptions. Our analysis can be leveraged to study and
design algorithms for other routing problems, for example
when incorporating constraints, such as limiting the fre-
quency with which an expert can be used. Experimental re-
sults confirm the effectiveness of our principled techniques.



Acknowledgements

We thank the anonymous reviewers for their valuable feed-
back and constructive suggestions.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Acar, D. A. E., Gangrade, A., and Saligrama, V. Bud-
get learning via bracketing. In International Conference
on Artificial Intelligence and Statistics, pp. 4109-4119,
2020.

Awasthi, P., Frank, N., Mao, A., Mohri, M., and Zhong,
Y. Calibration and consistency of adversarial surrogate
losses. Advances in Neural Information Processing Sys-
tems, pp. 9804-9815, 2021a.

Awasthi, P., Mao, A., Mohri, M., and Zhong, Y. A finer
calibration analysis for adversarial robustness. arXiv
preprint arXiv:2105.01550, 2021b.

Awasthi, P, Mao, A., Mohri, M., and Zhong, Y. (-
consistency bounds for surrogate loss minimizers. In
International Conference on Machine Learning, 2022a.

Awasthi, P., Mao, A., Mohri, M., and Zhong, Y. Multi-class
H-consistency bounds. In Advances in Neural Informa-
tion Processing Systems, 2022b.

Awasthi, P., Mao, A., Mohri, M., and Zhong, Y. Theoreti-
cally grounded loss functions and algorithms for adversar-
ial robustness. In International Conference on Artificial
Intelligence and Statistics, pp. 10077-10094, 2023.

Awasthi, P., Mao, A., Mohri, M., and Zhong, Y. DC-
programming for neural network optimizations. Journal
of Global Optimization, 2024.

Bartlett, P. L. and Wegkamp, M. H. Classification with
a reject option using a hinge loss. Journal of Machine
Learning Research, 9(8), 2008.

Bartlett, P. L., Jordan, M. 1., and McAuliffe, J. D. Convexity,
classification, and risk bounds. Journal of the American
Statistical Association, 101(473):138-156, 2006.

Benz, N. L. C. and Rodriguez, M. G. Counterfactual in-
ference of second opinions. In Uncertainty in Artificial
Intelligence, pp. 453-463, 2022.

10

Berkson, J. Application of the logistic function to bio-assay.
Journal of the American Statistical Association, 39:357—
365, 1944.

Berkson, J. Why I prefer logits to probits. Biometrics, 7(4):
327-339, 1951.

Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J.,
Horvitz, E., Kamar, E., Lee, P, Lee, Y. T., Li, Y.,
Lundberg, S., et al. Sparks of artificial general intel-
ligence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712, 2023.

Cao, Y., Cai, T., Feng, L., Gu, L., Gu, J., An, B., Niu, G., and
Sugiyama, M. Generalizing consistent multi-class clas-
sification with rejection to be compatible with arbitrary
losses. In Advances in Neural Information Processing
Systems, 2022.

Cao, Y., Mozannar, H., Feng, L., Wei, H., and An, B. In
defense of softmax parametrization for calibrated and
consistent learning to defer. In Advances in Neural Infor-
mation Processing Systems, 2023.

Charoenphakdee, N., Cui, Z., Zhang, Y., and Sugiyama,
M. Classification with rejection based on cost-sensitive
classification. In International Conference on Machine
Learning, pp. 1507-1517, 2021.

Charusaie, M.-A. and Samadi, S. A unifying post-
processing framework for multi-objective learn-to-defer
problems. In Advances in Neural Information Processing
Systems, 2024.

Charusaie, M.-A., Mozannar, H., Sontag, D., and Samadi,
S. Sample efficient learning of predictors that comple-
ment humans. In International Conference on Machine
Learning, pp. 2972-3005, 2022.

Chen, G., Li, X., Sun, C., and Wang, H. Learning to make
adherence-aware advice. In International Conference on
Learning Representations, 2024.

Cheng, X., Cao, Y., Wang, H., Wei, H., An, B., and Feng,
L. Regression with cost-based rejection. In Advances in
Neural Information Processing Systems, 2023.

Chow, C. An optimum character recognition system using
decision function. IEEE Transactions on Computers,
1957.

Chow, C. On optimum recognition error and reject tradeoff.
IEEE Transactions on Information Theory, 16(1):41-46,
1970.

Cortes, C., DeSalvo, G., and Mohri, M. Learning with
rejection. In International Conference on Algorithmic
Learning Theory, pp. 67-82, 2016a.



Cortes, C., DeSalvo, G., and Mohri, M. Boosting with ab-
stention. In Advances in Neural Information Processing
Systems, pp. 16601668, 2016b.

Cortes, C., DeSalvo, G., and Mohri, M. Theory and algo-
rithms for learning with rejection in binary classification.
Annals of Mathematics and Artificial Intelligence, pp.
1-39, 2023.

Cortes, C., Mao, A., Mohri, C., Mohri, M., and Zhong, Y.
Cardinality-aware set prediction and top-k classification.
In Advances in Neural Information Processing Systems,
2024.

Cortes, C., Mao, A., Mohri, M., and Zhong, Y. Balancing
the scales: A theoretical and algorithmic framework for
learning from imbalanced data. In International Confer-
ence on Machine Learning, 2025.

De, A., Koley, P., Ganguly, N., and Gomez-Rodriguez, M.
Regression under human assistance. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 2611-
2620, 2020.

De, A., Okati, N., Zarezade, A., and Rodriguez, M. G.
Classification under human assistance. In Proceedings of
the AAAI Conference on Artificial Intelligence, pp. 5905—
5913, 2021.

El-Yaniv, R. and Wiener, Y. Active learning via perfect
selective classification. Journal of Machine Learning
Research, 13(2), 2012.

El-Yaniv, R. et al. On the foundations of noise-free selective
classification. Journal of Machine Learning Research, 11
(5), 2010.

Gangrade, A., Kag, A., and Saligrama, V. Selective classi-
fication via one-sided prediction. In International Con-
ference on Artificial Intelligence and Statistics, pp. 2179—
2187, 2021.

Gao, R., Saar-Tsechansky, M., De-Arteaga, M., Han, L.,
Lee, M. K., and Lease, M. Human-ai collaboration with
bandit feedback. In International Joint Conference on
Artificial Intelligence, 2021.

Geifman, Y. and El-Yaniv, R. Selective classification for
deep neural networks. In Advances in Neural Information
Processing Systems, 2017.

Geifman, Y. and El-Yaniv, R. Selectivenet: A deep neural
network with an integrated reject option. In International
Conference on Machine Learning, pp. 2151-2159, 2019.

Ghosh, A., Kumar, H., and Sastry, P. S. Robust loss func-
tions under label noise for deep neural networks. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2017.

11

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 770-778, 2016.

Hemmer, P., Schellhammer, S., Vossing, M., Jakubik, J., and
Satzger, G. Forming effective human-ai teams: Building
machine learning models that complement the capabilities

of multiple experts. In International Joint Conference on
Artificial Intelligence, pp. 2478, 2022.

Hemmer, P., Thede, L., Vossing, M., Jakubik, J., and Kiihl,
N. Learning to defer with limited expert predictions. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 6002-6011, 2023.

Jiang, W., Zhao, Y., and Wang, Z. Risk-controlled selective
prediction for regression deep neural network models. In

International Joint Conference on Neural Networks, pp.
1-8, 2020.

Jitkrittum, W., Gupta, N., Menon, A. K., Narasimhan, H.,
Rawat, A., and Kumar, S. When does confidence-based
cascade deferral suffice? In Advances in Neural Informa-
tion Processing Systems, 2023.

Joshi, S., Parbhoo, S., and Doshi-Velez, F. Learning-to-defer
for sequential medical decision-making under uncertainty.
Transactions on Machine Learning Research, 2023.

Kerrigan, G., Smyth, P., and Steyvers, M. Combining human
predictions with model probabilities via confusion matri-
ces and calibration. In Advances in Neural Information
Processing Systems, pp. 4421-4434, 2021.

Keswani, V., Lease, M., and Kenthapadi, K. Towards un-
biased and accurate deferral to multiple experts. In Pro-
ceedings of the AAAI/ACM Conference on Al, Ethics, and
Society, pp. 154-165, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, Toronto University, 2009.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

Li, X., Liu, S., Sun, C., and Wang, H. When no-rejection
learning is optimal for regression with rejection. arXiv
preprint arXiv:2307.02932, 2023.

Liu, S., Cao, Y., Zhang, Q., Feng, L., and An, B. Mitigating
underfitting in learning to defer with consistent losses. In
International Conference on Artificial Intelligence and
Statistics, pp. 48164824, 2024.



Long, P. and Servedio, R. Consistency versus realizable H-
consistency for multiclass classification. In International
Conference on Machine Learning, pp. 801-809, 2013.

Madras, D., Creager, E., Pitassi, T., and Zemel, R. Learning
adversarially fair and transferable representations. In
International Conference on Machine Learning, pp. 3384—
3393, 2018.

Mammen, E. and Tsybakov, A. B. Smooth discrimina-
tion analysis. The Annals of Statistics, 27(6):1808—1829,
1999.

Mao, A. Theory and Algorithms for Learning with Multi-
Class Abstention and Multi-Expert Deferral. PhD thesis,
New York University, 2025.

Mao, A., Mohri, C., Mohri, M., and Zhong, Y. Two-stage
learning to defer with multiple experts. In Advances in
Neural Information Processing Systems, 2023a.

Mao, A., Mohri, M., and Zhong, Y. H-consistency bounds:
Characterization and extensions. In Advances in Neural
Information Processing Systems, 2023b.

Mao, A., Mohri, M., and Zhong, Y. H-consistency bounds
for pairwise misranking loss surrogates. In International
conference on Machine learning, 2023c.

Mao, A., Mohri, M., and Zhong, Y. Ranking with abstention.
In ICML 2023 Workshop The Many Facets of Preference-
Based Learning, 2023d.

Mao, A., Mohri, M., and Zhong, Y. Structured prediction
with stronger consistency guarantees. In Advances in
Neural Information Processing Systems, 2023e.

Mao, A., Mohri, M., and Zhong, Y. Cross-entropy loss
functions: Theoretical analysis and applications. In Inter-
national Conference on Machine Learning, 2023f.

Mao, A., Mohri, M., and Zhong, Y. Principled approaches
for learning to defer with multiple experts. In Interna-
tional Symposium on Artificial Intelligence and Mathe-
matics, 2024a.

Mao, A., Mohri, M., and Zhong, Y. Predictor-rejector multi-
class abstention: Theoretical analysis and algorithms.
In International Conference on Algorithmic Learning
Theory, pp. 822-867, 2024b.

Mao, A., Mohri, M., and Zhong, Y. Theoretically grounded
loss functions and algorithms for score-based multi-class
abstention. In International Conference on Artificial In-
telligence and Statistics, pp. 4753-4761, 2024c.

Mao, A., Mohri, M., and Zhong, Y. A universal growth rate
for learning with smooth surrogate losses. In Advances
in Neural Information Processing Systems, 2024d.

12

Mao, A., Mohri, M., and Zhong, Y. Enhanced -
consistency bounds. In International Conference on Al-
gorithmic Learning Theory, 2024e.

Mao, A., Mohri, M., and Zhong, Y. H-consistency guar-
antees for regression. In International Conference on
Machine Learning, pp. 34712-34737, 2024f.

Mao, A., Mohri, M., and Zhong, Y. Multi-label learning
with stronger consistency guarantees. In Advances in
Neural Information Processing Systems, 2024g.

Mao, A., Mohri, M., and Zhong, Y. Regression with multi-
expert deferral. In International Conference on Machine
Learning, 2024h.

Mao, A., Mohri, M., and Zhong, Y. Realizable H -consistent
and Bayes-consistent loss functions for learning to defer.
In Advances in Neural Information Processing Systems,
2024i.

Mao, A., Mohri, M., and Zhong, Y. Principled algorithms
for optimizing generalized metrics in binary classification.
In International Conference on Machine Learning, 2025.

Mohri, C., Andor, D., Choi, E., Collins, M., Mao, A., and
Zhong, Y. Learning to reject with a fixed predictor: Ap-
plication to decontextualization. In International Confer-
ence on Learning Representations, 2024.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. Founda-
tions of Machine Learning. MIT Press, second edition,
2018.

Montreuil, Y., Yeo, S. H., Carlier, A., Ng, L. X., and Ooi,
W. T. Optimal query allocation in extractive QA with
LLMs: A learning-to-defer framework with theoretical
guarantees. arXiv preprint arXiv:2410.15761, 2024.

Montreuil, Y., Carlier, A., Ng, L. X., and Ooi, W. T. Ad-
versarial robustness in two-stage learning-to-defer: Algo-
rithms and guarantees. In International Conference on
Machine Learning, 2025a.

Montreuil, Y., Carlier, A., Ng, L. X., and Ooi, W. T. Why
ask one when you can ask k? two-stage learning-to-defer
to the top-k experts. arXiv preprint arXiv:2504.12988,
2025b.

Montreuil, Y., Carlier, A., Ng, L. X., and Ooi, W. T.
One-stage top-k learning-to-defer: Score-based sur-
rogates with theoretical guarantees. arXiv preprint
arXiv:2505.10160, 2025c.

Montreuil, Y., Yeo, S. H., Carlier, A., Ng, L. X., and Ooi,
W. T. A two-stage learning-to-defer approach for multi-
task learning. In International Conference on Machine
Learning, 2025d.



Mozannar, H. and Sontag, D. Consistent estimators for
learning to defer to an expert. In International Conference
on Machine Learning, pp. 70767087, 2020.

Mozannar, H., Satyanarayan, A., and Sontag, D. Teaching
humans when to defer to a classifier via exemplars. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, pp. 5323-5331, 2022.

Mozannar, H., Lang, H., Wei, D., Sattigeri, P., Das, S., and
Sontag, D. Who should predict? exact algorithms for
learning to defer to humans. In International Conference
on Artificial Intelligence and Statistics, pp. 10520-10545,
2023.

Narasimhan, H., Jitkrittum, W., Menon, A. K., Rawat, A. S.,
and Kumar, S. Post-hoc estimators for learning to defer to
an expert. In Advances in Neural Information Processing
Systems, pp. 29292-29304, 2022.

Narasimhan, H., Menon, A. K., Jitkrittum, W., Gupta, N.,
and Kumar, S. Learning to reject meets long-tail learning.
In International Conference on Learning Representations,
2024.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading digits in natural images with
unsupervised feature learning. In Advances in Neural
Information Processing Systems, 2011.

Neyman, J. and Pearson, E. S. Ix. on the problem of the
most efficient tests of statistical hypotheses. Philosophi-
cal Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Char-
acter, 231(694-706):289-337, 1933.

Ni, C., Charoenphakdee, N., Honda, J., and Sugiyama, M.
On the calibration of multiclass classification with re-
jection. In Advances in Neural Information Processing
Systems, pp. 2582-2592, 2019.

Okati, N., De, A., and Rodriguez, M. Differentiable learn-
ing under triage. In Advances in Neural Information
Processing Systems, pp. 9140-9151, 2021.

Palomba, F., Pugnana, A., Alvarez, J. M., and Ruggieri, S.
A causal framework for evaluating deferring systems. In
International Conference on Artificial Intelligence and
Statistics, 2024.

Pradier, M. E., Zazo, J., Parbhoo, S., Perlis, R. H., Zazzi, M.,
and Doshi-Velez, F. Preferential mixture-of-experts: In-
terpretable models that rely on human expertise as much

as possible. AMIA Summits on Translational Science
Proceedings, 2021:525, 2021.

13

Raghu, M., Blumer, K., Corrado, G., Kleinberg, J., Ober-
meyer, Z., and Mullainathan, S. The algorithmic automa-
tion problem: Prediction, triage, and human effort. arXiv
preprint arXiv:1903.12220, 2019.

Ramaswamy, H. G., Tewari, A., and Agarwal, S. Consistent
algorithms for multiclass classification with an abstain
option. Electronic Journal of Statistics, 12(1):530-554,
2018.

Shah, A., Bu, Y, Lee, J. K., Das, S., Panda, R., Sattigeri,
P, and Wornell, G. W. Selective regression under fair-
ness criteria. In International Conference on Machine
Learning, pp. 19598-19615, 2022.

Steinwart, I. How to compare different loss functions and
their risks. Constructive Approximation, 26(2):225-287,
2007.

Straitouri, E., Singla, A., Meresht, V. B., and Gomez-
Rodriguez, M. Reinforcement learning under algorithmic
triage. arXiv preprint arXiv:2109.11328, 2021.

Straitouri, E., Wang, L., Okati, N., and Rodriguez, M. G.
Provably improving expert predictions with conformal
prediction. arXiv preprint arXiv:2201.12006, 2022.

Tailor, D., Patra, A., Verma, R., Manggala, P., and Nalisnick,
E. Learning to defer to a population: A meta-learning
approach. In International Conference on Artificial Intel-
ligence and Statistics, pp. 3475-3483, 2024.

Tewari, A. and Bartlett, P. L. On the consistency of multi-
class classification methods. Journal of Machine Learn-
ing Research, 8(36):1007-1025, 2007.

Verhulst, P. F. Notice sur la loi que la population suit dans
son accroissement. Correspondance mathématique et
physique, 10:113-121, 1838.

Verhulst, P. F. Recherches mathématiques sur la loi
d’accroissement de la population. Nouveaux Mémoires
de I’Académie Royale des Sciences et Belles-Lettres de
Bruxelles, 18:1-42, 1845.

Verma, R. and Nalisnick, E. Calibrated learning to defer
with one-vs-all classifiers. In International Conference
on Machine Learning, pp. 22184-22202, 2022.

Verma, R., Barrejon, D., and Nalisnick, E. Learning to
defer to multiple experts: Consistent surrogate losses,
confidence calibration, and conformal ensembles. In
International Conference on Artificial Intelligence and
Statistics, pp. 1141511434, 2023.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang,



P., Dean, J., and Fedus, W. Emergent abilities of large
language models. Transactions on Machine Learning
Research, 2022.

Wei, Z., Cao, Y., and Feng, L. Exploiting human-ai depen-
dence for learning to defer. In International Conference
on Machine Learning, 2024.

Wiener, Y. and El-Yaniv, R. Agnostic selective classification.
In Advances in Neural Information Processing Systems,
2011.

Wiener, Y. and El-Yaniv, R. Pointwise tracking the optimal
regression function. In Advances in Neural Information
Processing Systems, 2012.

Wiener, Y. and El-Yaniv, R. Agnostic pointwise-competitive
selective classification. Journal of Artificial Intelligence
Research, 52:171-201, 2015.

Wilder, B., Horvitz, E., and Kamar, E. Learning to com-
plement humans. In International Joint Conferences on
Artificial Intelligence, pp. 1526-1533, 2021.

Yuan, M. and Wegkamp, M. Classification methods with
reject option based on convex risk minimization. Journal
of Machine Learning Research, 11(1), 2010.

Yuan, M. and Wegkamp, M. SVMs with a reject option. In
Bernoulli, 2011.

Zaoui, A., Denis, C., and Hebiri, M. Regression with reject
option and application to knn. In Advances in Neural
Information Processing Systems, pp. 20073-20082, 2020.

Zhang, M. and Agarwal, S. Bayes consistency vs. H-
consistency: The interplay between surrogate loss func-
tions and the scoring function class. In Advances in
Neural Information Processing Systems, 2020.

Zhang, T. Statistical behavior and consistency of classifi-
cation methods based on convex risk minimization. The
Annals of Statistics, 32(1):56-85, 2004a.

Zhang, T. Statistical analysis of some multi-category large
margin classification methods. Journal of Machine Learn-
ing Research, 5(0Oct):1225-1251, 2004b.

Zhang, Z. and Sabuncu, M. Generalized cross entropy
loss for training deep neural networks with noisy labels.
In Advances in Neural Information Processing Systems,
2018.

Zhao, J., Agrawal, M., Razavi, P., and Sontag, D. Directing
human attention in event localization for clinical timeline
creation. In Machine Learning for Healthcare Confer-
ence, pp. 80-102, 2021.

14

Zheng, C., Wu, G., Bao, F,, Cao, Y., Li, C., and Zhu, J.
Revisiting discriminative vs. generative classifiers: The-
ory and implications. In International Conference on
Machine Learning, pp. 4242042477, 2023.

Zhong, Y. Fundamental Novel Consistency Theory: H-
Consistency Bounds. PhD thesis, New York University,
2025.



Contents of Appendix
A Related work

B Single-stage multiple-expert deferral: proofs.

B.1 Proofof Lemma3.1 . .. .. ... .. ..
B.2 Proofof Theorem 3.2. . . . . . . . . . . . e
B.3 Proof of J(-consistency bounds . . . . . . . ...
B.3.1 Simplified notation and proof of Lemma 5.1 . . .. .. .. ... ... .. .........
B.3.2 Proofof Theorem 3.4 . . . . . . . . . . . e

C Two-stage multiple-expert deferral: proofs.

C.1 Proofof Theorem 4.1 . . . . . . . . . L e
C.2 Proofof Theorem4.2. . . . . . . . . . .
C.3 Proofof Theorem 4.3 . . . . . . . . . e
C.4 Proof of H-consistency bounds . . . . .. .. ... ...
C4.1 Simplified notationand Lemma C.1 . . . . . . ... ... ... ... .. .. .. .. ...
C4.2 Proof of Theorem 4.4 . . . . . . . .

D Enhanced bounds under low-noise assumptions: proofs

D.1 Single-stage: proofs . . . . . . ... e
D.1.1 Proofof LemmaS.2 . . .. . . . . .. . e
D.1.2 Proofof Theorem 5.3 . . . . . . . . . . . e
D.1.3 Proofof Theorem 5.4 . . . . . . . . . . .

D.2 Two-stage: proofs . . . . . o o i e e e e e e e e e
D.2.1 LemmaD.2andProof. .. ... ... ... .. .. ...

D.2.2 Enhanced bounds in two-stage scenario (Theorem D.3 and Theorem D.4)

D.2.3 Proofof Theorem D.3 . . . . . . . . . . .. . e
D.2.4 Proof of Theorem D.4 . . . . . . . . e

15

16

17
17
17
18
18
19

22
22
23
24
24
24
25



A. Related work

Single-stage learning to defer, where a predictor and a deferral function are jointly trained, was pioneered by Cortes,
DeSalvo, and Mohri (2016a;b; 2023) and further developed in subsequent work. This includes studies on abstention with
constant costs (Charoenphakdee et al., 2021; Cao et al., 2022; Li et al., 2023; Cheng et al., 2023; Mao et al., 2024c;b; Mohri
et al., 2024; Narasimhan et al., 2024) and deferral with instance- and label-dependent costs (Mozannar & Sontag, 2020;
Verma & Nalisnick, 2022; Mozannar et al., 2023; Verma et al., 2023; Cao et al., 2023; Mao et al., 2024a; Wei et al., 2024,
Mao et al., 2024i). In this paradigm, the deferral function decides how input instances should be optimally assigned to the
most suitable expert from a diverse set. This method has demonstrated advantages over confidence-based approaches, which
rely solely on the predictor’s output magnitude (Chow, 1957; 1970; Bartlett & Wegkamp, 2008; Yuan & Wegkamp, 2010;
2011; Ramaswamy et al., 2018; Ni et al., 2019; Jitkrittum et al., 2023); and selective classification methods, which use a
fixed selection rate and cannot incorporate expert-modeled cost functions (El-Yaniv et al., 2010; El-Yaniv & Wiener, 2012;
Wiener & El-Yaniv, 2011; 2012; 2015; Geifman & El-Yaniv, 2017; 2019; Acar et al., 2020; Gangrade et al., 2021; Zaoui
et al., 2020; Jiang et al., 2020; Shah et al., 2022).

The learning to defer (L2D) problem, which incorporates human expert decisions into the cost function, was introduced by
Madras et al. (2018) and further studied by Raghu et al. (2019); Wilder et al. (2021); Pradier et al. (2021); Mozannar &
Sontag (2020); Verma & Nalisnick (2022); Charusaie et al. (2022); Mozannar et al. (2023); Mao et al. (2023a; 2024a;1).
It is typically formulated using a deferral loss function that incorporates instance-specific costs associated with each
expert. Directing optimizing this loss function is intractable for the hypothesis sets commonly used in applications. Thus,
learning-to-defer algorithms rely on optimizing a surrogate loss function instead, that serves as a proxy for the original target
loss function. Yet, what guarantees can we rely on when optimizing such surrogate loss functions?

This question, which involves analyzing the consistency guarantees of surrogate losses with respect to the deferral loss, has
been studied under two main scenarios (Mao, 2025): the single-stage scenario, where a predictor and a deferral function are
jointly learned (Mozannar & Sontag, 2020; Verma & Nalisnick, 2022; Charusaie et al., 2022; Mozannar et al., 2023; Mao
et al., 2024a), and a two-stage scenario, where the predictor is pre-trained and fixed as an expert, and while only the deferral
function is subsequently learned (Mao et al., 2023a).

In particular, Mozannar & Sontag (2020), Verma & Nalisnick (2022), and Charusaie et al. (2022) proposed surrogate loss
functions for the single-stage single-expert case by generalizing the cross-entropy loss, the one-versus-all loss, and, more
generally, a broad family of surrogate losses for multi-class classification in the context of learning to defer. However,
Mozannar et al. (2023) later showed that these surrogate loss functions do not satisfy realizable JH-consistency. They
suggested an alternative surrogate loss that achieves this property but left open the question of whether it was also Bayes-
consistent. This was later resolved by Mao et al. (2024i), who introduced a broader family of surrogate losses that
simultaneously achieve Bayes-consistency, realizable J{-consistency, and JH-consistency bounds. For the single-stage
multiple-expert (Hemmer et al., 2022; Keswani et al., 2021; Kerrigan et al., 2021; Straitouri et al., 2022; Benz & Rodriguez,
2022) case, Verma et al. (2023) were the first to extend the surrogate loss proposed in (Verma & Nalisnick, 2022) and
(Mozannar & Sontag, 2020) to accommodate multiple experts. Building on this, Mao et al. (2024a) further generalized the
surrogate loss from (Mozannar & Sontag, 2020), introducing a broader family of surrogate losses tailored to the multiple-
expert case. Furthermore, Mao et al. (2024a) proved that their surrogate losses benefit from J-consistency bounds in the
multiple-expert case, thereby ensuring Bayes-consistency. However, these loss functions are not realizable J{-consistent
even in the single-expert case, as they are extensions of the earlier loss functions. In the two-stage scenario, Mao et al.
(2023a) introduced surrogate losses that are Bayes-consistent and realizable J{-consistent for constant costs. However,
their realizable H{-consistency does not extend to cost functions of interest, which are based on classification error. Other
extensions include single-stage and two-stage multiple-expert deferral in regression (Mao et al., 2024h), single-stage learning
to defer to a population (Tailor et al., 2024), and two-stage multi-expert deferral in multi-task learning (Montreuil et al.,
2025d), adversarial robustness (Montreuil et al., 2025a), query optimization and allocation (Montreuil et al., 2024), and
top-k prediction (Montreuil et al., 2025b;c).

Further research has explored post-hoc methods. Okati et al. (2021) proposed an alternative optimization approach for the
predictor and rejector, while Narasimhan et al. (2022) offered corrections for underfitting surrogate losses (Liu et al., 2024).
Charusaie & Samadi (2024) developed a unified post-processing framework for multi-objective L2D based on a generalized
Neyman-Pearson Lemma (Neyman & Pearson, 1933). Additionally, Cao et al. (2023) introduced an asymmetric softmax
function for deriving valid probability estimates in L2D. Wei et al. (2024) explored dependent Bayes optimality, which
elucidates the dependencies involved in deferral decisions within the L2D framework. The L2D framework and its variants
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have been applied in various domains, including regression, multi-task learning, adversarial robustness, top-k prediction,
query optimization and allocation, human-in-the-loop systems and reinforcement learning (De et al., 2020; 2021; Zhao et al.,
2021; Mozannar et al., 2022; Straitouri et al., 2021; Joshi et al., 2023; Gao et al., 2021; Hemmer et al., 2023; Chen et al.,
2024; Palomba et al., 2024).

B. Single-stage multiple-expert deferral: proofs.
B.1. Proof of Lemma 3.1

Lemma 3.1. The deferral loss can be expressed as follows: ¥ (h,x,y) € Hay x X x Y,

Laet (b, 7,y) = [Z cj(z,y) +1- ne]lh(w)aty + Z[l = ¢ (2,9) | Ln(e)ysy n(e)ysnsj-
j=1 j=1

Proof. Observe that for any (z,y) € X x Y, we have 1h(z)=n+; = Lh(z)2y Lh(z)=n+j» Since h(z) = n + j implies h(z) # y.
Thus, using additionally 1y,(;)e[n] = H?gl Lh(z)#n+;- the deferral loss can be rewritten as follows for all (z,y) € X x Y:

Ldef(h7 Zz, y) = 1h(w)¢y1h(m)€[n] + Z Cj (‘Ta y)lh(w):n+j
j=1
= 1h(w)¢y H 1h(x)¢n+j + Z Cj (.T, y)]-h(w)#-y]-h(m):n-*—j
j=1 j=1

= ]-h(w)¢y H 1h(a:)¢n+j + Z Cj (LE, y)lh(l)iy(l - 1h(x)¢n+j)
j=1 j=1
= > (@) n(ayey + In@yey [ [ Inceyenss = 2. € (@ Y) Ino) ey In(a)enaj
j=1 j=1 J=1

Ne

Ne Ne Ne
= > (@, ) Lhayey + 2|1 = ¢ (2,9) | Th(ayey Lh(ayensj + 1h(:v)¢y|:I_I Lh(z)entj = 2, 1h(:1:)¢n+j:|
j=1 j=1 j=1 j=1

jom
(add and subtract 3.7} 1y (2) ey Ln(x)2nss)

= Z Cj(‘rvy)]-h(z)#y + Z[]- - Cj(xay)]lh(x)iylh(w)qtn-#j + 1h(¢)¢y(1 - ne)
j=1 j=1

1 h(x)e[n]
0 otherwise

Ne h(z) € [n]
ne — 1 otherwise

(H?jl 1h(z)¢n+j = { and Z?ﬁl 1h(w)¢n+j = {

= I:z Cj ('T7 y) +1- ne]lh(m):ty + Z[l — ¢ (.T, y)]lh(z);tylh(m)#nJrj-
j=1 J=1
This completes the proof. O
B.2. Proof of Theorem 3.2

Theorem 3.2. Assume n. > 2 and H closed under scaling. Then, if ¥ satisfies lim,,_.1- ¥(u) = 0 and lim,, o+ ¥(u) = 1,
then the surrogate loss Ly is realizable H-consistent with respect to Lyet.

Proof. Let h* be a best-in-class predictor such that £ (h*) = 0. Note that
EL(H) < lim &L(ah™)
a—>+oo
= lim E[L(ah™,z,y) [h*(2) € [n]]P(h" () € [n])

£y lim E[L(ah",2,y) | W (2) =n+ KJP(h* (2) =n + k)
k:l()(—) oo
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If h*(z) € [n], then, we must have h*(x) = y for any (z,y) € X x Y. In this case,

Jim E[L(ah”,2,y) [ (2) € [n]]

Ne ) eah*(z,y)
<E Z ci(zy)+1-n, QLIIPOQ v ST el ) ge“h*(f"y')

j=1 y'e

eah* (z,y) + eah*(a:,n+j)
Zy’eg eah*(z,y’)

+El [1-ci(a,y)] al_i)rilmllf(

If h*(z) = n + k, then, we must have ¢ (x,y) = 0 for any (x,y) € X x Y. In this case,
lirP E[L(ah™,z,y) | h*(z) =n+k]
eah”(z.y)

< E“jzl c(@y)+1- ”] me‘l’(w)l

g ah*(2y) 4 poh* (z.n+s)
] e +e
+El2[1—cj(x,y)] al_lgloo\l/( S b @) )]

j=1 y'ey

sE[zcm)u—ne]+E[2[1—cj<m,y>]]

j*k j*k

=0.

Therefore, we have £ (H) = 0. O

B.3. Proof of J{-consistency bounds
B.3.1. SIMPLIFIED NOTATION AND PROOF OF LEMMA 5.1

Let p(y|r) = P(Y =y | X = x) be the conditional probability of Y = y given X = x. Let ymax = argmax,.y p(ylz),

p(h(@)lz) h(z) e [n]

- We
Pn+j h(z) =n+j.

Py = P(Ymax|) and pryj = Xyey p(ylz) (1 - ¢;(x,y)), j € [ne]. We denote by pn(a) = {
first characterize the conditional error and conditional regret of the deferral loss as follows.

Lemma 5.1. Assume that H is symmetric and complete. Then, for any h € H and input x € X, the conditional error and
conditional regret of the deferral loss are given by:

eI—dcf (h7 .'I;) =1- ph(m)7 Aelfdef,ﬂ-f(}% l‘) = max{pymax’};[%%){] pn+7} _ph(m)'

Proof. By definition,

el—def(h‘7 x) = Z p(y|$)|-def(ha z, y)
yey

= 3 W) h(ayey Ingayen] + 2. 2 PWI) i (@, ) Ln(a)=ns
yed Jj=1yeY

= (1= p(h(@)|2) Ln(zyepn] + 2. (1= p(n+ j12)) Ln(z)=n+;
j=1

=1 = Ph(z)-
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Therefore, the best-in-class conditional error and conditional regret can be expressed as follows:

Gfdef(f}(, r)=1- max{pymx, max pmj}, A(t’fdef g (h,z) = max{pymx, max pnﬂ} ~ Ph(z)-
je[ne] ’ Jje[ne]

For convenience, in the following sections, we will omit the dependency on  in the notation: h, = h(z,y) for any y € Y,
and p, = p(y|z) for any y € Y. We let hyax = argmax, .y hy and g;, = p(ylz)c;(z,y) for any y € Y. We also let
Y* = argmax;.(, Pn+j and h* = argmax;p,, 1 fn+j-

yey

B.3.2. PROOF OF THEOREM 3.4

Theorem 3.4. Assume that H is symmetric and complete. Then, for all h € H and any distribution, the following
H-consistency bound holds:

(30 + Mo, (F0)).

mae

ELdef(h) - 8|—def (:H) + My f(g{) < (TL + ne)(ELnlae(h') -&L

de

Proof. The conditional error of the surrogate loss can be expressed as follows:

GL (h,.’E)

mae

= Z P(Ylz)Lmac(h, 7, )

yey

ne eh(aw) (@) | eh(ants)
= 2| 2 ke ()| 1= g |+ 2 plln) (- e )| 1 - ———F
= y'eY ey

J=1] yeY yey y

()
+(1-ne) ) pyle)|1- S en(ey)

yeyY y'eyY
Ne ehy ehy + eh'n+j ehy
=2 qu,y(l—h ,)+ Z(py—qj',y)(l—h,, (=ne) Yoyl 1= |

j=1| yey zy’eg ey yey Zy’eg ey yeY Zy’ege Y

By Lemma 5.1, we can write the conditional regret of the deferral loss as
Ael—dehg‘c(h” T) = max{pymax’ max pn+j} ~ Ph(z)-
Je[mnel
Next, we show that the surrogate conditional regret can be lower bounded by the target one:
. 1
ACL3¢(hy @) = Cuypp () = €L (30) 2 ——— (ACLy. 3¢(h, 7). (10)
e

We first prove that for any hypothesis i and x € X, if ymax # Amax, then the conditional error of A can be lower bounded by
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that of h, which satisfies that h(z,y) =

Clyue (h) = CL,..(R) =Y [qja,ymax (1 -
=1

Clone (B) = CLu (B) = Py (1 -

Note that if (py,... = Prsy* ) (Pymax — B

1. Case I: If py,_ .

log(ehn“’* + //4) Y = Ymax
log(ehymax - ,u) y=n+y*,wheree

— Pn+y* > 0 and A

hhmax y = ymax
Ymax I = hmax
hy otherwise.

ehymax
h I
Zy ey €

elhmax
F G b | 1~

ehhrmax
Gy | L —

h

€ "Ymax

= G hmax | 1 —

eymax
+ (1= ne)pyn| 1 - 5
Zy’ege v
h
e/tmax
“(1-n
( e)pymax ( zyleg ehyl

B 1
Zy ey €

P y=n+ y*

hy otherwise.

€hn+y

ehn+h*

— Pn+y* (1 = _h,
Lyge

1
- h y! (pn+y
Zy ey €

Ymax

h
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h 4
Z:y ey €

h 7
Zy/eg ey

h,
Z’y’&g e’

. Indeed,

) + (pymax - qj)ymax)(l -

+ (Phumax — U mdx)(l

- (pymx 45, ymax ) (1

_(phmax_ i Banax ) (1

of h, which satisfies that 2 (x, y) = hpiys Yy =n+h*. Indeed,

h,r

(L

— Pn+h* ) (6

Therefore, we only need to lower bound the conditional regret of hypothesis h satisfying both yax = Amax and y*
n+y+) > 0, then, AC ; 5¢(h,z) = 0. Next, we will analyze case by case.

ehyrnax + eh"“rj )
h 4
zu ey €

hhmax + ehnﬂ
h 4

y ey ©
Phmax 4 ehn+i )
h Y
y ey ©
Pymax + ehnﬂ )]
ey €

h ’
y

( ) ehmax
+(1-n)ph,. [1- ———
€ Zy,eg ehy/

eymax
= (1 =1)Phan | 1 - =71
) e Zy’gg ehyr

h (pymax —phmax)(eh"max — eh’ymax) > 0.

We then prove that for any hypothesis h and = € X, if y* # h*, then the conditional error of h can be lower bounded by that

.

) 1 ehn+h*
—— |+ P [ 1 - ———
Zy g €Y Zy’ege v

n+y

e 7 u*
_pn‘#h* 1 - = 5,
) ( Zy’eg v )

— hn+y )>0

=h*.

— hpiys < 0: we define a new hypothesis h, such that h,(z,y) =

vmax > 1 > (. Then, we can lower bound the conditional regret of L. by



using ACL,,... 5¢(h,x) 2 CL . (h) - € (h,) forany evmax > 1> 0:

AGL g—f(h,ﬂ?)

mae

> sup  (CLo. () -Cf  (h.))

eMymax >11>0

Ne hy hy Pt
€ “Ymax e max 4+ @ J
2 sup ( Z qjyymax(l - Z ) + (pymax - qj7ymax)(1 - hy’

h
elymax >p>0 \ jEy* y'ey e’ Zy,Eg €

N P! [ et
~ 95, Ymax - o hy’ - (pymax - q]7ymax) - _ hy’
et e

eh’ymax eh’ymax + eh

n+y*
+ Qy* ,Ymax 1- ’ + (pymax - Qy*,ymax) 1- ,
( Zyey e Zyey el

_ 1 _ ehm-y* + M _ ( B ) 1 B ehn+y* + ehymax
y* ,Ymax Pyimax = Qy* ,ymax — h
: Zy’e‘d e

h By .o h h
e 4 eltn+y ey + etvmax —
+ Z (py_qy*,y)(l_)_ Z (py_q.y*yy)(l_hy,)

_ phyr _
Y#FYmax Z ey ey Y#FYmax Zy’ey €

h,r

+(1-ne) DPymax (ehmy* + - 6hymax)
Zy’ege v

1
= 7}%” sup ([Qy*,ymax - Z (py — qy*7y)](ehn+y* - ehymax ))

Zy'eg €Y ehymax 2020 Y#Ymax
ehm'y* h . .
= (Pyumax = Pr+y*) P (= e"vmax achieves the maximum)
Z ey € v
y'eY
1 .
2 (Pymax - Pn+y*) (by the assumption hpsys = hnsns 2y, = Riy,,)
n+Ne
1 .
= e (ACLy 3¢ (R, ) (by the assumption p,_ .~ Ppyy+ 2 0and by~ hpiys <0)
€

. Case II: If py,... — Pnsyr < 0 and h

log(ehmy* — /1,) Y = Ymax
log(evmax + 1) y=n+y*, where e

— hp4y» > 0: we define a new hypothesis h, such that h,(z,y) =

Ymax

hovys > > 0. Then, we can lower bound the conditional regret of Ly,

h(x,y) otherwise.
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by using ACL, . 3¢(h,z) 2 €. (h) =€ (hy) forany e"n+v* > > 0:

ACL,..3¢(h,x)
sup  (Cupe (h) =€ (hy))

h
eyt >0

Ne eh’ymax eh’ymax + eh"+j
2 sup ( Z lqj;yxxxax(l - Z B ehy, + (pymax - ijylrlax) 1- hy’

\%

eyt 550 \ Gy y'eY Zy’eg e
ehn+y* - ehn+y* - + ehﬂ+j
= Gymax | 1 — > - hy | (pymx - ‘Ij,ymx) 1- > - hy
y'eY e y'ed e
ehymax @hymax + eh7z+y*
+ Qy* o | 1~ S ey + (Pyumax — Ty g )| 1 — S ey
y'ey y'ey =
ehn,-#y* — l’[’ ehn+y* + ehymax
= Ay e | 1~ > - ny | (pymax - Qy*7ymx) 1- > - Ty
y'ed € y'eY €
h h * h h
e’y 4+ e 'nty e’V + e "Ymax +'u
+ Z (Py = ay )| 1 - S - Z (Py = @y )| 1 - S
Y#Ymax y'eY € Y#Ymax y'eY €

+(1- ne)%(eh”*y* —p- ehymax)
Zyege

1 h Ry yy*
=5 __n, , SuP ([ > (py—ayy) - Qy*’ymx](e ymax 4y — ety ))
Lyg € ervmaxzpz0\ Lysymax
ehymax
= (pn+y* = Pymax ) - (pn= ehn+v* achieves the maximum)
Zyleg ey’
1 .
> ——— (Pnty* — Pymas) (by the assumption hy, . = hp,.. > Bpiye = hypens)
n+ Ne
1
= (ACLy, 3¢ (h, ) (by the assumption p,, . — Pnay <0and hy, . — hpyyr > 0)
N+ Ne
This proves the inequality (10). By taking the expectation on both sides of (10), we complete the proof. O

C. Two-stage multiple-expert deferral: proofs.
C.1. Proof of Theorem 4.1

Theorem 4.1. Assume that R is closed under scaling and that ® satisfies limy_, 1o ®(t) = 0 and ®(t) > 1;<0. Then, the
surrogate loss Lg is realizable R-consistent with respect to Liges.

Proof. Let r* be a best-in-class predictor such that £, . (7*) = 0. Note that

£, (R) < I €y, (ar")
= aliIPoo E[Ls(ar®,z,y) | r* () = 1]P(r*(x) = 1)
+E[Lo(ar®,z,y) | r'(z) = 2]P(r*(z) = 2).
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If r*(«) = 1, then, we must have ¢; (z,y) = 0 for any (z,y) € X x Y. In this case,

lim E[Lg(ar®,z,y)|r*(z) =1]

< E[cz(w, y) al—lgloo D(a(r(x,1) -r(x, 2)))]
- E[0]
- 0.

If r*(x) = 2, then, we must have ¢z (z,y) = 0 for any (z,y) € X x Y. In this case,

lim E[Lg(ar®,z,y)|r*(z) =2]

a—>+00
<E[ei(s.y) lim_ @(a(r(z.2) - r(z,1)))|
a—+oo
= E[0]
=0.
Therefore, we have £ (R) = 0. O

C.2. Proof of Theorem 4.2

Theorem 4.2. Assume that the following R-consistency bound holds in binary classification:
ooy () = €00y (R) + My, (R) <T(Ea(h) - Ea(R) + Ma(R)).

Then, the following R-consistency bound holds in two-stage, two-expert deferral:

ELtdef(r) - SLtdef (:R) + MLtdef(R) < (El + CQ)F( CLo (T) i (IR) M, (:R) )a

L tCy

where constant factors (¢, + ¢5) and (€1 + ¢2) can be removed when T is linear.

Proof. Letn(z) =P(Y =1]| X =x) be the conditional probability of Y = 1 given X = z. The conditional error of L,
can be expressed as follows:

Cus (ryz) = n(x)[cl(x, D1yzy=1 +c2(z, 1)1r(w):2]
+ (1= n(@))[ex(, 2) Loy + e2(2,2)r(a)2]
= [n(@)er(z,1) + (1 - n(2))er (2, 2) 1)1
+[n(@)ea(z,1) + (1 - n(@))e2(2,2) 11 (z)=2

The conditional error of Lg can be expressed as follows:

CLy (ryx) =n(z)[c1(z, )P (r(x,2) —r(z,1)) + co(z, 1)P(r(z,1) - r(x,2))]
+(1-n(@)[er(z,2)®(r(z,2) - r(x,1)) + ca(x,2)P(r(x,1) —r(z,2))]
= [n(@)er(z,1) + (1 -n(2))er (2, 2)]2(r(2,2) - r(2,1))
+ [n(z)ez(2,1) + (1 - n(z))c2(, 2) |2(r(z,1) - r(z,2))

Consider a new distribution which satisfies that

n(@)ei(x, 1) + (1 =n(x))ei(x,2) .
[n(z)er(z, 1) + (1= n(z))er (2, 2)] + [n(z)ez(z,1) + (1 - n(2))ca(2,2)]
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i(x) =




Then, under the assumption, we have

ﬁ(x)lr(ac):l + (1 - ﬁ(x))lr(w):Q - ilelgg[’ﬁ(x)lr(w):l + (1 - ’ﬁ(‘r))lr(:p):ﬂ

< F(ﬁ(fﬂ)@(r(:ﬂ, 2) - r(z, 1)) + (1= 7(x))2(r(z,1) - r(z,2))

- nf[i7(2)(r(z, 2) ~r(z,1)) + (1 = 77(2)) @ (r(2,1) - r(a, 2))])-

Using the fact that [n(z)c1 (z,1) + (1 - n(z))er(x, 2) ]+ [n(x)ca(x, 1) + (1 - n(x))ca(z,2)] € [¢) +¢y, C1 +C2], we obtain

CLy (ryz) —infrex CLg (1, 2) )

C + &

eLLtdef (7“, :L‘) - i?ﬂ% eLLtdef (T7 37) < (El + Cg)r(

where constant factors (¢, + ¢,) and (¢; + ¢2) can be removed when I is linear. By taking the expectation on both sides and
applying Jensen’s inequality, we conclude the proof. O

C.3. Proof of Theorem 4.3

Theorem 4.3. Assume that R is closed under scaling and that cj(z,y) = g, (x)2y:J € [ne]. Further, assume that for any
(z,y), there is at most one expert j* € [n.] for which cj«(x,y) = 0 and that V satisfies lim, - V(u) = 0. Then, the
surrogate loss Ly is realizable R-consistent with respect to Liqes.

Proof. Let r* be a best-in-class predictor such that £, ,(r*) = 0. Since R is closed under scaling, for any «, ar* is in R,
and we have & _(R) < €L, (ar”). This implies the following inequality:

&1, (R) < lim &, (ar”)
— a—>+00

= "Ze; lim E[Lg(ar®,z,y) |r'(z) = i]P(r* (z) = 7).

If r*(x) = 4, then, we must have ¢;(x,y) = 0 and cx(x,y) = 1, forall k ¢ and all (x,y) € X x Y. Thus, we can write

lim E[Ly(ar*,z,y)|r(z) =]
a—+oco

Ne ar®(x,j)
ElZ( > ey (,y) —me+ 2)a1;rpw\P( ) em*(m.,)) |7 (x) = z] (By (7))

<
J=1\j'#j j'e[ne]
E| lim @ e (=) 0 and 1,Vk#i
= N 4 5 = s = s ¢
Jim (Zj/e[ne] em*(w,)) (ci(z,y) = 0 and ¢4 (2,y) i)
=E[0] (r*(x) =i = r*(z,i) >r*(x,j"),Vj' # i, limy,1- U(u) = 0)
=0.
Therefore, we have €[ (R)=0. O

C.4. Proof of J{-consistency bounds
C.4.1. SIMPLIFIED NOTATION AND LEMMA C.1

Let p(y|z) =P(Y =y | X = x) be the conditional probability of Y =y given X = x. We first characterize the best-in class
conditional error and the conditional regret of the two-stage deferral loss function Li4ef, Which will be used in the analysis
of H-consistency bounds.

Lemma C.1. Assume that R is symmetric and complete. Then, for any v € X and x € X, the best-in class conditional error
and the conditional regret of the two-stage deferral loss function are given by:

Ol (Ro2) = min 57 p(ylr)e;(2,y),  ACLu = (r7) = 3 P(Ylr) () (2,Y) - H[lrllrl > p(ylz)e;(z,y).

Jelelyey yey JelMel yey
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Proof. By definition, for any € R and = € X, the conditional error of the two-stage deferral loss function can be written as

GLtdef‘(r>x) = Z p(y|x)cr(m) (1‘, y)'
yeY

Since R is symmetric and complete, we have

CL, e (R ) = inf > p(ylr) ey (@,y) = ,H[lin > p(yle)e;(2,y).

yey Jelnel yey

Furthermore, the conditional regret can be expressed as

ACL (1, 2) = CLy (1) = G (Ryx) = Y p(yla)coiay (z,y) - rr[nn] Y p(yle)ei(z,y),
yeY Nelyey

which completes the proof. O

C.4.2. PROOF OF THEOREM 4.4

For convenience, we let C' = (ne — 1) maxje[,,, )G — ne + 2, G(2,y) = Ljrejcir(x,y) —ne +2 € [0,C], q(z,j) =

_ — . e (@:3)
Yyey p(ylz)e;(z,y) € [0,C] and 8(z, j) = W We also let jmin () = argmin;er,, 1 Xyey p(ylz)cj(z,y).

l

Theorem 4.4. Assume that R is symmetric and complete and that the inequality 3 ;. ; cjr(x,y) 2 ne — 2 holds for all
j€[ne] and (z,y) € X x Y. Then, the following R-consistency bound holds:

Esar (1) = €11 (R) + My (R) < T(E0y, (1) = &F, (R) + Moy, (R)),

_ 1 _
where C = (ne — 1) max;e(,,1¢; — ne +2, T'(t) = 2(C)*Vt when ¢ = 0, T'(t) = 2(ne?)2 (C)2\/t when q € (0,1), and
L(t) =net when g = 1.

Proof. Case I: ¢ = 0. In this case, for the surrogate loss L\pq, the conditional error can be written as follows:

@)
L, (r) =~ X plule) Z(ﬂ%wb4) S log(S(x. )l ).

yeY je[ne] Zj’e[n T‘(m J ) je ’ILE]
The conditional regret can be written as

Aequq,R(Tvm)

=~ > log(8(x,5))a(x,5) - mf( > log(8(x,4))a(x, J))

jelne] je[ne]
- log(8(x,5))q(x,j) - inf - log(8,.(x,5))g(x,7) |,
je[znc] g( ( j))Q( J) #e[S(x,jmin(z)),S(z,r(z))]( je[znﬂ] g( l( J)) ( ]))

where for any z € X and j € [n.],

8($’j)7 j¢{jmln(l‘)ar($)}
Sﬂ(x,j)Z 8(x, jmin (7)) + o j=r(x)
8(.%, r($)) - j:jmin(x)'

Note that with such a choice of 8, leads to the following equality holds:

> log(8(x,j))q(x,j) = > log(8,.(z,7))a(x, ).
J¢{r(z),jmin (x)} J#{r(@),jmin (z)}
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Therefore, the conditional regret of the surrogate loss can be lower bounded as follows:
AGL{,q R (’I“7 m)

2 sup

_ {q(z,jmin(z))[—log(S(x,jmin(:v))) +log(8(z,r(x)) - )]
HE[=8 (2 Jimin (2)) .8 (@,r(2))]

+q(x,r(2))[-1og(8(z,r(2))) +10g(8(2; jmin(2)) + u)]}-

By leveraging the concavity of the function, we differentiate it with respect to 1 and set the differential equal to zero to find
the maximizing value

= 3@ r(@)8(@,r(@)) = 4@, juin(£))3(2, Jimin (2))
4(, jmin (2)) + g (2, r(2))

Plugging in the expression of 1*, we obtain
ACL,, ®(r,x)
oo o e T S

Mo 24(2, jmin () (o (N o 2q(z,r(x))
ZQ(-T,jrmn( ))1 gq($,jmin(x))+§(z7r(x)) +q( ’ ( ))1 gq(x,jmin(x))+§(a:,r(x))

(minimum is achieved when 8(z, r(z)) = 8(x, jmin(x)))

(a(l‘,l’(ﬂ?))—a(l‘,jmin(ﬂ?)))2 a b a-b)? : oo

> 2,1 (2)) + 1@ jwin (2))) (alog ﬁ +blog a% > é(afi) ,Va,be[0,1] (Mohri et al., 2018, Proposition E.7))
_ . 2

> {@r(@) _fg’”m“‘(m)) . (0 £G(x.1(2)) + (. jurin (1)) < 20)

Therefore, by Lemma C.1, the conditional regret of the two-stage deferral loss function can be upper bounded as follows:
1 1
AeLtdef,:R(T’ 3?) = 6(1‘, Jmin (.’E)) - @(557 r(:c)) < 2(0) : (AGL\pq ,fR(n $)) “.
By the concavity, taking expectations on both sides of the preceding equation, we obtain

Eser (1) = €11 (R) + My (R) £ 2(C) 7 (£, (1) - &, (R) + My, (R))

Case II: ¢ € (0, 1). In this case, for the surrogate loss Ly, the conditional error can be written as follows:

@)\
g€, (na) = Y p(yle) 3 cj<a:,y)(1-() )

yeY je[ne] Zj’é[ne] er(=.3)

= > (1-8%(z,5))a(x, ).
je[ne]
The conditional regret can be written as

quL\pq ,R(T7 x)

je[ne] je[ne]

- ¥ (1—5q($,j))Q($,j)—i§3§( > (1—SQ<x,j>>q<x7j>)

> 1-8%x,9))q(x,5) - inf 1-8%(x,5))q(x, 7)1,
jE%L:e]( ( ]))q( j) ;LE[S(.’,K,jmm(’Jf)),S(QI,’,r(QL’))]( Z ( IL( J))q( J))

je[ne]
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where for any x € X and j € [ne],

S(I,j), j¢{jmin(l‘)ar(‘r)}
‘S/L(muj): S(xajmin(x))-*_:u j:r(m)
S(.’IJ, I’(:L‘)) — M j:jmin(m)'

Note that with such a choice of §,, leads to the following equality holds:

(1—Sq(1‘,j))q($,j)= Z (1_53(1‘7]))6(1‘7])

F{r(2) Jmin (2)} J#{r(x) jmin ()}
Therefore, the conditional regret of the surrogate loss can be lower bounded as follows:
quL\Ilq ,fR("’, :E)

. sup {q(mmin@))[—sqmmm(x)) - 89(z,r(2)) - 4]
ne[-8(x,jmin(2)),S(z,r(x))]

+q(z, r(2))[-8%(x, r(x)) + 8%(, jmin (2)) + u]}~

By leveraging the concavity of the function, we differentiate it with respect to 1 and set the differential equal to zero to find
the maximizing value

= AT @)) TT8( () =G Juin (2)) P78 (2 in(2)) |
A, juin () 77 + (0, r(2)) T
Plugging in the expression of 1*, we obtain

qAGL\I,q x(r,x)
> (82 () + 52 juain () (7. Jain ()77 + (. r(2)) %7)

=G, Jinin (2))8 (@, jrin () = G, 7())8" (x, ()
> 297 duin(2) ™7 @) ) = i () = ()]

‘ (minimum is achieved when 8(x,r(x)) = 8(z, jmin(z)) = n%)

T = ' 2 1 1 \1-q
qgug\xr,r(x —4(T, Jmin\T al-a+pT-q a+
, 4@z, r( ))4neq(C ()" (( i ) _ashy

(a-b)%Va,be[0,1],0<a+b< 1)

q
1
Therefore, by Lemma C.1, the conditional regret of the two-stage deferral loss function can be upper bounded as follows:

1
2

ACL,.. 2 (r,2) = G(@, jmin(2)) = 7, 1(2)) £ 2(ne?)? (C)2 (ACL,, x(r,2))*.

By the concavity, taking expectations on both sides of the preceding equation, we obtain

s (1)~ €1, () + Mty (R) <200, (O} (0, (1) - 0, (R) + My, ()

Proof. Case IlI: ¢ = 1. In this case, for the surrogate loss Ly, the conditional error can be written as follows:

or(@.d)
e, (re)= Y p(yle) 3 cj<m,y>(1—z)= > (18

yey je[nel j'e[ne] er(@.J’) je[ne
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The conditional regret can be written as

AGL\pq ):R(’I“, x)

= Z (1—8(x,j))q(x,j)—inf( Z (1—S($,j))q($‘,j))

eR

jelne] je[ne]
> 1-8(x,5))q(x,7) - inf 1-8,(x,7))q(x,5) |,
j%:e]( (,5))q(x, 5) HE[SWM(I)mw(w)](j%:e]( u(,5))a( J))

where for any z € X and j € [n.],

8(x7j)7 j¢{]mm(x),r(x)}
Su(@,7) = {8(x, jmin(2)) + 1 j=r(2)
S(xa F(I’))—,u j:jmin(x)~
Note that with such a choice of 8, leads to the following equality holds:

(1—8(:&]))@(1‘,])2 Z (I_Su(xm]))a(xv.])

J#{r(x),jmin (@)} J#{r(x),dmin ()}

Therefore, the conditional regret of the surrogate loss can be lower bounded as follows:

AeL\pq ,:R(T? ./I:)

> sup {q(x,jmm(x»[—S(a:,jmm(x» +8(r(2)) - 4]
pe[-8(x,jmin(2)),S(z,r(x))]

71 (@) -8 r(2)) + 8 jun (1)) + u]}~

By leveraging the concavity of the function, we differentiate it with respect to x and set the differential equal to zero to find
the maximizing value

1 = =8(2, Jmin(2)).
Plugging in the expression of 1*, we obtain

AGL\Pq752(’I“,.’L‘)
2 (@, jmin(2))8 (2, r(2)) = q(z, r(2))8(z, r(x))
1
> —(q(z,r(z)) —q(z, jmin(2)))- (minimum is achieved when 8(z, r(z)) = ni)
Ne e
Therefore, by Lemma C.1, the conditional regret of the two-stage deferral loss function can be upper bounded as follows:
AeLtdefvtR(r7x) = a(xajmin(x)) —ﬁ(x, r(x)) < nG(AeL\Pq#R(T?x))'

By the concavity, taking expectations on both sides of the preceding equation, we obtain

Eaer (1) = €10 (R) + Mo (R) < 1 (04, (1) = EF, (R) + My, (R).

O
D. Enhanced bounds under low-noise assumptions: proofs
D.1. Single-stage: proofs
D.1.1. PROOF OF LEMMA 5.2
Lemma 5.2. The single-stage deferral Tsybakov noise assumption implies that there exists a constant ¢ = £ > 0 such

o

that the following inequalities hold for any h € H:
E[lh(r)¢h*(z)] < CE[’Y(X)lh(m)ih*(m)]a < C[SLdef(h) - 8Ldef (h*)]a'
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Proof. The second inequality follows directly from the definition of v(x) and Lemma 5.1. The proof of the first inequality
follows the same steps as the first part of the proof of Lemma 18 in (Mao et al., 2024e). O

D.1.2. PROOF OF THEOREM 5.3

We will leverage the following result of Mao et al. (2024e), which serves as a general tool for obtaining enhanced bounds
under low-noise assumptions.
Theorem D.1. Assume that there exist two positive functions c: H x X — R} and 5: H x X — R} with sup .y a(h,z) < +00

and Epex[B(h, )] < +oo for all h € H such that the following holds for all h € H and x € X: AGLQ’D{(};’Z;L) ]i;( [6h.2))
1

(a(h,x) ACth{(h,x))é, for some s > 1 with conjugate number t > 1, that is - + % = 1. Then, for v(h)

S

<

1
Ex [%W] , the following inequality holds for any h € H:

1
s

ng(h) - EEQ (f}f) + MLz (:H) < ’Y(h)[ng (h) - EI: (:H) + MLI (j{)]

Theorem 5.3. Consider the setting of single-stage multiple-expert deferral. Assume that the following holds for all h € 3
1

and v € X: ACL,, 5c(h,x) < T(ACL 5¢(h,z)), with T'(x) = x=, for some s > 1 with conjugate number t > 1, that is

% + % = 1. Then, for any h € H,

* 1 * 1
€L (1)~ €4, (30) + Moy, (90) < B[y ] (EL(R) ~ ££(90) + ML(30)) .
Proof. Fix € >0 and define $(h, x) = 1y(z)2h*(s) + €. By Lemma 5.1,
ACL, 5¢(h, ) = maX{pymx » max pw} = Ph(z) = Ph* () ~ Ph(z)>

we have
Ael—defﬂf(ha J}) Ex [ﬂ(hﬂ I)]

B(h,z)

< AGLdefvg{(h7 ) %[ﬂ(h, I)],
thus the following inequality holds

A€, 3¢(h, ) Ex[B(h,x)]
p(h,x)

By Theorem D.1, with a(h,z) = Ex[B(h,x)]°, we have

<E[B(h,)]AC] 5(h, 7).
() = 0, (30) + ML, (30) SB[ ()] (€0 (h) - E£(30) + M (90))

Since the inequality holds for any € > 0, it implies:

L (1) ~ 6,90 + Mi (90 < B (lngxyane )| (EL(R) - €230 + M (30))

This completes the proof. O

D.1.3. PROOF OF THEOREM 5.4

Theorem 5.4. Consider the setting of single-stage multiple-expert deferral where the Tsybakov noise assumption holds, and

no approximation error occurs, that is, €| (3) = [ (Han). Assume that the following holds for all h € 3 and x € X:

ACLy 5 (h,z) <T(ACL 3¢ (h,z)), withT'(z) = %, for some s > 1. Then, for any h € K,
€1 (1) = €7, (36) < 0 [£0(R) =~ £ (30) + ML (30)] 7T,
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Proof. Fix e >0 and define 3(h,x) = 1y(z)2h*(z) + €. By Lemma 5.1,

A@LMﬁﬁ(hwx)=1naX{p%mﬂ;ggﬁpnw}“—pmm>:lmwx>—pmz»

we have
Ael—dehg{(h’ :ZZ) Ex [ﬂ(h, l’)]

B(h,z)

<ACL 3¢ (hs @) g[ﬂ(ha )],
thus the following inequality holds

AGLdefﬂ'{(hv LL‘) IE:X [6(h7 CIZ)]
B(h,x)

By Theorem D.1, with a(h, 2) = Ex[S8(h,2)]°, we have

< BIB(h, 2)]ACE 5c(h, 7).

€1 (1) = &0, (30 < B[S (h0)]* (8L(R) - €7 (30 + ML(F0)

Since the inequality holds for any € > 0, it implies:

* t % % 1
€L (1) = €L, (F0) <E[(Inxyensx)) | (EL(R) = EL(I0) + ML(30))
1 " 1 t
= g[lh(X):th*(X)] “(EL(h) = EL(H) + ML(H))* (Tnxyehe(x)) = Lh(a)yshe ()

<ct [ELee () —EF . (CH)]% (EL(h) - & (F0) + M, (3{))% (Tsybakov noise assumption)

o
t

The result follows after dividing both sides by [ELM (h)-&f (9—[)] . O

Laer

D.2. Two-stage: proofs

D.2.1. LEMMA D.2 AND PROOF

1-a

Lemma D.2. The two-stage Tsybakov noise assumption implies that there exists a constant ¢ = B—= > 0 such that the

Jollowing inequalities hold for any h € R: :
ELi(z)er ()] < CBIV(X) Lr@ysre (2)]% € lELuaer (1) = ELiaer ()]

Proof. The second inequality follows directly from the definition of v(z) and Lemma 5.1. The proof of the first inequality
follows the same steps as the first part of the proof of Lemma 18 in (Mao et al., 2024e). O

D.2.2. ENHANCED BOUNDS IN TWO-STAGE SCENARIO (THEOREM D.3 AND THEOREM D.4)

The following result gives an R-consistency bound based on the quantity 1,(z)«r+(z)-

Theorem D.3. Consider the setting of two-stage multiple—e;xpert deferral. Assume that the following holds for all h € R and
z € X: ACL, = (r,x) <T(ACLR(r,x)), withT(z) =z, for some s > 1 with conjugate number t > 1, that is * + 1 = 1.
Then, for any r € R,

1 1
T s

Elaer (1) = €L (R) + Mo (R) < E[Lr(x)er )] 7 (EL(r) = EL(R) + ML(R))

The proof of Theorem D.3 is included in Appendix D.2.3. As noted for a similar result in the single-stage scenario,
Theorem D.3 offers a more favorable theoretical guarantee than standard J{-consistency bounds, assuming ACy,, . = (r,z) <
F(AGLV:R(T,I)).

Next, we assume that the Tsybakov noise assumption holds and also that there is no approximation error, that is M _, (H) =
0.
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Theorem D.4. Consider the setting of two-stage multiple-expert deferral where the Tsybakov noise assumption holds, and
no approximation error occurs, i.e., Ef = (R) =& = (Ran). Assume that the following holds for all v € R and x € X:

ACL, ., x(r,z) <T(ACLx(r,x)), withT(2) = 2, for some s > 1. Then, for any r € R,

Eloaee (1) = €5, (R) < 20T [€0(r) - €1 (R) + ML (R)]=o0D.

The proof can be found in Appendix D.1.3. As in the single-stage scenario, in the case of a« — 1, where Tsybakov noise
corresponds to Massart’s noise assumption, this provides an J{-consistency bound with a linear functional form, improving
upon the standard H-consistency bounds, which have the functional form I'(x) = xs, if they exist. This demonstrates that
for any smooth surrogate loss with an J{-consistency bound, under Massart’s noise assumption, we can obtain J{-consistency
bounds as favorable as those of L = Lq,q with ¢ = 1, which always admits a linear dependency, as shown in Theorem 4.4.

For example, Theorem 4.4 shows that square-root JH{-consistency bounds hold (s = %) for L = Ly, with ¢ € [0,1). Thus,
Theorem D.4 provides refined H-consistency bounds for these surrogate losses: a linear dependence when Massart’s noise
assumption holds (o« — 1) and an intermediate rate between linear and square-root for other values of « within the range

(0,1).

Furthermore, the realizability assumption can be viewed as a special case of Massart’s noise assumption. Thus, Theorem D.4
provides intermediate guarantees between realizable J{-consistency and J{-consistency bounds for two-stage deferral
surrogate losses, such as Lg in (5) for the two-expert case and Ly in (7) for the multiple-expert case.

D.2.3. PROOF OF THEOREM D.3

Theorem D.3. Consider the setting of two-stage multiple-elxpert deferral. Assume that the following holds for all h € R and
xeX: ACL, 1 (r,x) <T(ACL x(r,z)), withT(z) = x=, for some s > 1 with conjugate number t > 1, that is % + % =1
Then, for any r € R,

1

Eiaer (1) = €100 (R) + M (R) < @[L(xm*(xﬂ% (EL(r) = EL(R) + ML(R))

Proof. Fix e >0 and define 3(7, ) = 1,(3)2r+(2) + €. By Lemma C.1,

Ael—tdefﬁz(rﬂ I) = Z p(y|l’)6r($)(l’, y) - Z p(y|x)cr*(w) (I, y)a
yeY yeY

we have
AGLtdcf,:R(Ta l‘) Ex [ﬁ(’r) x)]

p(r;x)

< Ael—cdofﬁk(rv ) %[ﬂ(r, )],
thus the following inequality holds

ACL v (rz)Ex[B(r,z)]
B(r,x)

By Theorem D.1, with a(r, ) = Ex[5(r,z)]°, we have

< g[ﬂ(r, m)]AGéR(T, x).

Eluar (1) = €7, (R) + M, (R) B[S (r, )] (BL(r) - EL(R) + ML(R))

Since the inequality holds for any € > 0, it implies:

[(Lxyer )] (ELGP) — €L (R) + M (R))

1 % 1 t
[Lxyer )] (EL(P) = EL(R) + ML(R)) . (Lixyerr(x)) = Le(x)er (x))

8I—tdef (7") - Sttdef(:R) + MLtdef (R) g

This completes the proof. O
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D.2.4. PROOF OF THEOREM D.4

Theorem D.4. Consider the setting of two-stage multiple-expert deferral where the Tsybakov noise assumption holds, and
no approximation error occurs, i.e., € (R) = & (Ran). Assume that the following holds for all v € R and x € X:

ACL e, (ryz) <T(ACL % (r,x)), withT'(z) = x+, for some s > 1. Then, for any r € R,
_s=1 " S S
Eluger (1) = €, (R) < c52CD[E (r) = EL(R) + ML(R)] ¢
Proof. Fix € >0 and define 5(7,2) = 1,(3)<r+(z) + €. By Lemma 5.1,

Ael—tdcf,:k(ra 37) = Z p(y|$)cr(x)(x7 y) - Z p(y|$)cr*(z) (x, y)a

yey yey

we have
Ael—tdcfyik(r5 l‘) Ex [5(7"7 l‘)]

B(r,x)

< Ael—tdch:R (Tv .13) g[ﬁ(ra J))],
thus the following inequality holds

ACL v (rz)Ex[B(r,z)]
B(r,x)

By Theorem D.1, with a(r,z) = Ex[8(r,x)]°, we have

<B[B(r,2)]AC] 4 (r, 7).

EL0er (1) = € (R) SB[ (r,2)]F (EL(r) - €L (R) + ML(R)) "

Since the inequality holds for any € > 0, it implies:

" 1t * 1
ELuaer (1) = €, (R) < E[(Lixyerr(0) | (EL0) = EL(R) + ML(R))*
1 . 1 t
= g[lr(X)ﬂ*(X)] C(EL(r) — EL(R) + ML(R)) ((L(r,x)50) = Lugrx)50)
<ct [&_tdcf (r) =&, (9%)]% (EL(r) =& (R)+ ML(SR))% (Tsybakov noise assumption)
The result follows after dividing both sides by [c"ZLt aer (M) = €0 (R)] %. ]
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