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Abstract

The problem of learning to defer with multiple
experts consists of optimally assigning input in-
stances to experts, balancing the trade-off between
their accuracy and computational cost. This is a
critical challenge in natural language generation,
but also in other fields such as image process-
ing, and medical diagnostics. Recent studies have
proposed surrogate loss functions to optimize de-
ferral, but challenges remain in ensuring their con-
sistency properties. This paper introduces novel
surrogate loss functions and efficient algorithms
with strong theoretical learning guarantees. We
address open questions regarding realizable H-
consistency, H-consistency bounds, and Bayes-
consistency for both single-stage (jointly learning
predictor and deferral function) and two-stage
(learning only the deferral function with a fixed
expert) learning scenarios. For single-stage de-
ferral, we introduce a family of new realizable
H-consistent surrogate losses and further prove
H-consistency for a selected member. For two-
stage deferral, we derive new surrogate losses that
achieve realizable H-consistency, H-consistency
bounds, and Bayes-consistency for the two-expert
scenario and, under natural assumptions, multiple-
expert scenario. Additionally, we provide en-
hanced theoretical guarantees under low-noise
assumptions for both scenarios. Finally, we re-
port the results of experiments using our proposed
surrogate losses, comparing their performance
against existing baselines.
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1. Introduction
The performance of learning algorithms can be substantially
improved by redirecting uncertain predictions to domain spe-
cialists or advanced pre-trained systems. These specialists
may include individuals with deep expertise in specific areas
or highly capable, though computationally intensive, pre-
trained models. Selecting the appropriate expert requires
careful consideration of both accuracy and computational
cost, which may vary depending on the instance or class
label in question.

How can input instances be optimally assigned to the most
suitable expert from a diverse set, balancing these consider-
ations? Can allocation strategies be learned from past expe-
rience? These questions form the core challenge of learning
to defer with multiple experts, a problem that comes up
across various fields. In natural language generation, partic-
ularly with large language models (LLMs), this challenge
has been highlighted as a critical issue (Wei et al., 2022;
Bubeck et al., 2023), essential both for reducing halluci-
nations and improving efficiency. However, the problem
extends to other domains, including image annotation, med-
ical diagnostics, economic forecasting, and computer vision,
among others.

The problem of learning to defer accurately has been inves-
tigated in a number of recent studies (Mozannar & Sontag,
2020; Verma & Nalisnick, 2022; Charusaie et al., 2022;
Mozannar et al., 2023; Mao et al., 2024a;i). It is typically
formulated using a deferral loss function that incorporates
instance-specific costs associated with each expert. Direct-
ing optimizing this loss function is intractable for the hypoth-
esis sets commonly used in applications. Thus, learning-to-
defer algorithms rely on optimizing a surrogate loss function
instead, that serves as a proxy for the original target loss
function. Yet, what guarantees can we rely on when opti-
mizing such surrogate loss functions?

This question, which involves analyzing the consistency
guarantees of surrogate losses with respect to the deferral
loss, has been studied under two main scenarios: the single-
stage scenario, where a predictor and a deferral function
are jointly learned (Mozannar & Sontag, 2020; Verma &
Nalisnick, 2022; Charusaie et al., 2022; Mozannar et al.,
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2023; Mao et al., 2024a), and a two-stage scenario, where
the predictor is pre-trained and fixed as an expert, and while
only the deferral function is subsequently learned (Mao
et al., 2023a).

In particular, Mozannar & Sontag (2020), Verma & Nalis-
nick (2022), and Charusaie et al. (2022) proposed surrogate
loss functions for the single-stage single-expert case by
generalizing the cross-entropy loss, the one-versus-all loss,
and, more generally, a broad family of surrogate losses for
multi-class classification in the context of learning to defer.
However, Mozannar et al. (2023) later showed that these sur-
rogate loss functions do not satisfy realizable H-consistency.
They suggested an alternative surrogate loss that achieves
this property but left open the question of whether it was
also Bayes-consistent. This was later resolved by Mao et al.
(2024i), who introduced a broader family of surrogate losses
that simultaneously achieve Bayes-consistency, realizable
H-consistency, and H-consistency bounds.

For the single-stage multiple-expert setting, Verma et al.
(2023) were the first to extend the surrogate loss proposed in
(Verma & Nalisnick, 2022) and (Mozannar & Sontag, 2020)
to accommodate multiple experts. Building on this, Mao
et al. (2024a) further generalized the surrogate loss from
(Mozannar & Sontag, 2020), introducing a broader family
of surrogate losses tailored to the multiple-expert case. Fur-
thermore, Mao et al. (2024a) proved that their surrogate
losses benefit from H-consistency bounds in the multiple-
expert case, thereby ensuring Bayes-consistency. However,
these loss functions are not realizable H-consistent even in
the single-expert case, as they are extensions of the earlier
loss functions. Can surrogate loss functions for single-stage
multiple-expert deferral be derived that admit realizable H-
consistency, along with H-consistency bounds and Bayes-
consistency?

In the two-stage scenario, Mao et al. (2023a) introduced
surrogate losses that are Bayes-consistent and realizable
H-consistent for constant costs. However, their realizable
H-consistency does not extend to cost functions of inter-
est, which are based on classification error. Can we derive
surrogate loss functions for two-stage multiple-expert de-
ferral that achieve realizable H-consistency H-consistency
bounds, and Bayes-consistency for cost functions based on
classification error?

It is also important to analyze properties beyond realizable
H-consistency whose guarantees hold under deterministic
assumptions, while H-consistency bounds extend to arbi-
trary distributions. Can we offer guarantees for intermediate
cases, particularly for distributions satisfying low-noise as-
sumptions?

This work addresses all of these questions. Note that these
challenges are more significant and more complex in the

multiple-expert case than the single-expert case. In Sec-
tion 3, we derive realizable surrogate losses for single-stage
multiple-expert deferral. We begin by deriving an alternative
formulation for the deferral loss, which serves as the foun-
dation for defining a novel family of surrogate losses (Sec-
tion 3.1). We then establish the realizable H-consistency of
these loss functions under a mild assumption (Section 3.2).
Finally, we prove H-consistency bounds for a specific sur-
rogate loss within this family (Section 3.3).

In Section 4, we define realizable surrogate losses for two-
stage multiple-expert deferral. We first prove that a family
of surrogate losses is realizable R-consistent, R-consistent,
and Bayes-consistent in the two-expert case (Section 4.1).
Next, we extend this family of surrogate losses and their
consistency guarantees to the multiple-expert case under
natural assumptions (Section 4.2).

In Section 5, we present enhanced bounds for the intermedi-
ate case of distributions satisfying low-noise assumptions.
We provide guarantees for both the single-stage (Section 5.1)
and two-stage (Section 5.2) scenarios.

Finally, in Section 6, we report the results of experiments
using the proposed surrogate losses, comparing their perfor-
mance against existing baselines.

For a summary of previous work on consistent multiple-
expert deferral and a more detailed discussion of related
work, see Table 1 and Appendix A, respectively. We begin
with a formal introduction to the learning problems and key
concepts.

2. Preliminaries
Single-stage multiple-expert deferral. Let X denote an
input space, and let Y = [n] ∶= {1, . . . , n} represent a label
space with n ≥ 2 labels, as in the standard multi-class classi-
fication setting. In the single-stage multiple-expert deferral
scenario, the learner has the option to predict the true label
or defer the prediction to one of ne pre-defined experts.
In this scenario, the label space Y is augmented with ne
additional labels, {n + 1, . . . , n + ne}, corresponding to
the ne experts g1, . . . , gne . Each expert may represent a
human expert or a pre-trained model. Specifically, each
expert can be expressed as a function mapping X × Y to R.
Let Y = [n + ne] denote the augmented label set, and let H
be a hypothesis set of functions mapping X × Y to R. Let
Hall represent the family of all such measurable functions.
The goal of the learner is to select a hypothesis h ∈H that
minimizes the following single-stage deferral loss function,
Ldef , defined for any h ∈Hall and (x, y) ∈ X×Y as follows:

Ldef(h,x, y) = 1h(x)≠y1h(x)∈[n] +
ne

∑
j=1

cj(x, y)1h(x)=n+j ,

where h(x) = argmaxy∈[n+ne] h(x, y) is the prediction as-
sociated with h ∈ H for an input x ∈ X, using an arbitrary
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Table 1. Summary of Previous Work on Consistent Multiple-Expert Deferral.

Related Work Deferral Setting Realizable H-Consistency Bayes-Consistency H-Consistency Bounds

(Verma et al., 2023) Single-stage No Yes Yes
(Mao et al., 2024a) Single-stage No Yes Yes
(Mao et al., 2023a) Two-stage No Yes Yes

but fixed deterministic strategy for breaking ties. When the
prediction h(x) is in Y, the incurred loss coincides with the
multi-class zero-one classification loss. When the prediction
h(x) equals n + j, the incurred loss is the cost of deferring
to expert gj , denoted by cj(x, y). The choice of this cost is
highly flexible. A common choice is to define it as gj’s clas-
sification error (Verma et al., 2023): cj(x, y) = 1gj(x)≠y,
where gj(x) = argmaxy∈[n] gj(x, y) represents the predic-
tion made by expert gj for input x.

Two-stage multiple-expert deferral. In the two-stage
multiple-expert deferral scenario, a label predictor is as-
sumed to have been learned during the first stage. The
second stage involves a set of ne ≥ 2 predefined experts,
denoted g1, . . . , gne , which includes the first-stage label pre-
dictor. We define Y as [ne] ∶= 1, . . . , ne. In this setup, the
learner’s objective is to select a suitable expert gj for each
instance, considering both the expert’s accuracy and infer-
ence cost. More formally, let R represent a hypothesis set
of functions mapping X × [ne] to R, and let Rall denote
the family of all such measurable functions. The goal is to
choose a predictor r ∈ R that minimizes the following two-
stage deferral loss function, Ltdef , defined for any r ∈ Rall

and (x, y) ∈ X × Y as follows:

Ltdef(r, x, y) =
ne

∑
j=1

cj(x, y)1r(x)=j ,

where r(x) = argmaxy∈[ne] r(x, y) represents the predic-
tion associated with r ∈ R for an input x ∈ X, using an
arbitrary but fixed deterministic strategy for breaking ties.
The cost cj(x, y) is incurred when the learner chooses to de-
fer to expert gj . As in the single-stage scenario, the choice
of the cost is flexible and can be defined as gj’s classification
error (Mao et al., 2023a): cj(x, y) = 1gj(x)≠y .

Learning with surrogate losses. Minimizing the single-
stage or two-stage deferral losses is computationally in-
tractable for most hypothesis sets due to their non-continuity
and non-differentiability, as for the multi-class zero-one loss.
Instead, we will consider surrogate losses for the deferral
loss. Let D be a distribution over X × Y and let L be a loss
function. The generalization error of a hypothesis h ∈ H

is defined by EL(h) = E(x,y)∼D[L(h,x, y)] and the best-in-
class generalization error by E∗L(H) = infh∈H EL(h). We
refer to the difference EL(h) − E∗L(H) as the estimation
error. When H = Hall, we refer to E∗L(Hall) as the Bayes
error and EL(h) − E∗L(Hall) as the excess error. In the two-

stage case, these definitions extend naturally by replacing
the hypothesis h with r and the hypothesis set H with R.
For clarity, we will introduce these concepts in the single-
stage setting as an example, though they also apply to the
two-stage case.

A necessary and fundamental property of a surrogate loss
is Bayes-consistency (Zhang, 2004a; Bartlett et al., 2006;
Zhang, 2004b; Tewari & Bartlett, 2007; Steinwart, 2007;
Mozannar & Sontag, 2020; Verma & Nalisnick, 2022),
which means that minimizing the excess error of the sur-
rogate loss L leads to minimizing the excess error of the
deferral loss Ldef .
Definition 2.1. A surrogate loss L is Bayes-consistent
with respect to Ldef if for any sequence of predictors
{(hn)}n∈N ⊂ Hall such that [EL(hn) − EL(Hall)] con-
verges to zero as n → +∞, [ELdef

(hn) − ELdef
(Hall)] con-

verges to zero too.

Bayes-consistency does not take into account the specific
hypothesis set H adopted in practice and assumes that op-
timization is performed over the family of all measurable
functions. Consequently, a hypothesis-dependent guarantee,
such as realizable H-consistency (Long & Servedio, 2013;
Zhang & Agarwal, 2020; Mozannar et al., 2023; Mao et al.,
2024i) and H-consistency bound (Awasthi et al., 2022a;b;
Mao et al., 2023f) (see also (Awasthi et al., 2021a;b; 2023;
2024; Mao et al., 2023b;e; Zheng et al., 2023; Mao et al.,
2023c;d; 2024f;g; Cortes et al., 2024; 2025; Mao et al.,
2025)), is more informative and relevant.
Definition 2.2. We will say that a surrogate loss L is realiz-
able H-consistent with respect to Ldef if for any realizable
distribution (a distribution for which there exists h∗ ∈ H

satisfying ELdef
(h∗) = 0), if ĥ is in argminh∈H EL(h) then

ELdef
(ĥ) = 0.

Realizable H-consistency is an asymptotic guarantee and
is independent of Bayes-consistency. An H-consistency
bound, on the other hand, is non-asymptotic and always
implies Bayes-consistency.
Definition 2.3. A surrogate loss L is said to admit an H-
consistency bound, if there exists a non-decreasing concave
function Γ∶R+ → R+ with Γ(0) = 0, such that the following
inequality holds for all h ∈H and all distributions:

ELdef
(h) − E∗Ldef

(H) +MLdef
(H)

≤ Γ(EL(h) − E∗L(H) +ML(H)),
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where the minimizability gap ML(H) is defined as
ML(H) = E∗L(H) −Ex[infh∈H Ey∣x[L(h,x, y)]].

For convenience, we refer to CL(h,x) = Ey∣x[L(h,x, y)]
and C∗L(H, x) = infh∈H CL(h,x) as the conditional error
and best-in-class conditional error, respectively. We refer
to the difference, CL(h,x) − infh∈H CL(h,x), as the con-
ditional regret and denote it by ∆CL,H(h,x). The mini-
mizability gap is the difference between the best-in-class
generalization error and the expected best-in-class condi-
tional error. It can be upper-bounded by the approximation
error and vanishes when H =Hall (Awasthi et al., 2022a;b;
Mao et al., 2024d). Thus, an H-consistency bound implies
Bayes-consistency. However, in the deferral setting, the min-
imizability gap may not vanish for a realizable distribution.
Therefore, H-consistency bounds do not imply realizable
H-consistency (Mao et al., 2024i).

3. Single-Stage Multiple-Expert Deferral
In this section, we derive realizable surrogate losses for
single-stage multiple-expert deferral. We begin by proving
an alternative formulation for Ldef , which serves as the
foundation for defining a novel family of surrogate losses.
Next, we establish the realizable H-consistency of these loss
functions under a mild assumption. Finally, we establish
H-consistency bounds for a specific surrogate loss within
this family.

3.1. New Surrogate Losses

We first prove that the following alternative expression holds
for Ldef . The proof is included in Appendix B.1.

Lemma 3.1. The deferral loss can be expressed as follows:
∀(h,x, y) ∈Hall ×X × Y,

Ldef(h,x, y) =
⎡
⎢
⎢
⎢
⎣

ne

∑
j=1

cj(x, y) + 1 − ne
⎤
⎥
⎥
⎥
⎦
1h(x)≠y (1)

+
ne

∑
j=1

[1 − cj(x, y)]1h(x)≠y1h(x)≠n+j .

We use this formulation to derive a new family of surro-
gate losses by replacing the indicator functions in (1) with
smooth loss functions. The first indicator function, 1h(x)≠y ,
corresponds to the multi-class zero-one loss. Thus, a nat-
ural approach is to substitute it with a surrogate loss used
in standard multi-class classification. In particular, we fo-
cus on the broad class of comp-sum losses (Mao et al.,
2023f), which includes many well-known loss functions,
such as the logistic loss. Comp-sum losses are defined for
all (h,x, y) ∈H ×X × Y as:

Ψ
⎛

⎝

eh(x,y)

∑y′∈Y e
h(x,y′)

⎞

⎠
, (2)

where Ψ∶ [0,1] → R+ ∪ {+∞} is a non-increasing func-
tion. A specific choice of Ψ is the family Ψq defined
for all u ∈ (0,1] by Ψq(u) = 1

q
(1 − uq) for q > 0, and

Ψq(u) = − log(u) for q = 0. For q = 0, Ψq corresponds to
the (multinomial) logistic loss (Verhulst, 1838; 1845; Berk-
son, 1944; 1951), while q ∈ (0,1) corresponds to the gen-
eralized cross-entropy loss (Zhang & Sabuncu, 2018), and
q = 1 to the mean absolute error loss (Ghosh et al., 2017).
For the indicator function 1h(x)≠y1h(x)≠n+j , we adopt the
following modified comp-sum surrogate loss, as in (Mao

et al., 2024i): Ψ( e
h(x,y)

+eh(x,n+j)

∑y′∈Y e
h(x,y′) ). This leads to the follow-

ing new family of surrogate losses for the deferral loss:

LΨ(h,x, y) =
⎡
⎢
⎢
⎢
⎣

ne

∑
j=1

cj(x, y) + 1 − ne
⎤
⎥
⎥
⎥
⎦
Ψ
⎛

⎝

eh(x,y)

∑y′∈Y e
h(x,y′)

⎞

⎠

+
ne

∑
j=1

[1 − cj(x, y)]Ψ
⎛

⎝

eh(x,y) + eh(x,n+j)

∑y′∈Y e
h(x,y′)

⎞

⎠
, (3)

where Ψ∶ [0,1]→ R+ ∪ {+∞} is a decreasing function.

3.2. Realizable H-Consistency

A hypothesis set H is said to be closed under scaling if,
(h ∈H) implies (αh ∈H) for any α ∈ R. This property is
satisfied by many broad function classes, including linear
functions and various families of neural networks. The
following result shows that, under mild assumptions, our
proposed surrogate losses are realizable H-consistent when
H is closed under scaling.

Theorem 3.2. Assume ne ≥ 2 and H closed under scaling.
Then, if Ψ satisfies limu→1− Ψ(u) = 0 and limu→0+ Ψ(u) =
1, then the surrogate loss LΨ is realizable H-consistent with
respect to Ldef .

The proof is given in Appendix B.2. Note that for ne = 1,
our surrogate loss formulation (3) coincides with that of
LRL2D in the single-expert case by Mao et al. (2024i). In
this special case, the following result holds.

Theorem 3.3 (Theorem 4.1 in (Mao et al., 2024i)). Assume
ne = 1 and H closed under scaling. Then, if Ψ satisfies
limu→1− Ψ(u) = 0, then, the surrogate loss LΨ is realizable
H-consistent with respect to Ldef .

Compared to the single-expert case where ne = 1, an addi-
tional condition, limu→0+ Ψ(u) = 1, is required for LΨ to
be realizable H-consistent with respect to Ldef , as stated
in Theorem 3.2. This condition rules out the case where
Ψ(u) = − log(u) but is satisfied by functions Ψ = Ψq when
q > 0. We will verify in a simulated example in Section 6
that the surrogate loss LΨ with Ψ = Ψq (q > 0) is realizable
H-consistent.
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3.3. H-Consistency Bounds

We now show that in the special case of Ψ = Ψ1, that is
Ψ(u) = 1 − u, LΨ admits an H-consistency bound and is
Bayes-consistent with respect to Ldef . For this case, the
conditions limu→1− Ψ(u) = 0 and limu→0+ Ψ(u) = 1 also
hold. We denote the resulting surrogate loss as Lmae. It is
defined as follows for any (h,x, y) ∈Hall ×X × Y:

Lmae(h,x, y)

=
⎡
⎢
⎢
⎢
⎣

ne

∑
j=1

cj(x, y) + 1 − ne
⎤
⎥
⎥
⎥
⎦

⎛

⎝
1 −

eh(x,y)

∑y′∈Y e
h(x,y′)

⎞

⎠

+
ne

∑
j=1

[1 − cj(x, y)]
⎛

⎝
1 −

eh(x,y) + eh(x,n+j)

∑y′∈Y e
h(x,y′)

⎞

⎠
. (4)

We say that a hypothesis set is symmetric if there exists
a family F of functions mapping from X to R such that
{[h(x,1), . . . , h(x,n + ne)]∶h ∈H} = Fn+ne . We say that
a hypothesis set H is complete if for any (x, y) ∈ X × Y,
the set of scores generated by H spans all real numbers:
{h(x, y) ∣ h ∈H} = R. Commonly used hypothesis sets
such as families of neural networks, linear functions, and
all measurable functions, are both symmetric and complete.

Theorem 3.4. Assume that H is symmetric and complete.
Then, for all h ∈ H and any distribution, the following
H-consistency bound holds:

ELdef
(h) − ELdef

(H) +MLdef
(H)

≤ (n + ne)(ELmae(h) − ELmae(H) +MLmae(H)).

The proof is given in Appendix B.3.2. Theorem 3.4 in-
cludes the single-expert case (Theorem 4.3 in (Mao et al.,
2024i)) as a special instance when ne = 1. In the proof,
we first characterize the conditional regret of the defer-
ral loss, which is determined by the key quantities pn+j =
∑y∈Y p(y∣x)(1 − cj(x, y)) for j ∈ [ne]. For the multiple-
expert case, the proof becomes more complex because
argmaxj∈[ne] pn+j may differ from argmaxj∈[ne] h(x,n +
j). In contrast, these quantities coincide in the single-expert
case. Moreover, the more complicated forms of both the
surrogate loss and the deferral loss in the multiple-expert
setting introduce further layers of complexity to the proof.

When H = Hall, the family of all measurable functions,
the minimizability gaps vanish. In this case, Theorems 3.4
implies the excess error bounds and Bayes-consistency guar-
antees of Lmae. Along with Theorem 3.2, we conclude that
Lmae is both realizable H-consistent and benefits from H-
consistency bounds (thus ensuring Bayes-consistency) for
single-stage multiple-expert deferral.

4. Two-Stage Multiple-Expert Deferral
Recall that in the two-stage multiple-expert deferral setting,
the goal is to find a deferral function r∶X × [ne] → R that
minimizes the following two-stage deferral loss:

Ltdef(r, x, y) =
ne

∑
j=1

cj(x, y)1r(x)=j .

We denote by cj ≥ 0 and cj ≥ 0 the lower and upper bounds
of the cost cj , for any j ∈ {1, . . . , ne}.

4.1. Two Experts

We first consider the two-expert case (ne = 2). The two-
stage deferral loss can be then be written as follows:

Ltdef(r, x, y) = c1(x, y)1r(x)=1 + c2(x, y)1r(x)=2.

A natural surrogate loss admits the following form:

LΦ(r, x, y) = c1(x, y)Φ(r(x,2) − r(x,1))

+ c2(x, y)Φ(r(x,1) − r(x,2)), (5)

where Φ∶R → R+ is a decreasing function that defines a
margin-based loss in binary classification. As an exam-
ple, for Φ(t) = log(1 + e−t), LΦ can be expressed as the
following cost-sensitive logistic loss:

LΦ(r, x, y) = c1(x, y) log(1 + er(x,1)−r(x,2))

+ c2(x, y) log(1 + er(x,2)−r(x,1)). (6)

Next, we show that this surrogate loss is realizable H-
consistent with respect to Ltdef .
Theorem 4.1. Assume that R is closed under scaling and
that Φ satisfies limt→+∞ Φ(t) = 0 and Φ(t) ≥ 1t≤0. Then,
the surrogate loss LΦ is realizable R-consistent with respect
to Ltdef .

The proof is provided in Appendix C.1. The following result
further establishes that LΦ satisfies an R-consistency bound
with respect to Ltdef , provided that Φ is associated with an
R-consistency bound in binary classification.
Theorem 4.2. Assume that the following R-consistency
bound holds in binary classification:

E`0−1(h) − E`0−1(R) +M`0−1(R)

≤ Γ(EΦ(h) − EΦ(R) +MΦ(R)).

Then, the following R-consistency bound holds in two-stage,
two-expert deferral:

ELtdef
(r) − ELtdef

(R) +MLtdef
(R)

≤ (c1 + c2)Γ(
ELΦ

(r) − ELΦ
(R) +MLΦ

(R)

c1 + c2
),

where constant factors (c1 + c2) and (c1 + c2) can be re-
moved when Γ is linear.
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The proof is presented in Appendix C.2. Note that, as shown
by Awasthi et al. (2022a), when H consists of common
function classes such as linear models, neural network fam-
ilies, or the family of all measurable functions, and for
Φ(t) = e−t or Φ(t) = log(1 + e−t), Γ can be chosen as the
square-root function. Similarly, for Φ(t) = max{0,1 − t},
Γ can be chosen as the identity function, resulting in a linear
bound. Combining this with Theorem 4.1, we conclude
that LΦ is not only realizable R-consistent but also benefits
from R-consistency bounds, thereby also ensuring Bayes-
consistency, in the two-stage two-expert deferral setting.

4.2. Multiple Experts

Next, we consider the general multiple-expert case where
ne > 2. Motivated by the formulation of the surrogate loss
in the two-expert case and the comp-sum losses (Mao et al.,
2023f) in standard multi-class classification, we propose the
following surrogate loss for the multiple-expert case:

LΨ(r, x, y) (7)

=
ne

∑
j=1

⎛

⎝
∑
j′≠j

cj′(x, y) − ne + 2
⎞

⎠
Ψ(

er(x,j)

∑j′∈[ne] e
r(x,j′)

)

where Ψ∶ [0,1] → R+ ∪ {+∞} is a decreasing function,
such as Ψ(u) = 1 − u or Ψ(u) = − log(u), as discussed
in Section 3.1. Note that when ne = 2, this formulation
coincides with the one in the two-expert case, as shown in
(5), with Φ∶ t↦ Ψ( et

et+1
). As an example, in the case where

Ψ(u) = − log(u), LΨ can be expressed as follows:

ne

∑
j=1

⎛

⎝
∑
j′≠j

cj′(x, y) − ne + 2
⎞

⎠
log

⎛

⎝
1 + ∑

j′≠j

er(x,j
′
)−r(x,j)⎞

⎠
.

When ne = 2, this formulation coincides with the one in the
two-expert case, as shown in (6). Next, we show that the
surrogate loss LΨ is realizable H-consistent with respect
to Ltdef under natural assumptions about the cost functions
and the auxiliary function Ψ.

Theorem 4.3. Assume that R is closed under scaling and
that cj(x, y) = 1gj(x)≠y, j ∈ [ne]. Further, assume that for
any (x, y), there is at most one expert j∗ ∈ [ne] for which
cj∗(x, y) = 0 and that Ψ satisfies limu→1− Ψ(u) = 0. Then,
the surrogate loss LΨ is realizable R-consistent with respect
to Ltdef .

The proof is included in Appendix C.3. Next, we consider
the case where Ψ(u) = Ψq, which satisfies the conditions
limu→1− Ψ(u) = 0. The following result shows that LΨq

also admits an R-consistency bound with respect to Ltdef .

Theorem 4.4. Assume that R is symmetric and complete
and that the inequality ∑j′≠j cj′(x, y) ≥ ne − 2 holds for
all j ∈ [ne] and (x, y) ∈ X × Y. Then, the following R-

consistency bound holds:

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R)

≤ Γ(ELΨq
(r) − E∗LΨq

(R) +MLΨq
(R)),

where C = (ne−1)maxj∈[ne] cj −ne+2, Γ(t) = 2(C)
1
2
√
t

when q = 0, Γ(t) = 2(ne
q)

1
2 (C)

1
2

√
t when q ∈ (0,1), and

Γ(t) = ne t when q = 1.

Appendix C.4 contains the proof. Collectively, Theo-
rems 4.3 and 4.4 show that for two-stage multiple-expert
deferral, LΨq is both realizable R-consistent, and admits
R-consistency bounds, thus ensuring Bayes-consistency.

5. Enhanced Bounds under Low-Noise
Assumptions

In the previous sections, we established guarantees for re-
alizable H-consistency and H-consistency bounds in the
context of learning with multiple-expert deferral. Realizable
H-consistency provides guarantees under deterministic as-
sumptions, while H-consistency bounds extend to arbitrary
distributions. This raises a natural question: can we offer
guarantees for intermediate cases, particularly for distribu-
tions satisfying low-noise assumptions? In what follows,
we address this question separately for the single-stage and
two-stage scenarios.

5.1. Single-Stage Scenario

We first characterize the conditional error and conditional
regret of the deferral loss. Let ymax = argmaxy∈Y p(y∣x),
pymax = p(ymax∣x) and pn+j = ∑y∈Y p(y∣x)(1 − cj(x, y)),
j ∈ [ne]. For any h ∈Hall, define:

ph(x) =

⎧⎪⎪
⎨
⎪⎪⎩

p(h(x)∣x) h(x) ∈ [n]

pn+j h(x) = n + j.

Lemma 5.1. Assume that H is symmetric and complete.
Then, for any h ∈H and input x ∈ X, the conditional error
and conditional regret of the deferral loss are given by:

CLdef
(h,x) = 1 − ph(x)

∆C∗Ldef ,H
(h,x) = max{pymax , max

j∈[ne]
pn+j} − ph(x).

The proof of Lemma 5.1 is included in Appendix B.3.1.

The original Tsybakov noise definition was introduced and
further studied in the context of standard classification
(Mammen & Tsybakov, 1999; Mao et al., 2024e). We ex-
tend this definition to the setting of the deferral loss with
multiple experts and establish new H-consistency guaran-
tees under this noise assumption.
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This extension relies on the concept of the Bayes classifier
for the deferral loss. By (Mao et al., 2024d, Lemma 2.1),
there exists a measurable function h∗ that satisfies ph∗(x) =
max{pymax ,maxj∈[ne] pn+j}, for all x ∈ X which identi-
fies h∗ as the Bayes classifier for the deferral loss. We
can now define the minimal margin for a point x ∈ X as
γ(x) = ph∗(x) − supy≠h∗(x) py and the single-stage deferral
Tsybakov noise assumption as follows: there exist B > 0
and α ∈ [0,1) such that the following inequality holds:

∀t > 0, P[γ(X) ≤ t] ≤ Bt
α

1−α . (8)

Thus, this noise assumption posits that the probability of
observing a small margin is relatively low. Note that when
α → 1, t

α
1−α → 0, which corresponds to an analogue of

Massart’s noise assumption in the deferral setting. The
following lemma establishes basic properties of single-stage
deferral Tsybakov noise assumption, extending a similar
result from the classification setting by Mao et al. (2024e).

Lemma 5.2. The single-stage deferral Tsybakov noise as-
sumption implies that there exists a constant c = B1−α

αα
> 0

such that the following inequalities hold for any h ∈H:

E[1h(x)≠h∗(x)] ≤ cE[γ(X)1h(x)≠h∗(x)]
α

≤ c[ELdef
(h) − ELdef

(h∗)]α.

The proof of Lemma 5.2 can be found in Appendix D.1.1.
We first derive an H-consistency bound in terms of the
quantity 1h(x)≠h∗(x), which appears on the left-hand side of
the statement of Lemma 5.2.

Theorem 5.3. Consider the setting of single-stage multiple-
expert deferral. Assume that the following holds for all
h ∈ H and x ∈ X: ∆CLdef ,H(h,x) ≤ Γ(∆CL,H(h,x)),
with Γ(x) = x

1
s , for some s ≥ 1 with conjugate number

t ≥ 1, that is 1
s
+ 1
t
= 1. Then, for any h ∈H,

ELdef
(h) − E∗Ldef

(H) +MLdef
(H)

≤ E
X
[1h(X)≠h∗(X)]

1
t (EL(h) − E∗L(H) +ML(H))

1
s .

The proof of Theorem 5.3 is included in Appendix D.1.2.
Theorem 5.3 offers a stronger theoretical guarantee
compared to standard H-consistency bounds, under
the assumption ∆CLdef ,H(h,x) ≤ Γ(∆CL,H(h,x)).
This bound includes the hypothesis-dependent factor
EX[1h(X)≠h∗(X)]

1
t ≤ 1, which is more favorable than the

constant factor of one in standard bounds.

Next, we assume that the Tsybakov noise assumption
holds and also that there is no approximation error, that
is MLdef

(H) = 0.

Theorem 5.4. Consider the setting of single-stage multiple-
expert deferral where the Tsybakov noise assumption holds,
and no approximation error occurs, that is, E∗Ldef

(H) =

E∗Ldef
(Hall). Assume that the following holds for all h ∈

H and x ∈ X: ∆CLdef ,H(h,x) ≤ Γ(∆CL,H(h,x)), with
Γ(x) = x

1
s , for some s ≥ 1. Then, for any h ∈H,

ELdef
(h) − E∗Ldef

(H)

≤ c
s−1

s−α(s−1) [EL(h) − E∗L(H) +ML(H)]
1

s−α(s−1) .

The proof is given in Appendix D.1.3. Note that as α → 1,
where the Tsybakov noise corresponds to Massart’s noise
assumption, this result yields an H-consistency bound with
a linear functional form, improving upon the standard
H-consistency bounds, which have the functional form
Γ(x) = x

1
s , when such bounds exist. This shows that

for any smooth surrogate losses with an H-consistency
bound, under Massart’s noise assumption, we can obtain H-
consistency bounds as favorable as those of L = Lmae, which
always admit a linear dependency, as shown in Theorem 3.4.

For example, in the special case of a single-expert, Mao et al.
(2024i, Theorem 4.2) shows that square-root H-consistency
bounds hold (s = 1

2
) for L = LΨq with q ∈ [0,1). Theo-

rem 5.4 provides refined H-consistency bounds for these
surrogate losses: linear dependence when Massart’s noise
assumption holds (α → 1) and an intermediate rate between
linear and square-root for other values of α ∈ (0,1).

Furthermore, we know that the realizability assumption can
be viewed as a special case of Massart’s noise assumption.
Thus, Theorem 5.4 provides intermediate guarantees be-
tween realizable H-consistency and H-consistency bounds
for single-stage deferral surrogate losses, such as LL2D con-
sidered in (Mao et al., 2024i).

5.2. Two-Stage Scenario

We now extend our results to the two-stage scenario. As
in the single-stage case, we begin by characterizing the
best-in-class conditional error and the conditional regret of
the two-stage deferral loss function Ltdef (Lemma C.1 in
Appendix C.4.1). In particular, the Bayes conditional error
is C∗Ltdef

(Rall, x) = minj∈[ne]∑y∈Y p(y∣x)cj(x, y).

By (Mao et al., 2024d, Lemma 2.1), there exists a measur-
able function r∗ such that

∑
y∈Y

p(y∣x)cr∗(x)(x, y) = min
j∈[ne]

∑
y∈Y

p(y∣x)cj(x, y),

for all x ∈ X. This function r∗ thus defines a Bayes classifier
for the two-stage deferral loss. Define the minimal margin
for a point x ∈ X as follows: γ(x) =

inf
j≠r∗(x)

∑
y∈Y

p(y∣x)cj(x, y) −∑
y∈Y

p(y∣x)cr∗(x)(x, y) ≥ 0.

The two-stage Tsybakov noise assumption can then be de-
fined as follows: there exist B > 0 and α ∈ [0,1) such that

7
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the following inequality holds:

∀t > 0, P[γ(X) ≤ t] ≤ Bt
α

1−α . (9)

As in the single-stage setting, Lemma D.2 in Appendix D.2.1
establishes fundamental properties of the Tsybakov noise
assumption within the context of the two-stage scenario. We
also derive the enhanced bounds (Theorems D.3 and D.4)
for the two-stage scenario, with their detailed presentation
deferred to Appendix D.2.2 due to space limitations.

6. Experiments
In this section, we evaluate the empirical performance of
our proposed surrogate loss, comparing it against existing
baselines in both single-stage and two-stage learning-to-
defer scenarios with multiple experts. Our objective is to
confirm that our loss functions match the best-known results
in non-realizable settings for both single- and two-stage
cases while outperforming them in realizable settings, as
predicted by our theoretical analysis.

Experimental setup. For our experiments, we used four
widely used datasets: CIFAR-10, CIFAR-100 (Krizhevsky,
2009), SVHN (Netzer et al., 2011), and Tiny ImageNet (Le
& Yang, 2015). Each dataset was trained for 200 epochs.
We adopted ResNet-16 (He et al., 2016) for the predic-
tor/deferral models. The Adam optimizer (Kingma & Ba,
2015) was used with a weight decay of 1× 10−3 and a batch
size of 1024. Following (Mozannar et al., 2023; Mao et al.,
2024a), we define the cost function as the expert’s classifi-
cation error: cj(x, y) = 1gj(x)≠y in our empirical analysis.
We reported the means and standard deviations over five
runs. For simplicity, we omitted the standard deviations of
the deferral ratios.

Single-stage multiple-expert deferral. In the single-stage
scenario, we compared our proposed surrogate LΨ (3) with
Ψ(u) = 1 − u with the baseline surrogate losses proposed
in (Verma et al., 2023) and (Mao et al., 2024a). While
these surrogate losses are Bayes-consistent, they are not
realizable H-consistent. For both surrogate losses, we used
the logistic loss function as their auxiliary function in our
experiments. Building on the setup described in (Mao et al.,
2024a), we used two experts, each with a distinct domain
of expertise. Expert 1 always predicts from the first 30% of
classes and is correct whenever the true label falls within
this range. Similarly, Expert 2 predicts from the next 30%
of classes, following the same criterion for accuracy. As
shown in Table 2, our method achieves comparable single-
stage system accuracy (SA), defined as the average value of
[1 − Ldef(h,x, y)] on the test data, to the baselines. Due to
the specific realizable form of our surrogate losses, it also
defers significantly more and exhibits a greater tendency to
choose expert 2 compared to the baselines. This highlights
a key effect of our proposed surrogate: it induces deferral

Table 2. Comparison of Our Method with Single-Stage Baselines.

Method Dataset SA (%)
Ratio of Deferral (%)

PRED EXP 1 EXP 2

Verma et al. (2023)
CIFAR-10

91.85 ±0.08 62.88 11.23 25.89
Mao et al. (2024a) 91.98 ± 0.09 66.63 13.65 19.72
Ours 92.21 ± 0.18 38.79 30.45 30.76

Verma et al. (2023)
CIFAR-100

64.13 ± 0.15 39.77 35.95 24.28
Mao et al. (2024a) 64.93 ± 0.22 49.19 27.69 23.12
Ours 65.39 ± 0.31 34.38 30.52 35.10

Verma et al. (2023)
SVHN

95.91 ± 0.08 64.66 25.96 9.38
Mao et al. (2024a) 95.78 ± 0.06 78.93 10.09 10.98
Ours 96.08 ± 0.11 27.11 43.42 29.47

Verma et al. (2023)
Tiny ImageNet

50.61 ± 0.50 46.96 25.59 27.45
Mao et al. (2024a) 50.89 ± 0.49 45.56 37.88 16.56
Ours 51.13 ± 0.56 21.68 32.60 45.72

Table 3. Comparison of Our Method with Two-Stage Baselines.

Method Dataset SA (%)
Ratio of Deferral (%)

EXP 1 EXP 2 EXP 3

Mao et al. (2023a)
CIFAR-10

92.92 ± 0.14 30.23 30.49 39.28
Ours 93.34 ± 0.18 29.34 30.90 39.76

Mao et al. (2023a)
CIFAR-100

67.99 ± 0.19 32.44 34.42 33.14
Ours 68.70 ± 0.23 31.34 29.89 38.77

Mao et al. (2023a)
SVHN

96.30 ± 0.06 42.38 29.68 27.94
Ours 96.47 ± 0.08 42.52 29.70 27.78

Mao et al. (2023a)
Tiny ImageNet

45.81 ± 0.17 36.64 28.64 34.72
Ours 46.62 ± 0.24 26.82 38.15 35.03

behavior that is qualitatively different from prior approaches,
particularly on the SVHN and Tiny ImageNet datasets.

Two-stage multiple-expert deferral. In the two-stage sce-
nario, we compared our proposed surrogate loss LΨ (7)
with Ψ(u) = − log(u) with the baseline surrogate losses
proposed in (Mao et al., 2023a). While the baseline sur-
rogate losses are Bayes-consistent, they are not realizable
H-consistent with cost functions based on classification er-
ror: cj(x, y) = 1gj(x)≠y. In our experiments, we used the
multinomial logistic loss as the multi-class classification
surrogate for the baseline surrogate losses. As in the single-
stage scenario, we considered a setting where multiple ex-
perts are available, each with a clear domain of expertise.
We used three experts, with two of them the same as those
adopted in the single-stage setting. Additionally, we intro-
duced a third expert that predicts from the remaining 40% of
classes and is accurate if the true label is within this range.
As shown in Table 3, our method achieves comparable two-
stage system accuracy (SA), defined as the average value of
[1 − Ltdef(h,x, y)] on the test data, to the baselines. The
different deferral ratios it achieves, compared to the baseline,
demonstrate the effect of our proposed surrogate loss.

Realizable multiple-expert deferral. We also conducted
an additional experiment in the realizable scenario, by ex-
tending the synthetic Mixture-of-Gaussians dataset from
(Mozannar et al., 2023) to the multiple-expert setting. This
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Figure 1. System Accuracy vs. Training Sample Size.

extended dataset is realizable by linear functions, as there
exists a randomly selected linear hypothesis h∗ ∈ H that
achieves zero single-stage deferral loss, ELdef

(h∗) = 0. We
set the true label to match the predictor’s prediction when
deferral does not occur according to h∗. Otherwise, the
true label is generated uniformly at random. We used two
experts whose predictions align with the true label only
when they are chosen by h∗ to make the prediction. For
our surrogate loss LΨ (3), we selected Ψ = Ψq with q = 0.7
and q = 1. We compared these surrogate losses to those
introduced in (Verma et al., 2023) and (Mao et al., 2024a).
Figure 1 shows system accuracy as a function of training
samples on the realizable Mixture-of-Gaussians distribution,
verifying our theoretical results that both choices of LΨ are
realizable H-consistent, while the two baselines are not.

The behavior for lower values of q is similar to that ob-
served for q = 0.7 and q = 1. Note that for any q > 0, The-
orem 3.2 guarantees realizable H-consistency. We chose
q = 0.7 and q = 1 in Figure 1 because they correspond to
standard choices in prior work, q = 0.7 is a commonly sug-
gested value within the generalized cross-entropy family
(e.g., (Zhang & Sabuncu, 2018); (Mao et al., 2024a)), and
q = 1 corresponds to the mean absolute error loss, as used
in ((Ghosh et al., 2017); (Mao et al., 2024a)). In this real-
izable distribution, we observe that our proposed surrogate
losses achieve close to 100% system accuracy, while all
other baselines fail to find a near-zero-error solution. This
demonstrates that our surrogates are realizable H-consistent,
whereas the compared baselines are not.

Note that the goal of our experiments on non-realizable data
is not to claim that our proposed surrogate losses outperform
the baselines (Verma et al., 2023; Mao et al., 2024a; 2023a)
in such settings. Rather, our results show that our surrogate
losses match the performance of these state-of-the-art base-
lines in non-realizable settings in terms of system accuracy,
as both are supported by consistency bounds. The strength
of our approach lies in the realizable setting, where our sur-
rogate losses are guaranteed to be realizable H-consistent,

unlike the baselines, as illustrated in Figure 1.

7. Future Work
Our paper primarily focuses on theoretically principled sur-
rogate losses for learning to defer with multiple experts,
grounded in realizable H-consistency and H-consistency
bounds, within the learning theory framework. While
we have empirically shown that minimizing our proposed
loss functions outperforms the baselines in realizable set-
tings and matches the best-known results in synthetic non-
realizable settings, as predicted by our theoretical analysis,
we recognize the importance of further empirical explo-
ration. Accordingly, we plan to dedicate future work to con-
ducting a more extensive empirical analysis in real-world
settings, particularly in important scenarios where expert
domains overlap and the data is heterogeneous.

We also acknowledge the relevance of more realistic and
challenging scenarios, such as those where expert predic-
tions are unavailable during training. Extending our meth-
ods to these scenarios is a promising direction for future
work. For example, it would be interesting to adapt our
framework to handle previously unseen experts at test time,
as studied by Tailor et al. (2024) and to incorporate post-
processing frameworks for learning to defer under con-
straints such as OOD detection and long-tail classification,
as explored by Charusaie & Samadi (2024).

Our deferral framework also offers promising applications
in the context of large language models (LLMs). Given
the significant resources required to retrain LLMs, a two-
stage method is a practical and scalable solution (Mao et al.,
2023a). This does not require modifying LLMs or the loss
function used to train them. Our proposed two-stage surro-
gate loss is particularly well-suited for use with pre-trained
LLMs. In the presence of multiple LLMs (or experts), using
our method, uncertain predictions can be deferred to more
specialized or domain-specific pre-trained models, thereby
both improving the reliability and accuracy of the overall
system and improving efficiency.

8. Conclusion
We presented novel surrogate losses functions and algo-
rithms for multiple-expert deferral, offering strong theoreti-
cal guarantees for both single- and two-stage scenarios. Our
results, including realizable H-consistency, H-consistency
bounds, and Bayes-consistency, extend to multiple-expert
settings and provide enhanced guarantees under low-noise
assumptions. Our analysis can be leveraged to study and
design algorithms for other routing problems, for example
when incorporating constraints, such as limiting the fre-
quency with which an expert can be used. Experimental re-
sults confirm the effectiveness of our principled techniques.
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A. Related work
Single-stage learning to defer, where a predictor and a deferral function are jointly trained, was pioneered by Cortes,
DeSalvo, and Mohri (2016a;b; 2023) and further developed in subsequent work. This includes studies on abstention with
constant costs (Charoenphakdee et al., 2021; Cao et al., 2022; Li et al., 2023; Cheng et al., 2023; Mao et al., 2024c;b; Mohri
et al., 2024; Narasimhan et al., 2024) and deferral with instance- and label-dependent costs (Mozannar & Sontag, 2020;
Verma & Nalisnick, 2022; Mozannar et al., 2023; Verma et al., 2023; Cao et al., 2023; Mao et al., 2024a; Wei et al., 2024;
Mao et al., 2024i). In this paradigm, the deferral function decides how input instances should be optimally assigned to the
most suitable expert from a diverse set. This method has demonstrated advantages over confidence-based approaches, which
rely solely on the predictor’s output magnitude (Chow, 1957; 1970; Bartlett & Wegkamp, 2008; Yuan & Wegkamp, 2010;
2011; Ramaswamy et al., 2018; Ni et al., 2019; Jitkrittum et al., 2023); and selective classification methods, which use a
fixed selection rate and cannot incorporate expert-modeled cost functions (El-Yaniv et al., 2010; El-Yaniv & Wiener, 2012;
Wiener & El-Yaniv, 2011; 2012; 2015; Geifman & El-Yaniv, 2017; 2019; Acar et al., 2020; Gangrade et al., 2021; Zaoui
et al., 2020; Jiang et al., 2020; Shah et al., 2022).

The learning to defer (L2D) problem, which incorporates human expert decisions into the cost function, was introduced by
Madras et al. (2018) and further studied by Raghu et al. (2019); Wilder et al. (2021); Pradier et al. (2021); Mozannar &
Sontag (2020); Verma & Nalisnick (2022); Charusaie et al. (2022); Mozannar et al. (2023); Mao et al. (2023a; 2024a;i).
It is typically formulated using a deferral loss function that incorporates instance-specific costs associated with each
expert. Directing optimizing this loss function is intractable for the hypothesis sets commonly used in applications. Thus,
learning-to-defer algorithms rely on optimizing a surrogate loss function instead, that serves as a proxy for the original target
loss function. Yet, what guarantees can we rely on when optimizing such surrogate loss functions?

This question, which involves analyzing the consistency guarantees of surrogate losses with respect to the deferral loss,
has been studied under two main scenarios: the single-stage scenario, where a predictor and a deferral function are jointly
learned (Mozannar & Sontag, 2020; Verma & Nalisnick, 2022; Charusaie et al., 2022; Mozannar et al., 2023; Mao et al.,
2024a), and a two-stage scenario, where the predictor is pre-trained and fixed as an expert, and while only the deferral
function is subsequently learned (Mao et al., 2023a).

In particular, Mozannar & Sontag (2020), Verma & Nalisnick (2022), and Charusaie et al. (2022) proposed surrogate loss
functions for the single-stage single-expert case by generalizing the cross-entropy loss, the one-versus-all loss, and, more
generally, a broad family of surrogate losses for multi-class classification in the context of learning to defer. However,
Mozannar et al. (2023) later showed that these surrogate loss functions do not satisfy realizable H-consistency. They
suggested an alternative surrogate loss that achieves this property but left open the question of whether it was also Bayes-
consistent. This was later resolved by Mao et al. (2024i), who introduced a broader family of surrogate losses that
simultaneously achieve Bayes-consistency, realizable H-consistency, and H-consistency bounds. For the single-stage
multiple-expert (Hemmer et al., 2022; Keswani et al., 2021; Kerrigan et al., 2021; Straitouri et al., 2022; Benz & Rodriguez,
2022) case, Verma et al. (2023) were the first to extend the surrogate loss proposed in (Verma & Nalisnick, 2022) and
(Mozannar & Sontag, 2020) to accommodate multiple experts. Building on this, Mao et al. (2024a) further generalized the
surrogate loss from (Mozannar & Sontag, 2020), introducing a broader family of surrogate losses tailored to the multiple-
expert case. Furthermore, Mao et al. (2024a) proved that their surrogate losses benefit from H-consistency bounds in the
multiple-expert case, thereby ensuring Bayes-consistency. However, these loss functions are not realizable H-consistent
even in the single-expert case, as they are extensions of the earlier loss functions. In the two-stage scenario, Mao et al.
(2023a) introduced surrogate losses that are Bayes-consistent and realizable H-consistent for constant costs. However,
their realizable H-consistency does not extend to cost functions of interest, which are based on classification error. Other
extensions include single-stage and two-stage multiple-expert deferral in regression (Mao et al., 2024h), single-stage learning
to defer to a population (Tailor et al., 2024), and two-stage multi-expert deferral in multi-task learning (Montreuil et al.,
2025).

Further research has explored post-hoc methods. Okati et al. (2021) proposed an alternative optimization approach for
the predictor and rejector, while Narasimhan et al. (2022) offered corrections for underfitting surrogate losses (Liu et al.,
2024). Charusaie & Samadi (2024) developed a unified post-processing framework for multi-objective L2D based on a
generalized Neyman-Pearson Lemma (Neyman & Pearson, 1933). Additionally, Cao et al. (2023) introduced an asymmetric
softmax function for deriving valid probability estimates in L2D. Wei et al. (2024) explored dependent Bayes optimality,
which elucidates the dependencies involved in deferral decisions within the L2D framework. The L2D framework and its
variants have been applied in various domains, including regression, human-in-the-loop systems and reinforcement learning
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(De et al., 2020; 2021; Zhao et al., 2021; Mozannar et al., 2022; Straitouri et al., 2021; Joshi et al., 2023; Gao et al., 2021;
Hemmer et al., 2023; Chen et al., 2024; Palomba et al., 2024).

B. Single-stage multiple-expert deferral: proofs.
B.1. Proof of Lemma 3.1

Lemma 3.1. The deferral loss can be expressed as follows: ∀(h,x, y) ∈Hall ×X × Y,

Ldef(h,x, y) =
⎡
⎢
⎢
⎢
⎣

ne

∑
j=1

cj(x, y) + 1 − ne
⎤
⎥
⎥
⎥
⎦
1h(x)≠y +

ne

∑
j=1

[1 − cj(x, y)]1h(x)≠y1h(x)≠n+j .

Proof. Observe that for any (x, y) ∈ X × Y, we have 1h(x)=n+j = 1h(x)≠y1h(x)=n+j , since h(x) = n + j implies h(x) ≠ y.
Thus, using additionally 1h(x)∈[n] =∏

ne
j=1 1h(x)≠n+j , the deferral loss can be rewritten as follows for all (x, y) ∈ X × Y:

Ldef(h,x, y) = 1h(x)≠y1h(x)∈[n] +
ne

∑
j=1

cj(x, y)1h(x)=n+j

= 1h(x)≠y
ne

∏
j=1

1h(x)≠n+j +
ne

∑
j=1

cj(x, y)1h(x)≠y1h(x)=n+j

= 1h(x)≠y
ne

∏
j=1

1h(x)≠n+j +
ne

∑
j=1

cj(x, y)1h(x)≠y(1 − 1h(x)≠n+j)

=
ne

∑
j=1

cj(x, y)1h(x)≠y + 1h(x)≠y
ne

∏
j=1

1h(x)≠n+j −
ne

∑
j=1

cj(x, y)1h(x)≠y1h(x)≠n+j

=
ne

∑
j=1

cj(x, y)1h(x)≠y +
ne

∑
j=1

[1 − cj(x, y)]1h(x)≠y1h(x)≠n+j + 1h(x)≠y
⎡
⎢
⎢
⎢
⎣

ne

∏
j=1

1h(x)≠n+j −
ne

∑
j=1

1h(x)≠n+j
⎤
⎥
⎥
⎥
⎦

(add and subtract ∑nej=1 1h(x)≠y1h(x)≠n+j)

=
ne

∑
j=1

cj(x, y)1h(x)≠y +
ne

∑
j=1

[1 − cj(x, y)]1h(x)≠y1h(x)≠n+j + 1h(x)≠y(1 − ne)

(∏nej=1 1h(x)≠n+j =

⎧⎪⎪
⎨
⎪⎪⎩

1 h(x) ∈ [n]

0 otherwise
and ∑nej=1 1h(x)≠n+j =

⎧⎪⎪
⎨
⎪⎪⎩

ne h(x) ∈ [n]

ne − 1 otherwise
)

=
⎡
⎢
⎢
⎢
⎣

ne

∑
j=1

cj(x, y) + 1 − ne
⎤
⎥
⎥
⎥
⎦
1h(x)≠y +

ne

∑
j=1

[1 − cj(x, y)]1h(x)≠y1h(x)≠n+j .

This completes the proof.

B.2. Proof of Theorem 3.2

Theorem 3.2. Assume ne ≥ 2 and H closed under scaling. Then, if Ψ satisfies limu→1− Ψ(u) = 0 and limu→0+ Ψ(u) = 1,
then the surrogate loss LΨ is realizable H-consistent with respect to Ldef .

Proof. Let h∗ be a best-in-class predictor such that ELdef
(h∗) = 0. Note that

E∗L(H) ≤ lim
α→+∞

EL(αh
∗
)

= lim
α→+∞

E[L(αh∗, x, y) ∣ h∗(x) ∈ [n]]P(h∗(x) ∈ [n])

+
ne

∑
k=1

lim
α→+∞

E[L(αh∗, x, y) ∣ h∗(x) = n + k]P(h∗(x) = n + k)

17
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If h∗(x) ∈ [n], then, we must have h∗(x) = y for any (x, y) ∈ X × Y. In this case,

lim
α→+∞

E[L(αh∗, x, y) ∣ h∗(x) ∈ [n]]

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎣

ne

∑
j=1

cj(x, y) + 1 − ne
⎤
⎥
⎥
⎥
⎦

lim
α→+∞

Ψ
⎛

⎝

eαh
∗
(x,y)

∑y′∈Y e
αh∗(x,y′)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+E
⎡
⎢
⎢
⎢
⎢
⎣

ne

∑
j=1

[1 − cj(x, y)] lim
α→+∞

Ψ
⎛

⎝

eαh
∗
(x,y) + eαh

∗
(x,n+j)

∑y′∈Y e
αh∗(x,y′)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= E[0] +E[0]

= 0.

If h∗(x) = n + k, then, we must have ck(x, y) = 0 for any (x, y) ∈ X × Y. In this case,

lim
α→+∞

E[L(αh∗, x, y) ∣ h∗(x) = n + k]

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

⎡
⎢
⎢
⎢
⎣

ne

∑
j=1

cj(x, y) + 1 − ne
⎤
⎥
⎥
⎥
⎦

lim
α→+∞

Ψ
⎛

⎝

eαh
∗
(x,y)

∑y′∈Y e
αh∗(x,y′)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+E
⎡
⎢
⎢
⎢
⎢
⎣

ne

∑
j=1

[1 − cj(x, y)] lim
α→+∞

Ψ
⎛

⎝

eαh
∗
(x,y) + eαh

∗
(x,n+j)

∑y′∈Y e
αh∗(x,y′)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

∑
j≠k

cj(x, y) + 1 − ne

⎤
⎥
⎥
⎥
⎥
⎦

+E
⎡
⎢
⎢
⎢
⎢
⎣

∑
j≠k

[1 − cj(x, y)]

⎤
⎥
⎥
⎥
⎥
⎦

= 0.

Therefore, we have E∗L(H) = 0.

B.3. Proof of H-consistency bounds

B.3.1. SIMPLIFIED NOTATION AND PROOF OF LEMMA 5.1

Let p(y∣x) = P(Y = y ∣X = x) be the conditional probability of Y = y given X = x. Let ymax = argmaxy∈Y p(y∣x),

pymax = p(ymax∣x) and pn+j = ∑y∈Y p(y∣x)(1 − cj(x, y)), j ∈ [ne]. We denote by ph(x) =
⎧⎪⎪
⎨
⎪⎪⎩

p(h(x)∣x) h(x) ∈ [n]

pn+j h(x) = n + j.
We

first characterize the conditional error and conditional regret of the deferral loss as follows.

Lemma 5.1. Assume that H is symmetric and complete. Then, for any h ∈H and input x ∈ X, the conditional error and
conditional regret of the deferral loss are given by:

CLdef
(h,x) = 1 − ph(x), ∆C∗Ldef ,H

(h,x) = max{pymax , max
j∈[ne]

pn+j} − ph(x).

Proof. By definition,

CLdef
(h,x) = ∑

y∈Y

p(y∣x)Ldef(h,x, y)

= ∑
y∈Y

p(y∣x)1h(x)≠y1h(x)∈[n] +
ne

∑
j=1

∑
y∈Y

p(y∣x)cj(x, y)1h(x)=n+j

= (1 − p(h(x)∣x)1h(x)∈[n] +
ne

∑
j=1

(1 − p(n + j∣x))1h(x)=n+j

= 1 − ph(x).

18
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Therefore, the best-in-class conditional error and conditional regret can be expressed as follows:

C∗Ldef
(H, x) = 1 −max{pymax , max

j∈[ne]
pn+j}, ∆C∗Ldef ,H

(h,x) = max{pymax , max
j∈[ne]

pn+j} − ph(x).

For convenience, in the following sections, we will omit the dependency on x in the notation: hy = h(x, y) for any y ∈ Y,
and py = p(y∣x) for any y ∈ Y. We let hmax = argmaxy∈Y hy and qj,y = p(y∣x)cj(x, y) for any y ∈ Y. We also let
y∗ = argmaxj∈[ne] pn+j and h∗ = argmaxj∈[ne] hn+j .

B.3.2. PROOF OF THEOREM 3.4

Theorem 3.4. Assume that H is symmetric and complete. Then, for all h ∈ H and any distribution, the following
H-consistency bound holds:

ELdef
(h) − ELdef

(H) +MLdef
(H) ≤ (n + ne)(ELmae(h) − ELmae(H) +MLmae(H)).

Proof. The conditional error of the surrogate loss can be expressed as follows:

CLmae(h,x)

= ∑
y∈Y

p(y∣x)Lmae(h,x, y)

=
ne

∑
j=1

⎡
⎢
⎢
⎢
⎢
⎣

∑
y∈Y

p(y∣x)cj(x, y)
⎛

⎝
1 −

eh(x,y)

∑y′∈Y e
h(x,y′)

⎞

⎠
+∑
y∈Y

p(y∣x)(1 − cj(x, y))
⎛

⎝
1 −

eh(x,y) + eh(x,n+j)

∑y′∈Y e
h(x,y′)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ (1 − ne)∑
y∈Y

p(y∣x)
⎛

⎝
1 −

eh(x,y)

∑y′∈Y e
h(x,y′)

⎞

⎠

=
ne

∑
j=1

⎡
⎢
⎢
⎢
⎢
⎣

∑
y∈Y

qj,y
⎛

⎝
1 −

ehy

∑y′∈Y e
hy′

⎞

⎠
+∑
y∈Y

(py − qj,y)
⎛

⎝
1 −

ehy + ehn+j

∑y′∈Y e
hy′

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ (1 − ne)∑
y∈Y

py
⎛

⎝
1 −

ehy

∑y′∈Y e
hy′

⎞

⎠
.

By Lemma 5.1, we can write the conditional regret of the deferral loss as

∆CLdef ,H(h,x) = max{pymax , max
j∈[ne]

pn+j} − ph(x).

Next, we show that the surrogate conditional regret can be lower bounded by the target one:

∆CLmae,H(h,x) = CLmae(h) − C∗Lmae
(H) ≥

1

n + ne
(∆CLdef ,H(h,x)). (10)

We first prove that for any hypothesis h and x ∈ X, if ymax ≠ hmax, then the conditional error of h can be lower bounded by
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that of h, which satisfies that h(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

hhmax y = ymax

hymax y = hmax

hy otherwise.
. Indeed,

CLmae(h) − CLmae(h) =
ne

∑
j=1

[qj,ymax

⎛

⎝
1 −

ehymax

∑y′∈Y e
hy′

⎞

⎠
+ (pymax − qj,ymax)

⎛

⎝
1 −

ehymax + ehn+j

∑y′∈Y e
hy′

⎞

⎠

+ qj,hmax

⎛

⎝
1 −

ehhmax

∑y′∈Y e
hy′

⎞

⎠
+ (phmax − qj,hmax)

⎛

⎝
1 −

ehhmax + ehn+j

∑y′∈Y e
hy′

⎞

⎠

− qj,ymax

⎛

⎝
1 −

ehhmax

∑y′∈Y e
hy′

⎞

⎠
− (pymax − qj,ymax)

⎛

⎝
1 −

ehhmax + ehn+j

∑y′∈Y e
hy′

⎞

⎠

− qj,hmax

⎛

⎝
1 −

ehymax

∑y′∈Y e
hy′

⎞

⎠
− (phmax − qj,hmax)

⎛

⎝
1 −

ehymax + ehn+j

∑y′∈Y e
hy′

⎞

⎠
]

+ (1 − ne)pymax

⎛

⎝
1 −

eymax

∑y′∈Y e
hy′

⎞

⎠
+ (1 − ne)phmax

⎛

⎝
1 −

ehmax

∑y′∈Y e
hy′

⎞

⎠

− (1 − ne)pymax

⎛

⎝
1 −

ehmax

∑y′∈Y e
hy′

⎞

⎠
− (1 − ne)phmax

⎛

⎝
1 −

eymax

∑y′∈Y e
hy′

⎞

⎠

=
1

∑y′∈Y e
hy′

(pymax − phmax)(e
hhmax − ehymax ) ≥ 0.

We then prove that for any hypothesis h and x ∈ X, if y∗ ≠ h∗, then the conditional error of h can be lower bounded by that

of h̃, which satisfies that h̃(x, y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

hn+h∗ y = n + y∗

hn+y∗ y = n + h∗

hy otherwise.
. Indeed,

CLmae(h) − CLmae(h̃) = pn+y∗
⎛

⎝
1 −

ehn+y∗

∑y′∈Y e
hy′

⎞

⎠
+ pn+h∗

⎛

⎝
1 −

ehn+h∗

∑y′∈Y e
hy′

⎞

⎠

− pn+y∗
⎛

⎝
1 −

ehn+h∗

∑y′∈Y e
hy′

⎞

⎠
− pn+h∗

⎛

⎝
1 −

ehn+y∗

∑y′∈Y e
hy′

⎞

⎠

=
1

∑y′∈Y e
hy′

(pn+y∗ − pn+h∗)(e
hn+y∗ − ehn+y∗ ) ≥ 0.

Therefore, we only need to lower bound the conditional regret of hypothesis h satisfying both ymax = hmax and y∗ = h∗.
Note that if (pymax − pn+y∗)(hymax − hn+y∗) > 0, then, ∆CLdef ,H(h,x) = 0. Next, we will analyze case by case.

1. Case I: If pymax − pn+y∗ ≥ 0 and hymax − hn+y∗ ≤ 0: we define a new hypothesis hµ such that hµ(x, y) =
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

log(ehn+y∗ + µ) y = ymax

log(ehymax − µ) y = n + y∗

h(x, y) otherwise.
, where ehymax ≥ µ ≥ 0. Then, we can lower bound the conditional regret of Lmae by
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using ∆CLmae,H(h,x) ≥ CLmae(h) − C∗Lmae
(hµ) for any ehymax ≥ µ ≥ 0:

∆CLmae,H(h,x)

≥ sup
ehymax ≥µ≥0

(CLmae(h) − C∗Lmae
(hµ))

≥ sup
ehymax ≥µ≥0

⎛

⎝

ne

∑
j≠y∗

⎡
⎢
⎢
⎢
⎢
⎣

qj,ymax

⎛

⎝
1 −

ehymax

∑y′∈Y e
hy′

⎞

⎠
+ (pymax − qj,ymax)

⎛

⎝
1 −

ehymax + ehn+j

∑y′∈Y e
hy′

⎞

⎠

− qj,ymax

⎛

⎝
1 −

ehn+y∗ + µ

∑y′∈Y e
hy′

⎞

⎠
− (pymax − qj,ymax)

⎛

⎝
1 −

ehn+y∗ + µ + ehn+j

∑y′∈Y e
hy′

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ qy∗,ymax

⎛

⎝
1 −

ehymax

∑y′∈Y e
hy′

⎞

⎠
+ (pymax − qy∗,ymax)

⎛

⎝
1 −

ehymax + ehn+y∗

∑y′∈Y e
hy′

⎞

⎠

− qy∗,ymax

⎛

⎝
1 −

ehn+y∗ + µ

∑y′∈Y e
hy′

⎞

⎠
− (pymax − qy∗,ymax)

⎛

⎝
1 −

ehn+y∗ + ehymax

∑y′∈Y e
hy′

⎞

⎠

+ ∑
y≠ymax

(py − qy∗,y)
⎛

⎝
1 −

ehy + ehn+y∗

∑y′∈Y e
hy′

⎞

⎠
− ∑
y≠ymax

(py − qy∗,y)
⎛

⎝
1 −

ehy + ehymax − µ

∑y′∈Y e
hy′

⎞

⎠

+ (1 − ne)
pymax

∑y′∈Y e
hy′

(ehn+y∗ + µ − ehymax )
⎞

⎠

=
1

∑y′∈Y e
hy′

sup
ehymax ≥µ≥0

⎛

⎝

⎡
⎢
⎢
⎢
⎣
qy∗,ymax − ∑

y≠ymax

(py − qy∗,y)
⎤
⎥
⎥
⎥
⎦
(ehn+y∗ + µ − ehymax )

⎞

⎠

= (pymax − pn+y∗)
ehn+y∗

∑y′∈Y e
hy′

(µ = ehymax achieves the maximum)

≥
1

n + ne
(pymax − pn+y∗) (by the assumption hn+y∗ = hn+h∗ ≥ hymax = hhmax )

=
1

n + ne
(∆CLdef ,H(h,x)) (by the assumption pymax − pn+y∗ ≥ 0 and hymax − hn+y∗ ≤ 0)

2. Case II: If pymax − pn+y∗ ≤ 0 and hymax − hn+y∗ ≥ 0: we define a new hypothesis hµ such that hµ(x, y) =
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

log(ehn+y∗ − µ) y = ymax

log(ehymax + µ) y = n + y∗

h(x, y) otherwise.
, where ehn+y∗ ≥ µ ≥ 0. Then, we can lower bound the conditional regret of Lmae
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by using ∆CLmae,H(h,x) ≥ CLmae(h) − C∗Lmae
(hµ) for any ehn+y∗ ≥ µ ≥ 0:

∆CLmae,H(h,x)

≥ sup
e
hn+y∗ ≥µ≥0

(CLmae(h) − C∗Lmae
(hµ))

≥ sup
e
hn+y∗ ≥µ≥0

⎛

⎝

ne

∑
j≠y∗

⎡
⎢
⎢
⎢
⎢
⎣

qj,ymax

⎛

⎝
1 −

ehymax

∑y′∈Y e
hy′

⎞

⎠
+ (pymax − qj,ymax)

⎛

⎝
1 −

ehymax + ehn+j

∑y′∈Y e
hy′

⎞

⎠

− qj,ymax

⎛

⎝
1 −

ehn+y∗ − µ

∑y′∈Y e
hy′

⎞

⎠
− (pymax − qj,ymax)

⎛

⎝
1 −

ehn+y∗ − µ + ehn+j

∑y′∈Y e
hy′

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ qy∗,ymax

⎛

⎝
1 −

ehymax

∑y′∈Y e
hy′

⎞

⎠
+ (pymax − qy∗,ymax)

⎛

⎝
1 −

ehymax + ehn+y∗

∑y′∈Y e
hy′

⎞

⎠

− qy∗,ymax

⎛

⎝
1 −

ehn+y∗ − µ

∑y′∈Y e
hy′

⎞

⎠
− (pymax − qy∗,ymax)

⎛

⎝
1 −

ehn+y∗ + ehymax

∑y′∈Y e
hy′

⎞

⎠

+ ∑
y≠ymax

(py − qy∗,y)
⎛

⎝
1 −

ehy + ehn+y∗

∑y′∈Y e
hy′

⎞

⎠
− ∑
y≠ymax

(py − qy∗,y)
⎛

⎝
1 −

ehy + ehymax + µ

∑y′∈Y e
hy′

⎞

⎠

+ (1 − ne)
pymax

∑y′∈Y e
hy′

(ehn+y∗ − µ − ehymax )
⎞

⎠

=
1

∑y′∈Y e
hy′

sup
ehymax ≥µ≥0

⎛

⎝

⎡
⎢
⎢
⎢
⎣
∑

y≠ymax

(py − qy∗,y) − qy∗,ymax

⎤
⎥
⎥
⎥
⎦
(ehymax + µ − ehn+y∗ )

⎞

⎠

= (pn+y∗ − pymax)
ehymax

∑y′∈Y e
hy′

(µ = ehn+y∗ achieves the maximum)

≥
1

n + ne
(pn+y∗ − pymax) (by the assumption hymax = hhmax ≥ hn+y∗ = hn+h∗ )

=
1

n + ne
(∆CLdef ,H(h,x)) (by the assumption pymax − pn+y∗ ≤ 0 and hymax − hn+y∗ ≥ 0)

This proves the inequality (10). By taking the expectation on both sides of (10), we complete the proof.

C. Two-stage multiple-expert deferral: proofs.
C.1. Proof of Theorem 4.1

Theorem 4.1. Assume that R is closed under scaling and that Φ satisfies limt→+∞ Φ(t) = 0 and Φ(t) ≥ 1t≤0. Then, the
surrogate loss LΦ is realizable R-consistent with respect to Ltdef .

Proof. Let r∗ be a best-in-class predictor such that ELtdef
(r∗) = 0. Note that

E∗LΦ
(R) ≤ lim

α→+∞
ELΦ

(αr∗)

= lim
α→+∞

E[LΦ(αr∗, x, y) ∣ r∗(x) = 1]P(r∗(x) = 1)

+E[LΦ(αr∗, x, y) ∣ r∗(x) = 2]P(r∗(x) = 2).
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If r∗(x) = 1, then, we must have c1(x, y) = 0 for any (x, y) ∈ X × Y. In this case,

lim
α→+∞

E[LΦ(αr∗, x, y) ∣ r∗(x) = 1]

≤ E[c2(x, y) lim
α→+∞

Φ(α(r(x,1) − r(x,2)))]

= E[0]

= 0.

If r∗(x) = 2, then, we must have c2(x, y) = 0 for any (x, y) ∈ X × Y. In this case,

lim
α→+∞

E[LΦ(αr∗, x, y) ∣ r∗(x) = 2]

≤ E[c1(x, y) lim
α→+∞

Φ(α(r(x,2) − r(x,1)))]

= E[0]

= 0.

Therefore, we have E∗LΦ
(R) = 0.

C.2. Proof of Theorem 4.2

Theorem 4.2. Assume that the following R-consistency bound holds in binary classification:

E`0−1(h) − E`0−1(R) +M`0−1(R) ≤ Γ(EΦ(h) − EΦ(R) +MΦ(R)).

Then, the following R-consistency bound holds in two-stage, two-expert deferral:

ELtdef
(r) − ELtdef

(R) +MLtdef
(R) ≤ (c1 + c2)Γ(

ELΦ
(r) − ELΦ

(R) +MLΦ
(R)

c1 + c2
),

where constant factors (c1 + c2) and (c1 + c2) can be removed when Γ is linear.

Proof. Let η(x) = P(Y = 1 ∣ X = x) be the conditional probability of Y = 1 given X = x. The conditional error of LLtdef

can be expressed as follows:

CLLtdef
(r, x) = η(x)[c1(x,1)1r(x)=1 + c2(x,1)1r(x)=2]

+ (1 − η(x))[c1(x,2)1r(x)=1 + c2(x,2)1r(x)=2]

= [η(x)c1(x,1) + (1 − η(x))c1(x,2)]1r(x)=1

+ [η(x)c2(x,1) + (1 − η(x))c2(x,2)]1r(x)=2

The conditional error of LΦ can be expressed as follows:

CLΦ
(r, x) = η(x)[c1(x,1)Φ(r(x,2) − r(x,1)) + c2(x,1)Φ(r(x,1) − r(x,2))]

+ (1 − η(x))[c1(x,2)Φ(r(x,2) − r(x,1)) + c2(x,2)Φ(r(x,1) − r(x,2))]

= [η(x)c1(x,1) + (1 − η(x))c1(x,2)]Φ(r(x,2) − r(x,1))

+ [η(x)c2(x,1) + (1 − η(x))c2(x,2)]Φ(r(x,1) − r(x,2))

Consider a new distribution which satisfies that

η̃(x) =
η(x)c1(x,1) + (1 − η(x))c1(x,2)

[η(x)c1(x,1) + (1 − η(x))c1(x,2)] + [η(x)c2(x,1) + (1 − η(x))c2(x,2)]
.
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Then, under the assumption, we have

η̃(x)1r(x)=1 + (1 − η̃(x))1r(x)=2 − inf
r∈R

[η̃(x)1r(x)=1 + (1 − η̃(x))1r(x)=2]

≤ Γ
⎛

⎝
η̃(x)Φ(r(x,2) − r(x,1)) + (1 − η̃(x))Φ(r(x,1) − r(x,2))

− inf
r∈R

[η̃(x)Φ(r(x,2) − r(x,1)) + (1 − η̃(x))Φ(r(x,1) − r(x,2))]
⎞

⎠
.

Using the fact that [η(x)c1(x,1) + (1 − η(x))c1(x,2)]+[η(x)c2(x,1) + (1 − η(x))c2(x,2)] ∈ [c1+c2, c1+c2], we obtain

CLLtdef
(r, x) − inf

r∈R
CLLtdef

(r, x) ≤ (c1 + c2)Γ(
CLΦ

(r, x) − infr∈R CLΦ
(r, x)

c1 + c2
),

where constant factors (c1 + c2) and (c1 + c2) can be removed when Γ is linear. By taking the expectation on both sides and
applying Jensen’s inequality, we conclude the proof.

C.3. Proof of Theorem 4.3

Theorem 4.3. Assume that R is closed under scaling and that cj(x, y) = 1gj(x)≠y, j ∈ [ne]. Further, assume that for any
(x, y), there is at most one expert j∗ ∈ [ne] for which cj∗(x, y) = 0 and that Ψ satisfies limu→1− Ψ(u) = 0. Then, the
surrogate loss LΨ is realizable R-consistent with respect to Ltdef .

Proof. Let r∗ be a best-in-class predictor such that ELtdef
(r∗) = 0. Since R is closed under scaling, for any α, αr∗ is in R,

and we have E∗LΨ
(R) ≤ ELΨ

(αr∗). This implies the following inequality:

E∗LΨ
(R) ≤ lim

α→+∞
ELΨ

(αr∗)

=
ne

∑
j=1

lim
α→+∞

E[LΨ(αr∗, x, y) ∣ r∗(x) = i]P(r∗(x) = i).

If r∗(x) = i, then, we must have ci(x, y) = 0 and ck(x, y) = 1, for all k ≠ i and all (x, y) ∈ X × Y. Thus, we can write

lim
α→+∞

E[LΨ(αr∗, x, y) ∣ r∗(x) = i]

≤ E
⎡
⎢
⎢
⎢
⎢
⎣

ne

∑
j=1

⎛

⎝
∑
j′≠j

cj′(x, y) − ne + 2
⎞

⎠
lim
α→+∞

Ψ(
eαr

∗
(x,j)

∑j′∈[ne] e
αr∗(x,j′)

) ∣ r∗(x) = i

⎤
⎥
⎥
⎥
⎥
⎦

(By (7))

= E[ lim
α→+∞

Ψ(
eαr

∗
(x,i)

∑j′∈[ne] e
αr∗(x,j′)

)] (ci(x, y) = 0 and ck(x, y) = 1,∀k ≠ i)

= E[0] (r∗(x) = i Ô⇒ r∗(x, i) > r∗(x, j′),∀j′ ≠ i, limu→1− Ψ(u) = 0)
= 0.

Therefore, we have E∗LΨ
(R) = 0.

C.4. Proof of H-consistency bounds

C.4.1. SIMPLIFIED NOTATION AND LEMMA C.1

Let p(y∣x) = P(Y = y ∣X = x) be the conditional probability of Y = y given X = x. We first characterize the best-in class
conditional error and the conditional regret of the two-stage deferral loss function Ltdef , which will be used in the analysis
of H-consistency bounds.

Lemma C.1. Assume that R is symmetric and complete. Then, for any r ∈K and x ∈ X, the best-in class conditional error
and the conditional regret of the two-stage deferral loss function are given by:

C∗Ltdef
(R, x) = min

j∈[ne]
∑
y∈Y

p(y∣x)cj(x, y), ∆CLtdef ,R(r, x) = ∑
y∈Y

p(y∣x)cr(x)(x, y) − min
j∈[ne]

∑
y∈Y

p(y∣x)cj(x, y).
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Proof. By definition, for any r ∈ R and x ∈ X, the conditional error of the two-stage deferral loss function can be written as

CLtdef
(r, x) = ∑

y∈Y

p(y∣x)cr(x)(x, y).

Since R is symmetric and complete, we have

C∗Ltdef
(R, x) = inf

r∈R
∑
y∈Y

p(y∣x)cr(x)(x, y) = min
j∈[ne]

∑
y∈Y

p(y∣x)cj(x, y).

Furthermore, the conditional regret can be expressed as

∆CLtdef ,R(r, x) = CLtdef
(r, x) − C∗Ltdef

(R, x) = ∑
y∈Y

p(y∣x)cr(x)(x, y) − min
j∈[ne]

∑
y∈Y

p(y∣x)cj(x, y),

which completes the proof.

C.4.2. PROOF OF THEOREM 4.4

For convenience, we let C = (ne − 1)maxj∈[ne] cj − ne + 2, cj(x, y) = ∑j′≠j cj′(x, y) − ne + 2 ∈ [0,C], q(x, j) =

∑y∈Y p(y∣x)cj(x, y) ∈ [0,C] and S(x, j) = er(x,j)

∑j′∈[ne] e
r(x,j′) . We also let jmin(x) = argminj∈[ne]∑y∈Y p(y∣x)cj(x, y).

Theorem 4.4. Assume that R is symmetric and complete and that the inequality ∑j′≠j cj′(x, y) ≥ ne − 2 holds for all
j ∈ [ne] and (x, y) ∈ X × Y. Then, the following R-consistency bound holds:

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R) ≤ Γ(ELΨq

(r) − E∗LΨq
(R) +MLΨq

(R)),

where C = (ne − 1)maxj∈[ne] cj − ne + 2, Γ(t) = 2(C)
1
2
√
t when q = 0, Γ(t) = 2(ne

q)
1
2 (C)

1
2

√
t when q ∈ (0,1), and

Γ(t) = ne t when q = 1.

Proof. Case I: q = 0. In this case, for the surrogate loss LΨq , the conditional error can be written as follows:

CLΨq
(r, x) = −∑

y∈Y

p(y∣x) ∑
j∈[ne]

cj(x, y) log(
er(x,j)

∑j′∈[ne] e
r(x,j′)

) = − ∑
j∈[ne]

log(S(x, j))q(x, j).

The conditional regret can be written as

∆CLΨq ,R
(r, x)

= − ∑
j∈[ne]

log(S(x, j))q(x, j) − inf
r∈R

⎛

⎝
− ∑
j∈[ne]

log(S(x, j))q(x, j)
⎞

⎠

≥ − ∑
j∈[ne]

log(S(x, j))q(x, j) − inf
µ∈[−S(x,jmin(x)),S(x,r(x))]

⎛

⎝
− ∑
j∈[ne]

log(Sµ(x, j))q(x, j)
⎞

⎠
,

where for any x ∈ X and j ∈ [ne],

Sµ(x, j) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, j), j ∉ {jmin(x), r(x)}

S(x, jmin(x)) + µ j = r(x)

S(x, r(x)) − µ j = jmin(x).

Note that with such a choice of Sµ leads to the following equality holds:

∑
j∉{r(x),jmin(x)}

log(S(x, j))q(x, j) = ∑
j∉{r(x),jmin(x)}

log(Sµ(x, j))q(x, j).
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Therefore, the conditional regret of the surrogate loss can be lower bounded as follows:

∆CLΨq ,R
(r, x)

≥ sup
µ∈[−S(x,jmin(x)),S(x,r(x))]

{q(x, jmin(x))[− log(S(x, jmin(x))) + log(S(x, r(x)) − µ)]

+ q(x, r(x))[− log(S(x, r(x))) + log(S(x, jmin(x)) + µ)]}.

By leveraging the concavity of the function, we differentiate it with respect to µ and set the differential equal to zero to find
the maximizing value

µ∗ =
q(x, r(x))S(x, r(x)) − q(x, jmin(x))S(x, jmin(x))

q(x, jmin(x)) + q(x, r(x))
.

Plugging in the expression of µ∗, we obtain

∆CLΨq ,R
(r, x)

≥ q(x, jmin(x)) log
(S(x, r(x)) + S(x, jmin(x)))q(x, jmin(x))

S(x, jmin(x))(q(x, jmin(x)) + q(x, r(x)))

+ q(x, r(x)) log
(S(x, r(x)) + S(x, jmin(x)))q(x, r(x))

S(x, r(x))(q(x, jmin(x)) + q(x, r(x)))

≥ q(x, jmin(x)) log
2q(x, jmin(x))

q(x, jmin(x)) + q(x, r(x))
+ q(x, r(x)) log

2q(x, r(x))

q(x, jmin(x)) + q(x, r(x))
(minimum is achieved when S(x, r(x)) = S(x, jmin(x)))

≥
(q(x, r(x)) − q(x, jmin(x)))

2

2(q(x, r(x)) + q(x, jmin(x)))
(a log 2a

a+b
+ b log 2b

a+b
≥

(a−b)2

2(a+b)
,∀a, b ∈ [0,1] (Mohri et al., 2018, Proposition E.7))

≥
(q(x, r(x)) − q(x, jmin(x)))

2

4C
. (0 ≤ q(x, r(x)) + q(x, jmin(x)) ≤ 2C)

Therefore, by Lemma C.1, the conditional regret of the two-stage deferral loss function can be upper bounded as follows:

∆CLtdef ,R(r, x) = q(x, jmin(x)) − q(x, r(x)) ≤ 2(C)
1
2 (∆CLΨq ,R

(r, x))
1
2 .

By the concavity, taking expectations on both sides of the preceding equation, we obtain

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R) ≤ 2(C)

1
2 (ELΨq

(r) − E∗LΨq
(R) +MLΨq

(R))

1
2
.

Case II: q ∈ (0,1). In this case, for the surrogate loss LΨq , the conditional error can be written as follows:

qCLΨq
(r, x) = ∑

y∈Y

p(y∣x) ∑
j∈[ne]

cj(x, y)(1 − (
er(x,j)

∑j′∈[ne] e
r(x,j′)

)

q

) = ∑
j∈[ne]

(1 − Sq(x, j))q(x, j).

The conditional regret can be written as

q∆CLΨq ,R
(r, x)

= ∑
j∈[ne]

(1 − Sq(x, j))q(x, j) − inf
r∈R

⎛

⎝
∑

j∈[ne]

(1 − Sq(x, j))q(x, j)
⎞

⎠

≥ ∑
j∈[ne]

(1 − Sq(x, j))q(x, j) − inf
µ∈[S(x,jmin(x)),S(x,r(x))]

⎛

⎝
∑

j∈[ne]

(1 − Sqµ(x, j))q(x, j)
⎞

⎠
,
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where for any x ∈ X and j ∈ [ne],

Sµ(x, j) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, j), j ∉ {jmin(x), r(x)}

S(x, jmin(x)) + µ j = r(x)

S(x, r(x)) − µ j = jmin(x).

Note that with such a choice of Sµ leads to the following equality holds:

∑
j∉{r(x),jmin(x)}

(1 − Sq(x, j))q(x, j) = ∑
j∉{r(x),jmin(x)}

(1 − Sqµ(x, j))q(x, j).

Therefore, the conditional regret of the surrogate loss can be lower bounded as follows:

q∆CLΨq ,R
(r, x)

≥ sup
µ∈[−S(x,jmin(x)),S(x,r(x))]

{q(x, jmin(x))[−S
q
(x, jmin(x)) + Sq(x, r(x)) − µ]

+ q(x, r(x))[−Sq(x, r(x)) + Sq(x, jmin(x)) + µ]}.

By leveraging the concavity of the function, we differentiate it with respect to µ and set the differential equal to zero to find
the maximizing value

µ∗ =
q(x, r(x))

1
1−q S(x, r(x)) − q(x, jmin(x))

1
1−q S(x, jmin(x))

q(x, jmin(x))
1

1−q + q(x, r(x))
1

1−q

.

Plugging in the expression of µ∗, we obtain

q∆CLΨq ,R
(r, x)

≥ (S(x, r(x)) + S(x, jmin(x)))
q
(q(x, jmin(x))

1
1−q + q(x, r(x))

1
1−q )

1−q

− q(x, jmin(x))S
q
(x, jmin(x)) − q(x, r(x))S

q
(x, r(x))

≥
1

neq
[2q(q(x, jmin(x))

1
1−q + q(x, r(x))

1
1−q )

1−q
− q(x, jmin(x)) − q(x, r(x))]

(minimum is achieved when S(x, r(x)) = S(x, jmin(x)) =
1
ne

)

≥
q(q(x, r(x)) − q(x, jmin(x)))

2

4neqC
. ((a

1
1−q +b

1
1−q

2
)

1−q

− a+b
2

≥
q
4
(a − b)2,∀a, b ∈ [0,1],0 ≤ a + b ≤ 1)

Therefore, by Lemma C.1, the conditional regret of the two-stage deferral loss function can be upper bounded as follows:

∆CLtdef ,R(r, x) = q(x, jmin(x)) − q(x, r(x)) ≤ 2(ne
q
)

1
2 (C)

1
2 (∆CLΨq ,R

(r, x))
1
2 .

By the concavity, taking expectations on both sides of the preceding equation, we obtain

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R) ≤ 2(ne

q
)

1
2 (C)

1
2 (ELΨq

(r) − E∗LΨq
(R) +MLΨq

(R))

1
2
.

Proof. Case III: q = 1. In this case, for the surrogate loss LΨq , the conditional error can be written as follows:

CLΨq
(r, x) = ∑

y∈Y

p(y∣x) ∑
j∈[ne]

cj(x, y)(1 −
er(x,j)

∑j′∈[ne] e
r(x,j′)

) = ∑
j∈[ne]

(1 − S(x, j))q(x, j).
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The conditional regret can be written as

∆CLΨq ,R
(r, x)

= ∑
j∈[ne]

(1 − S(x, j))q(x, j) − inf
r∈R

⎛

⎝
∑

j∈[ne]

(1 − S(x, j))q(x, j)
⎞

⎠

≥ ∑
j∈[ne]

(1 − S(x, j))q(x, j) − inf
µ∈[S(x,jmin(x)),S(x,r(x))]

⎛

⎝
∑

j∈[ne]

(1 − Sµ(x, j))q(x, j)
⎞

⎠
,

where for any x ∈ X and j ∈ [ne],

Sµ(x, j) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

S(x, j), j ∉ {jmin(x), r(x)}

S(x, jmin(x)) + µ j = r(x)

S(x, r(x)) − µ j = jmin(x).

Note that with such a choice of Sµ leads to the following equality holds:

∑
j∉{r(x),jmin(x)}

(1 − S(x, j))q(x, j) = ∑
j∉{r(x),jmin(x)}

(1 − Sµ(x, j))q(x, j).

Therefore, the conditional regret of the surrogate loss can be lower bounded as follows:

∆CLΨq ,R
(r, x)

≥ sup
µ∈[−S(x,jmin(x)),S(x,r(x))]

{q(x, jmin(x))[−S(x, jmin(x)) + S(x, r(x)) − µ]

+ q(x, r(x))[−S(x, r(x)) + S(x, jmin(x)) + µ]}.

By leveraging the concavity of the function, we differentiate it with respect to µ and set the differential equal to zero to find
the maximizing value

µ∗ = −S(x, jmin(x)).

Plugging in the expression of µ∗, we obtain

∆CLΨq ,R
(r, x)

≥ q(x, jmin(x))S(x, r(x)) − q(x, r(x))S(x, r(x))

≥
1

ne
(q(x, r(x)) − q(x, jmin(x))). (minimum is achieved when S(x, r(x)) = 1

ne
)

Therefore, by Lemma C.1, the conditional regret of the two-stage deferral loss function can be upper bounded as follows:

∆CLtdef ,R(r, x) = q(x, jmin(x)) − q(x, r(x)) ≤ ne(∆CLΨq ,R
(r, x)).

By the concavity, taking expectations on both sides of the preceding equation, we obtain

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R) ≤ ne(ELΨq

(r) − E∗LΨq
(R) +MLΨq

(R)).

D. Enhanced bounds under low-noise assumptions: proofs
D.1. Single-stage: proofs

D.1.1. PROOF OF LEMMA 5.2

Lemma 5.2. The single-stage deferral Tsybakov noise assumption implies that there exists a constant c = B1−α

αα
> 0 such

that the following inequalities hold for any h ∈H:

E[1h(x)≠h∗(x)] ≤ cE[γ(X)1h(x)≠h∗(x)]
α
≤ c[ELdef

(h) − ELdef
(h∗)]α.
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Proof. The second inequality follows directly from the definition of γ(x) and Lemma 5.1. The proof of the first inequality
follows the same steps as the first part of the proof of Lemma 18 in (Mao et al., 2024e).

D.1.2. PROOF OF THEOREM 5.3

We will leverage the following result of Mao et al. (2024e), which serves as a general tool for obtaining enhanced bounds
under low-noise assumptions.

Theorem D.1. Assume that there exist two positive functions α∶H×X→ R∗
+ and β∶H×X→ R∗

+ with supx∈X α(h,x) < +∞

and Ex∈X[β(h,x)] < +∞ for all h ∈ H such that the following holds for all h ∈ H and x ∈ X: ∆CL2,H
(h,x)EX[β(h,x)]

β(h,x)
≤

(α(h,x)∆CL1,H(h,x))
1
s , for some s ≥ 1 with conjugate number t ≥ 1, that is 1

s
+ 1

t
= 1. Then, for γ(h) =

EX[
α
t
s (h,x)βt(h,x)

EX[β(h,x)]t
]

1
t

, the following inequality holds for any h ∈H:

EL2(h) − E∗L2
(H) +ML2(H) ≤ γ(h)[EL1(h) − E∗L1

(H) +ML1(H)]
1
s .

Theorem 5.3. Consider the setting of single-stage multiple-expert deferral. Assume that the following holds for all h ∈H
and x ∈ X: ∆CLdef ,H(h,x) ≤ Γ(∆CL,H(h,x)), with Γ(x) = x

1
s , for some s ≥ 1 with conjugate number t ≥ 1, that is

1
s
+ 1
t
= 1. Then, for any h ∈H,

ELdef
(h) − E∗Ldef

(H) +MLdef
(H) ≤ E

X
[1h(X)≠h∗(X)]

1
t (EL(h) − E∗L(H) +ML(H))

1
s .

Proof. Fix ε > 0 and define β(h,x) = 1h(x)≠h∗(x) + ε. By Lemma 5.1,

∆CLdef ,H(h,x) = max{pymax , max
j∈[ne]

pn+j} − ph(x) = ph∗(x) − ph(x),

we have
∆CLdef ,H(h,x)EX[β(h,x)]

β(h,x)
≤ ∆CLdef ,H(h,x)E

X
[β(h,x)],

thus the following inequality holds

∆CLdef ,H(h,x)EX[β(h,x)]

β(h,x)
≤ E
X
[β(h,x)]∆C

1
s

L,H(h,x).

By Theorem D.1, with α(h,x) = EX[β(h,x)]s, we have

ELdef
(h) − E∗Ldef

(H) +MLdef
(H) ≤ E

X
[βt(h,x)]

1
t (EL(h) − E∗L(H) +ML(H))

1
s .

Since the inequality holds for any ε > 0, it implies:

ELdef
(h) − E∗Ldef

(H) +MLdef
(H) ≤ E

X
[(1h(X)≠h∗(X))

t
]

1
t
(EL(h) − E∗L(H) +ML(H))

1
s

= E
X
[1h(X)≠h∗(X)]

1
t (EL(h) − E∗L(H) +ML(H))

1
s . ((1h(X)≠h∗(X))

t
= 1h(X)≠h∗(X))

This completes the proof.

D.1.3. PROOF OF THEOREM 5.4

Theorem 5.4. Consider the setting of single-stage multiple-expert deferral where the Tsybakov noise assumption holds,
and no approximation error occurs, that is, E∗Ldef

(H) = E∗Ldef
(Hall). Assume that the following holds for all h ∈ H and

x ∈ X: ∆CLdef ,H(h,x) ≤ Γ(∆CL,H(h,x)), with Γ(x) = x
1
s , for some s ≥ 1. Then, for any h ∈H,

ELdef
(h) − E∗Ldef

(H) ≤ c
s−1

s−α(s−1) [EL(h) − E∗L(H) +ML(H)]
1

s−α(s−1) .

29



Realizable Multiple-Expert Deferral

Proof. Fix ε > 0 and define β(h,x) = 1h(x)≠h∗(x) + ε. By Lemma 5.1,

∆CLdef ,H(h,x) = max{pymax , max
j∈[ne]

pn+j} − ph(x) = ph∗(x) − ph(x),

we have
∆CLdef ,H(h,x)EX[β(h,x)]

β(h,x)
≤ ∆CLdef ,H(h,x)E

X
[β(h,x)],

thus the following inequality holds

∆CLdef ,H(h,x)EX[β(h,x)]

β(h,x)
≤ E
X
[β(h,x)]∆C

1
s

L,H(h,x).

By Theorem D.1, with α(h,x) = EX[β(h,x)]s, we have

ELdef
(h) − E∗Ldef

(H) ≤ E
X
[βt(h,x)]

1
t (EL(h) − E∗L(H) +ML(H))

1
s .

Since the inequality holds for any ε > 0, it implies:

ELdef
(h) − E∗Ldef

(H) ≤ E
X
[(1h(X)≠h∗(X))

t
]

1
t
(EL(h) − E∗L(H) +ML(H))

1
s

= E
X
[1h(X)≠h∗(X)]

1
t (EL(h) − E∗L(H) +ML(H))

1
s ((1h(X)≠h∗(X))

t
= 1h(x)≠h∗(x))

≤ c
1
t [ELdef

(h) − E∗Ldef
(H)]

α
t (EL(h) − E∗L(H) +ML(H))

1
s (Tsybakov noise assumption)

The result follows after dividing both sides by [ELdef
(h) − E∗Ldef

(H)]
α
t .

D.2. Two-stage: proofs

D.2.1. LEMMA D.2 AND PROOF

Lemma D.2. The two-stage Tsybakov noise assumption implies that there exists a constant c = B1−α

αα
> 0 such that the

following inequalities hold for any h ∈ R:

E[1r(x)≠r∗(x)] ≤ cE[γ(X)1r(x)≠r∗(x)]
α
≤ c[ELtdef

(r) − ELtdef
(r∗)]α.

Proof. The second inequality follows directly from the definition of γ(x) and Lemma 5.1. The proof of the first inequality
follows the same steps as the first part of the proof of Lemma 18 in (Mao et al., 2024e).

D.2.2. ENHANCED BOUNDS IN TWO-STAGE SCENARIO (THEOREM D.3 AND THEOREM D.4)

The following result gives an R-consistency bound based on the quantity 1r(x)≠r∗(x).

Theorem D.3. Consider the setting of two-stage multiple-expert deferral. Assume that the following holds for all h ∈ R and
x ∈ X: ∆CLtdef ,R(r, x) ≤ Γ(∆CL,R(r, x)), with Γ(x) = x

1
s , for some s ≥ 1 with conjugate number t ≥ 1, that is 1

s
+ 1
t
= 1.

Then, for any r ∈ R,

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R) ≤ E

X
[1r(X)≠r∗(X)]

1
t (EL(r) − E∗L(R) +ML(R))

1
s .

The proof of Theorem D.3 is included in Appendix D.2.3. As noted for a similar result in the single-stage scenario,
Theorem D.3 offers a more favorable theoretical guarantee than standard H-consistency bounds, assuming ∆CLtdef ,R(r, x) ≤
Γ(∆CL,R(r, x)).

Next, we assume that the Tsybakov noise assumption holds and also that there is no approximation error, that is MLdef
(H) =

0.
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Theorem D.4. Consider the setting of two-stage multiple-expert deferral where the Tsybakov noise assumption holds, and
no approximation error occurs, i.e., E∗Ltdef

(R) = E∗Ltdef
(Rall). Assume that the following holds for all r ∈ R and x ∈ X:

∆CLtdef ,R(r, x) ≤ Γ(∆CL,R(r, x)), with Γ(x) = x
1
s , for some s ≥ 1. Then, for any r ∈ R,

ELtdef
(r) − E∗Ltdef

(R) ≤ c
s−1

s−α(s−1) [EL(r) − E∗L(R) +ML(R)]
1

s−α(s−1) .

The proof can be found in Appendix D.1.3. As in the single-stage scenario, in the case of α → 1, where Tsybakov noise
corresponds to Massart’s noise assumption, this provides an H-consistency bound with a linear functional form, improving
upon the standard H-consistency bounds, which have the functional form Γ(x) = x

1
s , if they exist. This demonstrates that

for any smooth surrogate loss with an H-consistency bound, under Massart’s noise assumption, we can obtain H-consistency
bounds as favorable as those of L = LΨq with q = 1, which always admits a linear dependency, as shown in Theorem 4.4.

For example, Theorem 4.4 shows that square-root H-consistency bounds hold (s = 1
2

) for L = LΨq with q ∈ [0,1). Thus,
Theorem D.4 provides refined H-consistency bounds for these surrogate losses: a linear dependence when Massart’s noise
assumption holds (α → 1) and an intermediate rate between linear and square-root for other values of α within the range
(0,1).

Furthermore, the realizability assumption can be viewed as a special case of Massart’s noise assumption. Thus, Theorem D.4
provides intermediate guarantees between realizable H-consistency and H-consistency bounds for two-stage deferral
surrogate losses, such as LΦ in (5) for the two-expert case and LΨ in (7) for the multiple-expert case.

D.2.3. PROOF OF THEOREM D.3

Theorem D.3. Consider the setting of two-stage multiple-expert deferral. Assume that the following holds for all h ∈ R and
x ∈ X: ∆CLtdef ,R(r, x) ≤ Γ(∆CL,R(r, x)), with Γ(x) = x

1
s , for some s ≥ 1 with conjugate number t ≥ 1, that is 1

s
+ 1
t
= 1.

Then, for any r ∈ R,

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R) ≤ E

X
[1r(X)≠r∗(X)]

1
t (EL(r) − E∗L(R) +ML(R))

1
s .

Proof. Fix ε > 0 and define β(r, x) = 1r(x)≠r∗(x) + ε. By Lemma C.1,

∆CLtdef ,R(r, x) = ∑
y∈Y

p(y∣x)cr(x)(x, y) −∑
y∈Y

p(y∣x)cr∗(x)(x, y),

we have
∆CLtdef ,R(r, x)EX[β(r, x)]

β(r, x)
≤ ∆CLtdef ,R(r, x)E

X
[β(r, x)],

thus the following inequality holds

∆CLtdef ,R(r, x)EX[β(r, x)]

β(r, x)
≤ E
X
[β(r, x)]∆C

1
s

L,R(r, x).

By Theorem D.1, with α(r, x) = EX[β(r, x)]s, we have

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R) ≤ E

X
[βt(r, x)]

1
t (EL(r) − E∗L(R) +ML(R))

1
s .

Since the inequality holds for any ε > 0, it implies:

ELtdef
(r) − E∗Ltdef

(R) +MLtdef
(R) ≤ E

X
[(1r(X)≠r∗(X))

t
]

1
t
(EL(r) − E∗L(R) +ML(R))

1
s

= E
X
[1r(X)≠r∗(X)]

1
t (EL(r) − E∗L(R) +ML(R))

1
s . ((1r(X)≠r∗(X))

t
= 1r(X)≠r∗(X))

This completes the proof.
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D.2.4. PROOF OF THEOREM D.4

Theorem D.4. Consider the setting of two-stage multiple-expert deferral where the Tsybakov noise assumption holds, and
no approximation error occurs, i.e., E∗Ltdef

(R) = E∗Ltdef
(Rall). Assume that the following holds for all r ∈ R and x ∈ X:

∆CLtdef ,R(r, x) ≤ Γ(∆CL,R(r, x)), with Γ(x) = x
1
s , for some s ≥ 1. Then, for any r ∈ R,

ELtdef
(r) − E∗Ltdef

(R) ≤ c
s−1

s−α(s−1) [EL(r) − E∗L(R) +ML(R)]
1

s−α(s−1) .

Proof. Fix ε > 0 and define β(r, x) = 1r(x)≠r∗(x) + ε. By Lemma 5.1,

∆CLtdef ,R(r, x) = ∑
y∈Y

p(y∣x)cr(x)(x, y) −∑
y∈Y

p(y∣x)cr∗(x)(x, y),

we have
∆CLtdef ,R(r, x)EX[β(r, x)]

β(r, x)
≤ ∆CLtdef ,R(r, x)E

X
[β(r, x)],

thus the following inequality holds

∆CLtdef ,R(r, x)EX[β(r, x)]

β(r, x)
≤ E
X
[β(r, x)]∆C

1
s

L,R(r, x).

By Theorem D.1, with α(r, x) = EX[β(r, x)]s, we have

ELtdef
(r) − E∗Ltdef

(R) ≤ E
X
[βt(r, x)]

1
t (EL(r) − E∗L(R) +ML(R))

1
s .

Since the inequality holds for any ε > 0, it implies:

ELtdef
(r) − E∗Ltdef

(R) ≤ E
X
[(1r(X)≠r∗(X))

t
]

1
t
(EL(r) − E∗L(R) +ML(R))

1
s

= E
X
[1r(X)≠r∗(X)]

1
t (EL(r) − E∗L(R) +ML(R))

1
s ((1µ(r,X)>0)

t
= 1µ(r,X)>0)

≤ c
1
t [ELtdef

(r) − E∗Ltdef
(R)]

α
t (EL(r) − E∗L(R) +ML(R))

1
s (Tsybakov noise assumption)

The result follows after dividing both sides by [ELtdef
(r) − E∗Ltdef

(R)]
α
t .
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