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Abstract

Repeated applications of the same neural block primarily based on self-attention charac-
terize the current state-of-the-art in neural architectures for machine translation. In such
architectures the decoder adopts a masked version of the same encoding block. Although
simple this strategy doesn’t encode the various inductive biases such as locality that arise
from alternative architectures and that are central to the modelling of translation. We
propose Lasagna, an encoder-decoder model that aims to combine the inductive benefits of
different architectures by layering multiple instances of different blocks. Lasagna’s encoder
first grows the representation from local to mid-sized using convolutional blocks and only
then applies a pair of final self-attention blocks. Lasagna’s decoder uses only convolutional
blocks that attend to the encoder representation. On a large suit of machine translation
tasks, we find that Lasagna not only matches or outperforms the Transformer baseline, but
it does so more efficiently thanks to widespread use of the efficient convolutional blocks.
These findings suggest that the widespread use of uniform architectures may be suboptimal
in certain scenarios and exploiting the diversity of inductive architectural biases can lead to
substantial gains.

1 Introduction

Transformers (Vaswani et al., 2017) have become the standard architecture for most natural language tasks
and improvements attributed to architectural modifications to the vanilla Transformer do not often generalize
across tasks and implementations (Narang et al., 2021). The key component of Transformers is self-attention
which is regarded as a useful inductive bias that aggregates a global context through pair-wise interactions
between the elements in the sequence. While recent work on architectures (Tolstikhin et al., 2021; Wu
et al., 2019; Liu et al., 2021; Tay et al., 2021) is questioning the necessity of self-attention, in general such
architectures need to be combined in some way with self-attention to close the ensuing quality gap with
the Transformer (Liu et al., 2021; Tay et al., 2021). Both the vanilla Transformer and these alternatives
are made of repeated applications of the same layer block, such that all layers have the same structure and
self-attention appears as a sub-component in each layer.

From a computational standpoint, operations simpler than self-attention lead to a better computational
efficiency while from a theoretical point of view one wishes to better understand why self-attention is often
necessary to achieve SOTA results in these language tasks. We propose however an additional motivation to
study the effects of simpler operations on language tasks. Different layers can offer different, but complementary
inductive biases that can prove useful. For example, convolutions provide a strong bias for local contexts
around each element of the sequence, which improves performance in tasks such as speech recognition (Gulati
et al., 2020), text summarization (Aksenov et al., 2020) and character-level machine translation (Kalchbrenner
et al., 2016). From a historical perspective, locality is one of the main motivations for n-gram language
models and of early neural probabilistic language models (Bengio et al., 2003). Additional evidence comes
from modern language models that have access to global context but often default to primarily using the
local one (Khandelwal et al., 2018).
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Figure 1: (a) Lasagna architecture that stacks diverse architectures to capture multiple inductive biases. (b)
Diagram of the Gated Light Convolution layer used in Lasagna.

We propose to combine complementary inductive biases into a heterogeneous architecture, called Lasagna, to
efficiently improve the performance of machine translation models. The architecture is heterogenous in that
it does not repeat the same layer block multiple times like prior approaches, but stacks different layers onto
each other capturing the respective inductive biases. We analyse the inductive biases of various layers based
on two dimensions: the degree of interaction between the elements in the sequence, on the one hand, and
the size of the context, on the other. Based on this categorization we propose a new layer block, the Gated
Light Convolution. Light Convolutions (LConv), Gated Light Convolutions (GLConv) and Self-Attention
(SA) are the three main building blocks of Lasagna and they are stacked on top of each other in sequence.
We conjecture that early layers might prefer to focus on a local context whereas later layers might prefer a
global one. This suggests stacking layers according to a local-to-global pattern starting with convolutions and
ending with self-attention. The sequential stacking of the different blocks in Lasagna allows the model to
achieve greater efficiency than homogeneous approaches that channel different operations in parallel within
the same block and repeat the block multiple times (Liu et al., 2021; Tay et al., 2021; So et al., 2019).

We design and apply Lasagna to machine translation and we see that it outperforms the Transformer on both
translation quality and inference speed. We achieve improved results in three different task settings that
involve, respectively, autoregressive left-to-right generation, non-autoregressive parallel generation, and the
intermediate setting that uses a parallel deep encoder and a left-to-right, but shallow decoder (Kasai et al.,
2021). Our results show that Lasagna improves translation quality by up to +0.9 BLEU points depending
on language pair and setting, while maintaining an inference speed that is, respectively, up to +30%, up to
+40% and up to +60% higher than the baseline Transformer. Ablation studies give additional insight on the
contributions of each part of Lasagna.

2 Related work

We summarize related work in different fields. In computer vision, the Mixer architecture (Tolstikhin et al.,
2021) proposes an alternative simpler architecture to the SA used in Vision Transformers (Dosovitskiy et al.,
2021). Similarly, the more recent gMLP architecture (Liu et al., 2021) outperforms the Mixer on image
classification and uses fewer parameters. In machine translation, there have been various attempts at reducing
or removing SA. Average Attention Networks (AANs) (Zhang et al., 2018) increase inference speed, while
incurring a small drop in translation performance, by replacing the SA in the decoder with an averaging
mechanism. This is in line with the findings of (Domhan, 2018) that show that SA is less important in
the decoder than in the encoder. Light and dynamic Convolutions (Wu et al., 2019) replace the SA in the
encoder and the decoder with separable convolutions. While both outperform AANs on inference speed, light
convolutions can incur a significant drop in translation quality and in some cases dynamic convolutions are
shown to outperform the Transformer. Approaches that channel SA with other operations within the same
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Figure 2: BLEU scores on (EnDe) at model size Big as a function of the number of Light Convolution
and Gate Light Convolution layers. Encoder on the left and Decoder on the right. For the Encoder the
complement to 7 gives the number of Self-Attention Layers, e.g. 2 for the dashed green line. The variance of
scores is 0.1.

blocks include (Tay et al., 2021) that proposes a general family of models, called the Synthetizers, that use
“synthetic” attention matrices. However (Tay et al., 2021) finds that for machine translation Synthetizers
require channel-level combining with SA to close the gap with the Transformer. (Liu et al., 2021) also studies
gMLPs on natural language tasks. They consider encoder-only models and do not study generative tasks.
While on pre-training perplexity gMLPs match the Transformer, on downstream tasks combining gMLPs
with a “tiny” Self-Attention module in the same layer is necessary to close the gap with the Transformer.
Enhancing the Transformer by running SA-layers in parallel with convolutional ones has been explored in
automated speech recognition (Gulati et al., 2020), machine translation and language modeling (So et al.,
2019) and computer vision (Li et al., 2021). Note that we do not run convolutions and SA in parallel in
each block, but instead replace SA-layers with simpler and more local operations and stack the operations
sequentially. The hybrid strategy of running convolutional layers instead of the MLP layers directly in
the SA blocks (Lei et al., 2018) proved not to be competitive in our experiments (see Appendix F). Our
work is thus closer to the Sandwich Transformer (Press et al., 2020) that reorders the operations in the
Transformer resulting in a non homogeneous stacking strategy. The (Press et al., 2020) uses only SA as a
sequence operation and does not improve over the Transformer baseline on machine translation. Finally,
hybrid architectures with RNN-decoders and Transformer Encoders were considered in (Chen et al., 2018);
moreover (Chen et al., 2018) considered also hybrid Encoders combining RNNs and SA either at channel
level or in subsequent layers.

3 Model Description

While several operations have been proposed to replace SA, a more thorough categorization of the features of
these operations is missing. For example, (Tay et al., 2021) introduces a framework that relies heavily on the
notion of self-alignments and thus does not cover operations such as gMLPs (Liu et al., 2021) or light and
dynamic Convolutions (Wu et al., 2019). Similarly, (Domhan, 2018) introduces a language to describe models,
layers and sequence operations, but treats each sequence operation as a black-box without trying to compare
different operations in terms of interaction order, locality or computational complexity. On the other hand,
(Liu et al., 2021) suggests that gMLPs have interaction order 2 looking at their polynomial expansion. We
start from this observation and look at a sequence operation from two different angles:

1. When building the new representation of a time step, how many interactions appear in the calculation?
For example SA requires combining together a query, a key and a value, resulting in an interaction of

3



Under review as submission to TMLR

Layer Degree Local
Attention 3 No
Mixer 1 No
Light Convolution 1 Yes
Dynamic Convolution 2 Yes
Random Synthetizer 1 No
Dense Synthetizer 2 No
gMLP 2 No

Table 1: Classification of sequence operations by degree and locality.

order 3. LConv directly averages the time steps via a convolution, so the interaction order is 1. We
will make this idea more precise in the next subsection.

2. What is the size of the sequential context that can be used to build the new representation for a
given time step? For example in LConv this range is related to the size of the kernel, whereas in SA
it is naturally global over the whole sequence.

3.1 Interaction degree

The interaction degree of a layer is the degree of the polynomial obtained by replacing its non-linearities with
the identity function. Let us consider some concrete examples starting with the Multi-Head Attention (Vaswani
et al., 2017). The input here is a triplet (q, k, v) of embedded sequences. We use the superscript h to denote
the head, and the subscripts t and c to index, respectively, the location in the sequence and the specific
channel. The operation is then defined as:

Attn(q, k, v)ht,c =
∑
σ

softmax
(∑

α

qht,αkhσ,α

)
vhσ,c

If we replace the softmax with the identity we obtain a linear combination of the monomials qht,αkhσ,αvhσ,c,
leading to the operation having a degree of order 3. Now let us consider LConv (Wu et al., 2019). The input
is a single embedded sequence z. Let Wh

j denote the convolutional kernel of width 2k + 1 for the head h; then:

LConv(z)ht,c =
k∑

j=−k

Wh
j zht+j,c,

So we see that the operation LConv has order 1.

3.2 Locality

Besides the interaction degree, we can analyze operations in terms of the second criterion, that is the size of
the context each operation takes as input. A global operation allows all the time steps to interact, while a
local one allows only the time steps within a window of size K to interact. Self-attention (SA), Mixer and
Synthetizer are examples of global operations, while LConv and Dynamic Convolutions are examples of local
ones. Besides capturing a local inductive bias, such operations can benefit from a reduction in the number of
memory accesses during the computation, which is one of the bottlenecks of modern accelerators (Ma et al.,
2018). We summarize our classification of existing layers in Table 1.

3.3 Gated Light Convolutions

The gMLP operation stands out as it achieves an interaction degree of 2 with a cheap point-wise product,
and without using additional operations that act along the sequence dimension, as it is the case, for example,
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in the Dense Synthetizer and the Dynamic Convolutions. The other ingredient of gMLPs is the use of gating
through a GELU non-linearity (Hendrycks & Gimpel, 2016). Note that in Table 1 the only degree 2 local
operation is the Dynamic Convolution and there is no local analogue for gMLPs. We thus propose to obtain
a local version of gMLPs by proposing the Gated Light Convolution (GLConv):

GLConv(z, w)ht,c = zht,c · gelu
(
LConv(w)ht,c

)
,

which is local and has interaction degree 2. Note that while standard gMLPs do not use heads, we partition
the channel dimension into heads as in the case of LConv. See Figure 1b for a diagrammatic description of
the layer.

3.4 Lasagna Architecture

The goal of Lasagna is to stack diverse layers onto each other in order to optimize inductive biases, performance
and efficiency. Lasagna’s decoder is made up entirely of GLConv layers. The reasons for this are twofold.
First, in both autoregressive (AR) and non-autoregressive (NAR) machine translation, the decoder is called
repeatedly and therefore its efficiency has an oversized effect on the model’s overall efficiency. Lasagna’s
decoder aims to minimize use of the relatively inefficient SA operation, while using a convolutional operation
instead. Previous work (Zhang et al., 2018; Domhan, 2018) also shows that it is possible to simplify the
operations in the decoder without hurting overall performance. As a second reason, we found that among the
various convolutional variants, GLConv had the highest degree of interaction of 2, while being still relatively
cheap to compute with respect to alternatives like Dynamic Convolution.

Lasagna’s encoder is formed by stacking 2 initial LConv blocks, followed by 2 GLConv blocks and then
by 3 SA blocks. Besides the efficiency of the convolutional blocks, the encoder also captures a crucial
local-to-global inductive bias, whereby the initial layers build up representations for short sequences of
tokens in the input sentence and the final SA layers create a fully global representation of the sentence. See
Figure 1a for a diagram. In initial experiments we found the local-to-global scheme to perform better than an
inverse global-to-local scheme. The Encoder-Decoder attention is still used as in the standard Transformer
architecture by letting each decoder layer attend to the last encoder layer (Vaswani et al., 2017). We also
experiment with two versions of Lasagna that have more layers in the encoder: Lasagna-9 that has 3 layers of
each kind and Lasagna-12 that has 4 layers of each kind.

4 Experiments

4.1 General setup

To obtain a fair comparison between the performance of various architectures we use the same code base,
Fairseq (Ott et al., 2019), for benchmarking all models and, after fine-tuning the training hyper-parameters
on the baseline Transformer, we keep the hyperparameters fixed for all architectures (Narang et al., 2021). As
recommended by (Marie et al., 2021) we reproduce rather than copy results from published work, we report
sacreBLEU1 (Post, 2018) and we do not use adhoc post-processing steps. For each model we select the best
checkpoint based on the perplexity on validation data and use 3 training runs with different seeds to estimate
BLEU scores. Except for English to Turkish (EnTr), we find the variance of different runs to be 0.1 BLEU
points, while for (EnTr) we estimate it to be 0.3. A complete hyper-parameter setup can be found in the
Appendix C. For estimating inference speed we always decode 128 sentences in a single batch 1) to avoid
the inference speed artefacts that might arise with very smaller batch sizes such as 1 and 2) to consider a
more realistic bulk-inference setting (Kasai et al., 2021). We train models at two scales, Base and Big, as
defined in terms of the number of heads and channel dimensions in (Vaswani et al., 2017). Obviously, the
parameter count will vary compared to the Transformer when considering a different architecture. We train
and evaluate autoregressive Base models on V100 GPUs, whereas the use GPUs A100 for models of size Big.
We plan to release our code.

1signature in Appendix D

5



Under review as submission to TMLR

4.2 Optimizing the stacking pattern

We first fix a 6-layer decoder consisting of GLConv and optimize the stacking scheme in the encoder. We
consider the English to German (EnDe) task (see 4.3 for more details) at a model size corresponding to that
of Transformer Big, matching the same number of heads and the embedding dimensions. To approximately
match the parameter count of Transformer Big, Lasagna uses 7 layers in the Encoder instead of 6, but still
stays faster. In the search, we allocate the first x layers to LConv, the following y layers to GLConv and the
remaining layers to SA; see grid search space in Figure 2(a). Having two or fewer SA layers decreases the
BLEU scores compared to the baseline Transformer. Most models that interleave some LConvs and some
GLConvs perform similarly, with BLEU scores in the range [29.0, 29.3]. We choose the stacking scheme in
Lasagna as it has the highest BLEU score (see Fig. 2(a)). Note also that the plausible assumption that one
could just use GLConvs instead of LConv is contradicted by our experimental results as scores degrade more
quickly on the line x = 0 than the line y = 0 as one moves away from the origin.

We then fix the layers in Lasagna’s encoder and optimize layer configurations for the decoder. Results are
reported in Figure 2(b). As we can match or outperform the Transformer baseline without using SA, we
run fewer experiments that include SA and focus instead on the edges of the search space. The horizontal
edge corresponds to replacing SA with LConv, the vertical edge to replacing SA with GLConv, while the
diagonal edge corresponds to combining different numbers of LConv and GLConv blocks. As expected, in
terms of inference speed we observe that it is preferable not to include SA in the decoder search space, see
Appendix G for more details. However we do not find a clear pattern in terms of BLEU scores, suggesting
that the specific configuration of layers in the Decoder might matter less.

4.3 Autoregressive Machine Translation

For this task we consider four data benchmarks and two model sizes, where the baselines are, respectively,
the Base Transformer and the Big Transformer. As standard benchmarks we consider WMT’14 English
to German (EnDe) and English to French (EnFr) as in (Vaswani et al., 2017). We prepare the data using
the scripts in the Fairseq translation examples2. To test more distant language pairs, that could benefit
from more global inductive bias as captured by SA, we consider the WMT’17 Chinese to English (ZhEn)
benchmark, following the preprocessing in (Wu et al., 2019; Hassan et al., 2018) (about 20M pairs), and the
WMT’17 English to Turkish (EnTr) benchmark following the preprocessing in (Zhang et al., 2018) (about
0.2M pairs). For both benchmarks the evaluation is performed on newstest17.

On (EnDe) at model size Base (Table 2) we find that our Lasagna architecture improves by 0.4 BLEU points
over the Transformer baseline with a 27% higher inference speed. By making the encoder deeper we can
improve up to 0.7 BLEU points with a 30% higher inference speed. Note that using LConvs in the encoder and
the decoder results in a significant drop of almost 1.5 BLEU points. Lasagna matches Dynamic convolutions
on parameter count and inference speed with a gain of +0.2 BLEU points over Dynamic Convolutions. On
this task and model size we also considered Mixer (Tolstikhin et al., 2021) and the original gMLP with the
“tiny” Self-Attention (Liu et al., 2021). We find that Mixer incurs a significant drop in translation quality,
while gMLPs (using the “tiny” SA) can close the gap with the Transformer but incur a big drop in inference
speed. When we move to model size Big (Table 4) we observe that models perform comparably on translation
quality except for LConvs and Mixer. For Mixer the situation improves at this model size, with just a small
drop in translation quality, but there is no significant improvement on the inference speed compared to the
baseline. Note that in the case of Lasagna models we can slightly improve the BLEU score (up to +0.4)
while increasing the inference speed by about 20%. Note also that at model size Big we did not observe an
increased decoding speed by using Dynamic Convolutions. Finally, in both settings we saw that inference
speed correlates well with training speed and Lasagna reduces the training time by about 25%. While we
evaluate models on BLEU, for (EnDe) at model size Big we also ran an evaluation on model-based metrics,
using the framework COMET (Rei et al., 2020); we find that Lasagna and Transformer are on par, while
Lasagna(12) outpeforms the Transformer, see Appendix A.

2https://github.com/pytorch/fairseq/examples/translation

6

https://github.com/pytorch/fairseq/tree/main/examples/translation


Under review as submission to TMLR

Model BLEU Params (M) tokens/s (k)
Lasagna(12) 27.2 (+0.7) 81 3.73 (+30%)
Lasagna 26.9 (+0.4) 67 3.65 (+27%)
Lasagna(9) 26.8 (+0.3) 72 3.58 (+24%)
Dynamic Conv. 26.7 (+0.2) 67 3.69 (+28%)
Transformer 26.5 (+0.0) 66 2.88 (+0%)
gMLP as in (Liu et al., 2021) 26.4 (-0.1) 67 1.62 (-44%)
Mixer 25.7 (-0.8) 65 3.71 (+29%)
Light Conv. 25.1 (-1.4) 66 4.12 (+43%)

Table 2: (EnDe) Base Model. Our Lasagna models outperform the Transformer baseline on Translation quality,
while achieving the same inference speed as Dynamic Convolutions. The original gMLP (Liu et al., 2021)
architecture with tiny attention is substantially slower than the Transformer. Mixer and Light Convolutions
achieve lower BLEU scores than the baseline. For details see 4.3.

Model BLEU Params (M) tokens/s (k)
Lasagna(12) 23.3 (+0.8) 118 3.70 (+9%)
Lasagna 22.9 (+0.4) 104 4.01 (+19%)
Lasagna(9) 22.7 (+0.2) 109 3.77 (+12%)
Dynamic Conv. 22.6 (+0.1) 105 3.64 (+8%)
Transformer 22.5 (+0.0) 104 3.38 (+0%)
Light Conv. 22.5 (+0.0) 100 3.98 (+18%)

Table 3: (ZhEn) Base Model. Our Lasagna models outperform the Transformer and Dynamic Convolutions
baselines both on Translation quality and inference speed. For details see 4.3

For (ZhEn) we observe a similar picture. At model size Base (Table 3) we find that Lasagna and Lasagna-12
achieve +0.4 and +0.8 over the baseline while maintaining a higher decoding speed. At model size Big
(Table 5) Lasagna can still outperform the baseline on BLEU score (+0.3) and inference speed (+10%). Here
we observe that using LConvs in the Decoder results in a decrease in BLEU.

For (EnFr) and (EnTr) we report the complete experimental results in the Appendix B and summarize here
the main findings. For (EnFr), at model size Base we can improve BLEU by +0.9 and inference speed by
30%, while at model size Big we can improve BLEU by +0.3 and inference speed by +28%. For (EnTr),
we find that the Transformer achieves a test BLEU of 17.7 while Lasagna-9 achieves 18.2 at comparable
inference speed.

Model BLEU Params (M) tokens/s (k)
Lasagna(12) 29.5 (+0.4) 277 3.77 (+18%)
Lasagna 29.3 (+0.2) 221 3.86 (+21%)
Lasagna(9) 29.1 (+0.0) 243 4.00 (+25%)
Transformer 29.1 (+0.0) 221 3.19 (+0%)
Dynamic Conv. 29.0 (-0.1) 224 3.30 (+3%)
Mixer 28.8 (-0.3) 206 3.14 (-1%)
Light Conv. 28.6 (-0.5) 206 3.22 (+1%)

Table 4: (EnDe) Big Model. Increasing the scale the differences on Translation quality as measured by
BLEU become smaller. Even Mixer and Light Convolutions almost match the Transformer and Dynamic
Convolution baselines. Our Lasagna models outperform the baselines in terms of inference speed and BLEU.
For details see 4.3.
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Model BLEU Params (M) tokens/s (k)
Lasagna 24.7 (+0.3) 296 3.78 (+10%)
Lasagna(9) 24.6 (+0.2) 318 3.89 (+13%)
Lasagna(12) 24.6 (+0.2) 353 3.65 (+6%)
Transformer 24.4 (+0.0) 296 3.45 (+0%)
Dynamic Conv. 24.2 (-0.2) 299 3.31 (-4%)
Lasagna(9) + LConv Decoder 24.0 (-0.4) 312 3.79 (+10%)
Light Conv. 24.0 (-0.4) 281 3.46 (+0%)

Table 5: (ZhEn) Big Model. Our Lasagna models slightly outperform the Transformer baseline on BLEU and
both the Transformer and Dynamic Convolutions on inference speed. Note how using Light Convolutions
instead of a Light gMLP Decoder results in a -0.4 drop in BLEU. For details see 4.3.

Model BLEU Params (M) tokens/s (k)
Lasagna(12) 25.3 (+0.9) 80 5.29 (+39%)
Lasagna(9) + LConv Decoder 24.9 (+0.5) 71 5.56 (+46%)
Lasagna(9) 24.7 (+0.3) 71 5.47 (+44%)
Lasagna 24.6 (+0.2) 66 5.26 (+38%)
Dynamic Conv. 24.5 (+0.1) 66 5.05 (+33%)
Transformer 24.4 (+0.0) 66 3.81 (+0%)
Light Conv. 23.8 (-0.6) 62 5.81 (+52%)

Table 6: (EnDe) using the Levenshtein Transformer. Our Lasagna models improve Translation quality over
the Levenshtein Transformer baseline (Gu et al., 2019) up to +0.9 BLEU points with a +40% increase in
decoding speed. For details see 4.4.

4.4 Non-Autoregressive Machine Translation

For non-autoregressive Machine Translation we took as baseline the Levenshtein Transformer (Gu et al.,
2019) using the Fairseq implementation3. This model uses the decoder to iteratively refine the translations
using a post-editing process learned through imitation learning. We were unable to reproduce the original
result of (Gu et al., 2019), where the non-autoregressive model matches the auto-regressive baseline. This
was the case both when training with our own distillation data, obtained from our best (EnDe) model at size
Big, as well as with the distillation data released with Fairseq; we report results based on the latter. We find
that the Lasagna model outperforms the Transformer also in this setting (Table 6) with improvements up to
+0.9 BLEU points and about +40% increase in decoding speed. Note that in the case of the Levenshtein
Transformer the decoder is called for a fixed number of iterations on the whole sequence, so the complexity
analysis is different from the auto-regressive case; see (Kasai et al., 2021) for details.

4.5 Deep-shallow models

Recent work (Kasai et al., 2021) questions whether non-autoregressive Machine Translation is actually faster
than auto-regressive one; they propose auto-regressive models with a Deep Encoder and a Shallow Decoder as
a faster alternative for larger batch sizes, corresponding to the bulk-inference case. Specifically, they propose
a Transformer Encoder with 12 layers and a Transformer Decoder with a single layer. So far we measured
speed-ups for models where the encoder and the decoder have comparable depth, and the difference might
become negligible when the decoder consists of a single layer. Moreover, a decoder using only local operations
might take a considerable hit on Translation quality compared to one using SA. We thus test Lasagna also in
this setting.

3https://github.com/pytorch/fairseq/examples/nonautoregressive_translation
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Encoder Decoder BLEU Params (M) tokens/s (k)
Transformer(6) Transformer(6) 24.4 (+0.0) 296 3.45 (+0%)
Transformer(12) GLConv(1) 23.8 (-0.6) 286 10.71 (+210%)
Lasagna(12) GLConv (1) 23.6 (-0.8) 274 10.69 (+210%)
Lasagna(12) Transformer (1) 23.5 (-0.9) 275 10.16 (+194%)
Transformer(12) Transformer(1) 23.5 (-0.9) 288 8.65 (+150%)

Table 7: (ZhEn), Deep Encoder / Shallow Decoder as in (Kasai et al., 2021). Using a Light gMLP decoder
increases decoding speed by 60%. Replacing a Deep Transformer Encoder with a Lasagna one increases
decoding speed by 40% without affecting the BLEU score. Note however, how the original Deep Encoder /
Shallow Decoder using SA suffers a loss of almost 1 BLEU point to the Transformer baseline. For details
see 4.5.

Encoder Decoder BLEU Params (M) tokens/s (k)
Lasagna GLConv 26.9 (+0.4) 67 3.65 (+27%)
Lasagna LConv 26.7 (+0.2) 66 3.81 (+32%)
Lasagna, GLConv → LConv GLConv 26.7 (+0.2) 66 4.04 (+40%)
Dynamic Conv. Dynamic Conv. 26.7 (+0.2) 67 3.69 (+28%)
Transformer LConv 26.5 (+0.0) 63 4.07 (+41%)
Transformer GLConv 26.5 (+0.0) 65 4.04 (+40%)
Transformer Transformer 26.5 (+0.0) 66 2.88 (+0%)
Inverted Lasagna GLConv 26.3 (-0.2) 67 3.97 (+38%)
Lasagna, SA → GLConv GLConv 26.2 (-0.3) 66 3.71 (+29%)
LConv LConv 25.1 (-1.4) 66 4.12 (+43%)

Table 8: Ablations on design choices for the Lasagna. We show that both the order of layers (from local to
global) and the use of GLConvs matter. We show that the Transformer Decoder can be replaced by one
using GLConvs or LConvs without affecting the BLEU score. For details see 4.6.

We observe (Table 7) that replacing the Transformer encoder with Lasagna-12 (with just one layer in the
decoder) results in the same BLEU score but an increased inference speed (+60%). Note also that the
best BLEU score was not achieved by Lasagna, but by combining a standard Transformer encoder with an
GLConv-decoder, i.e. a decoder consisting of a single layer employing a Gated Light Convolution; on the
other hand, using a decoder with a single Transformer layer results in a decrease of -0.3.

4.6 Ablation studies

We evaluate the impact of various choices that we made in Table 8. We use (EnDe) at model size Base. We
first invert the order of the layers in the encoder (Inverted Lasagna) to compare what happens if we decide to
first work with global operations and then use local ones. This has a big negative impact as the performance
decreases by −0.6 BLUE points relative to Lasagna. Secondly we consider what happens if we replace the SA
layers in the encoder with GLConvs. In this case the performance also decreases by −0.7 points. However,
note that in both cases the performance drop compared to the Transformer baseline is small. This ablation
suggests that the locality prior of LConv and GLConv complements the global attention prior of SA when
LConv and GLConv are used before SA. Both inverting the order of layers in Lasagna as well as removing
SA from Lasagna hurt translation quality.

We then look at the role of the GLConvs in the encoder and the decoder. If we replace them with LConvs
there is a small impact of −0.2 points. Note however that for (ZhEn) at model size Big (Table 5) the impact
was larger with a −0.4 drop compared to the Transformer baseline (Table 5). Combining a Transformer
encoder with a decoder using LConvs or GLConvs does not improve the BLEU score over the baseline.

9
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5 Conclusions

We have proposed a novel architecture for machine translation that improves over the Transformer in terms
of translation performance and inference speed across a large number of benchmarks and model sizes. The
architecture stacks different layers onto each other in order to capture multiple inductive biases and increase
performance while increasing inference speed; as a result, most of the self-attention layers that are standard
in the Transformer are replaced by lower degree and more local operations. We hope that our work can spur
more interest in this sort of heterogeneous architectures and result in models that are more efficient to train
and deploy than the Transformer.

Broader Impact Statement

The architecture proposed here can reduce the energy consumption for training and deploying Neural Machine
Translation Models, as training time is reduced and inference speed is increased. Despite the advances in
Machine Translation, such systems may still produce incorrect translations, and this can negatively affect
their users. However this negative impact affects Neural Machine Translation in general, and is not specific
to the methodology proposed here.
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model and the Transformer; this is based on bootstrap resampling and performed automatically by COMET.
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A Appendix: Model-based evaluation.

While we use BLEU as main evaluation metric, and report the variance of the scores, we evaluated (EnDe)
models at size Big on model-based metrics. These metrics are the output of models that learn to predict
human evaluations. We use the COMET implementation (Rei et al., 2020) reporting the scores from the
models wmt20-comet-da and wmt21-comet-mqm. We also run significance tests, reporting the p-values that a
model score is significantly higher than that of the Transformer, see Table 9.

B Appendix: Tables for English to French and Turkish.

We report our experimental results on (EnFr) at model size Base in Table 10 and Big in Table 12. We report
our experimental results on (EnTr) at model size Base in Table 11. Note that Light Convolutions perform
competitively on (EnFr) but experience a significant drop on (EnTr), perhaps because these are more distant
language pairs and Turkish word order is less rigid than English.

C Appendix: Training Hyper-parameters

We preprocess the data with Fairseq (Ott et al., 2019) using BPE vocabularies with splits and training
hyper-parameters reported in Table 13. Note that we sometimes simulate training on a larger number of
GPUs by using gradient accumulation steps, which in Fairseq are specified with the –update-freq parameter.
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Model BLEU Params (M) tokens/s (k)
Lasagna(12) 38.3 (+0.9) 81 3.83 (+30%)
Lasagna(9) 37.9 (+0.5) 72 3.92 (+33%)
Dynamic Conv. 37.9 (+0.5) 69 4.00 (+36%)
Lasagna 37.8 (+0.4) 67 3.76 (+28%)
Transformer 37.4 (+0.0) 67 2.94 (+0%)
Light Conv. 37.2 (-0.2) 63 4.30 (+46%)

Table 10: (EnFr) Base Model. Our Lasagna models outperform the Transformer on BLEU and inference
speed. Light convolutions are also a good baseline, probably because of the closeness between language pairs.

Model BLEU Params (M) tokens/s (k)
Lasagna(9) 18.2 (+0.5) 66 3.13 (+4%)
Lasagna 18.0 (+0.3) 60 3.18 (+5%)
Lasagna(12) 17.8 (+0.1) 75 3.25 (+8%)
Transformer 17.7 (+0.0) 60 3.02 (+0%)
Dynamic Conv. 17.5 (-0.2) 60 3.19 (+6%)
Light Conv. 16.8 (-0.9) 60 3.31 (+10%)

Table 11: (EnTr) Base Model. Differences ≤ 0.3 on BLEU are not significant. Lasagna(9) improves over the
Transformer while Light Convolutions drop by almost 1 BLEU point.

Model BLEU Params (M) tokens/s (k)
Lasagna(9) 42.1 (+0.3) 245 4.22 (+28%)
Lasagna(12) 42.1 (+0.3) 279 4.13 (+25%)
Lasagna 41.8 (+0.0) 222 4.15 (+26%)
Dynamic Conv. 41.8 (+0.0) 225 3.93 (+19%)
Transformer 41.8 (+0.0) 222 3.30 (+0%)
Light Conv. 41.6 (-0.2) 207 4.20 (+27%)

Table 12: (EnFr) Big Model. Our Lasagna models improve over the Transformer for BLEU and inference
speed.
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Model size Task GPUs Steps Tok. in Batch Grad Acc. Lr schedule Peak lr Vocab splits
Base (EnDe) 8 V100 120k 4k 1 inverse square root 5× 10−4 32k (shared)
Base (EnFr) 8 V100 120k 4k 1 inverse square root 5× 10−4 40k (shared)
Base (ZhEn) 8 V100 120k 4k 1 inverse square root 5× 10−4 32k (separate)
Base (EnTr) 4 V100 10k 4k 4 inverse square root 10−3 32k (shared)
Big (EnDe) 16 A100 30k 3.6k 4 cosine decay 10−3 32k (shared)
Big (ZhEn) 16 A100 40k 3.6k 4 cosine decay 10−3 32k (separate)
Big (EnFr) 16 A100 120k 5k 2 inverse square root 5× 10−4 40k (shared)
NAT (EnDe) 8 A100 300k 8k 1 inverse square root 5× 10−4 32k (shared)

Table 13: Hyperparameters for Training. Tok. in Batch is the maximum number of tokens in a batch on a
single accelerator, while grad accumulation is the number of gradient accumulation steps to reach a desired
number of tokens to update on. When the vocabulary splits are shared it means there is a single shared
vocabulary between source and target languages.

There are three dropouts: one for the MLPs, one for attention and one for the convolutional weights. For
(EnDe) we use, respectively, 0.3, 0.1 and 0.1; for (EnFr) 0.1, 0.1, 0.1; for (ZhEn) 0.2, 0.2, 0.2; for (EnTr )0.3,
0.1, 0.1.

For the learning rate warmup we use a linear schedule to the peak rate with 4k steps at model size Base and
(EnFr) at model size Big, 10k at model size Big for (EnDe) and (ZhEn) and NAT.

The embedding dimensions and the number of heads are the standard ones for model Base and Big. For Base
we use 512 embedding dimensions and 8 heads, for Big 1024 embedding dimensions and 16 heads. The kernel
sizes for Light and Dynamic Convolutions are like those in (Wu et al., 2019).

D Appendix: Inference Hyper-parameters

We use beam size 4. For (EnDe), (ZhEn) and (EnFr) we fine-tuned the length penalty for the Trans-
former on the validation set and use the same one across all models. We use 0.6 for (EnDe) and
(EnFr) and 1.4 for (ZhEn). For (EnTr) we fine-tune the length penalty on the validation set for each
model, we consider the range 0.4 to 1.8, in increments of 0.1. For sacreBLEU we use the signature
case.mixed+nrefs.1+smooth.exp+tok.13a+v.1.5.1.

E Appendix: Speed Gains and Batch Size

In Figure 3 we plot the relative speed gain over the Transformer measured at different batch sizes. We take
the tokens/s of each model relative to the tokens/s of the Transformer. We see that the relative gains can
change with the batch size. However, the oscillations tend to be less than 10%. We report 128 to simulate a
bulk-inference case in which predictions are batched together.

F Appendix: Gating-augmented Feed Forward Layers

We compare the approach using the Lasagna model with an alternative route that enhances SA, motivated
by the hypothesis that one should complement rather than replace SA, compare (Tay et al., 2021; Lei et al.,
2018). In (Lei et al., 2018) the feed-forward layers were augmented with recurrent operations, but it was
found that increasing translation quality would result into slightly decreasing inference speed. We observe
that the recurrent operation of SRUs relies on two main ingredients: 1) usage of two gating operations, 2)
a light recurrent operation based on a sort of averaging mechanism (compare with (Zhang et al., 2018)).
However, an efficient implemenation of SRUs requires a somewhat-involved ad-hoc CUDA kernel and an
adhoc initialization scheme. We thus investigate enhancing the feed-forward layers with the simpler GLConvs,
which also uses gating and an averaging mechanism through the convolutions, and has also a straightforward
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Model BLEU Task Params (M) tokens/s (k)
Lasagna 24.7 (ZhEn) 296 (-12%) 3.78 (+42%)
gating-augmented 24.6 (ZhEn) 337 2.60
Lasagna 29.3 (EnDe) 221 (-17%) 3.86 (+69%)
gating-augmented 29.2 (EnDe) 259 2.29
gating-augmented 42.0 (EnFr) 260 3.39
Lasagna 41.8 (EnFr) 222 (-17%) 4.15 (+22%)

Table 14: Our Lasagna model is more effective than augmenting the feed-forwards with Gated Light
Convolutions. Less parameters are required to match the same BLEU score and inference speed improves
significantly. For details see Appendix F

.

implementation. In order not to slow down too much the decoder, we opt for the following architecture: a
Transformer encoder with GLConvs replacing the forward layers and the Lasagna decoder.

G Appendix: Optimizing layers

We report in Figure 4 the results on speed for the layering search for the decoder. The Lasagna encoder
already results in a speed gain over the Transformer, even when the decoder uses only SA. However, after
removing a few layers of SA most speed results are comparable, given a variance of ±0.1k tokens/s.
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Figure 3: The speed gains over the Transformer do not depend much on the batch size.

Figure 4: The speed results corresponding to Figure 2(b)
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