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ABSTRACT

The rapid advancement of artificial intelligence has seen widespread application of
long short-term memory (LSTM), a type of recurrent neural network (RNN), in
time series forecasting. Despite the success of Transformers in natural language
processing (NLP), which prompted interest in their efficacy for time series predic-
tion, their application in financial time series forecasting is less explored compared
to the dominant LSTM models. This study investigates whether Transformer-based
models can outperform LSTMs in financial time series forecasting. It involves
a comparative analysis of various LSTM-based and Transformer-based models
on multiple financial prediction tasks using high-frequency limit order book data.
A novel LSTM-based model named DLSTM is introduced alongside a newly
designed Transformer-based model tailored for financial predictions. The find-
ings indicate that Transformer-based models exhibit only a marginal advantage in
predicting absolute price sequences, whereas LSTM-based models demonstrate
superior and more consistent performance in predicting differential sequences such
as price differences and movements.

1 INTRODUCTION

LSTM has been proven successful in the application of sequential data. Like LSTM, the Transformer
Vaswani et al. (2017) is also used to handle the sequential data. Compared to LSTM, the Transformer
does not need to handle the sequence data in order, which instead confers the meaning of the sequence
by the Self-attention mechanism.

Since 2017, the Transformer has been increasingly used for Natural Language Processing (NLP)
problems. It produces more impressive results than RNN, such as machine translation Lakew et al.
(2018) and speech applications Karita et al. (2019), replacing RNN models such as LSTM in NLP
tasks. Recently, a surge of Transformer-based solutions for less explored long time series forecasting
problem has appeared Wen et al. (2022). However, as for the financial time series prediction, LSTM
remains the dominant architecture.

Investigating whether Transformer-based methods are suitable for financial time series forecasting
is the central focus of this paper, which compares the efficacy of Transformer and LSTM-based
approaches using LOB data from Binance Exchange across various financial prediction tasks. These
tasks include mid-price prediction, mid-price difference prediction, and mid-price movement predic-
tion. In the first two tasks, the study assesses existing Transformer and LSTM models; for mid-price
prediction, Transformer methods show a 10%− 25% lower prediction error than LSTM methods,
although the results are not sufficiently reliable for trading. Conversely, LSTM models excel in
mid-price difference prediction, achieving an out-of-sample R2 of approximately 11.5%. The paper’s
most notable contribution is the development of a new LSTM-based model, DLSTM, specifically
designed for mid-price movement prediction by integrating LSTM with a time series decomposition
approach. This model significantly outperforms previous methods, with accuracy ranging from
63.73% to 73.31%, demonstrating robust profitability in simulated trading scenarios. Moreover, the
architecture of existing Transformer-based methods has been modified to better suit the demands of
movement prediction tasks.
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2 LSTM IN TIME SERIES PREDICTION

LSTM, introduced by Hochreiter et al. Hochreiter and Schmidhuber (1997), has become a cornerstone
for time series prediction, especially in handling long-term dependencies that are beyond the reach of
traditional Recurrent Neural Networks (RNN). RNN often struggles with issues like exploding or
vanishing gradients, which impede the learning of long-range dependencies Rumelhart et al. (1986);
Goodfellow et al. (2016). LSTMs mitigate these problems through a series of gating mechanism
that regulates information flow, thus maintaining model stability over extended sequences Gers et al.
(1999).

In the financial sector, LSTMs have proven particularly effective, being widely applied in predicting
stock prices using Open-High-Low-Close (OHLC) data and other financial indices Roondiwala et al.
(2017); Cao et al. (2019); Bao et al. (2017); Selvin et al. (2017); Fischer and Krauss (2018). Notably,
models such as Bidirectional LSTM (BiLSTM) and hybrids of LSTM with Convolutional Neural
Networks (CNN) have further enhanced prediction accuracy Siami-Namini et al. (2019); Zhang et al.
(2019).

Zhang et al. expanded LSTM’s capabilities by developing the DeepLOB architecture, which incorpo-
rates convolutional blocks for feature extraction, an Inception module for decomposing inputs, and an
LSTM layer to capture temporal patterns Zhang et al. (2019). This model excels in complex financial
environments, particularly when analyzing high-frequency data from Limit Order Books (LOB).
Further adaptations include DeepLOB-Seq2Seq and DeepLOB-Attention models, which integrate
Seq2Seq and attention mechanisms, respectively, to improve multi-horizon and long-term predictions
Zhang and Zohren (2021). These enhancements allow the models to handle more complex prediction
tasks, achieving better performance by adapting the encoder-decoder framework for dynamic financial
markets.

Such innovations demonstrate LSTM’s adaptability and its continuous evolution to meet the specific
demands of financial time series prediction, showcasing the model’s robustness and reliability in
capturing and analyzing intricate market dynamics.

3 TRANSFORMER IN TIME SERIES PREDICTION

The Transformer, originally impactful in natural language processing (NLP) Brown et al. (2020),
has been adapted to tackle the unique challenges of time series prediction, particularly in financial
contexts. According to Vaswani et al. Vaswani et al. (2017), the Transformer architecture employs a
self-attention mechanism that efficiently processes long sequences without encountering the vanishing
gradient problems typical of RNNs. This capability is particularly beneficial in financial markets
characterized by long input sequences.

In the financial domain, the deployment of Transformer models is on the rise, with applications in
predicting stock prices using Temporal Fusion Transformers Hu (2021) and in forecasting cryptocur-
rency values, showing notable advantages over LSTMs Sridhar and Sanagavarapu (2021). Innovative
uses also include combining Transformers with BERT for sentiment analysis, followed by Generative
Adversarial Networks (GANs) for stock price prediction Sonkiya et al. (2021).

To address the high computational demands of traditional self-attention, which scales quadratically
with sequence length, new Transformer models like LogTrans Li et al. (2019), Reformer Kitaev
et al. (2020), Informer Zhou et al. (2020), Autoformer Wu et al. (2021), Pyraformer Liu et al.
(2022), and FEDformer Zhou et al. (2022) have been introduced. These models reduce complexity
through innovations including convolutional self-attention, reversible connections, and ProbSparse
mechanisms, enhancing efficiency in processing long sequences. They also incorporate advanced
decomposition methods and frequency domain transformations, significantly improving forecasting
accuracy and efficiency. Originally validated on datasets like electricity consumption and solar energy,
these optimized Transformers show great potential for financial time series forecasting, surpassing
traditional LSTM models in handling complex dependencies and long data sequences Wen et al.
(2022).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

4 FINANCIAL TIME SERIES PREDICTION TASKS FORMULATION

This study compares LSTM-based and Transformer-based methods among three financial prediction
tasks based on LOB data. Three tasks are listed below:

4.1 TASK 1: LOB MID-PRICE PREDICTION

The first task is to predict the LOB Mid-Price Prediction, which is to compare the ability to predict
absolute price values similar to non-financial datasets in previous works Li et al. (2019); Zhou et al.
(2020); Wu et al. (2021); Zhou et al. (2022); Liu et al. (2022). The definition of time series prediction
is given below and shown in Figure 1:

Figure 1: The illustration of time series prediction.

First, define a sliding window size Lx for the past data. The input data at each time step t is defined
as:

Xt = {x1, x2, . . . , xLx}t (1)

Then define a prediction window size k, where the goal is to predict the information in future Lx + k
steps. It will be the single-step prediction when k = 1 and be multi-horizon prediction when k > 1.
Then the output at time step t is defined as:

Yt = {y1, y2, . . . , yk}t (2)

The next step is to define the xt and yt in the input and output for mid-price prediction. Assume the
market depth is 10. For a limit bid order at time t, the bid price is denoted as pbidi,t and the volume is
vbidi,t , where i is the market depth. Same for the limit ask order, ask price is paski,t and volume is vaski,t .
Then the LOB data at time t is defined as:

xt =
[
paski,t , vaski,t , pbidi,t , v

bid
i,t

]n=10

i=1
∈ R40 (3)

The past mid-price will be added to LOB data as input, and the mid-price is represented as:

pmid
t =

pask1,t + pbid1,t

2
(4)

Finally, the xt will be:

xt =
[
paski,t , vaski,t , pbidi,t , v

bid
i,t , p

mid
t

]n=10

i=1
∈ R41 (5)

The target is to predict the future mid-price, so yt = pmid
t .

4.2 TASK 2: LOB MID-PRICE DIFFERENCE PREDICTION

The second task is to predict the mid-price change, which is the the difference of two mid-prices
in different time step. Trading strategies can be designed if the price change becomes negative or
positive. The input of this task is the same as the mid-price prediction, as described in Equation 3.
The target is to regress the future difference between current mid-price pmid

t and the future mid-price
pmid
t+τ :

dt+τ = pmid
t+τ − pmid

t (6)

Like the mid-price prediction, a prediction window size is defined as k, then the output of this task in
each timestamp t is represented as:

Yt = {dt+1, dt+2, . . . , dt+k}t (7)
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4.3 TASK 3: LOB MID-PRICE MOVEMENT PREDICTION

To train a model to predict mid-price movement, the first step is to create price movement labels
for each timestamp. This study follows the smoothing labelling method from Tsantekidis et al.
Tsantekidis et al. (2017) and Zhang et al. Zhang et al. (2019): Use m− to represent the average of the
last k mid-price and m+ to represent the average of the next k mid-price:

m−(t) =
1

k

k∑
i=0

pmid
t−k (8)

m+(t) =
1

k

k∑
i=1

pmid
t+k (9)

k is set to 20, 30, 50, 100 in this study following previous work of Zhang et al. Zhang et al. (2019).
And then, define a percentage change lt to decide the price change direction.

lt =
m+(t)−m−(t)

m−(t)
(10)

The label is dependent on the value of lt. A threshold δ is set to decide the corresponding label. There
are three labels for the price movement:

label =

{
0( fall ), when lt > δ

1( stationary ), when − δ ≤ lt ≤ δ
2( rise ), when lt < −δ

(11)

Assume there is an input in Equation 3 at timestamp t, predicting mid-price movement is a one-step
ahead prediction, which is to predict the mid-price movement in timestamp t+ 1.

5 EXPERIMENTATION RESULT AND EVALUATION

5.1 COMPARISON OF LOB MID-PRICE PREDICTION

5.1.1 EXPERIMENT SETTING FOR LOB MID-PRICE PREDICTION

Dataset All the experiments are based on cryptocurrency LOB data from Binance
(https://www.binance.com) websocket API. In this experiment, one-day LOB data of product BTC-
USDT (Bitcoin-U.S. dollar tether) on 2022.07.15. containing 863397 ticks. The time interval
between each ticks is not evenly spaced. The time interval is 0.1 second on average. The first 70%
data is used to construct the training set, and the rest 10% and 20% of data are used for validation
and testing.

Models For the comparison purpose, canonical LSTM and vanilla Transformers along with four
Transformer-based models are choosed: FEDformer Zhou et al. (2022), Autoformer Wu et al. (2021),
Informer Zhou et al. (2020) and Reformer Kitaev et al. (2020).

Training setting The dataset is normalized by the z-score normalization method. All the models are
trained for 10 epochs using the Adaptive Momentum Estimation optimizer and L2 loss with early
stopping. The batch size is 32, and the initial learning rate is 1e-4. All models are implemented by
Pytorch Paszke et al. (2019) and trained on a single NVIDIA RTX A5000 GPU with 24 GB memory
with AMD EPYC 7551P CPU provided from gpushare.com cluster.

5.1.2 RESULT AND ANALYSIS FOR LOB MID-PRICE PREDICTION

Quantitative result The performance metrics consist of Mean Square Error (MSE) and Mean
Absolute Error (MAE). From the table 1, these outcomes can be summarized: In a comparison of
different models, both FEDformer and Autoformer demonstrate superior performance over LSTM,
with FEDformer achieving the best results across all prediction lengths. Specifically, FEDformer
reduces mean squared error (MSE) by 24% from 0.104 to 0.0793 for a 96 prediction length and 21%
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Models FEDformer Autoformer Informer Reformer Transformer LSTM

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.0793 0.179 0.0926 0.201 1.411 0.543 2.186 0.619 2.836 0.696 0.104 0.204
192 0.155 0.257 0.176 0.279 1.782 0.749 1.842 0.824 2.799 0.832 0.195 0.287
336 0.274 0.348 0.319 0.376 2.080 0.830 9.218 1.947 1.456 0.665 0.315 0.369
720 0.608 0.514 0.643 0.539 2.808 1.093 72.57 6.824 4.306 1.297 0.771 0.587

Table 1: Mid price prediction result with different prediction lengths k ∈ {96, 192, 336, 720} in test
set. The input window size is set to 96 (MSE’s unit is in 10−2 and MAE’s unit is in 10−1; lower is
better)
from 0.771 to 0.608 for a 336 prediction length, while Autoformer shows an 11% and 16% reduction
in MSE for the same prediction lengths, respectively. This indicates their robustness and efficiency in
reducing errors over long-term forecasts. Although LSTM does not perform as well as FEDformer
and Autoformer, it still surpasses Informer, Reformer, and the vanilla Transformer in mid-price
prediction tasks, suggesting that LSTM retains its robustness where transformer-based models falter
without significant modifications. The vanilla Transformer and Reformer models exhibit poorer
performance at various prediction lengths, attributed to error accumulation in the iterative multi-step
(IMS) prediction process, and Informer’s subpar performance is primarily due to its sparse attention
mechanism, which leads to significant information loss in the time series.

Figure 2: Illustration of normalized forecasting outputs with 96 input window size and
{96, 192, 336, 720} prediction lengths. Each timestamp is one tick.

Qualitative Results and Limitations Despite Autoformer and FEDformer demonstrating superior
MSE and MAE performance compared to LSTM, their practical efficacy for high-frequency trading
is questionable. Figure 2 illustrates the prediction results of various models across multiple horizons.
While Autoformer and Reformer can model future mid-price trends at a 96 horizon, most models
generate nearly flat predictions. At a 192 horizon, predictions generally plateau, with Reformer’s
outputs becoming more stochastic, and at longer horizons of 336 and 720, no model successfully
predicts trends. This is further evidenced by the negative out-of-sample R2 values for all models, as
shown in Table 2, indicating that none of the models effectively explain the variance in mid-price
based on the inputs used. The negative R2 values highlight that the models are not adding value to
the predictions. This discrepancy underscores the limitation of relying solely on MSE and MAE
for evaluating model performance. Even models with favorable error metrics may fail to provide
actionable predictions for trading, suggesting a potential shift towards using direct price difference
as the target for more accurate and practical forecasting, which reveals that, while MSE and MAE
metrics may indicate lower error, they can disguise the true limitations of models in Mid-Price
Prediction.
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Models Autoformer FEDformer Informer Reformer LSTM Transformer

96 -0.753 -0.237 -43.811 -69.080 -0.946 -87.899
192 -0.596 -0.205 -25.281 -26.792 -0.644 -43.368
336 -1.032 -0.364 -20.123 -63.252 -0.414 -13.035
720 -0.521 -0.189 -7.760 -137.322 -0.589 -16.314

Table 2: Average of out of sample R2 result with different prediction lengths k ∈ {96, 192, 336, 720}.
5.2 COMPARISON OF LOB MID-PRICE DIFF PREDICTION

5.2.1 EXPERIMENT SETTING FOR LOB MID-PRICE DIFF PREDICTION

Dataset The dataset for this experiment, has been expanded to four days of LOB data for BTC-USDT
from July 3 to July 6, 2022, totaling 3,432,211 ticks, to mitigate overfitting. The first 80% of data is
used as a training set, and the rest 20% is split in half for validation and testing.

Models Five models are being compared in this experiment: canonical LSTM Hochreiter and
Schmidhuber (1997), vanilla transformer Vaswani et al. (2017), CNN-LSTM (DeepLOB Zhang et al.
(2019) model used for regression), Informer Zhou et al. (2020) and Reformer Kitaev et al. (2020).

Training settings The training setting is the same as the last experiment.

5.2.2 RESULT AND ANALYSIS FOR LOB MID-PRICE DIFF PREDICTION

Figure 3: Performance of price difference prediction with input window size 100 and prediction
length 100. Negative data points are not plotted for ease of visualization.

Following the previous works Kolm et al. (2021), out of sample R2 is the evaluation metric for
this task. The performance of all the models is shown in Figure 3. The canonical LSTM achieves
the best performance among all models, which reaches the highest R2 around 11.5% in forecast
length 5 to 15. For CNN-LSTM, it has comparable performance to LSTM. On the other hand,
Informer, Reformer and Transformer have worse R2 than LSTM, but their R2 trend is similar. In
short, for the price difference prediction task, LSTM-based models is more stable and more robust
than Transformer-based models. In order to let these state-of-the-art transformer-based models make
a meaningful prediction, a new structure is designed in the next part, and it is applied to the price
movement prediction task.

5.3 COMPARISON OF LOB MID-PRICE MOVEMENT PREDICTION

5.3.1 INNOVATIVE ARCHITECTURE ON TRANSFORMER-BASED METHODS

For the task of predicting mid-price movements, where models classify future outcomes, few existing
Transformer models are specifically designed, as most are oriented towards non-forecasting classi-
fication tasks. To bridge this gap, Transformer-based models have been adapted to enhance their
capability in price movement forecasting by incorporating both past and projected mid-price data.
This adaptation involves feeding a sequence of predicted mid-prices into a linear layer, followed by
a softmax activation function to determine price movements. This approach, illustrated in Figure

6
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Figure 4: New architecture of transformer-based model for LOB mid-price movement prediction.

4, proves particularly effective with models using the Direct Multi-step (DMS) forecasting method,
as it reduces long-term prediction errors and improves overall forecasting accuracy. This strategic
enhancement is aimed at refining Transformer applications in financial forecasting.

5.3.2 DLSTM: INNOVATION ON LSTM-BASED METHODS

Inspired by the Dlinear model Zeng et al. (2022) and Autoformer, the DLSTM model combines time
series decomposition with LSTM to leverage the strengths of both approaches. DLSTM capitalizes on
three key observations: the effectiveness of time decomposition in enhancing forecasting performance
as demonstrated in prior works Zhang et al. (2019); Wu et al. (2021); Zhou et al. (2022), the robustness
of LSTM in handling diverse forecasting tasks, and Dlinear’s success over other Transformer-based
models in long time series forecasting due to its decomposition and DMS prediction methods. The
architecture of DLSTM, which replaces the linear layers with LSTM layers as shown in Figure 5,
incorporates a dual-layer approach where the time series XT = (x1, x2, . . . , xT ) is first decomposed
into a Trend series using a moving average:

Xt = AvgPool(Padding(XT )) (12)

where AvgPool(·) is the average pooling operation and Padding(·) is used to fix the input length.
The Remainder series is calculated by Xr = XT −Xt. After that, these two series are processed
by separate LSTM layers, whose outputs are combined and passed through a linear and softmax
activation to predict price movements, effectively handling one-step-ahead predictions without the
error accumulation typically seen in multi-step forecasting.

Figure 5: Architecture of DLSTM

5.3.3 SETTING FOR LOB MID-PRICE MOVEMENT PREDICTION

Dataset In this experiment, a dataset comprising 12 days of LOB data for ETH-USDT from July
3 to July 14, 2022, with 10,255,144 ticks. The training and testing data are taken from the first six
days and the last three days, and the left data are used for validation. The test set is also used for the
simple trading simulation.

Models Most of the transformer-based models are adapted in this task according to innovative
structure in Section 5.3.1, which are: Vanilla Transformer Vaswani et al. (2017), Reformer Kitaev
et al. (2020), Informer Zhou et al. (2020), Autoformer Wu et al. (2021), FEDformer Zhou et al.
(2022). On the other hand, all the LSTM-based models are compared in this task as well, which
are: canonical LSTM Hochreiter and Schmidhuber (1997), DLSTM, DeepLOB Zhang et al. (2019),
DeepLOB-Seq2Seq Zhang and Zohren (2021), DeepLOB-Attention Zhang and Zohren (2021).

Training settings The batch size for training is set to 64 and the loss function is changed to
Crossentropy loss. Other training settings are the same as the last experiment.
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Model Acc Prec Rec F1 Acc Prec Rec F1

Prediction Horizon k = 20 Prediction Horizon k = 30

MLP 61.58 61.70 61.58 61.47 59.19 59.30 58.70 58.48
LSTM 62.77 62.91 62.77 62.78 60.64 60.47 60.45 60.45
DeepLOB 70.29 70.58 70.30 70.24 67.23 67.26 67.17 67.15
DeepLOB-Seq2Seq 70.40 70.79 70.42 70.37 67.56 67.73 67.53 67.49
DeepLOB-Attention 70.04 70.26 70.03 70.01 67.21 67.39 66.98 66.96
Autoformer 68.89 68.99 68.89 68.91 67.93 67.86 67.77 67.77
FEDformer 65.37 65.70 65.37 65.20 66.57 66.44 66.05 65.83
Informer 68.71 68.82 68.72 68.71 65.41 65.33 65.14 65.13
Reformer 68.01 68.26 68.00 67.95 64.28 64.31 64.08 64.06
Transformer 67.80 67.99 67.81 67.77 64.25 64.16 64.13 64.13
DLSTM 73.10 74.01 73.11 73.11 70.61 70.83 70.63 70.59

Prediction Horizon k = 50 Prediction Horizon k = 100

MLP 55.65 55.71 55.62 54.98 57.03 56.03 56.36 56.01
LSTM 58.26 57.52 57.54 57.03 53.49 52.83 52.82 52.36
DeepLOB 63.32 63.69 63.32 63.37 58.12 58.50 57.92 57.86
DeepLOB-Seq2Seq 63.62 64.04 63.61 63.59 58.30 58.43 57.93 57.77
DeepLOB-Attention 64.05 64.19 64.04 63.94 59.16 58.59 58.65 58.50
Autoformer 60.17 60.64 60.12 58.40 59.18 58.34 58.40 57.83
FEDformer 63.46 63.44 63.42 62.52 57.97 56.97 56.62 54.14
Informer 61.76 61.64 61.74 61.55 56.11 56.15 55.85 55.81
Reformer 60.43 60.79 60.42 60.37 54.92 54.47 54.53 54.47
Transformer 59.51 59.78 59.51 59.46 55.42 55.04 54.92 54.72
DLSTM 67.45 67.96 67.45 67.59 63.73 63.02 63.18 63.05

Table 3: Experiment results of Mid Price Movement for prediction horizons 20, 30, 50 and 100.Red
Bold represents the best result and blue underline represents the second best result.
5.3.4 RESULT AND ANALYSIS FOR LOB MID-PRICE MOVEMENT PREDICTION

The models’ performance, evaluated using classification metrics including accuracy, precision, re-
call, and F1-score, is displayed in Tables 3. DLSTM surpasses all previous LSTM-based and
Transformer-based models across all prediction horizons, demonstrating the effectiveness of integrat-
ing Autoformer’s time series decomposition structure with a simple LSTM model for one-step-ahead
predictions, thereby avoiding error accumulation typical in DMS processes. The DeepLOB-Attention
model performs well at the 50 and 100 horizons, and the DeepLOB-Seq2Seq excels at the 20 hori-
zon, highlighting the benefits of encode-decoder structures and attention mechanisms in capturing
correlations across different prediction horizons. While the performance of DeepLOB-Attention
and DeepLOB-Seq2Seq either matches or exceeds DeepLOB, particularly over longer horizons,
Autoformer ranks second at the 30 horizon, underscoring its utility in time series prediction despite
its size and tuning requirements compared to the more compact and less parameter-sensitive LSTM
models.

5.3.5 SIMPLE TRADING SIMULATION WITHOUT TRANSACTION COST

To demonstrate the practical utility of the models in trading, a simple trading simulation (backtesting)
is conducted using three high-performing models: DLSTM, DeepLOB Zhang et al. (2019), and
Autoformer Wu et al. (2021), with Canonical LSTM Hochreiter and Schmidhuber (1997) and Vanilla
Transformer Vaswani et al. (2017) serving as baselines. The simulation, conducted over a three-day
test set, follows strategy from prior research Zhang et al. (2019). It involves trading a single share
(µ = 1) based on the model’s prediction of price movements (0 for fall, 1 for stationary, 2 for rise). A
long position is initiated at ’rise’ and held until a ’fall’ prediction occurs; conversely, a short position
starts at ’fall’. To mimic high-frequency trading latency, a five-tick delay is implemented between
prediction and execution. Only one position direction is allowed at any time in the simulation.

Table 4 show the profitability of each model in simulated trading, evaluated by cumulative price return
(CPR) and the Annualized Sharpe Ratio (SR). The exaggerated value of the annualized SR results
from the overly optimistic assumptions of the simulation. Results indicate that LSTM-based models
generally outperform Transformer-based models in trading simulations. The canonical LSTM model
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Forecast Horizon Prediction Horizon = 20 Prediction Horizon = 30 Prediction Horizon =50 Prediction Horizon=100

Model CPR SR CPR SR CPR SR CPR SR

LSTM 15.396 51.489 12.458 41.411 8.484 28.817 4.914 20.941
DLSTM 14.966 46.949 12.634 37.432 6.194 22.027 3.215 16.346

DeepLOB 13.859 56.094 12.789 42.567 5.726 21.014 2.646 14.992
Transformer 14.553 59.995 12.737 41.044 6.896 28.147 2.859 16.981
Autoformer 9.942 32.688 8.617 30.576 8.214 25.882 3.620 17.765

Table 4: Cumulative price returns and annualized sharpe ratio of different models.

records the highest CPR and SR at the 20 and 30 horizons, while DeepLOB excels at the 50 horizon.
DLSTM shows performance comparable to both canonical LSTM and DeepLOB. Autoformer, despite
its superior classification metrics, underperforms in the 20 and 30 horizons, even lagging behind the
vanilla Transformer, underscoring the relative effectiveness of LSTM-based models for electronic
trading.

DLSTM demonstrates performance commensurate with these models, underscoring the practicality
and robustness of LSTM-based predictions for trading. Conversely, Autoformer underperforms
at the 20 and 30 horizons, sometimes even lagging behind the vanilla Transformer despite better
classification metrics, highlighting LSTM-based models as more effective for electronic trading.

5.3.6 SIMPLE TRADING SIMULATION WITH TRANSACTION COST

Forecast Horizon Prediction Horizon = 20 Prediction Horizon = 30 Prediction Horizon =50 Prediction Horizon=100

Model CPR SR CPR SR CPR SR CPR SR

LSTM 2.102 15.160 1.767 12.429 1.596 11.536 0.778 6.014
DLSTM 3.039 19.962 2.716 16.523 1.957 12.359 1.180 9.811

DeepLOB 1.964 15.082 1.924 13.128 1.450 10.273 0.823 7.993
Transformer 1.860 13.894 1.561 10.917 1.047 6.612 0.118 -23.496
Autoformer 0.189 -8.704 0.873 5.118 -0.225 -9.193 -0.061 -14.835

Table 5: Cumulative price returns and annualized sharpe ratio of different models under 0.002%
transaction cost.
Introducing a hypothetical transaction cost of 0.002% in the simulation reveals that DLSTM con-
sistently outperforms all models across all prediction horizons, demonstrating its profitability and
robustness even with transaction costs factored in, as shown in Table 5. While LSTM-based models
generally outperform Transformer-based ones, with Canonical LSTM and DeepLOB achieving com-
petitive CPRs and SRs, Transformer models, particularly Autoformer, suffer significant performance
drops, yielding negative returns in some cases.

6 CONCLUSION

This study conducts a comprehensive comparison of LSTM-based and Transformer-based models
on three cryptocurrency LOB data prediction tasks. In the first task of predicting the LOB mid-
price, FEDformer and Autoformer demonstrate lower error rates than other models, although LSTM
outperforms Informer, Reformer, and vanilla Transformer. Despite lower prediction errors, the
practical utility of these results for high-frequency trading is limited due to insufficient quality. In
the second task of predicting the mid-price difference, LSTM-based models showcase superior
robustness and performance, achieving the highest R2 of 11.5% within about 10 prediction steps,
while state-of-the-art models like Autoformer and FEDformer falter due to their inability to effectively
process difference sequences.

For the final task, predicting LOB mid-price movement, a novel DLSTM model integrating LSTM
with Autoformer’s time decomposition architecture significantly outshines all models in classification
metrics, proving its efficacy in trading simulations, especially under transaction costs. Overall, while
Transformer-based models may excel in limited aspects of mid-price prediction, LSTM-based models
demonstrate consistent superiority across the board, reaffirming their robustness and practicality in
financial time series prediction for electronic trading.
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