

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-AGENT COORDINATION VIA FLOW MATCHING

Anonymous authors

Paper under double-blind review

ABSTRACT

This work presents MAC-Flow, a simple yet expressive framework for multi-agent coordination. We argue that requirements of effective coordination are twofold: (i) a rich representation of the diverse joint behaviors present in offline data and (ii) the ability to act efficiently in real time. However, prior approaches often sacrifice one for the other, *i.e.*, denoising diffusion-based solutions capture complex coordination but are computationally slow, while Gaussian policy-based solutions are fast but brittle in handling multi-agent interaction. MAC-Flow addresses this trade-off by first learning a flow-based representation of joint behaviors, and then distilling it into decentralized one-step policies that preserve coordination while enabling fast execution. Across four different benchmarks, *including* 12 environments and 34 datasets, MAC-Flow alleviates the trade-off between performance and computational cost, specifically achieving about $\times 14.5$ faster inference compared to diffusion-based MARL methods, while maintaining good performance. At the same time, its inference speed is similar to that of prior Gaussian policy-based offline MARL methods.

Git: <https://anonymous.4open.science/r/ICLR2026-10335>

TL;DR: MAC-Flow alleviates performance-inference time trade-off, achieving a 14.5x speedup compared to SOTA

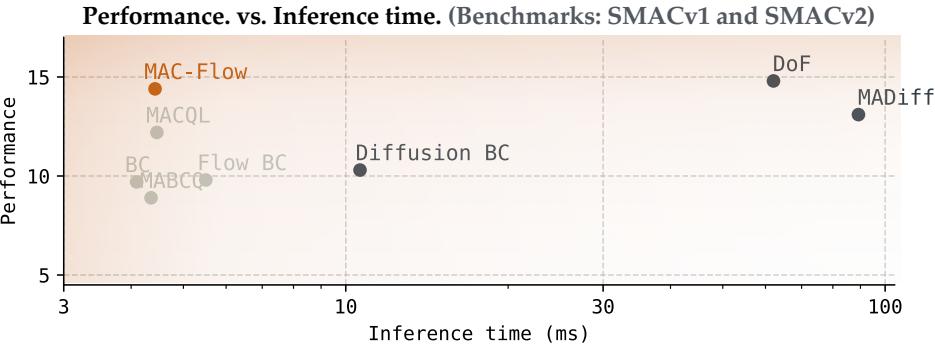


Figure 1: **Summary of results.** This summarizes *performance* vs. *inference speed* for selected algorithms on widely-used MARL benchmarks, SMACv1 and SMACv2. We plot aggregate mean performance and inference time across 18 datasets for 8 scenarios related to the SMAC maps. More precisely, we measure inference time based on the total computation performed by each algorithm and report it by using milliseconds (ms) unit and log scale, where a higher value indicates greater computational cost. As a result, our proposed solution, MAC-Flow, achieves $\times 14.5$ faster inference speed on average with comparable performance compared to previous SOTA.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has been actively studied to handle real-world problems in multi-agent systems, such as modular robot control (Zhang et al., 2024; Peng et al., 2021), multi-player strategy games (Carroll et al., 2019; Samvelyan et al., 2019), and autonomous driving (Lee et al., 2024a; Vinitsky et al., 2022). However, because seminal MARL approaches heavily rely on extensive online interactions among agents, their applicability to real-world domains is severely limited. Moreover, training from scratch is both expensive and risky in data collection and computation (Levine

054 et al., 2020). These challenges motivate methods that import the safety and efficiency benefits of
 055 offline reinforcement learning (RL) into MARL (Wang et al., 2021).

056 Offline RL learns decision-making policies from fixed datasets, thereby avoiding expensive and
 057 risky environment interactions by optimizing returns while staying close to the dataset’s state-action
 058 distribution (Bhargava et al., 2024; Kumar et al., 2020; Wu et al., 2019). However, the transition from
 059 a single-agent to a multi-agent system is not trivial, introducing a unique set of formidable challenges.
 060 For example, the joint action space grows exponentially with the number of agents, making it difficult
 061 to learn coordinated behaviors that adapt to diverse interaction patterns (Li et al., 2025c; Liu et al.,
 062 2025; Barde et al., 2024). Despite several efforts to address these problems (Yang et al., 2021; Pan
 063 et al., 2022; Wang et al., 2023), they still struggle with the complex multi-modality of joint action
 064 distributions, as Gaussian policies are prone to failure by generating out-of-distribution coordination.

065 To tackle this challenge, seminal works have turned to powerful generative models based on denoising
 066 diffusion in MARL (Zhu et al., 2024; Li et al., 2025a). While diffusion policies capture complex
 067 multi-modal distributions, directly optimizing them with respect to a learned value function remains
 068 non-trivial. Backpropagating value gradients through a multi-step denoising chain is expensive and
 069 unstable (Park et al., 2025; Ma et al., 2025; Yang et al., 2025), so several previous RL solutions
 070 employ diffusion for offline imitation or a distillation-based solution (Ding & Jin, 2023; Chen et al.,
 071 2024b). Furthermore, their reliance on an iterative denoising process, which requires numerous neural
 072 function evaluations per forward pass, makes them computationally expensive at inference time. This
 073 latency precludes its practicality in scenarios that require time-critical decision-making.

074 At its core, the question motivating this study can be phrased as follows:

075 *How should offline MARL algorithms balance the trade-off
 076 between expressiveness for multi-agent distributions and computational efficiency?*

077 Building on this question, this work introduces a novel offline MARL framework, dubbed MAC-F_{low},
 078 that bridges the gap between expressive generative policies (simply coordination performance) and
 079 computational demands. Our main idea is to first learn a flow-based joint policy through behavioral
 080 cloning, which captures the complex multi-modal distribution of joint actions in offline multi-agent
 081 datasets. For decentralized execution, we factorize the flow-based joint policy into a one-step sampling
 082 policy by optimizing two objectives: (i) distilling the flow-based joint action distribution and (ii)
 083 maximizing the global value function under the individual-global-max (IGM) principle (Son et al.,
 084 2019). By decoupling expressiveness from value maximization, MAC-F_{low} avoids the instability of
 085 backpropagation through time (Park et al., 2025; Wagenmaker et al., 2025).

086 Our contributions are summarized as follows.

- 087 • We propose MAC-F_{low}, a novel MARL algorithm that enables scalable multi-agent systems
 088 by alleviating the trade-off between coordination performance and inference speed.
- 089 • We introduce a flow-based joint policy factorization method that decouples expressiveness
 090 from optimization, decomposing a flow-based joint policy into efficient one-step sampling
 091 policies while jointly optimizing RL and imitation objectives with mathematical guarantees.
- 092 • We demonstrate the efficiency of MAC-F_{low} across four widely used MARL benchmarks,
 093 12 environments, and 34 datasets, encompassing diverse characterizations, especially in
 094 14.5× speedup compared to previous diffusion-based solutions in SMAC benchmarks.

095 2 RELATED WORK

100 **Offline MARL.** The goal of offline RL is to extract a policy using static operational logs, without
 101 active interaction with the environment. In multi-agent settings, inter-agent dependencies amplify
 102 distribution shift. Even slight deviations in a single agent’s policy can trigger cascading mismatches
 103 in joint behavioral patterns, complicating efforts to maximize returns while preserving alignment with
 104 the dataset’s joint state-action distribution. Naive approaches typically involve extending single-agent
 105 offline RL methods to multi-agent contexts (Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto &
 106 Gu, 2021). Yet, these extensions often fall short in incorporating global regularization to facilitate
 107 cooperation. More sophisticated methods, tailored for multi-agent settings, tackle coordination issues
 via value decomposition, policy factorization, and model-based optimization (Yang et al., 2021; Pan

108 et al., 2022; Wang et al., 2023; Barde et al., 2024; Liu et al., 2025). Despite these advances, such
 109 techniques struggle to capture the multi-modal distributions inherent in multi-agent offline datasets,
 110 resulting in imprecise credit assignment. To better capture joint action distribution, generative
 111 modeling has gained traction, for example, diffusion-based trajectory modeling (Zeng et al., 2025)
 112 (Li et al., 2025a; Zhu et al., 2024), diffusion-based policy (Qiao et al., 2025; Li et al., 2023), and
 113 transformer-based modeling (Wen et al., 2022; Tseng et al., 2022; Meng et al., 2023b). However, they
 114 frequently require substantial computational resources and may struggle to learn optimal patterns,
 115 owing to their reliance on behavioral cloning (BC) paradigms. This work introduces a novel MARL
 116 algorithm that increases efficiency and takes advantage of both RL and generative modeling.

117 **Diffusion and Flow Matching in RL.** Drawing on the robust capacity of iterative generative modeling
 118 frameworks, such as denoising diffusion processes and flow matching techniques, recent efforts have
 119 explored the diverse ways to employ them for enhancing RL policies. Examples of RL with an
 120 iterative generative model include world modeling (Rigter et al., 2023; Ding et al., 2024; Alonso
 121 et al., 2024), trajectory planning (Janner et al., 2022; Ajay et al., 2022; Zheng et al., 2023; Liang et al.,
 122 2023; Ni et al., 2023; Chen et al., 2024a; Lu et al., 2025), policy modeling (Alles et al., 2025; Zhang
 123 et al., 2025b; Chi et al., 2023), data augmentation (Lu et al., 2023; Huang et al., 2024; Lee et al.,
 124 2024b; Yang & Wang, 2025), policy steering (Wagenmaker et al., 2025), and exploration (Ren et al.,
 125 2024; Liu et al., 2024; Li et al., 2025b). Such iterative generative models show powerful performance,
 126 but their inference is prohibitively slow for real-world deployment.

127 Our approach extracts an expressive flow policy to capture the multi-modal distribution of mixed
 128 behavioral policies from offline multi-agent datasets. Algorithmically, this is motivated by flow
 129 distillation (Frans et al., 2024; Chen et al., 2025) and flow Q-learning (FQL) (Park et al., 2025),
 130 which distills a one-step policy with an RL objective to model complex action distributions via
 131 flow matching in single-agent RL. Instead, we leverage a flow matching-based joint policy that
 132 explicitly models the joint action distribution across agents and pioneering the integration of the IGM
 133 principle (Son et al., 2019) with flow matching in MARL, ensuring individual policies align with the
 134 global optimal joint policy for enhanced coordination and scalability.

135 3 BACKGROUND

137 **Problem Formulation.** This work posits the MARL problems under a decentralized partially
 138 observable Markov decision process (Dec-POMDP) (Bernstein et al., 2002) \mathcal{M} defined by a tuple
 139 $(\mathcal{I}, \mathcal{S}, \mathcal{O}_i, \mathcal{A}_i, \mathcal{T}, \Omega_i, r_i, \gamma)$, where $\mathcal{I} = \{1, 2, \dots, I\}$ denotes a set of agents. Here, \mathcal{S} represents the
 140 global state space; \mathcal{O}_i and \mathcal{A}_i correspond to the observation and action spaces specific to agent i ,
 141 respectively. The state transition dynamics are captured by $\mathcal{T}(s'|s, a) : \mathcal{S} \times \mathcal{A}_1 \times \dots \times \mathcal{A}_I \mapsto \mathcal{S}$,
 142 where a is a joint action $[a_1, a_2, \dots, a_I]$ and we color the gray to denote placeholder variables. Next,
 143 $\Omega_i(o_i|s) : \mathcal{S} \mapsto \mathcal{O}_i$ specifies the observation function for agent i . Each agent i receives individual
 144 rewards according to its reward function $r_i(s, a_i, a_{-i}) : \mathcal{S} \times \mathcal{A}_1 \times \dots \times \mathcal{A}_I \mapsto \mathbb{R}$. The goal of
 145 offline MARL under cooperative setups is to learn a set of policies $\Pi = \{\pi_1, \pi_2, \dots, \pi_I\}$ that jointly
 146 maximize the discounted cumulative reward $\mathbb{E}_{\tau \sim p^\Pi(\tau)} \left[\sum_{i=1}^I \sum_{h=0}^H \gamma^h r_i(s^h, a_i^h, a_{-i}^h) \right]$ from an
 147 offline multi-agent dataset $\mathcal{D} = \{\tau^{(n)}\}_{n \in \{1, 2, \dots, N\}}$ without environment interactions, where $\gamma \in$
 148 $[0, 1]$ is a discounted factor, τ denotes a joint trajectory $\{\tau_1, \tau_2, \dots, \tau_I\}$, $\tau_i = (o_i^0, a_i^0, \dots, o_i^H, a_i^H)$,
 149 and $p^\Pi(\tau)$ represents probability distribution over joint trajectories induced by a set of policies Π .

151 **Individual-Global-Max Principle.** The IGM principle serves as a foundational approach in MARL,
 152 offering a method to ensure globally consistent action selection through factorized Q-value functions
 153 for each agent (Son et al., 2019; Rashid et al., 2020). By aligning individual agent policies with a
 154 shared objective, IGM simplifies the complexity of joint action spaces, making it a scalable solution
 155 for multi-agent systems. This principle can be mathematically defined as follows.

$$156 \arg \max_{\mathbf{a}} Q_{\text{tot}}(\mathbf{o}, \mathbf{a}) = \left(\arg \max_{a_1} Q_1(o_1, a_1), \dots, \arg \max_{a_I} Q_I(o_I, a_I) \right) \quad (1)$$

158 Here, $Q_{\text{tot}}(\mathbf{o}, \mathbf{a})$ represents the global Q function, while $Q_i(o_i, a_i)$ denotes an individual Q function
 159 for agent i . The IGM ensures that optimizing its local Q_i remains consistent with the global optimum.

161 **Behavioral-regularized Offline RL.** Behavioral regularization (Wu et al., 2019; Fujimoto & Gu,
 162 2021; Kostrikov et al., 2021; Tarasov et al., 2023; Eom et al., 2024) is a simple and powerful way to

162 alleviate the out-of-distribution issue in the offline RL setting. Most seminal works leverage both
 163 actor and critic penalization, whereas critic penalization may deteriorate the Q function in additional
 164 online training. Therefore, to secure the versatility in both offline and online, we minimize the most
 165 vanilla loss functions of the behavioral-regularized actor-critic framework as follows.

$$166 \quad 167 \quad \mathcal{L}_Q(\theta) = \mathbb{E}_{(o, a, o', r) \sim \mathcal{D}, a' \sim \pi_\phi} [Q_\theta(o, a) - (r + \gamma Q_{\bar{\theta}}(o', a'))] \quad (2)$$

$$168 \quad 169 \quad 170 \quad 171 \quad \mathcal{L}_\pi(\phi) = \mathbb{E}_{(o, a) \sim \mathcal{D}, a^\pi \sim \pi_\phi} \left[-Q_\theta(o, a^\pi) + \alpha \underbrace{f(\pi_\phi(a|o), \mu(a|o))}_{\text{behavioral regularization}} \right] \quad (3)$$

172 Herein, θ and ϕ is a parameter of critic and actor networks respectively, $\bar{\theta}$ is a target parameter
 173 of the critic network (Mnih et al., 2013), α is a weight coefficient (Fujimoto & Gu, 2021), $f(\cdot, \cdot)$
 174 represents the function that captures the divergence between a trained policy $\pi_\phi(a|o)$ and offline
 175 policy $\mu(a|o)$, which is used to collect the dataset \mathcal{D} . The simplest implementation of $f(\cdot, \cdot)$ is the
 176 entropy regularization or behavioral cloning in the soft-actor critic algorithm – $-\log \pi_\phi(a|o)$ (Haarnoja
 177 et al., 2018). Within such an RL framework, we introduce a flow-based MARL solution.

178 **Flow Matching and Flow Policies.** Flow matching (Lipman et al., 2022; Gat et al., 2024) of-
 179 fers an alternative to denoising diffusion models, which rely on stochastic differential equations
 180 (SDEs) (Ho et al., 2020; Song et al., 2020a; Nichol & Dhariwal, 2021). It simplifies training and
 181 speeds up inference while often maintaining quality, as it is based on ordinary differential equations
 182 (ODEs) (Papamakarios et al., 2021; Wildberger et al., 2023; Lipman et al., 2024).

183 The objective of flow matching is simple: to transform a simple noise distribution $p_0 = \mathcal{N}(0, \mathbf{I}_d)$ into
 184 a given target distribution $p_1 = p(x)$ over a d -dimensional Euclidean space $\mathcal{X} \subset \mathbb{R}^d$. More precisely,
 185 it finds the parameter ϕ of a time-dependant velocity field $v_\phi(t, x) : [0, 1] \times \mathbb{R}^d \mapsto \mathbb{R}^d$ to build a
 186 time-dependent flow (Lee, 2003) $\psi_\phi(t, x) : [0, 1] \times \mathbb{R}^d \mapsto \mathbb{R}^d$ via ODE as follows:

$$187 \quad 188 \quad \frac{d}{dt} \psi_\phi(t, x) = v_\phi(t, \psi_\phi(t, x)), \quad \text{where } \psi_\phi(0, x) = x.$$

189 Here, the terminal state $\psi_\phi(1, x^0)$, with $x^0 \sim p_0$, is expected to follow the target distribution p_1 . To
 190 make the learning problem tractable, we follow an interpolating probability path $(p_t)_{0 \leq t \leq 1}$ between
 191 p_0 and p_1 , where each intermediate sample is obtained by linear interpolation as $x^t = (1-t)x^0 + tx^1$.
 192 A timestep t is sampled from a uniform distribution $\text{Unif}([0, 1])$ corresponding to a flow step.

193 The velocity field is then trained to approximate the displacement direction $(x^1 - x^0)$ at intermediate
 194 points along this path. Formally, the training objective is defined as:

$$195 \quad 196 \quad \mathcal{L}(\phi) = \mathbb{E}_{x^0 \sim p_0, x^1 \sim p_1, t \sim \text{Unif}([0, 1])} [\|v_\phi(t, x^t) - (x^1 - x^0)\|_2^2], \quad (4)$$

197 which encourages v_ϕ to recover the underlying transport field from source to target.

198 In this work, we extract a policy via the simplest variant of flow matching (Equation 4) (Park et al.,
 199 2025; Zhang et al., 2025a). Specifically, the flow policy is extracted to minimize the following loss.

$$200 \quad 201 \quad \mathcal{L}_{\text{Flow-BC}}(\phi) = \mathbb{E}_{x^0 \sim p_0, (o, a) \sim \mathcal{D}, t \sim \text{Unif}([0, 1])} [\|v_\phi(t, o, x^t) - (a - x^0)\|_2^2] \quad (5)$$

202 Flow policies extend flow matching to policy learning by conditioning the velocity field $v_\phi(t, o, x)$
 203 on the observation o . The resulting flow $\psi_\phi(1, o, z)$, with a noise $z \sim p_0$, defines a deterministic
 204 mapping $a = \mu_\phi(o, z)$ from observation and noise to actions by ODEs. Since z is stochastic, this
 205 induces a stochastic policy $\pi_\phi(a|o)$, enabling flow matching to serve as a generative policy model.

208 4 MULTI-AGENT COORDINATION VIA FLOW MATCHING (MAC-FLOW)

210 In this section, we introduce a novel MARL algorithm, dubbed MAC-FLOW, which is a simple and
 211 expressive tool for extracting multi-agent policies via flow matching.

213 4.1 HOW DOES MAC-FLOW EXTRACT ONE-STEP POLICIES FOR COORDINATION?

214 **Our desiderata** are threefold: (i) to capture the distribution of coordinated behaviors, thereby
 215 preserving inter-agent dependencies under multi-agent dynamics; (ii) to ensure high practicality by

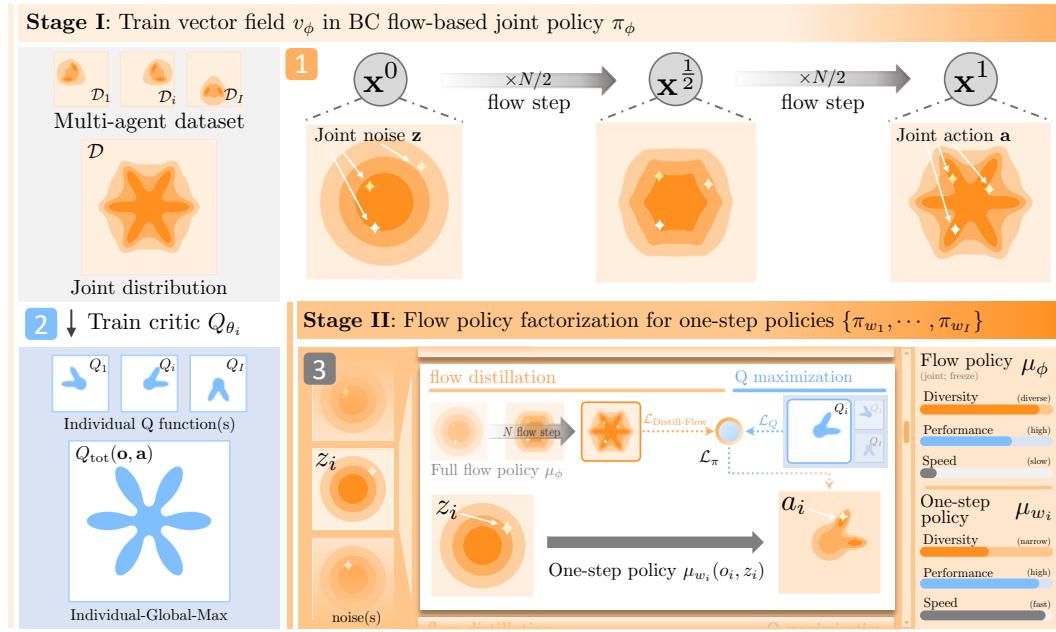


Figure 2: **Overview diagram of proposed solution.** Our solution, MAC-F_{low}, composes of two stages. The first stage models the joint action distribution via flow-matching to capture inter-agent dependencies, thereby facilitating the extraction of coordination behaviors more effectively than treating individual policies. For the next stage, individual critics are trained under the individual-global-max principle, thereby embedding behaviors for multi-agent coordination. At the second stage, practicality is highlighted by deriving individual policies for decentralized execution from a flow-based joint policy via Q maximization and BC distillation.

enabling decentralized execution and fast inference at test time; and (iii) to maintain algorithmic simplicity by avoiding unnecessary architectural overhead. Therefore, we adopt a two-stage strategy, which trains a joint policy via flow matching for (i), then distills it into a set of individual policies for (ii). Thanks to the simplicity of flow-matching and BC distillation, MAC-F_{low} directly fulfills (iii).

Overview. Figure 2 shows an overview diagram for MAC-F_{low}. To achieve our goal, the first stage learns a joint observation- and time-dependent vector field $v_\phi(t, \mathbf{o}, \mathbf{z})$ to capture the multi-modal action distribution from the multi-agent dataset \mathcal{D} . This vector field serves as a joint policy $\mu_\phi(\mathbf{o}, \mathbf{z})$. Before proceeding to the next stage, we train individual critics $\{Q_{\theta_1}, \dots, Q_{\theta_i}, \dots, Q_{\theta_I}\}$ based on the IGM principle. In the second stage, we distill the flow-based joint policy into one-step sampling policies $\{\mu_{\phi_1}(o_1, z_1), \dots, \mu_{w_i}(o_i, z_i), \dots, \mu_{w_I}(o_I, z_I)\}$ for each agent i , where w_i represents a parameter of an individual policy network for i -th agent. This relies on three key properties: **Definition 4.1**, the joint action distribution can be factorized into independent individual policies; **Proposition 4.2**, the mismatch between the joint distribution and its factorized approximation is upper-bounded by the distillation loss; and **Proposition 4.3** the resulting performance gap is controlled via a Lipschitz bound on the value function. Together, our solution preserves the multi-modal structure of the joint policy while extracting individual policies for fast inference.

4.2 PROPOSED SOLUTION

Joint Policy Extraction via Flow Matching. The objective of the first stage is to build a flow-based joint policy $\mu_\phi(\mathbf{o}, \mathbf{z})$ via solely BC objective that accurately captures the joint action distribution in the offline multi-agent dataset \mathcal{D} . Concretely, we train it by expanding the flow-BC loss function $\mathcal{L}_{\text{Flow-BC}}$ (Equation 5) into the joint observation-action data sample as follows:

$$\mathcal{L}_{\text{Flow-BC}}(\phi) = \mathbb{E}_{\mathbf{x}^0 \sim \mathbf{p}_0, (\mathbf{o}, \mathbf{a}) \sim \mathcal{D}, t \sim \text{Unif}([0, 1])} [\|v_\phi(t, \mathbf{o}, \mathbf{x}^t) - (\mathbf{a} - \mathbf{x}^0)\|_2^2] \quad (6)$$

where $\mathbf{x}^0 = [x_1^0, \dots, x_I^0]$ and $\mathbf{p}_0 = \prod_{i=1}^I \mathcal{N}(0, \mathbf{I}_{d_i})$ denote the random sampled joint noise and the noise distributions for all agents. The trained vector field v_ϕ defines a joint flow $\psi_\phi(1, \mathbf{o}, \mathbf{z})$ and hence a stochastic joint policy $\pi_\phi(\mathbf{a} \mid \mathbf{o})$ through reparameterization with $\mathbf{z} \sim \mathbf{p}_0$.

270 **Flow-based Joint Policy Distillation.** Since execution under the CTDE framework must be fully
 271 decentralized, a joint policy conditioned on global observation is infeasible to deploy. We therefore
 272 factorize the flow-based joint policy into individual policies that approximate the individual action
 273 distribution while preserving coordination. This connection can be formalized by extending the IGM
 274 principle to the action distribution as follows.

275 **Definition 4.1** (Action distribution identical matching). *For a joint observation \mathbf{o} and action \mathbf{a} with
 276 agent-wise dimensions d_i , let $\pi(\mathbf{a} \mid \mathbf{o})$ be the joint action distribution. If each agent i admits an
 277 individual distribution $\pi_i(a_i \mid o_i)$ such that $\pi(\mathbf{a} \mid \mathbf{o}) = \prod_{i=1}^N \pi_i(a_i \mid o_i)$, then we say that action
 278 distribution identical matching holds.*

280 This condition implies that decentralized execution via independent local sampling from $\pi_i(a_i \mid o_i)$
 281 is distributionally equivalent to centralized execution of the joint policy $\pi(\mathbf{a} \mid \mathbf{o})$. In practice, to
 282 approximate this factorization, we introduce a *distillation loss* that aligns the product of individual
 283 policies with the flow-based joint policy as follows:

$$284 \quad \mathcal{L}_{\text{Distill-Flow}}(\mathbf{w}) = \mathbb{E}_{\mathbf{o} \sim \mathcal{D}, \mathbf{z} \sim \mathbf{p}_0} \left[\sum_{i=1}^I \|\mu_{w_i}(o_i, z_i) - [\mu_\phi(\mathbf{o}, \mathbf{z})]_i\|_2^2 \right], \quad (7)$$

287 where $[\cdot]_i$ is the i -th subvector of joint variables, and \mathbf{w} is the set of individual policy parameters
 288 $[w_1, \dots, w_I]$. Importantly, distillation is not merely heuristic. Given both joint and factorized policies
 289 with the same noise, we obtain the following bound:

290 **Proposition 4.2** (2-Wasserstein upper bound of distillation). *Fix a joint observation \mathbf{o} . Let $\mathbf{z} \sim p_0$ be
 291 a noise variable, and define the joint policy mapping $\mu_\phi(\mathbf{o}, \mathbf{z}) \in \mathcal{A}$ and the factorized policy mapping
 292 $\mu_{\mathbf{w}}(\mathbf{o}, \mathbf{z}) = [\mu_{w_1}(o_1, z_1), \dots, \mu_{w_I}(o_I, z_I)] \in \mathcal{A}$. Denote by $\pi_\phi(\mathbf{o})$ and $\pi_{\mathbf{w}}(\mathbf{o})$ the push-forward
 293 distributions of \mathbf{p}_0 through μ_ϕ and $\mu_{\mathbf{w}}$, respectively. Then, the 2-Wasserstein distance between the
 294 joint policy and its factorization is upper-bounded by the square root of the distillation loss:*

$$295 \quad W_2(\pi_{\mathbf{w}}(\mathbf{o}), \pi_\phi(\mathbf{o})) \leq \left(\mathbb{E}_{\mathbf{z} \sim p_0} [\|\mu_{\mathbf{w}}(\mathbf{o}, \mathbf{z}) - \mu_\phi(\mathbf{o}, \mathbf{z})\|_2^2] \right)^{1/2}. \quad (8)$$

297 **Full Objective for Policy Factorization.** The goal of the second stage is to factorize a flow-based
 298 joint policy $\mu_\phi(\mathbf{o}, \mathbf{z})$ into a set of one-step sampling policies $\{\mu_{w_i}(o_1, z_1), \dots, \mu_{w_I}(o_I, z_I)\}$ for I
 299 agents under the IGM and Definition 4.1. Formally, the full loss function can be defined as follows:

$$301 \quad \mathcal{L}_\pi(\mathbf{w}) = \mathbb{E}_{\mathbf{o} \sim \mathcal{D}, \mathbf{a} \sim \pi_{\mathbf{w}}, \mathbf{z} \sim \mathbf{p}_0} \left[-Q_{\text{tot}}(\mathbf{o}, \mathbf{a}) + \alpha \sum_{i=1}^I \|\mu_{w_i}(o_i, z_i) - [\mu_\phi(\mathbf{o}, \mathbf{z})]_i\|_2^2 \right]. \quad (9)$$

303 As mentioned in Section 4.1, we design this function for one-step sampling policies to maximize the
 304 Q function and minimize the BC distillation losses. We train a critic network with a parameter θ_i for
 305 agent i . In practice, minimizing the $\mathcal{L}_\pi(\mathbf{w})$ in turn upper-bounds the performance difference in terms
 306 of the global value function Q_{tot} . The following proposition formalizes this guarantee.

307 **Proposition 4.3** (Lipschitz value gap bound). *Fix a joint observation \mathbf{o} and assume $Q_{\text{tot}}(\mathbf{o}, \cdot)$ is
 308 L_Q -Lipschitz in the action: $|Q_{\text{tot}}(\mathbf{o}, \pi_\phi(\mathbf{o})) - Q_{\text{tot}}(\mathbf{o}, \pi_{\mathbf{w}}(\mathbf{o}))| \leq L_Q \|\mathbf{a}_\phi - \mathbf{a}_{\mathbf{w}}\|_2, \forall \mathbf{a}_\phi, \mathbf{a}_{\mathbf{w}} \in \mathcal{A}$. Denote by $\pi_\phi(\mathbf{o})$ and $\pi_{\mathbf{w}}(\mathbf{o})$ the push-forward distributions of the joint noise \mathbf{p}_0 through $\mu_\phi(\mathbf{o}, \cdot)$ and $\mu_{\mathbf{w}}(\mathbf{o}, \cdot) = [\mu_{w_1}(o_1, z_1), \dots, \mu_{w_I}(o_I, z_I)]$, respectively. Then, the performance gap satisfies*

$$312 \quad \left| \mathbb{E}_{\mathbf{a} \sim \pi_{\mathbf{w}}(\mathbf{o})} [Q_{\text{tot}}(\mathbf{o}, \mathbf{a})] - \mathbb{E}_{\mathbf{a} \sim \pi_\phi(\mathbf{o})} [Q_{\text{tot}}(\mathbf{o}, \mathbf{a})] \right| \leq L_Q W_2(\pi_{\mathbf{w}}(\mathbf{o}), \pi_\phi(\mathbf{o})) \\ 313 \quad \leq L_Q \sqrt{\left(\mathbb{E}_{\mathbf{z} \sim \mathbf{p}_0} \|\mu_{\mathbf{w}}(\mathbf{o}, \mathbf{z}) - \mu_\phi(\mathbf{o}, \mathbf{z})\|_2^2 \right)}. \quad (10)$$

316 For all mathematical derivations of the provided Propositions, please see Appendix D. Note that these
 317 properties collectively characterize bounded performance degradation under explicit assumptions
 318 rather than perfectly global optimality preservation.

320 4.3 DIDACTIC EXAMPLE: VALIDATING THE WASSERSTEIN-VALUE GAP RELATION

322 To further understand the theoretical idea, we study a toy example with grid world, a landmark
 323 covering task. This subsection aims to show how policy factorization, distributional mismatch,
 Wasserstein distances, and value gaps manifest during learning.

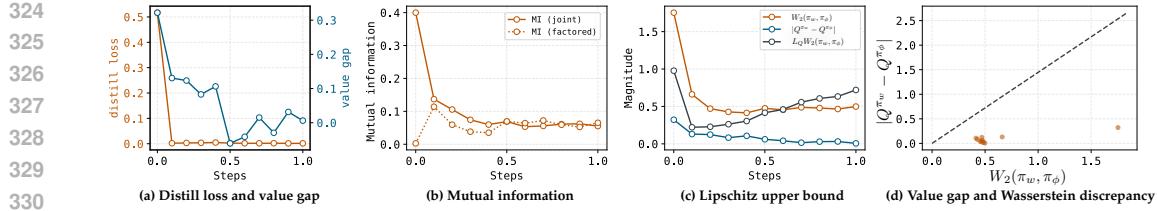


Figure 3: **Theoretical validation in a didactic example.** (a) Distillation loss and corresponding value gap between the joint and factored policies over training. (b) Inter-agent mutual information during training, comparing dependency strength in joint policy vs. factorized policies. (c) Empirical value gap alongside the theoretical Lipschitz upper bound predicted by Proposition 4.3. (d) Point-wise scatter of value gap versus Wasserstein discrepancy, showing all checkpoints lie below the theoretical bound.

Didactic task setup. In 2D plane environment, three agents aim to cover three fixed landmarks. Each agent observes its own position and all landmark positions, but not other agents. The action of agent i is a movement vector $a^i \in \mathbb{R}^2$. The reward is defined through an optimal assignment. The reward is a negative distance to its assigned landmark. We provide visualization in Appendix H.4.

Empirical evidence for propositions. Proposition 4.2 and 4.3 relate the performance deviation between the joint policy and its factorized approximation to the distillation discrepancy measured in Wasserstein distance under controlled conditions. First, Figure 3 (a) plots both the distillation loss and the empirical value gap over training. As distillation proceeds, the value gap decreases in tandem with the loss, confirming the expected contraction. Second, improved distributional alignment results in reduced performance degradation. Next, Figure 3(b) shows that the joint policy exhibits strong inter-agent mutual information $MI(a^i, a^j)$ during the early phase of training, reflecting the ambiguity in how agents initially partition the landmarks. As training progresses and the landmark assignments become more stable, this MI gradually decreases and eventually converges. In contrast, the factored policy starts from 0 MI, then gradually becomes similar to the joint policy. It maintains MI values below approximately 0.1 throughout training, which indicates that its independent parameterization cannot capture the interaction-induced dependencies without distillation. Finally, Figure 3 (c) shows that the empirical value gap stays below the theoretical upper bound at all checkpoints, with the gap tightening as learning stabilizes. A point-wise analysis in Figure 3 (d) further shows a clear monotonic trend: all samples lie beneath the linear envelope defined by $L_Q W_2$, indicating that the bound is both valid and informative in practice.

4.4 ALGORITHM SUMMARY

Algorithm 1 outlines MAC-Flow: we learn a BC flow-based joint policy $\mu_\phi(o, z)$ via flow matching to model joint action distributions; train individual critics $\{Q_{\theta_i}\}$ under the IGM principle; and factorize μ_ϕ into decentralized one-step policies $\{\mu_{w_i}\}$ via Q guidance and BC distillation. During training, policy action for TD backups are sampled from $\mu_\phi(o, z)$ using the Euler method (Algorithm 2), whereas at deployment, actions are generated directly by $\{\mu_{w_i}\}$. This design enhances inference speed while preserving coordinated expressivity, offering tractable value estimation under IGM, performance guarantees via Propositions 4.2 and 4.3, and single-step execution for fast inference.

5 EXPERIMENTS

The following subsection presents a suite of experiments designed to assess the effectiveness of MAC-Flow and experimental results via the following research questions (RQ) and answers.

RQ1. How good is MAC-Flow over continuous and discrete action spaces of MARL benchmarks?

RQ2. How fast is the inference speed of MAC-Flow compared to diffusion-based solutions?

RQ3. Can MAC-Flow be extended beyond offline pretraining to online fine-tuning?

RQ4. How effective is the two-stage strategy in MAC-Flow framework?

RQ5. How effective is the IGM-based critic training in MAC-Flow framework?

Please see Appendix F, G, and H to check additional RQs and a detailed description for experiments.

378

Algorithm 1 MAC-F_{low}

```

379   while not converged do
380     Sample batch  $\{(o_i, a_i, r_i, o'_i)\}_{i=1}^I \sim \mathcal{D}$ 
381
382     # TRAIN BC FLOW-BASED JOINT POLICY  $\pi_\phi$ 
383     Set variables  $\mathbf{x}^0 \leftarrow \mathbf{z} \sim \mathbf{p}^0, \mathbf{x}^1 \leftarrow \mathbf{a}, t \sim \text{Unif}([0, 1])$ 
384     Calculate noise point  $\mathbf{x}_t \leftarrow (1 - t)\mathbf{x}_0 + t\mathbf{x}_1$ 
385     Update  $\phi$  using Equation (6)
386
387     # TRAIN INDIVIDUAL CRITIC  $Q_{\theta_i}$ 
388     for  $i = 1, \dots, I$  do
389       Sample noise  $x_i^0 \leftarrow z_i \sim p_i^0$ 
390       Sample joint action  $\mathbf{a}' \leftarrow \mu_\phi(\mathbf{o}', \mathbf{x}^0)$  ▷ Algorithm 2
391       Update  $\{\theta_i\}_{i=1}^I$  by  $\mathbb{E}[Q_{\theta_i}(o_i, a_i) - r_i - \gamma Q_{\bar{\theta}_i}(o'_i, a'_i)]$ 
392
393     # EXTRACT INDIVIDUAL POLICY  $\pi_{w_i}$ 
394     for  $i = 1, \dots, I$  do
395       Sample noise  $x_i^0 \leftarrow z_i \sim p_i^0$ 
396       Sample action  $a_i \leftarrow \mu_{w_i}(o_i, x_i^0)$ 
397       Update  $\{w_i\}_{i=1}^I$  using Equation (9)
398
399     return set of one-step policies  $\{\pi_{w_1}, \dots, \pi_{w_I}\}$ 
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

```

5.1 ENVIRONMENTAL SETUPs

We evaluate the proposed solution, MAC-F_{low}, on four widely used MARL environments: StarCraft multi-agent challenge (SMAC) v1, SMACv2, multi-agent MuJoCo (MA-MuJoCo), and the multiple-particle environment (MPE). A description of the testbeds and datasets is provided below.

SMACv1 (*discrete action*) provides a real-time combat environment where two teams compete, with one controlled by built-in AI and the other by learned policies. It incorporates both homogeneous and heterogeneous unit settings, thereby enabling diverse strategic coordination requirements. For **offline datasets**, we use the assets from off-the-grid benchmark (Formanek et al., 2023), *including* three quality datasets for each map, *e.g.*, Good, Medium, and Poor.

SMACv2 (*discrete action*) extends SMACv1 by addressing the limited randomness of SMACv1 through three major modifications: randomized start positions, randomized unit types, and adjusted unit sight and attack ranges. These changes increase the diversity of the scenarios, making the tasks more challenging. For **offline datasets**, we use the assets from off-the-grid benchmark (Formanek et al., 2023), *including* a dataset for each map, *e.g.*, Replay.

MA-MuJoCo (*continuous action*) decomposes single robotic systems into multiple agents, each responsible for controlling a specific subset of joints. This design enables agents to coordinate in achieving shared objectives. For **its datasets**, we leverage the asset from Wang et al. (2023), *including* four datasets for each robotic control, *e.g.*, Expert, Medium-Expert, Medium, and Medium-Replay.

MPE (*continuous action*) is a lightweight benchmark commonly used for studying cooperative coordination. Agents are represented as particles moving in a two-dimensional continuous space, where they must coordinate to achieve goals. We leverage the offline datasets collected by Pan et al. (2022), *including* four quality datasets, *e.g.*, Expert, Medium, Medium-Replay, and Random.

Baselines. For offline MARL experiments, we use the three categories for baselines. For Gaussian policies, we consider the extension of SARL, *e.g.*, BC, BCQ (Fujimoto et al., 2019), CQL (Kumar et al., 2020), and TD3BC (Fujimoto & Gu, 2021), and standard offline MARL solutions, *e.g.*, ICQ (Yang et al., 2021), OMAR (Pan et al., 2022), and OMIGA (Wang et al., 2023). For diffusion policies, we select recent offline MARL algorithms, *e.g.*, diffusion BC, MADiff (Zhu et al., 2024), and DoF (Li et al., 2025a). Lastly, the flow policies include F_{low} BC and our proposed solution.

5.2 EXPERIMENTAL RESULTS AND RESEARCH Q&A

Contribution overview with RQ1 and RQ2. Diffusion baselines, *e.g.*, DoF, demonstrate strong coordination performance, but they incur substantial cost due to iterative denoising process. In contrast, Mac-F_{low} trades a small amount of expressiveness for dramatically faster optimization.

Algorithm 2 Sampling

```

function  $\mu_\phi(\mathbf{o}, \mathbf{x})$ 
   $d \leftarrow 1/M$ 
   $t \leftarrow 0$ 
  for  $k \in \{0, \dots, M - 1\}$  do
     $\mathbf{x} \leftarrow \mathbf{x} + v_\phi(t, \mathbf{o}, \mathbf{x})d$ 
     $t \leftarrow t + d$ 
  return  $\mathbf{x}$ 

```

Table 1: **Performance evaluation for discrete action control.** We present a performance comparison across 2 benchmarks, 8 tasks, and 18 datasets. These results are averaged over 6 seeds, and we report the two standard deviations after the \pm sign. We highlight the best performance in **bold** and the second best in underlined.

Scenarios	Dataset	Gaussian policies			Diffusion policies			Flow policies	
		BC	MABCQ	MACQL	Diffusion BC	MADiff	DoF	Flow BC	MAC-Flow
SMACv1	3m	Good	16.0 \pm 1.0	3.7 \pm 1.1	19.1 \pm 0.1	19.5 \pm 0.5	19.3 \pm 0.5	<u>19.8</u> \pm 0.2	20.0 \pm 0.0
		Medium	8.2 \pm 0.8	4.0 \pm 1.0	13.7 \pm 0.3	13.3 \pm 0.7	16.4 \pm 2.6	<u>18.6</u> \pm 1.2	14.7 \pm 1.5
		Poor	4.4 \pm 0.1	3.4 \pm 1.0	4.2 \pm 0.1	4.2 \pm 0.2	10.3 \pm 6.1	<u>10.9</u> \pm 1.1	4.5 \pm 0.1
	8m	Good	16.7 \pm 0.4	4.8 \pm 0.6	18.9 \pm 0.9	19.4 \pm 0.5	18.9 \pm 1.1	<u>19.6</u> \pm 0.3	19.5 \pm 0.2
		Medium	10.7 \pm 0.5	5.6 \pm 0.6	15.5 \pm 1.5	<u>18.6</u> \pm 0.6	16.8 \pm 1.6	<u>18.6</u> \pm 0.8	18.2 \pm 0.8
		Poor	5.3 \pm 0.1	3.6 \pm 0.8	7.5 \pm 1.0	4.8 \pm 0.2	9.8 \pm 0.9	<u>12.0</u> \pm 1.2	4.9 \pm 0.1
	2s3z	Good	18.2 \pm 0.4	7.7 \pm 0.9	17.4 \pm 0.3	18.0 \pm 1.0	15.9 \pm 1.2	<u>18.5</u> \pm 0.8	19.5 \pm 0.1
		Medium	12.3 \pm 0.7	7.6 \pm 0.7	15.6 \pm 0.4	13.4 \pm 1.4	15.6 \pm 0.3	<u>18.1</u> \pm 0.9	15.1 \pm 2.0
		Poor	6.7 \pm 0.3	6.6 \pm 0.2	8.4 \pm 0.8	6.2 \pm 1.2	<u>8.5</u> \pm 1.3	<u>10.0</u> \pm 1.1	6.9 \pm 0.8
SMACv2	5m_vs_6m	Good	15.8 \pm 3.6	2.4 \pm 0.4	16.2 \pm 1.6	16.8 \pm 2.3	16.5 \pm 2.8	17.7 \pm 1.1	14.7 \pm 2.1
		Medium	12.4 \pm 0.9	3.8 \pm 0.5	15.1 \pm 2.9	12.5 \pm 2.1	15.2 \pm 2.6	<u>16.2</u> \pm 0.9	12.8 \pm 0.8
		Poor	7.5 \pm 0.2	3.3 \pm 0.5	<u>10.5</u> \pm 3.1	8.0 \pm 1.0	8.9 \pm 1.3	<u>10.8</u> \pm 0.3	7.7 \pm 0.8
	2c_vs_64zg	Good	17.5 \pm 0.4	10.1 \pm 0.2	12.9 \pm 0.2	17.8 \pm 1.3	14.7 \pm 2.2	16.1 \pm 0.8	<u>18.0</u> \pm 1.3
		Medium	12.5 \pm 0.3	9.9 \pm 0.2	11.6 \pm 0.1	10.5 \pm 1.1	12.8 \pm 1.2	<u>13.9</u> \pm 0.9	11.8 \pm 2.6
		Poor	9.7 \pm 0.2	9.0 \pm 0.2	10.2 \pm 0.1	10.2 \pm 2.3	10.8 \pm 1.1	<u>11.5</u> \pm 1.1	10.0 \pm 0.3
	Average rewards		12.2	5.5	13.1	13.0	13.8	15.6	13.4
	terran_5_vs_5	Replay	7.3 \pm 1.0	13.8 \pm 4.4	11.8 \pm 0.9	9.3 \pm 0.9	13.3 \pm 1.8	<u>15.4</u> \pm 1.3	8.3 \pm 1.9
	zerg_5_vs_5	Replay	6.8 \pm 0.6	<u>10.3</u> \pm 1.2	<u>10.3</u> \pm 3.4	8.1 \pm 1.7	10.2 \pm 1.1	<u>12.0</u> \pm 1.1	4.6 \pm 0.5
	terran_10_vs_10	Replay	7.4 \pm 0.5	12.7 \pm 2.0	11.8 \pm 2.0	5.5 \pm 1.5	<u>13.8</u> \pm 1.3	<u>14.6</u> \pm 1.1	5.8 \pm 1.7
	Average rewards		7.2	12.3	11.3	7.6	12.4	14.0	6.2
SMACv2		Average rewards		13.1	13.8	15.6	13.4	15.6	13.1

Table 2: **Performance evaluation for continuous action control.** We present a performance comparison across 2 benchmarks, 4 tasks, and 16 datasets. Results are reported following the conventions of Table 1. For readability, we use the acronyms *M-E* and *M-R* for Medium-Expert and Medium-Replay, respectively.

Scenarios	Dataset	Extension of offline SRL		Offline MARL					
		MATD3BC	MACQL	ICQ	OMAR	OMIGA	MADiff	MAC-Flow	
MA-MuJoCo	HalfCheetah	Expert	4401.6 \pm 169.1	4589.5 \pm 98.5	2955.9 \pm 459.2	-206.7 \pm 161.1	3383.6 \pm 552.7	4711.4 \pm 213.6	4650.0 \pm 271.6
		Medium	2620.8 \pm 69.9	3189.4 \pm 306.9	2549.3 \pm 96.3	-265.7 \pm 147.0	3608.1 \pm 237.4	2650.0 \pm 365.4	4358.5 \pm 369.2
		M-R	3528.9 \pm 120.9	3500.7 \pm 293.9	1922.4 \pm 612.9	-235.4 \pm 154.9	2504.7 \pm 83.5	2830.5 \pm 292.8	3030.2 \pm 436.8
		M-E	3518.1 \pm 381.0	<u>4738.2</u> \pm 181.1	2834.0 \pm 420.3	-253.8 \pm 63.9	2945.8 \pm 18.9	5139.9 \pm 84.1	
MA-MuJoCo	Hopper	Expert	3309.9 \pm 4.5	<u>3359.1</u> \pm 513.8	754.7 \pm 806.3	2.4 \pm 1.5	859.6 \pm 709.5	2853.3 \pm 593.8	3592.1 \pm 8.9
		Medium	870.4 \pm 156.7	901.3 \pm 199.9	501.8 \pm 14.0	21.3 \pm 24.9	1189.3 \pm 544.3	1436.8 \pm 449.5	1023.5 \pm 253.0
		M-R	269.7 \pm 41.8	31.4 \pm 15.2	195.4 \pm 103.6	3.3 \pm 3.2	774.2 \pm 494.3	<u>936.1</u> \pm 574.0	<u>1166.3</u> \pm 451.9
		M-E	2904.3 \pm 477.4	2751.8 \pm 123.3	355.4 \pm 373.9	1.4 \pm 0.9	709.0 \pm 595.7	2810.4 \pm 723.2	2988.3 \pm 480.2
MPE	Ant	Expert	2046.9 \pm 17.1	2082.4 \pm 21.7	2050.0 \pm 11.9	312.5 \pm 297.5	2055.5 \pm 1.6	2060.0 \pm 10.3	2060.2 \pm 20.0
		Medium	1422.6 \pm 21.1	1033.9 \pm 66.4	1412.4 \pm 10.9	-1710.0 \pm 1589.0	1418.4 \pm 5.4	1428.4 \pm 14.7	1432.4 \pm 17.8
		M-R	995.2 \pm 52.8	434.6 \pm 108.3	1016.7 \pm 53.5	-2014.2 \pm 844.7	1105.1 \pm 88.9	1294.5 \pm 360.2	1498.4 \pm 20.3
		M-E	1636.1 \pm 96.0	<u>1800.2</u> \pm 21.5	1590.2 \pm 85.6	-2992.8 \pm 7.0	1720.3 \pm 110.6	1740.2 \pm 158.9	2053.3 \pm 20.4
Average rewards		2293.7	2367.7	1511.5	-611.5	1856.4	2430.21	2749.4	
MPE	Spread	Expert	<u>108.3</u> \pm 3.3	98.2 \pm 5.2	114.9 \pm 2.6	104.0 \pm 3.4	80.8 \pm 13.8	<u>95.0</u> \pm 5.3	101.7 \pm 10.9
		Medium	29.3 \pm 4.8	34.1 \pm 7.2	47.9 \pm 18.9	29.3 \pm 5.5	30.1 \pm 16.9	<u>64.9</u> \pm 7.7	80.1 \pm 20.6
		M-R	15.4 \pm 5.6	20.0 \pm 8.4	<u>37.9</u> \pm 12.3	13.6 \pm 5.7	5.4 \pm 11.0	30.3 \pm 2.5	50.4 \pm 33.2
		Random	9.8 \pm 4.9	24.0 \pm 9.8	34.4 \pm 5.3	6.3 \pm 3.5	-3.8 \pm 12.3	6.9 \pm 3.1	31.1 \pm 6.8
Average rewards		40.7	44.1	58.8	38.3	28.1	49.2	65.8	

Additionally, MAC-Flow incurs a modest increase in training time over Gaussian models, but still trains far faster than diffusion baselines. Full results are provided in Appendix H.2

A1: For **RQ1 (Performance)**, MAC-Flow achieves best or second-best average performance across four benchmarks regardless of continuous or discrete action space. Table 1 and 2 summarize the performance comparison across four benchmarks. These results demonstrate that MAC-Flow matches the performance of DoF by combining expressive flow-based modeling of joint action distribution with an efficient distillation step into decentralized one-step policies, thereby preserving coordination quality while ensuring scalability across discrete and continuous benchmarks.

A2: For **RQ2 (Inference speed)**, MAC-Flow achieves averaged $\times 14.5$ faster inference than diffusion policies with comparable performance. Figure 4 shows its faster inference while maintaining competitive performance relative to MADiff and DoF. Moreover, MAC-Flow matches the inference speed of prior offline MARL algorithms but significantly outperforming them in performance. Theoretically, the per-agent inference complexity of MAC-Flow is low, especially $\mathcal{O}(1)$, in contrast to $\mathcal{O}(K)$ for DoF and $\mathcal{O}(IK)$ for MADIFF, where K is the diffusion steps and I is the number of agents. Full details are in Appendix C.

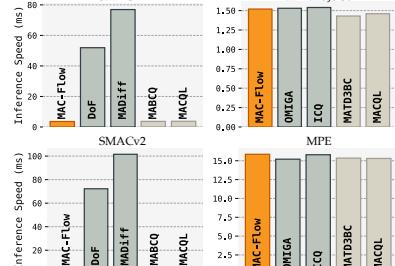


Figure 4: **Inference time.** These results are averaged over each benchmark’s scenarios.

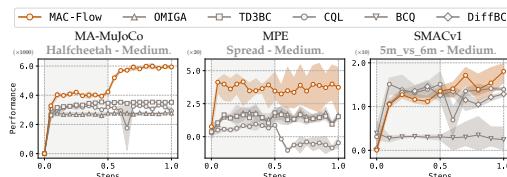


Figure 5: **Offline-to-online experiments.** Online fine-tuning starts at 0.5 normalized steps.

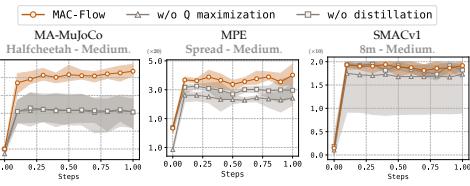


Figure 6: **Ablation study for RQ4.** We test the effect of the distillation phase and its RL objective.

A3: For RQ3 (Offline-to-online), MAC-Flow can seamlessly use online rollouts to fine-tune itself, enabling it to achieve better results than previous methods. Figure 5 shows the training curves of MAC-Flow and previous baselines, where online fine-tuning begins after 0.5 iteration steps. Some baselines fail to account for exploration and thus remain limited to their offline performance, while MAC-CQL exhibits the reported issue of a sharp performance drop at the initial stage of the online phase. In contrast, our approach effectively improves performance in the online stage by leveraging newly collected rollouts. In practice, MAC-Flow can fine-tune its networks under the same objective used in offline learning by simply augmenting the offline dataset with additional online rollouts.

A4: For RQ4 (Ablation on distillation with Q maximization), both the full objective and training scheme of MAC-Flow are essential. Figure 6 presents the ablation study on Q maximization in Equation (9) and the distillation stage in the two-stage training scheme. Specifically, w/o Q maximization corresponds to a one-step sampling policy without an RL objective, while w/o distillation refers to a pure BC flow policy that requires an ODE solver. Across all scenarios, MAC-Flow consistently outperforms its ablated counterparts, demonstrating that removing either Q-maximization or the distillation phase substantially limits policy learning. These results highlight that such components are critical to achieving strong performance across diverse tasks.

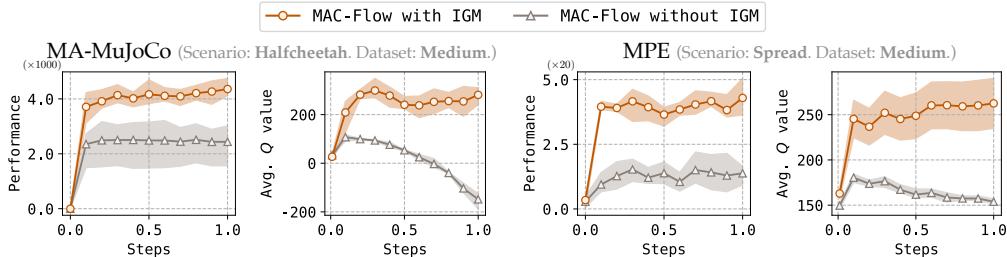


Figure 7: **Ablation study for RQ5.** This figure shows the learning curves for performance and Q value. Performance's y-axes of MA-MuJoCo and MPE are scaled as 1000 and 20 units, respectively.

A5: For RQ5 (Ablation on IGM), IGM-based critic training is crucial for ensuring stability in critic optimization, consistency in Q -value estimation, and superior performance in the MAC-Flow framework. Figure 7 presents learning curves for the ablation study comparing MAC-Flow with IGM and without IGM. The IGM-based variant achieves substantially higher performance, while the non-IGM counterpart stagnates at suboptimal levels. In particular, IGM leads to significantly lower and more stable loss curves in a multi-agent setting; additionally, the non-IGM baseline exhibits a collapse of Q estimates as training progresses.

6 CONCLUSIONS

In this work, we propose MAC-Flow, a novel MARL algorithm that learns a flow-based joint policy to capture the multi-modality of multi-agent datasets, and then distills it into decentralized one-step sampling policies using a combination of RL and BC objectives. Our experiments show that MAC-Flow addresses the trade-off between inference efficiency and performance in offline MARL.

Future Directions and Impact Statement. While our approach demonstrates strong performance and efficiency gains, extending MAC-Flow to more diverse and dynamic environments remains an important direction. We should develop an algorithm that can integrate other pre-trained distributions to enhance the diversity of decentralized policies. This can enable more flexible role adaptation and generalizability improvement, ensuring that agents adapt to new scenarios. Such directions increase the stability of multi-agent systems. This line of research provides a foundation for future advances in generalizable MARL and its deployment in real-world domains.

540 REFERENCES
541

542 Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
543 ditional generative modeling all you need for decision-making? *arXiv preprint arXiv:2211.15657*,
544 2022.

545 Marvin Alles, Nutan Chen, Patrick van der Smagt, and Botond Cseke. FlowQ: Energy-guided flow
546 policies for offline reinforcement learning. *arXiv preprint arXiv:2505.14139*, 2025.

548 Eloi Alonso, Adam Jolley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
549 Fran ois Fleuret. Diffusion for world modeling: Visual details matter in Atari. *NeurIPS*, 37:
550 58757–58791, 2024.

551 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint
552 arXiv:1607.06450*, 2016.

554 Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
555 with offline data. In *ICML*, pp. 1577–1594, 2023.

557 Paul Barde, Jakob Foerster, Derek Nowrouzezahrai, and Amy Zhang. A model-based solution to the
558 offline multi-agent reinforcement learning coordination problem. *AAMAS*, 2024.

559 Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
560 decentralized control of Markov decision processes. *Mathematics of operations research*, 27(4):
561 819–840, 2002.

563 Prajjwal Bhargava, Rohan Chitnis, Alborz Geramifard, Shagun Sodhani, and Amy Zhang. When
564 should we prefer decision transformers for offline reinforcement learning? *ICLR*, 2024.

566 Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
567 Dragan. On the utility of learning about humans for human-AI coordination. *NeurIPS*, 32, 2019.

568 Bo Chen, Chengyue Gong, Xiaoyu Li, Yingyu Liang, Zhizhou Sha, Zhenmei Shi, Zhao Song,
569 and Mingda Wan. High-order matching for one-step shortcut diffusion models. *arXiv preprint
570 arXiv:2502.00688*, 2025.

572 Chang Chen, Fei Deng, Kenji Kawaguchi, Caglar Gulcehre, and Sungjin Ahn. Simple hierarchical
573 planning with diffusion. *arXiv preprint arXiv:2401.02644*, 2024a.

574 Huayu Chen, Cheng Lu, Zhengyi Wang, Hang Su, and Jun Zhu. Score regularized policy optimization
575 through diffusion behavior. *ICLR*, 2024b.

577 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
578 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The
579 International Journal of Robotics Research*, pp. 02783649241273668, 2023.

580 Tom Danino and Nahum Shimkin. Ensemble-MIX: Enhancing sample efficiency in multi-agent rl
581 using ensemble methods. *arXiv preprint arXiv:2506.02841*, 2025.

583 Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
584 Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
585 multi-agent challenge? *arXiv preprint arXiv:2011.09533*, 2020.

586 Zihan Ding and Chi Jin. Consistency models as a rich and efficient policy class for reinforcement
587 learning. *arXiv preprint arXiv:2309.16984*, 2023.

589 Zihan Ding, Amy Zhang, Yuandong Tian, and Qinqing Zheng. Diffusion world model: Future model-
590 ing beyond step-by-step rollout for offline reinforcement learning. *arXiv preprint arXiv:2402.03570*,
591 2024.

592 Chanin Eom, Dongsu Lee, and Minhae Kwon. Selective imitation for efficient online reinforcement
593 learning with pre-collected data. *ICT Express*, 10(6):1308–1314, 2024.

594 Claude Formanek, Asad Jeewa, Jonathan Shock, and Arnu Pretorius. Off-the-grid MARL: Datasets
 595 with baselines for offline multi-agent reinforcement learning. *arXiv preprint arXiv:2302.00521*,
 596 2023.

597 Juan Formanek, Callum R Tilbury, Louise Beyers, Jonathan Shock, and Arnu Pretorius. Dispelling
 598 the mirage of progress in offline marl through standardised baselines and evaluation. *NeurIPS*, 37:
 599 139650–139672, 2024.

600 Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 601 models. *arXiv preprint arXiv:2410.12557*, 2024.

602 Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
 603 *NeurIPS*, 34:20132–20145, 2021.

604 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
 605 exploration. In *ICML*, pp. 2052–2062, 2019.

606 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 607 Yaron Lipman. Discrete flow matching. *NeurIPS*, 37:133345–133385, 2024.

608 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 609 maximum entropy deep reinforcement learning with a stochastic actor. In *ICML*, pp. 1861–1870,
 610 2018.

611 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*, 33:
 612 6840–6851, 2020.

613 Xingshuai Huang, Di Wu Member, and Benoit Boulet. Goal-conditioned data augmentation for
 614 offline reinforcement learning. *arXiv preprint arXiv:2412.20519*, 2024.

615 Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
 616 flexible behavior synthesis. *arXiv preprint arXiv:2205.09991*, 2022.

617 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 618 q-learning. *arXiv preprint arXiv:2110.06169*, 2021.

619 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
 620 reinforcement learning. *NeurIPS*, 33:1179–1191, 2020.

621 Dongsu Lee and Minhae Kwon. Scenario-free autonomous driving with multi-task offline-to-online
 622 reinforcement learning. *IEEE Transactions on Intelligent Transportation Systems*, 2025.

623 Dongsu Lee, Chanin Eom, and Minhae Kwon. AD4RL: Autonomous driving benchmarks for offline
 624 reinforcement learning with value-based dataset. In *ICRA*, pp. 8239–8245. IEEE, 2024a.

625 Jaewoo Lee, Sujin Yun, Taeyoung Yun, and Jinkyoo Park. GTA: Generative trajectory augmentation
 626 with guidance for offline reinforcement learning. *NeurIPS*, 37:56766–56801, 2024b.

627 John M Lee. Smooth manifolds. In *Introduction to smooth manifolds*, pp. 1–29. Springer, 2003.

628 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 629 review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

630 Chao Li, Ziwei Deng, Chenxing Lin, Wenqi Chen, Yongquan Fu, Weiquan Liu, Chenglu Wen,
 631 Cheng Wang, and Siqi Shen. Dof: A diffusion factorization framework for offline multi-agent
 632 reinforcement learning. In *ICLR*, 2025a.

633 Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. *arXiv
 634 preprint arXiv:2507.07969*, 2025b.

635 Zhuoran Li, Ling Pan, and Longbo Huang. Beyond conservatism: Diffusion policies in offline
 636 multi-agent reinforcement learning. *arXiv preprint arXiv:2307.01472*, 2023.

637 Zhuoran Li, Xun Wang, Hai Zhong, and Longbo Huang. OM2P: Offline multi-agent mean-flow
 638 policy. *arXiv preprint arXiv:2508.06269*, 2025c.

648 Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
 649 Diffusion models as adaptive self-evolving planners. *arXiv preprint arXiv:2302.01877*, 2023.
 650

651 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 652 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

653 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
 654 David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv preprint*
 655 *arXiv:2412.06264*, 2024.

656

657 Yijing Liu, Chao Du, Tianyu Pang, Chongxuan Li, Min Lin, and Wei Chen. Graph diffusion policy
 658 optimization. *NeurIPS*, 37:9585–9611, 2024.

659 Zongkai Liu, Qian Lin, Chao Yu, Xiangwei Wu, Yile Liang, Donghui Li, and Xuetao Ding. Offline multi-
 660 agent reinforcement learning via in-sample sequential policy optimization. In *AAAI*, volume 39,
 661 pp. 19068–19076, 2025.

662

663 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
 664 actor-critic for mixed cooperative-competitive environments. *NeurIPS*, 30, 2017.

665 Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. *NeurIPS*,
 666 36:46323–46344, 2023.

667

668 Haofei Lu, Dongqi Han, Yifei Shen, and Dongsheng Li. What makes a good diffusion planner for
 669 decision making? *ICLR*, 2025.

670

671 Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
 672 sampling speed. *arXiv preprint arXiv:2101.02388*, 2021.

673

674 Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning for
 675 diffusion policy. *ICML*, 2025.

676

677 Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
 678 Tim Salimans. On distillation of guided diffusion models. In *CVPR*, 2023a.

679

680 Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying
 681 Wen, Haifeng Zhang, Jun Wang, Yaodong Yang, et al. Offline pre-trained multi-agent decision
 682 transformer. *Machine Intelligence Research*, 20(2):233–248, 2023b.

683

684 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
 685 Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. *arXiv preprint*
 686 *arXiv:1312.5602*, 2013.

687

688 Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadiffuser:
 689 Diffusion model as conditional planner for offline meta-RL. In *ICML*, pp. 26087–26105, 2023.

690

691 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 692 In *ICML*, pp. 8162–8171, 2021.

693

694 Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline
 695 multi-agent reinforcement learning with actor rectification. In *ICML*, pp. 17221–17237, 2022.

696

697 George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
 698 Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. *Journal of*
 699 *Machine Learning Research*, 22(57):1–64, 2021.

700

701 Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-constrained
 702 unsupervised skill discovery. In *ICLR*, 2022.

703

704 Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
 705 bottleneck in offline rl? *NeurIPS*, 37:79029–79056, 2024.

706

707 Seohong Park, Qiyang Li, and Sergey Levine. Flow Q-learning. *ICML*, 2025.

702 Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
 703 Wendelin Böhmer, and Shimon Whiteson. FACMAC: Factored multi-agent centralised policy
 704 gradients. *NeurIPS*, 34:12208–12221, 2021.

705

706 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 707 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

708

709 Boris Polyak and Anatoli Juditsky. Acceleration of stochastic approximation by averaging. *SIAM*
 710 *Journal on Control and Optimization*, 30(4):838–855, 1992.

711

712 Dan Qiao, Wenhao Li, Shanchao Yang, Hongyuan Zha, and Baoxiang Wang. Offline multi-agent
 713 reinforcement learning with sequential score decomposition. *OpenReview*, 2025.

714

715 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
 716 and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
 717 learning. *Journal of Machine Learning Research*, 21(178):1–51, 2020.

718

719 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pukit Agrawal, Anirudha Majumdar,
 720 Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization.
 721 *CoRL Workshop*, 2024.

722

723 Marc Rigter, Jun Yamada, and Ingmar Posner. World models via policy-guided trajectory diffusion.
 724 *arXiv preprint arXiv:2312.08533*, 2023.

725

726 Stephane Ross and J Andrew Bagnell. Agnostic system identification for model-based reinforcement
 727 learning. *arXiv preprint arXiv:1203.1007*, 2012.

728

729 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv*
 730 *preprint arXiv:2202.00512*, 2022.

731

732 Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
 733 Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
 734 starcraft multi-agent challenge. *arXiv preprint arXiv:1902.04043*, 2019.

735

736 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 737 learning using nonequilibrium thermodynamics. In *ICML*, pp. 2256–2265, 2015.

738

739 Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN:
 740 Learning to factorize with transformation for cooperative multi-agent reinforcement learning. In
 741 *ICML*, pp. 5887–5896, 2019.

742

743 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 744 *preprint arXiv:2010.02502*, 2020a.

745

746 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 747 *NeurIPS*, 32, 2019.

748

749 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 750 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 751 *arXiv:2011.13456*, 2020b.

752

753 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. *ICML*, 2023.

754

755 Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
 756 Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
 757 networks for cooperative multi-agent learning. *arXiv preprint arXiv:1706.05296*, 2017.

758

759 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the
 760 minimalist approach to offline reinforcement learning. *NeurIPS*, 36:11592–11620, 2023.

761

762 Wei-Cheng Tseng, Tsun-Hsuan Johnson Wang, Yen-Chen Lin, and Phillip Isola. Offline multi-agent
 763 reinforcement learning with knowledge distillation. *NeurIPS*, 35:226–237, 2022.

756 Eugene Vinitsky, Nathan Lichtené, Xiaomeng Yang, Brandon Amos, and Jakob Foerster. Nocturne:
 757 a scalable driving benchmark for bringing multi-agent learning one step closer to the real world.
 758 *NeurIPS*, 35:3962–3974, 2022.

759 Andrew Wagenmaker, Mitsuhiro Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub, Anusha
 760 Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with latent space
 761 reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025.

762 Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex dueling
 763 multi-agent Q-learning. *ICLR*, 2021.

764 Xiangsen Wang, Haoran Xu, Yinan Zheng, and Xianyuan Zhan. Offline multi-agent reinforcement
 765 learning with implicit global-to-local value regularization. *NeurIPS*, 36:52413–52429, 2023.

766 Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
 767 Multi-agent reinforcement learning is a sequence modeling problem. *NeurIPS*, 35:16509–16521,
 768 2022.

769 Jonas Wildberger, Maximilian Dax, Simon Buchholz, Stephen Green, Jakob H Macke, and Bernhard
 770 Schölkopf. Flow matching for scalable simulation-based inference. *NeurIPS*, 36:16837–16864,
 771 2023.

772 Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
 773 *arXiv preprint arXiv:1911.11361*, 2019.

774 Ningyuan Yang, Jiaxuan Gao, Feng Gao, Yi Wu, and Chao Yu. Fine-tuning diffusion policies with
 775 backpropagation through diffusion timesteps. *arXiv preprint arXiv:2505.10482*, 2025.

776 Qianlan Yang and Yu-Xiong Wang. RTDiff: Reverse trajectory synthesis via diffusion for offline
 777 reinforcement learning. In *ICLR*, 2025.

778 Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
 779 Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
 780 reinforcement learning. *NeurIPS*, 34:10299–10312, 2021.

781 Xianghua Zeng, Hang Su, Zhengyi Wang, and Zhiyuan Lin. Graph diffusion for robust multi-agent
 782 coordination. In *ICML*, 2025.

783 Qinglun Zhang, Zhen Liu, Haoqiang Fan, Guanghui Liu, Bing Zeng, and Shuaicheng Liu. Flowpolicy:
 784 Enabling fast and robust 3d flow-based policy via consistency flow matching for robot manipulation.
 785 In *AAAI*, volume 39, pp. 14754–14762, 2025a.

786 Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
 787 reinforcement learning. *arXiv preprint arXiv:2503.04975*, 2025b.

788 Yuyou Zhang, Yaru Niu, Xingyu Liu, and Ding Zhao. Composer: Scalable and robust modular
 789 policies for snake robots. In *ICRA*, pp. 10800–10806. IEEE, 2024.

790 Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
 791 flows for generative modeling and decision making. *arXiv preprint arXiv:2311.13443*, 2023.

792 Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon,
 793 and Weinan Zhang. MADiff: Offline multi-agent learning with diffusion models. *NeurIPS*, 37:
 794 4177–4206, 2024.

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813 **CONTENTS**

814

815

A Miscellaneous	17
A.1 Summary of Notations	17
A.2 System Specification	17
B Extensive Related Works	18
C Complexity Analysis	19
D Mathematical Derivation	20
D.1 Proof for Proposition 4.2	20
D.2 Proof for Proposition 4.3	20
E Training Details of MAC-Flow	21
F Implementation Details	22
F.1 Baseline Algorithms	22
F.2 Git Repository for Baseline Implementation	23
G Experimental Details	24
G.1 SMACv1 and SMACv2	24
G.2 MA-MuJoCo	24
G.3 MPE	24
G.4 Hyperparameters	25
H Additional Results	26
H.1 Ablation Study	26
H.2 Training Time	27
H.3 Learning Curves of MAC-Flow	28
H.4 Landmark Covering Game: Scaling Up The Number of Agents	29
H.5 Pure Coordination Game: Better Point than BC Generative Modeling	30
H.6 XOR Stress Test: Failure Mode Analysis	31
H.7 Payoff Game: Analysis According to Interaction Strength	32

857

858

859

860

861

862

863

Appendix

864 **A MISCELLANEOUS**865 **A.1 SUMMARY OF NOTATIONS**

868 Dec-POMDP elements			
869 Notation	870 Description	871 Notation	872 Description
873 \mathcal{I}	874 set of agents	875 i	876 agent index
877 I	878 number of agents	879 $\gamma \in [0, 1)$	880 discount factor
881 \mathcal{S}	882 global state space	883 s^t	884 state at time t
885 \mathcal{O}_i	886 observation space of agent i	887 o_i^t	888 local observation of agent i
889 \mathcal{A}_i	890 action space of agent i	891 a_i^t	892 action of agent i
893 \mathcal{T}	894 state transition function	895 Ω_i	896 observation function of agent i
897 r_i	898 reward function of agent i	899 R_i^t	900 return of agent i at time t
901 τ	902 trajectory	903 \mathcal{D}	904 offline dataset (replay buffer)

879 Algorithm elements (Flow Matching / Policies)			
880 Notation	881 Description	882 Notation	883 Description
884 p_0	885 prior noise distribution	886 p_1	887 target action distribution
888 x_0	889 noise sample from p_0	890 x_1	891 target action sample
893 x_t	894 interpolated point $(1 - t)x_0 + tx_1$	895 t	896 continuous flow step
897 $v_\phi(t, o, x)$	898 velocity field conditioned on o	900 $\phi(t, x)$	901 flow trajectory
902 \mathbf{z}	903 joint noise variable	904 z_i	905 noise for agent i
906 $\mu_\phi(\mathbf{o}, \mathbf{z})$	907 flow-based joint policy	908 $\pi_\phi(\mathbf{a} \mathbf{o})$	909 induced stochastic joint policy
909 $\mu_{w_i}(o_i, z_i)$	910 one-step policy for agent i	911 $\pi_{w_i}(a_i o_i)$	912 induced one-step sampling policy
912 $Q_{\text{tot}}(o, a)$	913 global Q-function	914 $Q_{\theta_i}(o_i, a_i)$	915 individual Q-function

890 RL Training			
891 Notation	892 Description	893 Notation	894 Description
895 θ	896 critic parameters	897 $\bar{\theta}$	898 target critic parameters
898 ϕ	899 BC flow policy parameters	900 $w = \{w_i\}$	901 parameters of one-step policies
900 η	901 learning rate	902 B	903 batch size
902 K	903 number of updates	904 T	905 episode horizon
904 α	905 balancing coefficient (regularization)	906 $f(\cdot, \cdot)$	907 divergence measure

897 **A.2 SYSTEM SPECIFICATION**

CPU	AMD EPYC 7763 64-Core
GPU	RTX A5500
Software	CUDA: 12.2, cudnn: 8.9.7, python: 3.9, JAX: 0.4.30

918 B EXTENSIVE RELATED WORKS

919
 920 **Behavioral-regularized Actor Critic.** A closely related line of our research is behavioral-regularized
 921 actor-critic (BRAC) (Wu et al., 2019). The BRAC is one of the simplest and most powerful policy
 922 extraction strategies among offline RL solutions (Park et al., 2024). These approaches solve the
 923 out-of-distribution sample issue by constraining the learned policy to remain close to the behavior
 924 policy. In general, this is implemented by adding divergence penalties or regularization terms in the
 925 actor and critic updates, thereby stabilizing policy improvement in offline settings (Tarasov et al.,
 926 2023; Fujimoto & Gu, 2021; Kostrikov et al., 2021). Although these methods are primarily designed
 927 for single-agent RL (SARL) and rely on relatively simple Gaussian policies to model the action space,
 928 they are often adopted as baselines in MARL by being naively extended to multi-agent settings (Pan
 929 et al., 2022; Formanek et al., 2023; Wang et al., 2023; Zhu et al., 2024; Li et al., 2025a; Qiao et al.,
 930 2025). As a result, they struggle to capture the multi-modality of joint action distributions that are
 931 inherent in cooperative MARL scenarios, thereby being behind on their performance compared to
 932 advanced architecture-based RL solutions.

933 In contrast, our proposed solution embraces the same principle of behavioral regularization, striking
 934 a balance between Q maximization and fidelity to the offline dataset. MAC-Flow, specifically,
 935 leverages flow-matching to extract a rich generative model of the joint action space, and then
 936 introduces a distillation loss analogous to the behavioral penalty in BRAC at the individual policy
 937 extraction phase. This allows decentralized one-step policies to inherit both expressiveness from
 938 the flow-based policy and regularization from the dataset distribution, concurrently guaranteeing
 939 coordination in multi-agent settings.

940 **Short-cut Diffusion or Flow.** Another relevant line and motivation of this work is shortcut generative
 941 modeling, e.g., shortcut diffusion and shortcut flow matching (Frans et al., 2024; Park et al., 2025).
 942 These approaches alleviate the inefficiency of iterative generative models (denoising diffusion or
 943 ODE/SDE solvers) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song & Ermon, 2019; Song et al.,
 944 2020b; Nichol & Dhariwal, 2021) by either reducing the number of denoising steps (Song et al.,
 945 2020a; Salimans & Ho, 2022; Meng et al., 2023a; Song et al., 2023) or by learning direct mappings
 946 that approximate the multi-step generative process with fewer evaluations (Frans et al., 2024; Luhman
 947 & Luhman, 2021; Lipman et al., 2022). In the context of RL, shortcut generative methods have been
 948 explored to accelerate policy sampling while retaining the expressive capacity of diffusion or flow
 949 models to address complicated problems.

950 Our work shares the motivation of achieving fast inference with expressive policies, but introduces
 951 a key adaptation for the multi-agent setting. Rather than merely shortening generative trajectories,
 952 MAC-Flow factorizes the flow-based joint policy into decentralized one-step sampling policies,
 953 supported by theoretical guarantees under the IGM principle. This perspective extends shortcut flow
 954 approaches, where the shortcut lies not only in time complexity but also in the structural factorization
 955 of multi-agent policies. By combining flow-based modeling with policy distillation guided by the
 956 IGM principle, MAC-Flow generalizes shortcut generative techniques to address the scalability and
 957 coordination challenges unique to offline MARL.

958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972 C COMPLEXITY ANALYSIS
973

974 To theoretically support the empirical inference efficiency of `MAC-Flow`, we provide a big- \mathcal{O}
975 analysis comparing its per-agent and total inference-time complexity against two diffusion-based
976 SOTA baselines, `DoF` and `MADiff`. We analyze the computational complexity of generating one
977 joint action at a single environment step.

978 **Setups.** For this discussion, let I denote the number of agents and T the number of iterative steps
979 required by diffusion or flow policies. The input dimensions for per-agent observation and action
980 are treated as $d_{o_i}, d_{a_i} = \mathcal{O}(1)$. Although our solution is based on a simple [512, 512, 512, 512]-sized
981 MLP network, and `MADiff` and `DoF` employ a U-net-based temporal architecture, we posit that all
982 constant factors are absorbed in asymptotic notation.
983

984 Table 3: **Asymptotic inference time complexity analysis.** This table reports big- \mathcal{O} analysis about input
985 dimension, per-agent cost, and total cost of producing one joint action at a single environment step.

987 Method	Decentralization	Input dimension	Per-agent complexity	Total complexity
988 <code>MAC-Flow</code>	Yes	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(I)$
989 <code>DoF</code>	Yes	$\mathcal{O}(1)$	$\mathcal{O}(K)$	$\mathcal{O}(IK)$
990 <code>MADiff-D</code>	Yes	$\mathcal{O}(I)$	$\mathcal{O}(IK)$	$\mathcal{O}(I^2K)$
991 <code>MADiff-C</code>	No	$\mathcal{O}(I)$	$\mathcal{O}(IK)$	$\mathcal{O}(IK)$

992 **MAC-Flow.** Our solution extracts decentralized one-step sampling policies for each agent. Therefore,
993 at the inference phase, each agent can produce its action with a single forward pass using simple
994 MLP networks. The per-agent complexity is $\mathcal{O}(1)$, and the total complexity is $\mathcal{O}(I)$.

995 **DoF.** This decomposes the centralized diffusion process into decentralized per-agent processes. Each
996 agent must execute a full K -step denoising chain, although the factorization ensures that the per-step
997 input dimension is $\mathcal{O}(1)$, independent of I . Thus, the per-agent complexity is $\mathcal{O}(K)$ and the total
998 complexity is $\mathcal{O}(IK)$. We follow the default setups, `DoF-Trajectory`, `W-Concat` factorization, and
999 200-steps denoising iterations.
1000

1001 **MADiff.** We report two variations for `MADiff`, centralized and decentralized versions. For
1002 `MADiff-D`, each agent conditions the diffusion model on its own local observation. Nevertheless,
1003 due to the model’s architecture, the diffusion process generates a full joint trajectory that
1004 includes both the agent itself and its teammates. As a result, the input size at each denoising step
1005 scales with the number of agents, *i.e.*, $\mathcal{O}(I)$. Moreover, since the denoising process requires K
1006 iterative steps, the per-agent complexity is $\mathcal{O}(IK)$. As all I agents must perform this computation
1007 independently, the total complexity reaches $\mathcal{O}(I^2K)$, which highlights a quadratic dependence on
1008 the number of agents. Next, for `MADiff-C`, a single diffusion model jointly generates the actions
1009 for all agents in one forward chain. At each denoising step, the input dimension remains $\mathcal{O}(I)$, and
1010 the process requires K iterations, yielding a per-agent complexity of $\mathcal{O}(IK)$. However, because the
1011 joint model executes once for all agents, the total complexity is limited to $\mathcal{O}(IK)$. This distinction
1012 emphasizes that `MADiff-C` avoids the quadratic blow-up observed in `MADiff-D`, albeit at the cost
1013 of requiring centralized execution and communication during deployment.
1014

1015 **Discussion Summary.** Table 3 summarizes the theoretical inference complexities. Our analysis
1016 shows that `MAC-Flow` achieves constant-time inference per agent, independent of both I and K ,
1017 thereby scaling linearly with the number of agents. In contrast, diffusion-based methods inherit the
1018 iterative overhead of K denoising steps. While `DoF` alleviates input scaling via factorization, its
1019 complexity remains $\mathcal{O}(IK)$. `MADiff-C` also maintains $\mathcal{O}(IK)$ complexity but requires centralized
1020 execution. Finally, `MADiff-D` is the least efficient, with a quadratic dependence on the number of
1021 agents due to per-agent joint inference, resulting in $\mathcal{O}(I^2K)$. These asymptotic distinctions theoreti-
1022 cally underpin the empirical findings reported in the main text, where `MAC-Flow` demonstrates a
1023 13.7 \sim 21.4 \times speedup over diffusion-based baselines.
1024
1025

1026 **D MATHEMATICAL DERIVATION**

1028 This section provides a mathematical derivation for two propositions. Before looking deeper into
 1029 them, we first show the Lemma related to the comparability of joint and factorized policies.

1030 **Lemma D.1** (Comparability of Joint and Factorized Policies). *Let \mathbf{o} be a joint observation and
 1031 let $\mathbf{z} \sim \mathbf{p}_0$ denote the joint noise variable. Consider the flow-based joint mapping $\mu_\phi(\mathbf{o}, \mathbf{z})$
 1032 that induces the push-forward distribution $\pi_\phi(\mathbf{o})$, and the factorized mapping $\mu_w(\mathbf{o}, \mathbf{z}) =$
 1033 $[\mu_{w_1}(o_1, z_1), \dots, \mu_{w_I}(o_I, z_I)]$ that induces $\pi_w(\mathbf{o})$. By Definition 4.1, if action distribution
 1034 identical matching holds, then the joint distribution can be factorized as a product of individual policies.
 1035 Even when exact matching does not hold, both $\pi_\phi(\mathbf{o})$ and $\pi_w(\mathbf{o})$ are defined as push-forward dis-
 1036 tributions of the same base noise \mathbf{p}_0 . Hence, $\pi_\phi(\mathbf{o}, \cdot)$ and $\pi_w(\mathbf{o}, \cdot)$ are comparable within the same
 1037 probability space, and their discrepancy can be measured via a divergence function.*

1038 **D.1 PROOF FOR PROPOSITION 4.2**

1039 Let \mathbf{o} be a joint observation and $\mathbf{z} \sim \mathbf{p}_0$ a joint noise variable. Define the joint pol-
 1040 icy mapping $\mu_\phi(\mathbf{o}, \mathbf{z}) \in \mathcal{A}_1 \times \dots \times \mathcal{A}_I$ and the factorized policy mapping $\mu_w(\mathbf{o}, \mathbf{z}) =$
 1041 $[\mu_{w_1}(o_1, z_1), \dots, \mu_{w_I}(o_I, z_I)]$. Denote by $\mathbf{a} \sim \pi_\phi(\mathbf{o})$ and $\mathbf{a} \sim \pi_w(\mathbf{o})$ the push-forward distributions
 1042 of \mathbf{p}_0 through μ_ϕ and μ_w , respectively.

1043 Following Lemma D.1, the squared 2-Wasserstein distance is defined as

$$1044 W_2^2(\pi_w(\mathbf{o}), \pi_\phi(\mathbf{o})) = \inf_{\lambda \in \Lambda(\pi_w, \pi_\phi)} \mathbb{E}_{(\mathbf{a}, \mathbf{y}) \sim \lambda} [||\mathbf{a} - \mathbf{y}||_2^2],$$

1045 where $\Lambda(\pi_w, \pi_\phi)$ denotes the set of coupling distributions between π_w and π_ϕ .

1046 By choosing the specific coupling λ induced by sampling $\mathbf{z} \sim \mathbf{p}_0$ and pairing $\mu_w(\mathbf{o}, \mathbf{z})$ with $\mu_\phi(\mathbf{o}, \mathbf{z})$,
 1047 we obtain

$$1048 W_2^2(\pi_w(\mathbf{o}), \pi_\phi(\mathbf{o})) \leq \mathbb{E}_{\mathbf{z} \sim \mathbf{p}_0} [||\mu_w(\mathbf{o}, \mathbf{z}) - \mu_\phi(\mathbf{o}, \mathbf{z})||_2^2]$$

1049 Then, taking square roots on both sides yields the desired inequality:

$$1050 W_2(\pi_w(\mathbf{o}), \pi_\phi(\mathbf{o})) \leq (\mathbb{E}_{\mathbf{z} \sim \mathbf{p}_0} [||\mu_w(\mathbf{o}, \mathbf{z}) - \mu_\phi(\mathbf{o}, \mathbf{z})||_2^2])^{1/2}.$$

1051 The proof is completed. □

1052 **D.2 PROOF FOR PROPOSITION 4.3**

1053 Fix a joint observation \mathbf{o} and assume the global Q-function $Q_{\text{tot}}(\mathbf{o}, \cdot)$ is L_Q -Lipschitz in its action
 1054 argument, *i.e.*,

$$1055 |Q_{\text{tot}}(\mathbf{o}, \mathbf{a}) - Q_{\text{tot}}(\mathbf{o}, \mathbf{y})| \leq L_Q \|\mathbf{a} - \mathbf{y}\|_2, \quad \forall \mathbf{a}, \mathbf{y} \in \mathcal{A}_1 \times \dots \times \mathcal{A}_I.$$

1056 Let $\pi_\phi(\mathbf{o})$ and $\pi_w(\mathbf{o})$ denote the push-forward distributions of \mathbf{p}_0 under $\mu_\phi(\mathbf{o}, \cdot)$ and $\mu_w(\mathbf{o}, \cdot)$,
 1057 respectively. Then,

$$1058 \left| \mathbb{E}_{\mathbf{a} \sim \pi_w(\mathbf{o})} [Q_{\text{tot}}(\mathbf{o}, \mathbf{a})] - \mathbb{E}_{\mathbf{a} \sim \pi_\phi(\mathbf{o})} [Q_{\text{tot}}(\mathbf{o}, \mathbf{a})] \right| \leq L_Q W_2(\pi_w(\mathbf{o}), \pi_\phi(\mathbf{o})),$$

1059 where the inequality follows from the dual formulation of Lipschitz functions and Wasserstein
 1060 distances. Finally, applying Proposition 4.2 gives

$$1061 \left| \mathbb{E}_{\mathbf{a} \sim \pi_w(\mathbf{o})} [Q_{\text{tot}}(\mathbf{o}, \mathbf{a})] - \mathbb{E}_{\mathbf{a} \sim \pi_\phi(\mathbf{o})} [Q_{\text{tot}}(\mathbf{o}, \mathbf{a})] \right| \leq L_Q \left(\mathbb{E}_{\mathbf{z} \sim \mathbf{p}_0} \|\mu_w(\mathbf{o}, \mathbf{z}) - \mu_\phi(\mathbf{o}, \mathbf{z})\|_2^2 \right)^{1/2}.$$

1062 The proof is completed. □

1080 E TRAINING DETAILS OF MAC-FLOW
10811082 This section describes the implementation details of MAC-Flow.
10831084 **Network architectures.** MAC-Flow is implemented on multi-layer perceptrons (MLPs) with
1085 hidden sizes [512, 512, 512, 512] for all networks, including the joint flow policy, the critics, and the
1086 factorized one-step policies. Layer normalization is applied consistently to further improve stability.
10871088 **Flow matching.** As described in Section 4.2, we adopt the simplest flow-matching objective
1089 (Equation 6) based on linear interpolation and uniform time sampling. For all environments, we use
1090 the Euler method with a step count of 10 to approximate the underlying ODE dynamics (Algorithm 2).
1091 This ensures that the joint flow policy $\mu_\theta(o, z)$ captures the multi-modal structure of coordinated
1092 behaviors while remaining computationally efficient at training and inference.
10931094 **Value learning.** We train individual critics $\{Q_{\theta_i}\}_{i=1}^I$ under the IGM principle with TD error update.
1095 We basically follow the mean(Q_1, Q_2) method, instead of $\min(Q_1, Q_2)$, to avoid pessimism in an
1096 offline RL setting. The one-step policies are optimized to maximize the global Q -function while
1097 simultaneously minimizing the distillation loss between the flow-based joint policy and the factorized
1098 policies. To calculate global Q , we use the average mixer for each agent’s Q value (Sunehag
1099 et al., 2017; Danino & Shimkin, 2025). To practically enforce the Lipschitz constraint required in
1100 Proposition 4.3, we apply *layer normalization* (Ba et al., 2016; Park et al., 2022) to all critic networks,
1101 which we found to be crucial for stabilizing value learning in multi-agent coordination.
11021103 **One-step policy learning.** After training the flow-based joint policy $\mu_\theta(o, z)$, we factorize it into
1104 decentralized one-step policies $\{\mu_{w_i}(o_i, z_i)\}_{i=1}^I$. This stage jointly optimizes two objectives in
1105 Equation 9: (i) Q-maximization and (ii) BC distillation. In general, we set the BC distillation
1106 coefficient $\alpha = 3.0$ as the default. In practice, we alternate between updating the critics and the
1107 one-step policies, using the same batch of transitions (Algorithm 1).
11081109 **Flow matching and policy for discrete action space.** For SMACv1 and SMACv2, which are discrete
1110 action control tasks, we model actions as one-hot vectors and learn a continuous vector field over the
1111 simplex. Specifically, for each transition, we form a linear path from Gaussian noise $x_0 \sim \mathcal{N}(0, I)$
1112 to the one-hot actions $x_1 = \text{onehot}(a)$, sample $t \sim \text{Unif}([0, 1])$, set $x_t = (1 - t)x_0 + tx_1$, and
1113 supervise the BC flow field $v_\phi(o, x_t, t)$ with the target velocity $x_1 - x_0$ via an MSE loss. To obtain a
1114 one-step sampling policy, we distill the multi-step Euler integration of v_ϕ into a single-step flow head
1115 that outputs logits over actions. During actor updates, we add a Q -guidance term that maximizes
1116 the mixed value of the actions proposed by the one-step policy, with an optional normalization of
1117 the guidance magnitude. At the training phase, target actions for TD backups are sampled from the
1118 flow policy; at deployment, we use arg max with temperature control value, and optionally apply
1119 legal-action masking before the softmax.
11201121 **Online fine-tuning.** For the offline-to-online experiments (RQ3), we do not consider *symmetric*
1122 *sampling*, which reuses the offline dataset during online training (Ross & Bagnell, 2012), unlike prior
1123 research (Ball et al., 2023; Eom et al., 2024; Lee & Kwon, 2025). Instead, the agent is trained purely
1124 on newly collected online rollouts for an additional 500K gradient steps, continuing from the offline
1125 pretraining checkpoint.
11261127 **Training and evaluation.** We train MAC-Flow with 1M gradient steps for SMACv1 and SMACv2,
1128 and 500K steps for MPE and MA-MuJoCo. For offline-to-online training, we first perform 500K
1129 steps of offline training, followed by 500K steps of online training. We evaluate the learned policy
1130 every 50K steps using 10 evaluation episodes. For the main results in Tables 1 and 2, we report
1131 average performance and two standard deviations across 6 random seeds for the table and tolerance
1132 interval for the learning curves.
1133

1134 **F IMPLEMENTATION DETAILS**

1135

1136 The main objective of this work is to alleviate the gap between performance and inference speed in a
 1137 multi-agent setting. Therefore, we deliberately adopt a simple network architecture, such as a multi-
 1138 layer perceptron (MLP), rather than resorting to more complex or specialized designs. The simplicity
 1139 of MLPs provides several advantages: *(i)* they allow for faster inference and lower computational
 1140 overhead, which is critical for scalability in multi-agent settings; *(ii)* they facilitate stable training and
 1141 clear evaluation of the proposed algorithmic contribution without the confounding effects of intricate
 1142 architectures; and *(iii)* they serve as a neutral baseline architecture, demonstrating that the observed
 1143 improvements stem from our framework itself, not from architectural sophistication.

1144

1145 **F.1 BASELINE ALGORITHMS**

1146

1147 **BC.** This is a simple behavioral cloning (also known as imitation learning) algorithm. For the
 1148 continuous action domain, we design it as a Gaussian policy with a unit standard deviation. For the
 1149 discrete action domain, we parameterize the policy as a categorical distribution, where the policy
 1150 network outputs unnormalized logits over all possible actions and the resulting action probabilities
 1151 are obtained via a softmax function. Our network scheme is [512, 512, 512, 512]-sized MLPs, which
 1152 is also our default network architecture, for all environments.

1153 **Diffusion BC.** This is a diffusion-based extension of BC. Instead of directly regressing expert actions,
 1154 Diffusion BC learns a denoising diffusion process: given an observation and a noisy version of
 1155 the expert action, the policy predicts the noise to recover the clean action. For the continuous action
 1156 domain, we model actions as Gaussian vectors, where the training objective is to predict Gaussian
 1157 noise added during the forward diffusion process. At inference, the policy generates actions by
 1158 reverse diffusion conditioned on current observations, starting from Gaussian noise. For the discrete
 1159 action domain, we represent actions as one-hot vectors and apply diffusion in the relaxed continuous
 1160 space. For both domains, we use [512, 512, 512, 512]-sized MLPs, augmented with a sinusoidal
 1161 timestep embedding. We consider a Gaussian diffusion scheduler with 200 timesteps to govern the
 1162 forward and reverse processes for all environments.

1163 **Flow BC.** This is implemented on top of the same codebase as `MAC-Flow`, sharing the same flow-
 1164 matching implementation. However, `Flow BC` does not consider Q maximization and distillation; in
 1165 other words, it directly uses a trained full flow policy in training and deployment. We train individual
 1166 vector fields for individual BC flow policies to distribute them into decentralized setups. For discrete
 1167 control, actions are represented as one-hot vectors and flow matching is applied between Gaussian
 1168 noise and the one-hot target along a linear path, with the policy trained to predict the corresponding
 1169 velocity field. We consider 10 flow steps and [512, 512, 512, 512]-sized MLPs for all environments.

1170 **MATD3BC** (Fujimoto & Gu, 2021). We reimplement it on our codebase by referring to the official
 1171 open-source implementation of TD3BC. This is a multi-agent extension of TD3 with an additional
 1172 BC regularization term. The BC parameter α is set as 2.5 for all environments. We train two critic
 1173 networks via clipped double Q-learning, and target critic networks via the Polyak averaging with
 1174 $\tau = 0.005$ (Polyak & Juditsky, 1992). For multi-agent settings, we employ the mixer for Q-value
 1175 networks. The policy and value networks are parameterized as [512, 512, 512, 512]-sized MLPs.

1176 **MABCQ** (Fujimoto et al., 2019). We reimplement it on our codebase by referring to the official
 1177 open-source implementation of BCQ. We employ the mixer for Q-value networks. For discrete
 1178 control, we design the policy as a softmax policy network with twin Q-networks. It masks out
 1179 actions whose probability falls below a BC threshold $\alpha = 0.4$ and selects the maximum Q-value
 1180 only among admissible actions. The critic is trained with TD targets using the masked actions
 1181 set, and the actor is updated via cross-entropy loss against the action of the replay buffer. We use
 1182 [512, 512, 512, 512]-sized MLPs for both actor and critic, with a target update period of 200 steps.

1183 **MACQL** (Kumar et al., 2020). We reimplement it on our codebase by referring to the official
 1184 open-source implementation of CQL. The critic consists of twin Q-networks with TD loss and a
 1185 conservative penalty that lowers Q-values on OOD actions via a log-sum-exp term. Additionally, we
 1186 employ the mixer for Q-value networks to consider multi-agent coordination. For discrete controls,
 1187 the policy is set as a categorical distribution, and the illegal actions are masked during selection; for
 1188 continuous controls, we use the Gaussian policy. We use [512, 512, 512, 512]-sized MLPs for both
 1189 actor and critic, a target update period of 200 and every iterations ($\tau = 1.0$ for discrete domains) and

1188 $(\tau = 0.005$ for continuous domains), conservative weight 3.0, and 10 sampled actions per state for
 1189 calculating the conservative loss for all environments.
 1190

1191 **OMAR** (Pan et al., 2022). We reimplement it on our codebase by referring to the official open-source
 1192 implementation of OMAR. This algorithm employs CQL-style conservative critic regularizer, a cross-
 1193 entropy method (CEM)-based policy improvement head. The policy collects candidate actions via
 1194 iterative CEM and is trained to imitate the best-Q candidate and maximize Q via a small L2 penalty.
 1195 We use [512, 512, 512, 512]-sized MLPs and set the hyperparameter as follows: target update rate
 1196 $\tau = 0.005$, CQL regularizer (10 OOD samples, and $\alpha = 3.0$), and CEM process (3 iterations, 10
 1197 samples, 10 elites per step, and mixing coefficient 0.7).
 1198

1199 **OMIGA** (Wang et al., 2023). We reimplement it on our codebase by referring to the official open-
 1200 source implementation of OMIGA. The critics use twin Q -networks combined by a learnable state-
 1201 dependent mixing network, while a separate V -network provides a baseline for variance reduction.
 1202 The policy is updated with advantage-weighted regression (Peng et al., 2019). Target networks for Q ,
 1203 V , and the mixer are updated via Polyak averaging with $\tau = 0.005$. We use [512, 512, 512, 512]-sized
 1204 MLPs for all networks, a mixer embedding dimension of 128, advantage scaling coefficient $\alpha = 10.0$,
 1205 gradient clipping at 1.0, and weight clipping for policy updates at 100.0.
 1206

1207 **MADiff** (Zhu et al., 2024). We use the official open-source implementation of MADiff. This reposi-
 1208 tory provides two variants: MADiff-C and MADiff-D for centralized and decentralized versions,
 1209 respectively. Given that our problem formulation is a Dec-POMDP, we select decentralized variants,
 1210 that is, MADiff-D. We train a conditional diffusion policy on joint demonstration trajectories with
 1211 centralized data, then deploy it with decentralized execution. Each agent at deployment conditions
 1212 only on its own local observation and optional history and samples its action via reverse diffusion
 1213 while jointly predicting teammates' trajectories. We keep the same architecture and hyperparameters
 1214 in the original paper and set the diffusion scheduler to Gaussian DDPM with 200 denoising steps for
 1215 all environments.
 1216

1217 **DoF** (Li et al., 2025a). We use the official open-source implementation of DoF. We use the
 1218 DoF-Trajectory agent with the W-concat factorization. Training and deployment settings are
 1219 identical to the original paper. For sampling, we use a Gaussian DDPM scheduler with 200 denoising
 1220 steps across all environments.
 1221

1218 F.2 GIT REPOSITORY FOR BASELINE IMPLEMENTATION

1219 The implementation adheres closely to the aforementioned official code as follows.
 1220

- 1221 • TD3BC: https://github.com/sfujim/TD3_BC
 1222 • BCQ: <https://github.com/sfujim/BCQ>
 1223 • CQL: <https://github.com/aviralkumar2907/CQL>
 1224 • OMAR: <https://github.com/ling-pan/OMAR>
 1225 • OMIGA: <https://github.com/ZhengYinan-AIR/OMIGA>
 1226 • MADiff: <https://github.com/zbzhuh99/madiff>
 1227 • DoF: <https://github.com/xmu-rl-3dv/DoF/tree/main>
 1228

1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 **G EXPERIMENTAL DETAILS**
12431244 **G.1 SMACv1 and SMACv2**
1245

1246 **SMACv1**, introduced by [Samvelyan et al. \(2019\)](#), serves as a prominent benchmark for assessing
1247 cooperative MARL algorithms. Built on the StarCraft II real-time strategy game, SMAC simulates
1248 decentralized management scenarios where two opposing teams engage in combat scenarios, with
1249 one team controlled by built-in AI and the other by learned multi-agent policies. Agents receive
1250 partial observations restricted to a local sight range (*e.g.*, nearby allied and enemy units, distances,
1251 health, and cooldowns), while the complete state information is available only for centralized learning
1252 of some algorithms. The discrete action space includes moving in four directions, attacking visible
1253 enemies within range, stopping, and a no-op, which makes coordination strategies such as focus
1254 fire, kiting, and terrain exploitation critical for success. The testbed defines a suite of combat maps
1255 of varying difficulty (*e.g.*, homogeneous battles like 3m and heterogeneous battles such as 2s3z),
1256 enabling systematic evaluation of algorithms across easy, hard, and super-hard scenarios. Reward
1257 signals are shaped by combat outcomes, including damage dealt, enemy kills, and victory, making
1258 SMACv1 a rigorous benchmark for addressing key MARL challenges such as credit assignment,
1259 cooperation under partial observability, and scalability to larger teams. Our evaluation focuses on five
1260 SMAC maps: 3m, 8m, 2s3z, 5m_vs_6m, and 2c_vs_64zg.

1261 **SMACv2** extends the original SMAC benchmark to provide a more robust and challenging testbed
1262 for MARL. Unlike SMACv1, where difficulty mainly arises from heterogeneous unit compositions
1263 and map layouts, SMACv2 introduces environment stochasticity and increased diversity in scenarios
1264 to better approximate real-world complexity. In particular, unit placements, initial health, and
1265 enemy strategies are randomized across episodes, requiring policies that generalize beyond fixed
1266 configurations. The benchmark also rebalances reward signals to reduce overfitting to deterministic
1267 strategies and to encourage learning more adaptive coordination behaviors. By encompassing a
1268 broader range of maps and stochastic battle conditions, SMACv2 provides a more rigorous evaluation
1269 of MARL algorithms in terms of robustness, generalization, and sample efficiency. Our evaluation
1270 focuses on three SMAC maps: terran_5_vs_5, terran_10_vs_10, and zerg_5_vs_5.

1271 **SMAC datasets.** Experiments utilized datasets from the off-the-grid offline dataset ([Formanek et al.,](#)
1272 [2023](#)), which provides offline trajectories for SMACv1 and SMACv2. The benchmark contains a
1273 variety of trajectories generated by different policies with varying quality, *including* Good, Medium,
1274 and Random behaviors, thereby covering a wide performance spectrum (whereas there is only the
1275 Replay dataset for SMACv2). Each dataset consists of observations, actions, legal action information,
1276 and rewards, following the decentralized agent structure of SMAC.

1277 **G.2 MA-MuJoCo**

1278 **MA-MuJoCo** is a continuous-control benchmark that extends the classical MuJoCo locomotion suite
1279 to multi-agent settings ([Peng et al., 2021](#)). In MA-MuJoCo, a single robot, *e.g.*, Halfcheetah, Hopper,
1280 and Ant, is decomposed into multiple controllable parts, each assigned to an individual learning
1281 agent. Each agent receives local observations corresponding to its controlled joints and must produce
1282 continuous actions to coordinate with others for effective global locomotion. Rewards are typically
1283 shared among all agents based on the overall task performance, creating a cooperative continuous-
1284 action control problem. MA-MuJoCo focuses on fine-grained coordination in high-dimensional
1285 continuous dynamics, making it complementary for evaluating scalability and cooperation in MARL.

1286 **Dataset.** For offline MARL, we employ the dataset collected by [Wang et al. \(2023\)](#). The dataset
1287 provides trajectories collected under a variety of policies with different quality levels, *including*
1288 Expert, Medium, Medium-Expert, and Medium-Replay, thus covering a wide spectrum of data
1289 distributions for 6-Halfcheetah, 3-Hopper, and 2-Ant. Heading number is the number of agents.

1290 **G.3 MPE**
1291

1292 **MPE**, originally introduced by [Lowe et al. \(2017\)](#) as a suite of simple particle-based worlds with
1293 continuous observation-action space and basic simulated physics, serves as a foundational benchmark
1294 for cooperative and competitive MARL tasks. It features two-dimensional scenarios where agents
1295 can move, interact, communicate, and observe each other within a partially observable setting. This

1296 emphasizes coordination, communication, and emergent behaviors in multi-agent settings. Common
 1297 scenarios include Cooperative Navigation (also known as Spread), where agents must cover landmarks
 1298 while avoiding collisions; Predator-Prey, where predator agents pursue and capture prey agents;
 1299 and World tasks, which involve more complex interactions like gathering resources or navigating
 1300 with environmental elements. These environments are widely adopted for their scalability, ease of
 1301 customization, and ability to test algorithms on communication-oriented problems. Performance in
 1302 MPE is typically normalized using the following equation: $100 \times (S - S_{\text{random}}) / (S_{\text{expert}} - S_{\text{random}})$,
 1303 where S is the score of the evaluated policy, S_{random} is the performance from a random policy (159.8),
 1304 and S_{expert} is the performance of an expert-level policy (516.8).

1305 **Dataset and Scenario Selection.** In our experiments, we focused solely on the Spread scenario
 1306 dataset (*including* Expert, Medium, Medium-Replay, and Random), as implemented in a JAX-based
 1307 framework to ensure efficient computation and compatibility with modern acceleration tools. This
 1308 choice was necessitated by challenges in accessing the Predator-Prey (PP) and World (WD) datasets,
 1309 despite their use in prior works by [Pan et al. \(2022\)](#) for offline MARL. Furthermore, adapting
 1310 customized environments for PP and WD proved difficult due to the requirement of loading pre-
 1311 trained policies, compounded by limited documentation on integration processes, which hindered
 1312 compatibility with widely used pre-trained models ([Formanek et al., 2024](#)).
 1313

1314 G.4 HYPERPARAMETERS

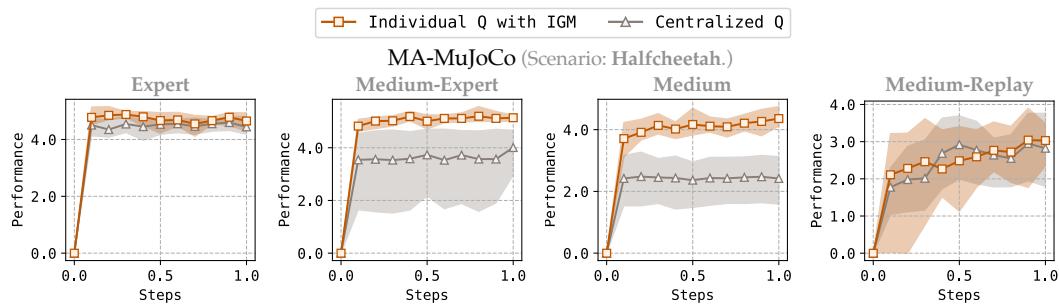
1316 Hyperparameter	1317 Value
1318 Gradient steps	10^6 (SMACv1 and SMACv2), 2×10^5 (MA-MuJoCo and MPE)
1319 Batch size	64
1320 Flow step	10
1321 BC coefficient	3.0
1322 Network configuration	[512, 512, 512, 512]
1323 Polyak averaging coefficient	0.005
1324 Discount factor	0.995
1325 Optimizer epsilon	10^{-5}
1326 Weight decay	0
1327 Policy learning rate	3×10^{-4}
1328 Value learning rate	3×10^{-4}
1329 Layer normalization	True
	Optimizer Adam

1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349

1350 H ADDITIONAL RESULTS

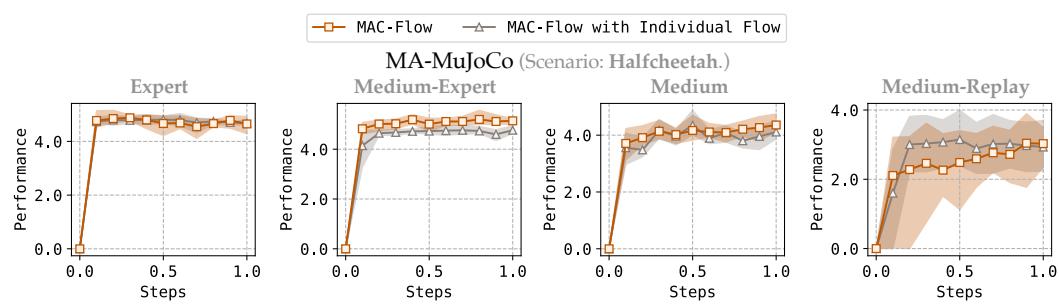
1352 This section provides supplementary analyses that further complement the main results presented in
 1353 the paper. Specifically, we first include several additional ablation studies that examine the robustness
 1354 of our framework under varying design choices, such as alternative policy parameterizations and
 1355 critic configurations. Second, we check the training time of our approach and baselines. Third, we
 1356 report the full learning curves of MAC-Flow corresponding to the performance tables in the main
 1357 text.

1359 H.1 ABLATION STUDY



1372 **Figure 8: Ablation on critic configuration.** This ablation shows the differences between individual Q training
 1373 under IGM and centralized Q training. The reported point and shaded area represent the average and tolerance
 1374 interval from 6 random seeds.

1375 **Individual Q with IGM vs. Centralized Q.** In Figure 8, across all MA-MuJoCo datasets, the
 1376 individual Q s based on IGM consistently outperform the centralized counterpart Q . While the
 1377 centralized variants often suffer from lower stability and suboptimal convergence, the individual Q
 1378 based on IGM achieves higher performance and maintains stable learning curves. This demonstrates
 1379 that the IGM formulation enables reliable value estimation in multi-agent settings by preserving
 1380 individual-global consistency, which is critical for cooperative policy learning. We conjecture that
 1381 such empirical observations originate from a representation bottleneck of simple MLP networks.
 1382 Specifically, the centralized critic should extract coordination patterns from the joint observation-
 1383 action space. In practice, shallow MLP architectures struggle to capture such high-order dependencies,
 1384 leading to severe information compression and a bottleneck in representing coordination. To sum
 1385 up, the limitations observed in centralized critics likely stem not from the principle of centralization
 1386 itself, but from the restricted capacity of MLP-based function approximators when faced with large
 1387 joint observation-action spaces.



1398 **Figure 9: Ablation on policy type in Stage I.** This ablation shows the differences between individual flow
 1399 policies and joint flow policy for stage I. The reported point and shaded area represent the average and tolerance
 1400 interval from 6 random seeds.

1401 **Individual BC Flow vs. Joint BC Flow (Stage I).** Figure 9 investigates the effect of policy
 1402 configuration in Stage I by comparing individual flow policies against our joint flow policy. Across all
 1403 MA-MuJoCo datasets, our basic configuration and its variant show stable and powerful performance.

Interestingly, unlike the centralized Q ablation, the joint flow policy does not entirely collapse. We attribute this difference to the expressive capacity of flow-matching methods, which are specially designed to approximate complex distributions. Whereas centralized critics implemented with shallow MLPs face a severe representation bottleneck when mapping from joint observation-action inputs, flow-based policies retain stronger inductive biases for capturing distributional structure. This expressiveness enables joint flows to remain viable in principle, though their optimization often remains more challenging than individual flows. Comprehensively, given the trade-offs, we opt for the joint policy to enhance sample efficiency, reduce memory usage (with respect to network load), and facilitate faster training.

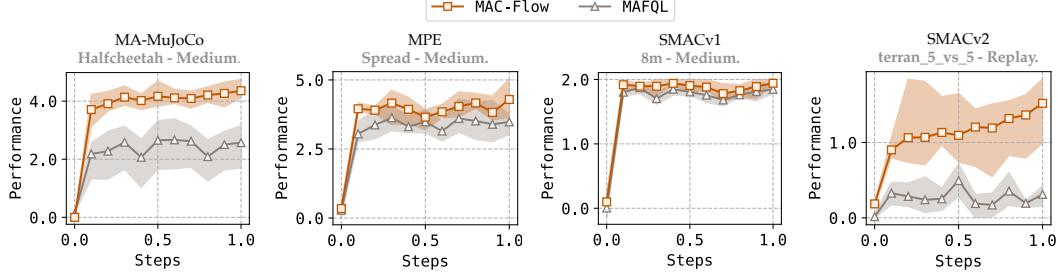


Figure 10: **Performance comparison with MA-FQL.** We compare our solution and the naive extension of the FQL across four benchmarks. The reported point and shaded area represent the average and tolerance interval from 6 random seeds.

MAC-Flow vs. MA-FQL. Figure 10 compares the performance between our proposed solution and the multi-agent extension of FQL (Park et al., 2025), which is a close connection with our work. Comparing MAC-Flow against MA-FQL highlights that the transition from a single-agent to a multi-agent system is not trivial. In MA-MuJoCo, MPE, and SMAC benchmarks, MAC-Flow substantially outperforms MA-FQL in both convergence speed and final performance. In contrast, MA-FQL either stagnates at suboptimal levels or exhibits unstable progress, particularly in more complex environments. Note that we can simply put that MA-FQL is a fully decentralized version of MAC-Flow, especially in decentralized Q without IGM and flow decentralized policy.

H.2 TRAINING TIME

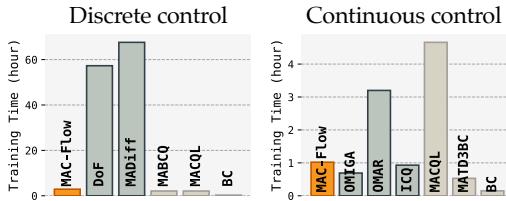
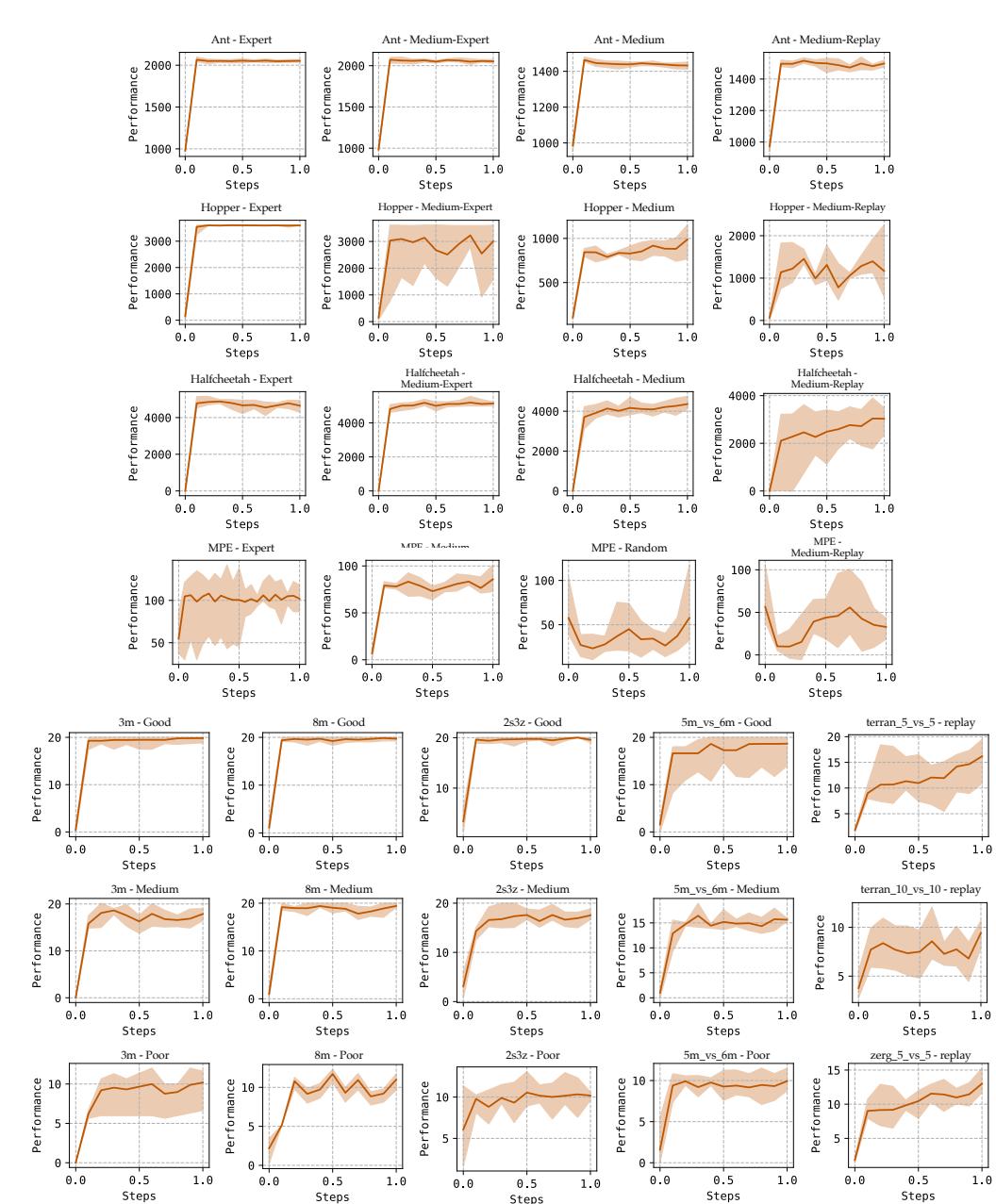


Figure 11: **Wall-clock time for training.** Reported numbers are measured on average of all tasks, which are included in discrete or continuous benchmarks.

We report the wall-clock training time for both discrete and continuous control benchmarks in Figure 11. MAC-Flow achieves substantially lower training time compared to diffusion-based methods such as DoF and MADiff. In discrete control, MAC-Flow trains nearly an order of magnitude faster than MADiff, while in continuous control, it also outperforms strong baselines like MACQL or OMAR, which require many bootstrapping steps. These results confirm that the one-step flow formulation of MAC-Flow yields not only efficient inference but also significantly reduced training cost. Note that CQL is implemented with independent Q learning (De Witt et al., 2020) in discrete control, unlike continuous control.

1458 H.3 LEARNING CURVES OF MAC-FLOW
14591501 Figure 12: Full learning curves for MAC-Flow.
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

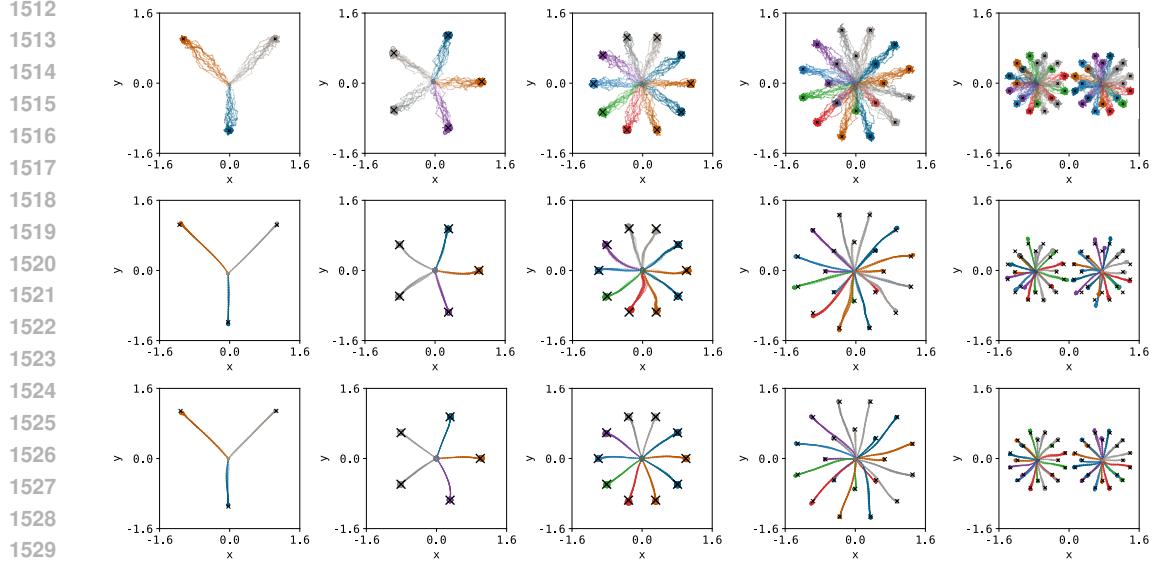


Figure 13: **Landmark covering game visualization.** (Top) Trajectories sampled from the dataset. (Middle) Trajectories sampled from the flow joint policy. (Bottom) Trajectories sampled from the individual policy.

H.4 LANDMARK COVERING GAME: SCALING UP THE NUMBER OF AGENTS

To further examine how MAC-Flow scales with the number of agents, we extend the landmark-covering game (used in Section 4.3) up to 40 agents from three agents. We generate an offline dataset consisting of 50 trajectories, and train both the joint flow model and the distilled one-step policies for 1000 iterations with a 64 batch size.

Figure 13 visualizes the sampled trajectories from the dataset, flow joint policy, and individual policies, respectively. Up to 40 agents, the flow joint policy successfully captures the multi-agent's joint action distribution and the appropriate partitioning of agents across landmarks (\times mark). Although the flow model occasionally produces slightly dispersed trajectories, given our training setup, this could be mitigated by scaling up the hyperparameter. Next, the individual policies learn clean trajectories, since each agent only needs to reproduce its own trajectory, which is similar to expert demonstrations.

Summary. This scaling analysis confirms that MAC-Flow continues to capture stable coordination up to 40 agents, with this model capturing joint structure. The results indicate that MAC-Flow can retain its effectiveness (according to flow policy) even as multi-agent dimensionality grows.

1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

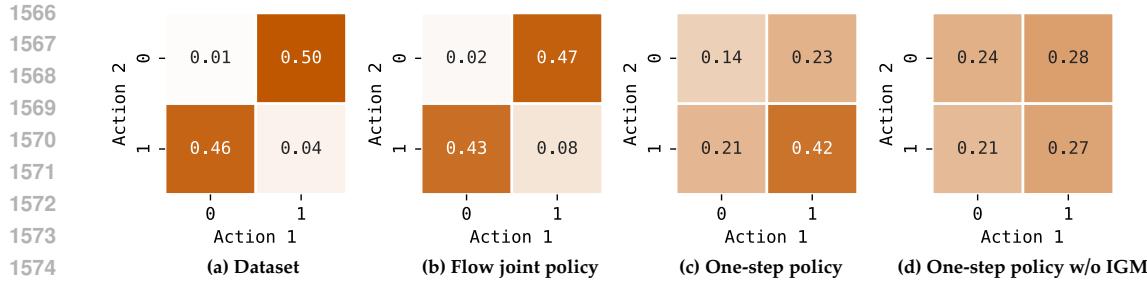


Figure 14: **Policy comparison in pure coordination game.** (a) Dataset distribution. (b) Distribution of flow joint policy. (c) Distribution of one-step policy with IGM. (d) Distribution of one-step policy without IGM.

H.5 PURE COORDINATION GAME: BETTER POINT THAN BC GENERATIVE MODELING

This section presents a setting where IGM offers a clear advantage over BC-style generative modeling. This experiment isolates a simple yet revealing coordination structure where value information plays a decisive role in recovering the optimal joint behavior, whereas BC alone fundamentally fails due to dataset imbalance.

A minimal pure coordination game. We consider a two-agent binary-action environment with a unique high-value coordinated action, $(1, 1)$, yielding reward +2. All partially coordinated actions, $(1, 0)$ and $(0, 1)$, give a lower reward +1, while $(0, 0)$ yields zero. Critically, the offline dataset is intentionally biased, that is, it consists almost of the two asymmetric suboptimal modes $(0, 1)$ and $(1, 0)$, with only a small fraction of rare samples of $(1, 1)$ and $(0, 0)$. This generates a combinatorial ambiguity that challenges BC-style modeling, which must extrapolate optimal coordination from extremely weak statistical evidence (Figure 14 (a)).

Flow joint policy vs. MAC-Flow vs. Factored policy without IGM. In this setup highlights a common failure pattern in BC generative modeling (Flow joint policy). Because BC methods optimize likelihood without considering value structure, the learned joint flow simply reproduces the dominant dataset frequencies, faithfully capturing $(0, 1)$ and $(1, 0)$ while ignoring the much rarer yet more valuable $(1, 1)$ mode. Even though this is expressive enough to represent the correct distribution, its objective provides no incentive to amplify the crucial but low-frequency coordination (Figure 14 (b)).

In contrast, introducing IGM during distillation (MAC-Flow) substantially changes the learning dynamics. When the joint flow is mapped into factorized per-agent policies through value-guided IGM constraints, each agent receives a consistent signal that selecting the action 1 is slightly more aligned with high-value coordination, even though this is rarefied in the dataset. The IGM mechanism exploits these weak cues by forcing individual policies to agree on action choices that maximize the centralized value function, effectively amplifying faint optimality information that pure BC cannot utilize. As a result, the distilled factorized policy concentrates significantly more probability mass on the optimal $(1, 1)$ configuration (Figure 14 (c)).

Whereas the version without IGM collapses toward an almost uniform product distribution that fails to represent any coordinated behavior. In this case, each agent’s marginal policy distributes probability mass nearly evenly over its two actions, causing the joint distribution to degenerate into four nearly equal-probability modes (Figure 14 (d)).

Summary. This example shows when IGM is strictly better than pure BC modeling. In settings where demonstrations contain only weak hints of coordinated optimal behavior, the IGM mechanism reliably extracts and amplifies value-relevant structure that generative models alone cannot recover. This controlled setup thus clarifies why MAC-Flow’s value-guided distillation often outperforms BC-based generative modeling in more complex multi-agent domains.

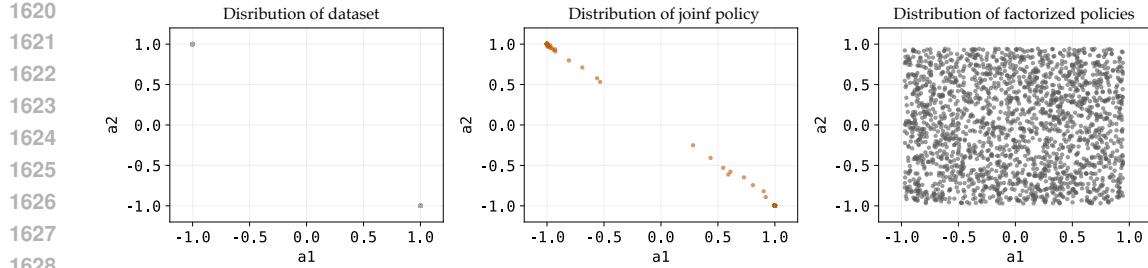


Figure 15: **XOR toy environment.** (Left) The dataset contains two anti-aligned modes. (Center) The joint flow recovers this non-factorizable structure. (Right) Factorized policies collapse into an almost uniform product distribution.

H.6 XOR STRESS TEST: FAILURE MODE ANALYSIS

Although we provide theoretical justification for our bound, this subsection presents empirical counterexamples for transparency and trust, demonstrating how the method behaves in environments that intentionally violate the assumptions underlying the theory.

When does IGM break? We analyze settings where the IGM factorization is provably invalid. While MAC-F1ow performs well in typical cooperative tasks, separability could fail under strong inter-agent coupling. To build trust in our theoretical claims, we present a controlled stress test where factorization is guaranteed to break.

XOR coordination examples. We introduce a minimal two-agent continuous XOR task in which the optimal joint actions are anti-aligned, *e.g.*, $(-1, +1)$ and $(+1, -1)$. Because the reward depends entirely on the relative actions of the agents, no per-agent Q-function can recover the optimal strategy independently, making IGM mathematically impossible in this domain. This setting provides a clean, analyzable failure case for joint-to-factorized policy distillation.

Empirical counterexamples. We train the MAC-F1ow joint policy on an offline dataset exhibiting two sharp, disconnected high-density XOR modes. The learned flow successfully reconstructs these modes and captures their fundamentally non-separable geometry, confirming that the flow-matching stage is expressive enough to model complex, multi-modal joint behaviors. However, when this joint flow is distilled into per-agent policies, the factorized representation collapses into a near-independent product distribution, failing to reproduce the anti-aligned high-density regions and instead placing probability mass around the center of the action space. This degradation arises despite the joint model being correct, indicating that the failure is due to the intrinsic non-separability of the coordination structure rather than optimization or training artifacts.

Summary. The XOR stress test provides exactly the concrete failure mode. In this environment, the optimal joint action is intrinsically anti-aligned, causing the assumptions behind IGM factorization to break. As a result, value bounds cease to be predictive because the global optimum cannot be decomposed into per-agent optima. Consequently, MAC-F1ow underperforms not due to model capacity or training issues, but because the coordination structure is fundamentally non-separable. This controlled setting, therefore, offers a transparent counterexample.

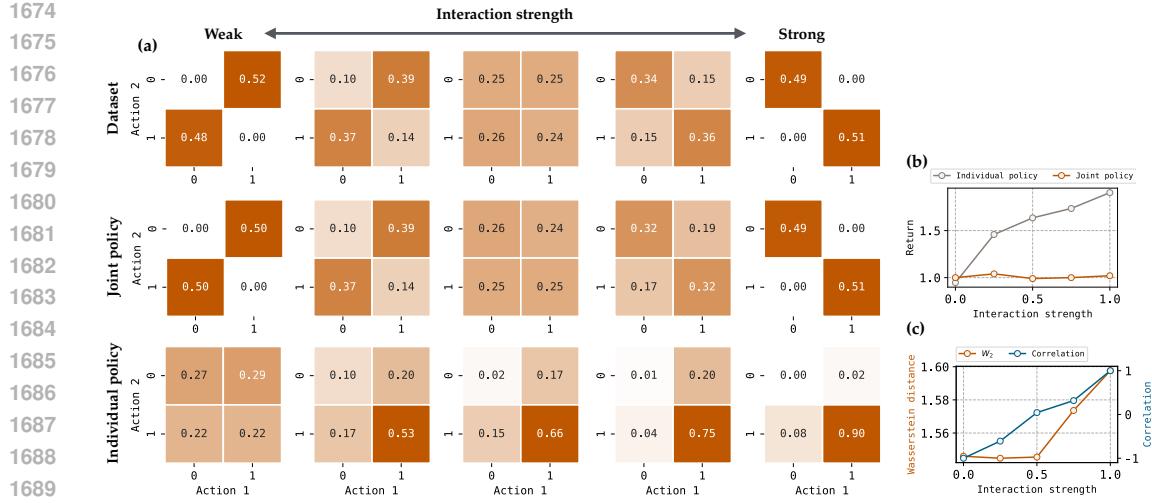


Figure 16: **Payoff game according to interaction strength.** (a) Sampled distributions. (b) Return differences. (c) Wasserstein distance between joint and individual policies. Correlation between the dataset and joint policy.

H.7 PAYOFF GAME: ANALYSIS ACCORDING TO INTERACTION STRENGTH

To validate the value gap and W_2 , we design a pay-off game according to the interaction strength, as an extension of the pure coordination game in Appendix H.5. The MDP setup is the same as the pure coordination game: each agent can select an action in $\{0, 1\}$, and the team reward is defined as $(0, 0) = 0, (1, 0) \text{ or } (0, 1) = 1, (1, 1) = 2$.

How do we define interaction? In this example, we define *interaction strength* as the degree to which one agent’s optimal action depends on the other agent’s action, or equivalently, how far the joint action distribution deviates from a factorized form $p(a^1, a^2) = p(a^1)p(a^2)$. Under this view, diagonal joint actions $(0, 0)$ and $(1, 1)$ represent strong interaction, because the optimal behavior requires perfectly matching actions and thus induces full coupling. In contrast, off-diagonal actions $(1, 0)$ and $(0, 1)$ correspond to weak interaction, where each agent’s marginal behavior remains nearly independent. To probe this, we generate datasets by mixing diagonal and off-diagonal modes with a controllable interaction parameter $\zeta \in [0, 1]$.

$$\mathcal{D}^\zeta = \zeta \times \{(0, 0), (1, 1)\} + (1 - \zeta) \times \{(0, 1), (1, 0)\}$$

Herein, $\alpha = 0$ yields purely weak interaction, and $\alpha = 1$ yields purely strong interaction.

Results. Figure 16 compares the flow joint policy and individual policies trained under increasing interaction strengths ($\{0.00, 0.25, 0.50, 0.75, 1.00\}$) using the sampled joint-action matrices, the return, and the corresponding Wasserstein distance W_2 . In Figure 16 (a), across all interaction levels, the flow joint model reproduces the offline dataset distribution. It means that the BC flow learning is effectively capturing the observed joint-action modes. On the other hand, the individual policy shows a different pattern driven by the IGM-based Q maximization rather than simply BC. As interaction increases, the IGM objective encourages the individual policies to concentrate probability mass on the optimal joint actions rather than merely reproducing the empirical frequencies.

To quantify its differences, Figure 16 (b) clarifies how interaction strength influences the learned policies. The flow joint policy achieves the near-optimal reward of approximately 1.0, matching the reward level of the dataset since it directly models the full joint action distribution. In contrast, the return of the individual policy increases gradually as the interaction strength rises. This occurs because the number of samples in the optimal condition increases, thereby making the conditions for identifying coordinated behaviors more pronounced. Next, Figure 16 (c) confirms that W_2 rises with the interaction strength, reflecting the growing structural mismatch between the expressive joint flow and the restricted factored representation.

Summary. As interaction strength increases, the Wasserstein distance W_2 between the joint and individual policies grows, reflecting the structural mismatch that factorized policies cannot eliminate.