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ABSTRACT

This work presents MAC—F 1ow, a simple yet expressive framework for multi-agent
coordination. We argue that requirements of effective coordination are twofold: (i)
arich representation of the diverse joint behaviors present in offline data and (ii) the
ability to act efficiently in real time. However, prior approaches often sacrifice one
for the other, i.e., denoising diffusion-based solutions capture complex coordination
but are computationally slow, while Gaussian policy-based solutions are fast but
brittle in handling multi-agent interaction. MAC-F 1 ow addresses this trade-off by
first learning a flow-based representation of joint behaviors, and then distilling
it into decentralized one-step policies that preserve coordination while enabling
fast execution. Across four different benchmarks, including 12 environments
and 34 datasets, MAC-Flow alleviates the trade-off between performance and
computational cost, specifically achieving about X 14.5 faster inference compared
to diffusion-based MARL methods, while maintaining good performance. At the
same time, its inference speed is similar to that of prior Gaussian policy-based
offline MARL methods.

Git:

TL,DR: MAC-Flow alleviates performance-inference time trade-off,
achieving a 14.5x speedup compared to SOTA
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Figure 1: Summary of results. This summarizes performance vs. inference speed for selected algorithms on
widely-used MARL benchmarks, SMACv1 and SMACv2. We plot aggregate mean performance and inference
time across 18 datasets for 8 scenarios related to the SMAC maps. More precisely, we measure inference time
based on the total computation performed by each algorithm and report it by using milliseconds (ms) unit and log
scale, where a higher value indicates greater computational cost. As a result, our proposed solution, MAC-Flow,
achieves x14.5 faster inference speed on average with comparable performance compared to previous SOTA.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has been actively studied to handle real-world problems
in multi-agent systems, such as modular robot control ( s s ), multi-
player strategy games ( , ), and autonomous driving ( ,
, ). However because seminal MARL approaches heaVﬂy rely on extensive
onlme interactions among agents, their appllcablllty to real-world domains is severely limited.
Moreover, training from scratch is both expensive and risky in data collection and computation (
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, ). These challenges motivate methods that import the safety and efficiency benefits of
offline reinforcement learning (RL) into MARL ( , ).

Offline RL learns decision-making policies from fixed datasets, thereby avoiding expensive and
risky environment interactions by optlmlzmg returns whlle staying close to the dataset’s state-action
distribution ( , R ). However, the transition from
a single-agent to a multi-agent system is not tr1v1al 1ntroduc1ng a unique set of formidable challenges.
For example, the joint action space grows exponentially with the number of agents, making it difficult
to learn coordinated behaviors that adapt to diverse interaction patterns ( s ; s
; , ). Despite several efforts to address these problems ( ;

, ), they still struggle with the complex multi-modality of Jomt actlon

dlstrlbutlons as Gaussian policies are prone to failure by generating out-of-distribution coordination.

To tackle this challenge, seminal works have turned to powerful generative models based on denoising
diffusion in MARL ( , ; , ). While diffusion policies capture complex
multi-modal distributions, directly 0pt1m1z1ng them with respect to a learned value function remains
non-trivial. Backpropagatlng value gradlents through a multi-step denoising chain is expensive and
unstable ( s s ), so several previous RL solutions
employ diffusion for ofﬂlne 1m1tat10n ora dlstlllatlon based solution ( ,

). Furthermore, their reliance on an iterative denoising process, which requlres numerous neural
function evaluations per forward pass, makes them computationally expensive at inference time. This
latency precludes its practicality in scenarios that require time-critical decision-making.

At its core, the question motivating this study can be phrased as follows:

How should offline MARL algorithms balance the trade-off
between expressiveness for multi-agent distributions and computational efficiency?

Building on this question, this work introduces a novel offline MARL framework, dubbed MAC-F1ow,
that bridges the gap between expressive generative policies (simply coordination performance) and
computational demands. Our main idea is to first learn a flow-based joint policy through behavioral
cloning, which captures the complex multi-modal distribution of joint actions in offline multi-agent
datasets. For decentralized execution, we factorize the flow-based joint policy into a one-step sampling
policy by optimizing two objectives: (i) distilling the flow-based joint action distribution and (ii)
maximizing the global value function under the individual-global-max (IGM) principle ( ,

). By decoupling expressiveness from value maximization, MAC-F 1ow avoids the instability of
backpropagation through time ( , ; , ).

Our contributions are summarized as follows.

* We propose MAC—F 1ow, a novel MARL algorithm that enables scalable multi-agent systems
by alleviating the trade-off between coordination performance and inference speed.

* We introduce a flow-based joint policy factorization method that decouples expressiveness
from optimization, decomposing a flow-based joint policy into efficient one-step sampling
policies while jointly optimizing RL and imitation objectives with mathematical guarantees.

* We demonstrate the efficiency of MAC—~F 1ow across four widely used MARL benchmarks,
12 environments, and 34 datasets, encompassing diverse characterizations, especially in
14.5x speedup compared to previous diffusion-based solutions in SMAC benchmarks.

2 RELATED WORK

Offline MARL. The goal of offline RL is to extract a policy using static operational logs, without
active interaction with the environment. In multi-agent settings, inter-agent dependencies amplify
distribution shift. Even slight deviations in a single agent’s policy can trigger cascading mismatches
in joint behavioral patterns, complicating efforts to maximize returns while preserving alignment with
the dataset’s joint state-action distribution. Naive approaches typlcally involve extendmg single-agent
offline RL methods to multi-agent contexts ( ,

, ). Yet, these extensions often fall short in incorporating global regulanzatlon to facilitate
cooperation. More sophisticated methods, tailored for multi-agent settings, tackle coordination issues
via value decomposition, policy factorization, and model-based optimization ( , ;
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; ; s ). Despite these advances, such
techmques struggle to capture the multi- modal dlstrlbutlons inherent in multi-agent offline datasets,
resulting in imprecise credit assignment. To better capture joint action distribution, generative

modeling has gamed traction, for example, diffusion-based trajectory modeling ( , )
( s ), dlfqulOH based policy ( s ; s ), and
transforrner-based modeling ( , ; , ). However, they

frequently require substantial computatlonal resources and may struggle to learn optimal patterns,
owing to their reliance on behavioral cloning (BC) paradigms. This work introduces a novel MARL
algorithm that increases efficiency and takes advantage of both RL and generative modeling.

Diffusion and Flow Matching in RL. Drawing on the robust capacity of iterative generative modeling
frameworks, such as denoising diffusion processes and flow matching techniques, recent efforts have
explored the diverse ways to employ them for enhancing RL policies. Examples of RL with an
iterative generative model include world modeling ( s ; s ;
, ), trajectory planning ( s ; R ; , ; s
; , ; ; , ), policy modeling ( , ;
s ; s ), data augmentation ( s ; s ; s
; s ), policy steering ( , ), and exploration ( s
; , ). Such iterative generative models show powerful performance,
but thelr mference is prohlbltlvely slow for real-world deployment.

Our approach extracts an expressive flow policy to capture the multi-modal distribution of mixed
behavioral policies from ofﬂlne multi-agent datasets. Algorithmically, this is motivated by flow
distillation ( , , ) and flow Q-learning (FQL) ( , ),
which distills a one-step pohcy with an RL objective to model complex action distributions via
flow matching in single-agent RL. Instead, we leverage a flow matching-based joint policy that
explicitly models the joint action distribution across agents and pioneering the integration of the IGM
principle ( , ) with flow matching in MARL, ensuring individual policies align with the
global optimal joint policy for enhanced coordination and scalability.

3 BACKGROUND

Problem Formulation. This work posits the MARL problems under a decentralized partially
observable Markov decision process (Dec-POMDP) ( , ) M defined by a tuple
(Z,8,0:, A, T,Q,1i,7), where T = {1,2,--- | I} denotes a set of agents. Here, S represents the
global state space; O; and A; correspond to the observation and action spaces specific to agent i,
respectively. The state transition dynamics are captured by T(s|s,a) : Sx Ay x -+ x A = S,
where a is a joint action [a1, as, - - - , ay] and we color the gray to denote placeholder variables. Next,
Q;(0;s) : S — O; specifies the observatlon function for agent <. Each agent ¢ receives individual
rewards according to its reward function r;(s,a;,a_;) : S x A; x -+- x Ay — R. The goal of
offline MARL under cooperative setups is to learn a set of policies IT = {my,ma,- -+ , 7 [} that jointly

maximize the discounted cumulative reward E,,n () Zle Z;I;I:o (st alt, al )} from an

s Wi

offline multi-agent dataset D = {T(n)}ne{l,gw‘ ,N} without environment interactions, where v €

[0,1) is a discounted factor, T denotes a joint trajectory {71, 72, , 77}, i = (09, a? ol alh),

i Wiyt U 5 Uy

and p' (7) represents probability distribution over joint trajectories induced by a set of pohcies II.

Individual-Global-Max Principle. The IGM principle serves as a foundational approach in MARL,
offering a method to ensure globally consistent action selection through factorized Q-value functions
for each agent ( , ; , ). By aligning individual agent policies with a
shared objective, IGM simplifies the complexity of joint action spaces, making it a scalable solution
for multi-agent systems. This principle can be mathematically defined as follows.

arg max Qior(0,a) = (arg max Q1(01,a1),...,arg max Qi(or, a1)> (1)

1 I
Here, Qt(0, a) represents the global Q function, while Q;(0;, ;) denotes an individual Q function
for agent <. The IGM ensures that optimizing its local (; remains consistent with the global optimum.

Behavioral-regularized Offline RL. Behavioral regularization ( , ; ,
; ) ; ) ; , ) is a simple and powerful way to
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alleviate the out-of-distribution issue in the offline RL setting. Most seminal works leverage both
actor and critic penalization, whereas critic penalization may deteriorate the Q function in additional
online training. Therefore, to secure the versatility in both offline and online, we minimize the most
vanilla loss functions of the behavioral-regularized actor-critic framework as follows.

‘CQ(O) = ]E(o,a,o',r)ND, al~my [QG(Ov a’) - (T + ’VQ(;(O/a a/))] (2)

£7T(¢) = E(O,G)ND, a” ~Ty _QG(Oa aw) +a f(ﬂ'(b((l‘O), M(a|0)) (3)

behavioral regularization

Herein, 6 and ¢ is a parameter of critic and actor networks respectively, 0 is a target parameter
of the critic network ( , ), a is a weight coefficient ( , ), f(y0)
represents the function that captures the divergence between a trained policy 74(a|o) and offline
policy pi(a|o), which is used to collect the dataset D. The simplest implementation of f(-,-) is the
entropy regularization or behavioral cloning in the soft-actor critic algorithm — log 74 (a|o) (

s ). Within such an RL framework, we introduce a flow-based MARL solution.

Flow Matching and Flow Policies. Flow matching ( ; s ) of-
fers an alternative to den01smg diffusion models which rely on stochastlc differential equations
(SDEs) ( . ; s ). It simplifies training and

speeds up inference whlle often mamtammg quality, as it is based on ordinary differential equations
(ODES) ( b ’ b 9 9

The objective of flow matching is simple: to transform a simple noise distribution pg = A (0, I4) into
a given target distribution p; = p() over a d-dimensional Euclidean space X C R?. More precisely,
it finds the parameter ¢ of a time-dependant velocity field vs(t, ) : [0,1] x R? — R? to build a
time-dependent flow (Ice, ) g (t, ) : [0,1] x R — R via ODE as follows:

d
@W(t,x) = vy (t,Ve(t,z)), where 1y(0,z) = .

Here, the terminal state ¥y (1, 2°), with 2° ~ py, is expected to follow the target distribution p;. To
make the learning problem tractable, we follow an interpolating probability path (p;)o<¢<1 between
po and p;, where each intermediate sample is obtained by linear interpolation as z* = (1 —#)z° +tx!.
A timestep ¢ is sampled from a uniform distribution Unif([0, 1]) corresponding to a flow step.

The velocity field is then trained to approximate the displacement direction (z! — 2°) at intermediate

points along this path. Formally, the training objective is defined as:
£(¢) = EmoNpo xl~p1, t~Unif([0,1]) [||v¢(t x ) (v t— IO)”%] ) )
which encourages vy to recover the underlying transport field from source to target.

In this work, we extract a policy via the simplest variant of flow matchmg (Equation 4) ( ,
; , ). Specifically, the flow policy is extracted to minimize the following loss.

Letow-8c(8) = Eyorpy, (0.0)~D, t~unit(0,1)) [1Vs(t, 0,2") — (a — 2°)||3] )

Flow policies extend flow matching to policy learning by conditioning the velocity field v, (7, 0, x)
on the observation o. The resulting flow 14 (1, 0, z), with a noise z ~ py, defines a deterministic
mapping a = f14(0, =) from observation and noise to actions by ODEs. Since z is stochastic, this
induces a stochastic policy 74 (a|o), enabling flow matching to serve as a generative policy model.

4  MULTI-AGENT COORDINATION VIA FLOW MATCHING (MAC-FLOW)

In this section, we introduce a novel MARL algorithm, dubbed MAC-F1ow, which is a simple and
expressive tool for extracting multi-agent policies via flow matching.

4.1 How DOES MAC-FLOW EXTRACT ONE-STEP POLICIES FOR COORDINATION?

Our desiderata are threefold: (i) to capture the distribution of coordinated behaviors, thereby
preserving inter-agent dependencies under multi-agent dynamics; (ii) to ensure high practicality by



Under review as a conference paper at ICLR 2026

Stage I: Train vector field vy in BC flow-based joint policy 7y
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Figure 2: Overview diagram of proposed solution. Our solution, MAC—-F 1 ow, composes of two stages. The
first stage models the joint action distribution via flow-matching to capture inter-agent dependencies, thereby
facilitating the extraction of coordination behaviors more effectively than treating individual policies. For the
next stage, individual critics are trained under the individual-global-max principle, thereby embedding behaviors
for multi-agent coordination. At the second stage, practicality is highlighted by deriving individual policies for
decentralized execution from a flow-based joint policy via Q maximization and BC distillation.

enabling decentralized execution and fast inference at test time; and (iii) to maintain algorithmic
simplicity by avoiding unnecessary architectural overhead. Therefore, we adopt a two-stage strategy,
which trains a joint policy via flow matching for (i), then distills it into a set of individual policies for
(ii). Thanks to the simplicity of flow-matching and BC distillation, MAC—F 1 ow directly fulfills (iii).

Overview. Figure 2 shows an overview diagram for MAC-F1low. To achieve our goal, the first
stage learns a joint observation- and time-dependent vector field vy (¢, 0,z) to capture the multi-
modal action distribution from the multi-agent dataset D. This vector field serves as a joint policy
e (0, z). Before proceeding to the next stage, we train individual critics {Qg,, ..., Q,, ..., Qa, }
based on the IGM principle. In the second stage, we distill the flow-based joint policy into one-
step sampling policies {ptg, (01,21), -« » fw; (03, 25) =+, (01, 21) } for each agent 4, where w;
represents a parameter of an individual policy network for i-th agent. This relies on three key
properties: Definition 4.1, the joint action distribution can be factorized into independent individual
policies; Proposition 4.2, the mismatch between the joint distribution and its factorized approximation
is upper-bounded by the distillation loss; and Proposition the resulting performance gap is
controlled via a Lipschitz bound on the value function. Together, our solution preserves the multi-
modal structure of the joint policy while extracting individual policies for fast inference.

4.2 PROPOSED SOLUTION

Joint Policy Extraction via Flow Matching. The objective of the first stage is to build a flow-based
joint policy u4(0, z) via solely BC objective that accurately captures the joint action distribution in
the offline multi-agent dataset D. Concretely, we train it by expanding the flow-BC loss function
Lriow-sc (Equation 5) into the joint observation-action data sample as follows:

EF]OW—BC(¢) = ]Ex"wpo, (0,a)~D, t~Unif([0,1]) [“vd?(tv o, Xt) - (a - XO)”%] (6)

where x° = [29,--- ,29] and py = Hle N(0,1,,) denote the random sampled joint noise and the
noise distributions for all agents. The trained vector field vg defines a joint flow 4(1, 0,2) and
hence a stochastic joint policy 74 (a | o) through reparameterization with z ~ py.
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Flow-based Joint Policy Distillation. Since execution under the CTDE framework must be fully
decentralized, a joint policy conditioned on global observation is infeasible to deploy. We therefore
factorize the flow-based joint policy into individual policies that approximate the individual action
distribution while preserving coordination. This connection can be formalized by extending the IGM
principle to the action distribution as follows.

Definition 4.1 (Action distribution identical matching). For a joint observation o and action a with
agent-wise dimensions d;, let w(a | o) be the joint action distribution. If each agent i admits an
individual distribution 7;(a; | 0;) such that m(a | 0) = Hfil mi(a; | 0;), then we say that action
distribution identical matching holds.

This condition implies that decentralized execution via independent local sampling from 7;(a; | 0;)
is distributionally equivalent to centralized execution of the joint policy 7(a | o). In practice, to
approximate this factorization, we introduce a distillation loss that aligns the product of individual
policies with the flow-based joint policy as follows:

I
LDistill-Flow(W) = ]EOND7 Z~Po Z ||/Lw7-, (0i7 Z?) - [,LL¢ (07 z)]z”g ) (7)
i=1
where [-]; is the i-th subvector of joint variables, and w is the set of individual policy parameters

[wy, -, wr]. Importantly, distillation is not merely heuristic. Given both joint and factorized policies
with the same noise, we obtain the following bound:

Proposition 4.2 (2-Wasserstein upper bound of distillation). Fix a joint observation o. Let z ~ pg be
a noise variable, and define the joint policy mapping j14(0,2) € A and the factorized policy mapping
tw (0,2) = [, (01,21),- -+, fbw; (01, 21)] € A Denote by s(0) and mw(0) the push-forward
distributions of po through 4 and iy, respectively. Then, the 2-Wasserstein distance between the
Jjoint policy and its factorization is upper-bounded by the square root of the distillation loss:

Wa(mw(0). 76(0)) < (Bamyy [l1iw(0.2) ~ ps(o.2) 3]) ®

Full Objective for Policy Factorization. The goal of the second stage is to factorize a flow-based
joint policy p4 (0, z) into a set of one-step sampling policies { /i, (01, 21), - -, fw, (01, 21) } for I
agents under the IGM and Definition 4. 1. Formally, the full loss function can be defined as follows:

I
Lr(W) = Eonp, anmy, 2po l—er(Oa a) + Y [[(w, (05, 2) — [%(Oaz)]z‘@] .M
i=1

As mentioned in Section 4.1, we design this function for one-step sampling policies to maximize the
Q function and minimize the BC distillation losses. We train a critic network with a parameter 6; for
agent ¢. In practice, minimizing the £, (w) in turn upper-bounds the performance difference in terms
of the global value function Q. The following proposition formalizes this guarantee.
Proposition 4.3 (Lipschitz value gap bound). Fix a joint observation o and assume Qy(0, ) is
Lq-Lipschitz in the action: |Q,0t(0, mT(0)) — Qw,(o,ﬂ'w(o))| < Lgllag — awl|2, Yag, aw € A
Denote by 7y (0) and v (0) the push-forward distributions of the joint noise pg through ps(o, )
and i (0, ) = [ttw, (01,21), -+ , pw; (01, 21)], Tespectively. Then, the performance gap satisfies

)
Ea~7rw(o) [Qrul(oa a)] - anfrdJ (o) [Qtor(oa a)] ‘ < Lo Ws (ﬂ'w (0)7 77(;5(0))

< LQ\/<EZ~P0 ”:U/w(0>z) - N¢(07Z)”§)' (10)

For all mathematical derivations of the provided Propositions, please see Appendix D. Note that these
properties collectively characterize bounded performance degradation under explicit assumptions
rather than perfectly global optimality preservation.

4.3 DIDACTIC EXAMPLE: VALIDATING THE WASSERSTEIN—VALUE GAP RELATION

To further understand the theoretical idea, we study a toy example with grid world, a landmark
covering task. This subsection aims to show how policy factorization, distributional mismatch,
Wasserstein distances, and value gaps manifest during learning.
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Figure 3: Theoretical validation in a didactic example. (@) Distillation loss and corresponding value gap
between the joint and factored policies over training. (b) Inter-agent mutual information during training,
comparing dependency strength in joint policy vs. factorized policies. (¢) Empirical value gap alongside the
theoretical Lipschitz upper bound predicted by Proposition 4.3. (d) Point-wise scatter of value gap versus
Wasserstein discrepancy, showing all checkpoints lie below the theoretical bound.

Didactic task setup. In 2D plane environment, three agents aim to cover three fixed landmarks. Each
agent observes its own position and all landmark positions, but not other agents. The action of agent
i is a movement vector a’ € R%. The reward is defined through an optimal assignment. The reward is
a negative distance to its assigned landmark. We provide visualization in Appendix

Empirical evidence for propositions. Proposition and relate the performance deviation
between the joint policy and its factorized approximation to the distillation discrepancy measured in
Wasserstein distance under controlled conditions. First, Figure 3 (a) plots both the distillation loss
and the empirical value gap over training. As distillation proceeds, the value gap decreases in tandem
with the loss, confirming the expected contraction. Second, improved distributional alignment results
in reduced performance degradation. Next, Figure 3(b) shows that the joint policy exhibits strong
inter-agent mutual information MI(a®, a’) during the early phase of training, reflecting the ambiguity
in how agents initially partition the landmarks. As training progresses and the landmark assignments
become more stable, this MI gradually decreases and eventually converges. In contrast, the factored
policy starts from 0 MI, then gradually becomes similar to the joint policy. It maintains MI values
below approximately 0.1 throughout training, which indicates that its independent parameterization
cannot capture the interaction-induced dependencies without distillation. Finally, Figure 3 (c) shows
that the empirical value gap stays below the theoretical upper bound at all checkpoints, with the
gap tightening as learning stabilizes. A point-wise analysis in Figure 3 (d) further shows a clear
monotonic trend: all samples lie beneath the linear envelope defined by Lq W5, indicating that the
bound is both valid and informative in practice.

4.4 ALGORITHM SUMMARY

Algorithm | outlines MAC-F1low: we learn a BC flow-based joint policy f4(0, z) via flow matching
to model joint action distributions; train individual critics {Qy, } under the IGM principle; and factor-
ize 114 into decentralized one-step policies { iy, } via ) guidance and BC distillation. During training,
policy action for TD backups are sampled from fi4(0, z) using the Euler method (Algorithm 2),
whereas at deployment, actions are generated directly by {,, }. This design enhances inference
speed while preserving coordinated expressivity, offering tractable value estimation under IGM,
performance guarantees via Propositions and 4.3, and single-step execution for fast inference.

5 EXPERIMENTS

The following subsection presents a suite of experiments designed to assess the effectiveness of
MAC-Flow and experimental results via the following research questions (RQ) and answers.

. How good is MAC—F low over continuous and discrete action spaces of MARL benchmarks?
. How fast is the inference speed of MAC-F1low compared to diffusion-based solutions?

. Can MAC-F1low be extended beyond offline pretraining to online fine-tuning?

. How effective is the two-stage strategy in MAC-F low framework?

. How effective is the IGM-based critic training in MAC-F1low framework?

Please see Appendix I, G, and H to check additional RQs and a detailed description for experiments.
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Algorithm 1 MAC-Flow Algorithm 2 Sampling
while not converged do function p4 (0, x)
Sample batch {(0;, a;, i, 0})}_; ~D d<+ 1/M
t< 0

# TRAIN BC FLOW-BASED JOINT POLICY 7

Set variables x° < z ~ p%, x! < a,t ~ Unif([0, 1])
Calculate noise point x¢ <— (1 — t)xo + tx1

Update ¢ using Equation (6)

fork € {0,--- ,M — 1} do
X  x +vg(t,0,x)d
t—t+d

return x

# TRAIN INDIVIDUAL CRITIC Q,
fori=1,---,1do
Sample noise a:? — 2z~ p?
Sample joint action a’ < p4(0’,x°) Algorithm
Update {0;}!_, by E[Qq, (0i,ai) — ri —7Qg, (0}, a})]

# EXTRACT INDIVIDUAL POLICY Ty,
fori=1,---,1do

Sample noise x? — oz~ p?

Sample action a; < fw; (05, 29)
Update {w;}!_, using Equation (9)

return set of one-step policies {mw;,- - , Tw; }

5.1 ENVIRONMENTAL SETUPS

We evaluate the proposed solution, MAC-F 1ow, on four widely used MARL environments: StarCraft
multi-agent challenge (SMAC) vl, SMACv2, multi-agent MuJoCo (MA-MuJoCo), and the multiple-
particle environment (MPE). A description of the testbeds and datasets is provided below.

SMACYV1 (discrete action) provides a real-time combat environment where two teams compete, with
one controlled by built-in Al and the other by learned policies. It incorporates both homogeneous
and heterogeneous unit settings, thereby enabling diverse strategic coordination requirements. For
offline datasets, we use the assets from off-the-grid benchmark ( , ), including
three quality datasets for each map, e.g., Good, Medium, and Poor.

SMACV2 (discrete action) extends SMACv1 by addressing the limited randomness of SMACv1
through three major modifications: randomized start positions, randomized unit types, and adjusted
unit sight and attack ranges. These changes increase the diversity of the scenarios, making the tasks
more challenging. For offline datasets, we use the assets from off-the-grid benchmark (

, ), including a dataset for each map, e.g., Replay.

MA-MuJoCo (continuous action) decomposes single robotic systems into multiple agents, each
responsible for controlling a specific subset of joints. This design enables agents to coordinate in
achieving shared objectives. For its datasets, we leverage the asset from ( ), including
four datasets for each robotic control, e.g., Expert, Medium-Expert, Medium, and Medium-Replay.

MPE (continuous action) is a lightweight benchmark commonly used for studying cooperative
coordination. Agents are represented as particles moving in a two-dimensional continuous space,
where they must coordinate to achieve goals. We leverage the offline datasets collected by

( ), including four quality datasets, e.g., Expert, Medium, Medium-Replay, and Random.

Baselines. For offline MARL experiments, we use the three categories for baselines. For Gaussian
policies, we consider the extension of SARL, e.g., BC, BCQ ( s ), CQL ( R
), and TD3BC ( s ), and standard offline MARL solutions, e.g., ICQ (

, ), OMAR ( " ), and OMIGA ( R ). For diffusion policies, we
select recent offline MARL algorithms, e.g., diffusion BC, MADiff ( s ), and
DoF ( , ). Lastly, the flow policies include F1ow BC and our proposed solution.

5.2 EXPERIMENTAL RESULTS AND RESEARCH Q&A

Contribution overview with RQ1 and RQ2. Diffusion baselines, e.g., DoF, demonstrate strong
coordination performance, but they incur substantial cost due to iterative denoising process. In
contrast, Mac—F low trades a small amount of expressiveness for dramatically faster optimization.
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Table 1: Performance evaluation for discrete action control. We present a performance comparison across 2
benchmarks, 8 tasks, and 18 datasets. These results are averaged over 6 seeds, and we report the two standard

deviations after the £ sign. We highlight the best performance in bold and the second best in underlined .

Gaussian policies Diffusion policies Flow policies

Scenarios Dataset
BC MABCQ MACQL Diffusion BC MADiff DoF Flow BC MAC-Flow
Good 16.0 £1.0 3.7+1.1 19.1 +0.1 19.5 £0.5 19.3 £0.5 19.8 +0.2 20.0 +£0.0 19.8 +0.2
3m Medium 8.240.8 4.0 £1.0 13.7 £0.3 13.3 £0.7 16.4 £2.6 18.6 £1.2 14.7 £1.5 18.0 £3.2
Poor 4.4 £0.1 3.4 £1.0 4.2 £0.1 4.2 £0.2 10.3 +6.1 10.9 £1.1 4.5 £0.1 10.6 £2.2
Good 16.7 +0.4 4.8 £0.6 18.9 £0.9 19.4 +0.5 18.9 £1.1 19.6 £0.3 19.5 +0.2 19.7 £0.3
8m Medium | 10.7 £0.5 5.6 0.6 15.5 £1.5 18.6 +0.6 16.8 £1.6 18.6 +0.8 18.2 +0.8 19.4 +0.6
- Poor 5.3 +£0.1 3.6 £0.8 7.5 +1.0 4.8 £0.2 9.8 £0.9 12.0 +£1.2 4.9 +0.1 11.5 40.8
>
% Good 18.2 +0.4 7.7+0.9 17.4 +0.3 18.0 £1.0 15.9 +1.2 18.5 +0.8 19.5 £0.1 19.5 £0.5
S 23z Medium 12.3 +0.7 7.6 £0.7 15.6 £0.4 13.4+1.4 15.6 £0.3 18.1 +0.9 15.1 £2.0 17.6 £0.6
2 Poor 6.7 +£0.3 6.6 £0.2 8.4 £0.8 6.2+1.2 85+1.3  10.041.1 | 6.9408 8.5 40.6
Good 15.8 £3.6 2.440.4 16.2 £1.6 16.8 £2.3 16.5 £2.8 17.7 £1.1 14.7 £2.1 18.6 £3.5
Sm_vs_6m Medium 12.4 +0.9 3.8 +0.5 15.1 £2.9 12.5 £2.1 15.2 +2.6 16.2 £0.9 12.8 £0.8 15.6 £1.3
Poor 7.5 +0.2 3.3 £0.5 10.5 £3.1 8.0 £1.0 8.9 £1.3 10.8 +0.3 7.7 +0.8 9.8 £2.1
Good 17.54+0.4 10.1+0.2 12.9+40.2 17.8 £1.3 14.7 £2.2 16.1 +0.8 18.0 +£1.3 19.1 +0.8
2c_vs_64zg Medium 12.5 +£0.3 9.9 £0.2 11.6 £0.1 10.5 £1.1 12.8 +1.2 13.9 +0.9 11.8 £2.6 14.9 +4.1
Poor 9.7 +0.2 9.0 £0.2 10.2 +0.1 10.2 £2.3 10.8 +1.1 11.5 £1.1 10.0 £0.3 11.4 +0.4
Average rewards ‘ 12.2 5.5 13.1 13.0 13.8 15.6 13.4 15.6
o terran_S_vs_S Replay ‘ 7.3 +£1.0 13.8 +4.4 11.8 +0.9 ‘ 9.3 +0.9 13.3+1.8 15.4+1.3 ‘ 8.3 +1.9 16.6 +4.3
§ zerg 5.vs 5 Replay | 6.8+0.6  10.3+1.2 10.3+3.4 | 8.1+1.7 10.2+1.1 [12.0£1.1 | 4.640.5 9.8 +1.5
A terran10.vs 10  Replay | 7.4+0.5 12.742.0 11.8 +2.0 | 5.5+1.5 13.84+1.3 146 %11 | 58+1.7 13.0 £4.7
Average rewards \ 7.2 12.3 11.3 7.6 12.4 14.0 6.2 13.1

Table 2: Performance evaluation for continuous action control. We present a performance comparison across

2 benchmarks, 4 tasks, and 16 datasets. Results are reported following the conventions of Table 1. For readability,
we use the acronyms M-E and M-R for Medium-Expert and Medium-Replay, respectively.
. Extension of offline SARL Offline MARL
Scenarios Dataset
MATD3BC MACQL ICcQ OMAR OMIGA MADiff MAC-Flow
Expert 4401.6 £169.1 4589.5 +98.5 2955.9 +459.2 —206.7 £161.1 3383.6 £552.7 | 4711.4 £213.6 4650.0 +271.6
HalfCheetah Medium 2620.8 +£69.9 3189.4 £306.9 2549.3 £96.3 —265.7 £147.0 3608.1 +£237.4 2650.0£365.4 4358.5 £369.2
M-R 3528.9 £120.9  3500.7 +293.9 1922.4 +612.9 —235.4 +154.9 2504.7 £83.5 2830.5+292.8 3030.2 +436.8
M-E 3518.1 £381.0 4738.2 +181.1 2834.0 £420.3 —253.8 £63.9 2948.5 +518.9 4410.9+836.8 5139.9 £84.1
=]
2 Expert 3309.9 +4.5 3359.1 +513.8 754.7 £806.3 2.4+1.5 859.6 £709.5 2853.3+593.8 3592.1 £8.9
3 Hopper Medium 870.4 £156.7 901.3 £199.9 501.8 £14.0 21.3 £24.9 1189.3 +544.3 1436.8+449.5 1023.5 +£253.0
E. PP M-R 269.7 £41.8 31.4 £15.2 195.4 £103.6 3.3 £3.2 T74.2 £494.3 936.1 £574.0 1166.3 £451.9
g M-E 2904.3 +477.4 2751.8 +123.3 355.4 £373.9 1.4 +0.9 709.0 £595.7 2810.4 +723.2 2988.3 +480.2
Expert 2046.9 £17.1 2082.4 £21.7 2050.0 +11.9 312.5 £297.5 2055.5 £1.6 2060.0£10.3 2060.2 +20.0
Ant Medium 1422.6 £21.1 1033.9 +66.4 1412.4 £10.9 —1710.0 £1589.0 1418.4 +5.4 1428.4+14.7 1432.4 +17.8
M-R 995.2 £52.8 434.6 £108.3 1016.7 +£53.5 —2014.2 £844.7 1105.1 +88.9 1294.5+360.2 1498.4 +20.3
M-E 1636.1 £96.0 1800.2 +21.5 1590.2 +85.6 —2992.8 £7.0 1720.3 +£110.6 1740.2+158.9 2053.3 +£20.4
Average rewards 2293.7 2367.7 1511.5 —611.5 1856.4 2430.21 2749.4
Expert 108.3 +£3.3 98.2 £5.2 114.9 +2.6 104.0 +3.4 80.8 £13.8 95.0 £5.3 101.7 £10.9
= Spread Medium 29.3 +4.8 34.1 +£7.2 47.9 £18.9 29.3 +5.5 30.1 £16.9 64.9 £7.7 80.1 +£20.6
& P M-R 15.4 £5.6 20.0 +8.4 37.9 +12.3 13.6 £5.7 5.4 411.0 30.3 £2.5 50.4 £33.2
= Random 9.8 +£4.9 24.0 +9.8 34.4 +£5.3 6.3 +£3.5 —3.8 +£12.3 6.9 £3.1 31.1 +6.8
Average rewards 40.7 44.1 58.8 38.3 28.1 49.2 65.8

Additionally, MAC—-F 1low incurs a modest increase in training time over Gaussian models, but still
trains far faster than diffusion baselines. Full results are provided in Appendix

A1: For RQ1 (Performance) , MAC-F low achieves best or second-best average performance across
four benchmarks regardless of continuous or discrete action space. Table | and 2 summarize
the performance comparison across four benchmarks. These results demonstrate that MAC-F low
matches the performance of DoF by combining expressive flow-based modeling of joint action
distribution with an efficient distillation step into decentralized one-step policies, thereby preserving
coordination quality while ensuring scalability across discrete and continuous benchmarks.

A2: For RQ2 (Inference speed) , MAC-Flow achi- s SMacv 1 op A Mo
eves averaged x14.5 faster inference than diffusion 2o

policies with comparable performance. Figure Fu -

shows its faster inference while maintaining competi- Ba & flg g " lEls Bra
tive performance relative to MAD1 £ f and DoF. More- s, LBEE 2 TEIEEE] =
over, MAC-F 1 ow matches the inference speed of prior Jppr— o E—
offline MARL algorithms but significantly outperform- g w- 1230

ing them in performance. Theoretically, the per-agent f"‘ "B o .

inference complexity of MAC—F1ow is low, especially g | M8l s g Bl |82
O(1), in contrast to O(K) for DoF and O(IK) for =, 8lELE R IElE]E] ]2

MADIFF, where K is the diffusion steps and [ is the
number of agents. Full details are in Appendix

Figure 4: Inference time. These results are aver-
aged over each benchmark’s scenarios.
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Figure 5: Offline-to-online experiments. Online fine-  Figure 6: Ablation study for RQ4. We test the effect
tuning starts at 0.5 normalized steps. of the distillation phase and its RL objective.

A3: For RQ3 (Offline-to-online) , MAC-F 1ow can seamlessly use online rollouts to fine-tune itself,
enabling it to achieve better results than previous methods. Figure 5 shows the training curves of
MAC-Flow and previous baselines, where online fine-tuning begins after 0.5 iteration steps. Some
baselines fail to account for exploration and thus remain limited to their offline performance, while
MA-CQL exhibits the reported issue of a sharp performance drop at the initial stage of the online
phase. In contrast, our approach effectively improves performance in the online stage by leveraging
newly collected rollouts. In practice, MAC—F 1 ow can fine-tune its networks under the same objective
used in offline learning by simply augmenting the offline dataset with additional online rollouts.

A4: For RQ4 (Ablation on distillation with Q maximization) , both the full objective and training
scheme of MAC-Flow are essential. Figure 6 presents the ablation study on Q maximization
in Equation (9) and the distillation stage in the two-stage training scheme. Specifically, w/o Q
maximization corresponds to a one-step sampling policy without an RL objective, while w/ o
distillation refers to a pure BC flow policy that requires an ODE solver. Across all scenarios,
MAC-Flow consistently outperforms its ablated counterparts, demonstrating that removing either
Q-maximization or the distillation phase substantially limits policy learning. These results highlight
that such components are critical to achieving strong performance across diverse tasks.
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Figure 7: Ablation study for RQ5. This figure shows the learning curves for performance and () value.
Performance’s y-axes of MA-MuJoCo and MPE are scaled as 1000 and 20 units, respectively.

AS: For RQS (Ablation on IGM) , IGM-based critic training is crucial for ensuring stability in
critic optimization, consistency in ()-value estimation, and superior performance in the MAC-Flow
framework. Figure 7 presents learning curves for the ablation study comparing MAC—-F1low with
IGM and without IGM. The IGM-based variant achieves substantially higher performance, while the
non-IGM counterpart stagnates at suboptimal levels. In particular, IGM leads to significantly lower
and more stable loss curves in a multi-agent setting; additionally, the non-IGM baseline exhibits a
collapse of () estimates as training progresses.

6 CONCLUSIONS

In this work, we propose MAC-F 1ow, a novel MARL algorithm that learns a flow-based joint policy
to capture the multi-modality of multi-agent datasets, and then distills it into decentralized one-
step sampling policies using a combination of RL and BC objectives. Our experiments show that
MAC-Flow addresses the trade-off between inference efficiency and performance in offline MARL.

Future Directions and Impact Statement. While our approach demonstrates strong performance
and efficiency gains, extending MAC—-F 1ow to more diverse and dynamic environments remains an
important direction. We should develop an algorithm that can integrate other pre-trained distributions
to enhance the diversity of decentralized policies. This can enable more flexible role adaptation and
generalizability improvement, ensuring that agents adapt to new scenarios. Such directions increase
the stability of multi-agent systems. This line of research provides a foundation for future advances
in generalizable MARL and its deployment in real-world domains.
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A MISCELLANEOUS

A.1 SUMMARY OF NOTATIONS

Dec-POMDP elements

Notation  Description Notation  Description
A set of agents i agent index
I number of agents v €[0,1) discount factor
S global state space st state at time ¢
O; observation space of agent ¢ ot local observation of agent ¢
A; action space of agent ¢ at action of agent ¢
T state transition function Q; observation function of agent ¢
T4 reward function of agent ¢ R! return of agent ¢ at time ¢
T trajectory D offline dataset (replay buffer)
Algorithm elements (Flow Matching / Policies)
Notation  Description Notation  Description
Do prior noise distribution D1 target action distribution
Z noise sample from py 1 target action sample
Ty interpolated point (1 — ¢)xg + tx1 t continuous flow step
vy (t,0,2)  velocity field conditioned on o o(t, x) flow trajectory
4 joint noise variable Z noise for agent ¢
pep(o,z)  flow-based joint policy my(alo)  induced stochastic joint policy
W, (0i,2;)  one-step policy for agent ¢ Tw,; (aio;)  induced one-step sampling policy
Qtot(0,a)  global Q-function Qo,(0i,a;) individual Q-function
RL Training
Notation  Description Notation  Description
0 critic parameters 0 target critic parameters
0] BC flow policy parameters w = {w;}  parameters of one-step policies
n learning rate B batch size
K number of updates T episode horizon
«a balancing coefficient (regularization) fG) divergence measure

A.2 SYSTEM SPECIFICATION

CPU AMD EPYC 7763 64-Core
GPU RTX A5500
Software CUDA: 12.2, cudnn: 8.9.7, python: 3.9, JAX: 0.4.30
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B EXTENSIVE RELATED WORKS

Behavioral-regularized Actor Critic. A closely related line of our research is behavioral-regularized
actor-critic (BRAC) ( , ). The BRAC is one of the simplest and most powerful policy
extraction strategies among offline RL solutions ( , ). These approaches solve the
out-of-distribution sample issue by constraining the learned policy to remain close to the behavior
policy. In general, this is implemented by adding divergence penalties or regularization terms in the
actor and critic updates, thereby stabilizing policy improvement in offline settings (

, ). Although these methods are primarily desrgned
for srngle agent RL (SARL) and rely on relatively simple Gaussian policies to model the action space,
they are often adopted as baselines in MARL by being naively extended to multi-agent settings (

). As aresult, they struggle to capture the multi-modality of joint action distributions that are
inherent in cooperative MARL scenarios, thereby being behind on their performance compared to
advanced architecture-based RL solutions.

In contrast, our proposed solution embraces the same principle of behavioral regularization, striking
a balance between () maximization and fidelity to the offline dataset. MAC-Flow, specifically,
leverages flow-matching to extract a rich generative model of the joint action space, and then
introduces a distillation loss analogous to the behavioral penalty in BRAC at the individual policy
extraction phase. This allows decentralized one-step policies to inherit both expressiveness from
the flow-based policy and regularization from the dataset distribution, concurrently guaranteeing
coordination in multi-agent settings.

Short-cut Diffusion or Flow. Another relevant line and motivation of this work is shortcut generatrve
modeling, e.g., shortcut diffusion and shortcut flow matching (
These approaches alleviate the inefficiency of iterative generatlve models (den01smg d1ffu510n or
ODE/SDE solvers) ( s s
; , ) by e1ther reducmg the number of denoising steps ( ,
; ; ; , ) or by learning direct mapplngs
that approx1mate the multr step generative process with fewer evaluations (
; , ). In the context of RL, shortcut generative methods have been
explored to accelerate policy sampling while retaining the expressive capacity of diffusion or flow
models to address complicated problems.

Our work shares the motivation of achieving fast inference with expressive policies, but introduces
a key adaptation for the multi-agent setting. Rather than merely shortening generative trajectories,
MAC-Flow factorizes the flow-based joint policy into decentralized one-step sampling policies,
supported by theoretical guarantees under the IGM principle. This perspective extends shortcut flow
approaches, where the shortcut lies not only in time complexity but also in the structural factorization
of multi-agent policies. By combining flow-based modeling with policy distillation guided by the
IGM principle, MAC-F 1ow generalizes shortcut generative techniques to address the scalability and
coordination challenges unique to offline MARL.
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C COMPLEXITY ANALYSIS

To theoretically support the empirical inference efficiency of MAC-Flow, we provide a big-O
analysis comparing its per-agent and total inference-time complexity against two diffusion-based
SOTA baselines, DoF and MADiff. We analyze the computational complexity of generating one
joint action at a single environment step.

Setups. For this discussion, let I denote the number of agents and 7' the number of iterative steps
required by diffusion or flow policies. The input dimensions for per-agent observation and action
are treated as d,,, d,, = O(1). Although our solution is based on a simple [512, 512, 512, 512]-sized
MLP network, and MAD1 £ f and DoF employ a U-net-based temporal architecture, we posit that all
constant factors are absorbed in asymptotic notation.

Table 3: Asymptotic inference time complexity analysis. This table reports big-O analysis about input
dimension, per-agent cost, and total cost of producing one joint action at a single environment step.

Method Decentralizeation Input dimension Per-agent complexity —Total complexity
MAC-Flow Yes o) o) o)

DoF Yes o) O(K) O(IK)
MADiff-D Yes O(I) O(IK) O(I’K)
MADiff-C No o) O(IK) O(IK)

MAC-Flow. Our solution extracts decentralized one-step sampling policies for each agent. Therefore,
at the inference phase, each agent can produce its action with a single forward pass using simple
MLP networks.The per-agent complexitiy is O(1), and the total complexity is O(I).

DoF. This decomposes the centralized diffusion process into decentralized per-agent processes. Each
agent must execute a full K -step denoising chain, although the factorization ensures that the per-step
input dimension is O(1). independent of I. Thus, the per-agent complexity is O(K) and the total
complexity is O(IK). We follow the default setups, DoF-Trajectory, W-Concat factorization, and
200-steps denoising iterations.

MADiIff. We report two variations for MADiff, centralized and decentralized versions. For
MADiff-D, each agent conditions the diffusion model on its own local observation. Neverthe-
less, due to the model’s architecture, the diffusion process generates a full joint trajectory that
includes both the agent itself and its teammates. As a result, the input size at each denoising step
scales with the number of agents, i.e., O(I). Moreover, since the denoising process requires K
iterative steps, the per-agent complexity is O(IK). As all I agents must perform this computation
independently, the total complexity reaches O(I? K), which highlights a quadratic dependence on
the number of agents. Next, for MAD1 f £-C, a single diffusion model jointly generates the actions
for all agents in one forward chain. At each denoising step, the input dimension remains O([), and
the process requires K iterations, yielding a per-agent complexity of O(IK). However, because the
joint model executes once for all agents, the total complexity is limited to O(I K). This distinction
emphasizes that MADi f £-C avoids the quadratic blow-up observed in MADi f £-D, albeit at the cost
of requiring centralized execution and communication during deployment.

Discussion Summary. Table 3 summarizes the theoretical inference complexities. Our analysis
shows that MAC—-F 1ow achieves constant-time inference per agent, independent of both [ and K,
thereby scaling linearly with the number of agents. In contrast, diffusion-based methods inherit the
iterative overhead of K denoising steps. While DoF alleviates input scaling via factorization, its
complexity remains O(IK). MAD1 f £-C also maintains O(I K') complexity but requires centralized
execution. Finally, MAD1 f £-D is the least efficient, with a quadratic dependence on the number of
agents due to per-agent joint inference, resulting in O(I?K). These asymptotic distinctions theoreti-
cally underpin the empirical findings reported in the main text, where MAC—F 1ow demonstrates a
13.7 ~ 21.4x speedup over diffusion-based baselines.
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D MATHEMATICAL DERIVATION

This section provides a mathematical derivation for two propositions. Before looking deeper into
them, we first show the Lemma related to the comparability of joint and factorized policies.

Lemma D.1 (Comparability of Joint and Factorized Policies). Let o be a joint observation and
let z ~ pg denote the joint noise variable. Consider the flow-based joint mapping ps(0,2z)
that induces the push-forward distribution 74(0), and the factorized mapping ,(0,z) =
[tw, (01,21), -y paw, (01, 21)] that induces m,,(0). By Definition 4.1, if action distribution iden-
tical matching holds, then the joint distribution can be factorized as a product of individual policies.
Even when exact matching does not hold, both 74(0) and m,,(0) are defined as push-forward dis-
tributions of the same base noise py. Hence, m4(0,) and m,(0) are comparable within the same
probability space, and their discrepancy can be measured via a divergence function.

D.1 PROOF FOR PROPOSITION

Let o be a joint observation and z ~ pg a joint noise variable. Define the joint pol-
icy mapping pe(0,z) € A; x --- x Az and the factorized policiy mapping fp,(0,2) =
[t (01,21), -+, pw; (01, 21)]. Denote by a ~ 74 (0) and a ~ m,,(0) the push-forward distributions
of po through 11 and p,,, respectively.

Following Lemma D. 1, the squared 2-Wasserstein distance is defined as
W2 (m4(0),74(0)) = inf  Eavon [lla—yl2],
F (ru(o).mg(o)) = | inf By [la - yIl]

where A(m,,, ,) denotes the set of coupling distributions between ,, and 7.

By choosing the specific coupling A induced by sampling z ~ pg and pairing (., (0, z) with 114 (0, z),
we obtain
2 2
W3 (7(0),74(0)) < Egropy [|l110(0,2) — p1g(0, 2)][3]

Then, taking square roots on both sides yields the desired inequality:
1/2
W2 (10(0),75(0)) < (Eanpy [[l1w(0,2) — po(0,2)|13]) .
The proof is completed. U

D.2 PROOF FOR PROPOSITION

Fix a joint observation o and assume the global Q-function Q(0, -) is Lg-Lipschitz in its action
argument, i.e.,

|Qt0[(07a) - Qtot(oay)| S LQHa - Y||27 va7y S Al X X AI-

Let m4(0) and m,(0) denote the push-forward distributions of py under p4(0,-) and p,, (o, ),
respectively. Then,

]anrw(O) [Qtot(ova)] - Ea’\’ﬂ'q‘)(o) [th(o,a)]‘ < Lg W2(7Tw(0)77r¢(0))7

where the inequality follows from the dual formulation of Lipschitz functions and Wasserstein
distances. Finally, applying Proposition 4.2 gives

1/2
Eavr(0)Qui(0,2)] = Eavr, (o) [@uar(0,8)]| < Lo (Eanpolitn(0,2) — 1s(0,2)]13) -

The proof is completed. (]
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E TRAINING DETAILS OF MAC-FLOoW

This section describes the implementation details of MAC—F low.

Network architectures. MAC-Flow is implemented on multi-layer perceptrons (MLPs) with
hidden sizes [512, 512,512, 512] for all networks, including the joint flow policy, the critics, and the
factorized one-step policies. Layer normalization is applied consistently to further improve stability.

Flow matching. As described in Section 4.2, we adopt the simplest flow-matching objective
(Equation 6) based on linear interpolation and uniform time sampling. For all environments, we use
the Euler method with a step count of 10 to approximate the underlying ODE dynamics (Algorithm 2).
This ensures that the joint flow policy pg (o, z) captures the multi-modal structure of coordinated
behaviors while remaining computationally efficient at training and inference.

Value learning. We train individual critics {Qg, }/_, under the IGM principle with TD error update.
We basically follow the mean(Q1, Q2) method, instead of min(Q1, Q2 ), to avoid pessimism in an
offline RL setting. The one-step policies are optimized to maximize the global )-function while
simultaneously minimizing the distillation loss between the flow-based joint policy and the factorized
policies. To calculate global (), we use the average mixer for each agent’s () value (

; , ). To practically enforce the Lipschitz constraint required in
Proposmon , we apply layer normalization ( ; , ) to all critic networks,
which we found to be crucial for stabilizing value 1earn1ng in multi-agent coordination.

One-step policy learning. After training the flow-based joint policy pg (o0, z), we factorize it into
decentralized one-step policies {fi, (0;, 2;)}!_;. This stage jointly optimizes two objectives in
Equation 9: (i) Q-maximization and (ii) BC distillation. In general, we set the BC distillation
coefficient « = 3.0 as the default. In practice, we alternate between updating the critics and the
one-step policies, using the same batch of transitions (Algorithm 1).

Flow matching and policy for discrete action space. For SMACv1 and SMACv2, which are discrete
action control tasks, we model actions as one-hot vectors and learn a continuous vector field over the
simplex. Specifically, for each transition, we form a linear path from Gaussian noise xo ~ N (0, )
to the one-hot actions z; = onehot(a), sample ¢ ~ Unif([0, 1]), set 2z = (1 — t)zo + tx1, and
supervise the BC flow field vy (0, x4, t) with the target velocity x1 — z¢ via an MSE loss. To obtain a
one-step sampling policy, we distill the multi-step Euler integration of v into a single-step flow head
that outputs logits over actions. During actor updates, we add a Q-guidance term that maximizes
the mixed value of the actions proposed by the one-step policy, with an optional normalization of
the guidance magnitude. At the training phase, target actions for TD backups are sampled from the
flow policy; at deployment, we use arg max with temperature control value, and optionally apply
legal-action masking before the softmax.

Online fine-tuning. For the offline-to-online experiments (RQ3), we do not consider symmetric
sampling, which reuses the offline dataset durmg online training ( , ), unlike prior
research ( ; , ). Instead, the agent is trained purely
on newly collected onhne rollouts for an addmonal 500K gradient steps, continuing from the offline
pretraining checkpoint.

Training and evaluation. We train MAC-F1ow with 1M gradient steps for SMACv1 and SMACV2,
and 500K steps for MPE and MA-MuJoCo. For offline-to-online training, we first perform 500K
steps of offline training, followed by 500K steps of online training. We evaluate the learned policy
every 50K steps using 10 evaluation episodes. For the main results in Tables | and 2, we report
average performance and two standard deviations across 6 random seeds for the table and tolerance
interval for the learning curves.

21



Under review as a conference paper at ICLR 2026

F IMPLEMENTATION DETAILS

The main objective of this work is to alleviate the gap between performance and inference speed in a
multi-agent setting. Therefore, we deliberately adopt a simple network architecture, such as a multi-
layer perceptron (MLP), rather than resorting to more complex or specialized designs. The simplicity
of MLPs provides several advantages: (i) they allow for faster inference and lower computational
overhead, which is critical for scalability in multi-agent settings; (ii) they facilitate stable training and
clear evaluation of the proposed algorithmic contribution without the confounding effects of intricate
architectures; and (iii) they serve as a neutral baseline architecture, demonstrating that the observed
improvements stem from our framework itself, not from architectural sophistication.

F.1 BASELINE ALGORITHMS

BC. This is a simple behavioral cloning (also known as imitation learning) algorithm. For the
continuous action domain, we design it as a Gaussian policy with a unit standard deviation. For the
discrete action domain, we parameterize the policy as a categorical distribution, where the policy
network outputs unnormalized logits over all possible actions and the resulting action probabilities
are obtained via a softmax function. Our network scheme is [512, 512, 512, 512]—sized MLPs, which
is also our default network architecture, for all environments.

Diffusion BC. This is a diffusion-based extension of BC. Instead of directly regressing expert actions,
Diffusion BC learns a denoising diffusion process: given an observation and a noisy version of
the expert action, the policy predicts the noise to recover the clean action. For the continuous action
domain, we model actions as Gaussian vectors, where the training objective is to predict Gaussian
noise added during the forward diffusion process. At inference, the policy generates actions by
reverse diffusion conditioned on current observations, starting from Gaussian noise. For the discrete
action domain, we represent actions as one-hot vectors and apply diffusion in the relaxed continuous
space. For both domains, we use [512,512, 512, 512]-sized MLPs, augmented with a sinusoidal
timestep embedding. We consider a Gaussian diffusion scheduler with 200 timesteps to govern the
forward and reverse processes for all environments.

Flow BC. This is implemented on top of the same codebase as MAC-F1ow, sharing the same flow-
matching implementation. However, F1low BC does not consider Q maximization and distillation; in
other words, it directly uses a trained full flow policy in training and deployment. We train individual
vector fields for individual BC flow policies to distribute them into decentralized setups. For discrete
control, actions are represented as one-hot vectors and flow matching is applied between Gaussian
noise and the one-hot target along a linear path, with the policy trained to predict the corresponding
velocity field. We consider 10 flow steps and [512, 512, 512, 512]-sized MLPs for all environments.

MATD3BC ( , ). We reimplement it on our codebase by referring to the official
open-source implementation of TD3BC. This is a multi-agent extension of TD3 with an additional
BC regularization term. The BC parameter « is set as 2.5 for all environments. We train two critic
networks via clipped double Q-learning, and target critic networks via the Polyak averaging with
7 =0.005 ( , ). For multi-agent settings, we employ the mixer for Q-value
networks. The policy and value networks are parameterized as [512, 512,512, 512]-sized MLPs.

MABCQ ( , ). We reimplement it on our codebase by referring to the official
open-source implementation of BCQ. We employ the mixer for Q-value networks. For discrete
control, we design the policy as a softmax policy network with twin Q-networks. It masks out
actions whose probability falls below a BC threshold o = 0.4 and selects the maximum Q-value
only among admissible actions. The critic is trained with TD targets using the masked actions
set, and the actor is updated via cross-entropy loss against the action of the replay buffer. We use
[512, 512,512, 512]-sized MLPs for both actor and critic, with a target update period of 200 steps.

MACQL ( , ). We reimplement it on our codebase by referring to the official
open-source implementation of CQL. The critic consists of twin Q-networks with TD loss and a
conservative penalty that lowers Q-values on OOD actions via a log-sum-exp term. Additionally, we
employ the mixer for Q-value networks to consider multi-agent coordination. For discrete controls,
the policy is set as a categorical distribution, and the illegal actions are masked during selection; for
continuous controls, we use the Gaussian policy. We use [512, 512, 512, 512]-sized MLPs for both
actor and critic, a target update period of 200 and every iterations (7 = 1.0 for discrete domains) and
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(7 = 0.005 for continuous domains), conservative weight 3.0, and 10 sampled actions per state for
calculating the conservative loss for all environments.

OMAR ( , ). We reimplement it on our codebase by referring to the official open-source
implementation of OMAR. This algorithm employs CQL-style conservative critic regularizer, a cross-
entropy method (CEM)-based policy improvement head. The policy collects candidate actions via
iterative CEM and is trained to imitate the best-Q candidate and maximize Q via a small L2 penalty.
We use [512,512,512, 512]-sized MLPs and set the hyperparameter as follows: target update rate
7 = 0.005, CQL regularizer (10 OOD samples, and o = 3.0), and CEM process (3 iterations, 10
samples, 10 elites per step, and mixing coefficient 0.7).

OMIGA ( , ). We reimplement it on our codebase by referring to the official open-
source implementation of OMIGA. The critics use twin ()-networks combined by a learnable state-
dependent mixing network, while a separate V' -network provides a baseline for variance reduction.
The policy is updated with advantage-weighted regression ( , ). Target networks for @,
V, and the mixer are updated via Polyak averaging with 7 = 0.005. We use [512, 512, 512, 512]-sized
MLPs for all networks, a mixer embedding dimension of 128, advantage scaling coefficient &« = 10.0,
gradient clipping at 1.0, and weight clipping for policy updates at 100.0.

MADIfT ( , ). We use the official open-source implementation of MAD1 f £. This reposi-
tory provides two variants: MAD1 f£—-C and MAD1 £ £-D for centralized and decentralized versions,
respectively. Given that our problem formulation is a Dec-POMDP, we select decentralized variants,
that is, MAD1 £ £-D. We train a conditional diffusion policy on joint demonstration trajectories with
centralized data, then deploy it with decentralized execution. Each agent at deployment conditions
only on its own local observation and optional history and samples its action via reverse diffusion
while jointly predicting teammates’ trajectories. We keep the same architecture and hyperparameters
in the original paper and set the diffusion scheduler to Gaussian DDPM with 200 denoising steps for
all environments.

DoF ( , ). We use the official open-source implementation of DoF. We use the
DoF-Trajectory agent with the W-concat factorization. Training and deployment settings are
identical to the original paper. For sampling, we use a Gaussian DDPM scheduler with 200 denoising
steps across all environments.

F.2 GIT REPOSITORY FOR BASELINE IMPLEMENTATION
The implementation adheres closely to the aforementioned official code as follows.

* TD3BC:
e BCOQ:

* CQL:

* OMAR:

¢ OMIGA:
e MADiff:
e DoF:
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G EXPERIMENTAL DETAILS

G.1 SMACV1 AND SMACV2

SMACV1, introduced by ( ), serves as a prominent benchmark for assessing
cooperative MARL algorithms. Built on the StarCraft II real-time strategy game, SMAC simulates
decentralized management scenarios where two opposing teams engage in combat scenarios, with
one team controlled by built-in Al and the other by learned multi-agent policies. Agents receive
partial observations restricted to a local sight range (e.g., nearby allied and enemy units, distances,
health, and cooldowns), while the complete state information is available only for centralized learning
of some algorithms. The discrete action space includes moving in four directions, attacking visible
enemies within range, stopping, and a no-op, which makes coordination strategies such as focus
fire, kiting, and terrain exploitation critical for success. The testbed defines a suite of combat maps
of varying difficulty (e.g., homogeneous battles like 3m and heterogeneous battles such as 2s3z),
enabling systematic evaluation of algorithms across easy, hard, and super-hard scenarios. Reward
signals are shaped by combat outcomes, including damage dealt, enemy kills, and victory, making
SMACVI a rigorous benchmark for addressing key MARL challenges such as credit assignment,
cooperation under partial observability, and scalability to larger teams. Our evaluation focuses on five
SMAC maps: 3m, 8m, 253z, Sm_vs_6m, and 2c_vs_64zg.

SMACY2 extends the original SMAC benchmark to provide a more robust and challenging testbed
for MARL. Unlike SMACv1, where difficulty mainly arises from heterogeneous unit compositions
and map layouts, SMACv2 introduces environment stochasticity and increased diversity in scenarios
to better approximate real-world complexity. In particular, unit placements, initial health, and
enemy strategies are randomized across episodes, requiring policies that generalize beyond fixed
configurations. The benchmark also rebalances reward signals to reduce overfitting to deterministic
strategies and to encourage learning more adaptive coordination behaviors. By encompassing a
broader range of maps and stochastic battle conditions, SMACv2 provides a more rigorous evaluation
of MARL algorithms in terms of robustness, generalization, and sample efficiency. Our evaluation
focuses on three SMAC maps: terran_5_vs_5, terran_10_vs_10, and zerg_5_vs_5.

SMAC datasets. Experiments utilized datasets from the off-the-grid offline dataset (

), which provides offline trajectories for SMACv1 and SMACv2. The benchmark contains a
variety of trajectories generated by different policies with varying quality, including Good, Medium,
and Random behaviors, thereby covering a wide performance spectrum (whereas there is only the
Replay dataset for SMACv2). Each dataset consists of observations, actions, legal action information,
and rewards, following the decentralized agent structure of SMAC.

G.2 MA-MulJoCo

MA-MuJoCo is a continuous-control benchmark that extends the classical MuJoCo locomotion suite
to multi-agent settings ( s ). In MA-MuJoCo, a single robot, e.g., Halfcheetah, Hopper,
and Ant, is decomposed into multiple controllable parts, each assigned to an individual learning
agent. Each agent receives local observations corresponding to its controlled joints and must produce
continuous actions to coordinate with others for effective global locomotion. Rewards are typically
shared among all agents based on the overall task performance, creating a cooperative continuous-
action control problem. MA-MuJoCo focuses on fine-grained coordination in high-dimensional
continuous dynamics, making it complementary for evaluating scalability and cooperation in MARL.

Dataset. For offline MARL, we employ the dataset collected by ( ). The dataset
provides trajectories collected under a variety of policies with different quality levels, including
Expert, Medium, Medium-Expert, and Medium-Replay, thus covering a wide spectrum of data
distributions for 6-Halfcheetah, 3-Hopper, and 2-Ant. Heading number is the number of agents.

G.3 MPE

MPE, originally introduced by ( ) as a suite of simple particle-based worlds with
continuous observation-action space and basic simulated physics, serves as a foundational benchmark
for cooperative and competitive MARL tasks. It features two-dimensional scenarios where agents
can move, interact, communicate, and observe each other within a partially observable setting. This
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emphasizes coordination, communication, and emergent behaviors in multi-agent settings. Common
scenarios include Cooperative Navigation (also known as Spread), where agents must cover landmarks
while avoiding collisions; Predator-Prey, where predator agents pursue and capture prey agents;
and World tasks, which involve more complex interactions like gathering resources or navigating
with environmental elements. These environments are widely adopted for their scalability, ease of
customization, and ability to test algorithms on communication-oriented problems. Performance in
MPE is typically normalized using the following equation: 100 X (S — Standom )/ (Sexpert — Srandom )
where S is the score of the evaluated policy, Siandom 1S the performance from a random policy (159.8),
and Sexpert is the performance of an expert-level policy (516.8).

Dataset and Scenario Selection. In our experiments, we focused solely on the Spread scenario
dataset (including Expert, Medium, Medium-Replay, and Random), as implemented in a JAX-based
framework to ensure efficient computation and compatibility with modern acceleration tools. This
choice was necessitated by challenges in accessing the Predator-Prey (PP) and World (WD) datasets,
despite their use in prior works by ( ) for offline MARL. Furthermore, adapting
customized environments for PP and WD proved difficult due to the requirement of loading pre-
trained policies, compounded by limited documentation on integration processes, which hindered
compatibility with widely used pre-trained models ( , ).

G.4 HYPERPARAMETERS

Hyperparameter Value

Gradient steps 10% (SMACv1 and SMACV2), 2 x 10> (MA-MuJoCo and MPE)
Batch size 64

Flow step 10

BC coefficient 3.0

Network configuration [512,512,512,512]
Polyak averaging coefficient 0.005

Discount factor 0.995

Optimizer epsilon 1075

Weight decay 0

Policy learning rate 3x 1074

Value learning rate 3x 1074

Layer normalization True

Optimizer Adam
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H ADDITIONAL RESULTS

This section provides supplementary analyses that further complement the main results presented in
the paper. Specifically, we first include several additional ablation studies that examine the robustness
of our framework under varying design choices, such as alternative policy parameterizations and
critic configurations. Second, we check the training time of our approach and baselines. Third, we
report the full learning curves of MAC-F 1ow corresponding to the performance tables in the main
text.

H.1 ABLATION STUDY
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Figure 8: Ablation on critic configuration. This ablation shows the differences between individual Q training
under IGM and centralized Q training. The reported point and shaded area represent the average and tolerance
interval from 6 random seeds.

Individual Q with IGM vs. Centralized (). In Figure 8, across all MA-MuJoCo datasets, the
individual @s based on IGM consistently outperform the centralized counterpart ). While the
centralized variants often suffer from lower stability and suboptimal convergence, the individual @
based on IGM achieves higher performance and maintains table learning curves. This demonstrates
that the IGM formulation enables reliable value estimation in multi-agent settings by preserving
individual-global consistency, which is critical for cooperative policy learning. We conjecture that
such empirical observations originate from a representation bottleneck of simple MLP networks.
Specifically, the centralized critic should extract coordination patterns from the joint observation-
action space. In practice, shallow MLP architectures struggle to capture such high-order dependencies,
leading to severe information compression and a bottleneck in representing coordination. To sum
up, the limitations observed in centralized critics likely stem not from the principle of centralization
itself, but from the restricted capacity of MLP-based function approximators when faced with large
joint observation-action spaces.
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Figure 9: Ablation on policy type in Stage I. This ablation shows the differences between individual flow
policies and joint flow policy for stage I. The reported point and shaded area represent the average and tolerance
interval from 6 random seeds.

Individual BC Flow vs. Joint BC Flow (Stage I). Figure 9 investigates the effect of policy
configuration in Stage I by comparing individual flow policies against our joint flow policy. Across all
MA-MuJoCo datasets, our basic configuration and its variant show stable and powerful performance.
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Interestingly, unlike the centralized () ablation, the joint flow policy does not entirely collapse. We
attribute this difference to the expressive capacity of flow-matching methods, which are specially
designed to approximate complex distributions. Whereas centralized critics implemented with
shallow MLPs face a severe representation bottleneck when mapping from joint observation-action
inputs, flow-based policies retain stronger inductive biases for capturing distributional structure. This
expressiveness enables joint flows to remain viable in principle, though their optimization often
remains more challenging than individual flows. Comprehensively, given the trade-offs, we opt for
the joint policy to enhance sample efficiency, reduce memory usage (with respect to network load),
and facilitate faster training.
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Figure 10: Performance comparison with MA-FQL. We compare our solution and the naive extension of the
FQL across four benchmarks. The reported point and shaded area represent the average and tolerance interval
from 6 random seeds.

MAC-Flow vs. MA-FQL. Figure 10 compares the performance between our proposed solution
and the multi-agent extension of FQL ( ), which is a close connection with our
work. Comparing MAC-Flow against MA-FQL hlghhghts that the transition from a single-agent
to a multi-agent system is not trivial. In MA-MuJoCo, MPE, and SMAC benchmarks, MAC-F1ow
substantially outperforms MA-FQL in both convergence speed and final performance. In contrast,
MA-FQL either stagnates at suboptimal levels or exhibits unstable progress, particularly in more
complex environments. Note that we can simply put that MA-FQL is a fully decentralized version of
MAC-Flow, especially in decentralized () without IGM and flow decentralized policy.

H.2 TRAINING TIME
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Figure 11: Wall-clock time for training. Reported numbers are measured on average of all tasks, which are
included in discrete or continuous benchmarks.

We report the wall-clock training time for both discrete and continuous control benchmarks in
Figure 11. MAC-Flow achieves substantially lower training time compared to diffusion-based
methods such as DoF and MADiff. In discrete control, MAC-Flow trains nearly an order of
magnitude faster than MADIff, while in continuous control, it also outperforms strong baselines like
MA-CQL or OMAR, which require many bootstrapping steps. These results confirm that the one-step
flow formulation of MAC—-F1low yields not only efficient inference but also significantly reduced
training cost. Note that CQL is implemented with independent () learning ( , ) in
discrete control, unlike continuous control.
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H.3 LEARNING CURVES OF MAC-FLOW
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Figure 12: Full learning curves for MAC-Flow.
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Figure 13: Landmark covering game visualization. (7op) Trajectories sampled from the dataset. (Middle)
Trajectories sampled from the flow joint policy. (Bottom) Trajectories sampled from the individual policy.

H.4 LANDMARK COVERING GAME: SCALING UP THE NUMBER OF AGENTS

To further examine how MAC-F low scales with the number of agents, we extend the landmark-
covering game (used in Section 4.3) up to 40 agents from three agents. We generate an offline dataset
consisting of 50 trajectories, and train both the joint flow model and the distilled one-step policies for
1000 iterations with a 64 batch size.

Figure |3 visualizes the sampled trajectories from the dataset, flow joint policy, and individual policies,
respectively. Up to 40 agents, the flow joint policy successfully captures the multi-agent’s joint action
distribution and the appropriate partitioning of agents across landmarks (x mark). Although the flow
model occasionally produces slightly dispersed trajectories, given our training setup, this could be
mitigated by scaling up the hyperparameter. Next, the individual policies learn clean trajectories, since
each agent only needs to reproduce its own trajectories, which is similar to expert demonstrations.

Summary. This scaling analysis confirms that MAC—F 1ow continues to capture stable coordination
up to 40agents, with this model capturing joint structure. The results indicate that MAC—F 1low can
retain its effectiveness (according to flow policy) even as multi-agent dimensionality grows.
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Figure 14: Policy comparison in pure coordination game. (a) Dataset distribution. (») Distribution of flow
joint policy. (¢) Distribution of one-step policy with IGM. (d) Distribution of one-step policy without IGM.

H.5 PURE COORDINATION GAME: BETTER POINT THAN BC GENERATIVE MODELING

This section presents a setting where IGM offers a clear advantage over BC-style generative modeling.
This experiment isolates a simple yet revealing coordination structure where value information plays
a decisive role in recovering the optimal joint behavior, whereas BC alone fundamentally fails due to
dataset imbalance.

A minimal pure coordination game. We consider a two-agent binary-action environment with a
unique high-value coordinated action, (1, 1), yielding reward +2. All partially coordinated actions,
(1,0) and (0, 1), give a lower reward +1, while (0, 0) yields zero. Critically, the offline dataset is
intentionally biased, that is, it consists almost of the two asymmetric suboptimal modes (0, 1) and
(1,0), with only a small fraction of rare samples of (1, 1) and (0, 0). This generates a combinatorial
ambiguity that challenges BC-style modeling, which must extrapolate optimal coordination from
extremely weak statistical evidence (Figure 14 (a)).

Flow joint policy vs. MAC-Flow vs. Factored policy without IGM. In this setup highlights a
common failure pattern in BC generative modeling (Flow joint policy). Because BC methods optimize
likelihood without considering value structure, the learned joint flow simply reproduces the dominant
dataset frequencies, faithfully capturing (0,1) and (1,0) while ignoring the much rarer yet more
valuable (1, 1) mode. Even though this is expressive enough to represent the correct distribution, its
objective provides no incentive to amplify the crucial but low-frequency coordination (Figure 14 (b)).

In contrast, introducing IGM during distillation (MAC-Flow) substantially changes the learning
dynamics. When the joint flow is mapped into factorized per-agent policies through value-guided
IGM constraints, each agent receives a consistent signal that selecting the action 1 is slightly more
aligned with high-value coordination, even though this is rarefied in the dataset. The IGM mechanism
exploits these weak cues by forcing individual policies to agree on action choices that maximize the
centralized value function, effectively amplifying faint optimality information that pure BC cannot
utilize. As a result, the distilled factorized policy concentrates significantly more probability mass on
the optimal (1, 1) configuration (Figure 14 (¢)).

Whereas the version without IGM collapses toward an almost uniform product distribution that fails to
represent any coordinated behavior. In this case, each agent’s marginal policy distributes probability
mass nearly evenly over its two actions, causing the joint distribution to degenerate into four nearly
equal-probability modes (Figure 14 (d)).

Summary. This example shows when IGM is strictly better than pure BC modeling. In settings
where demonstrations contain only weak hints of coordinated optimal behavior, the IGM mechanism
reliably extracts and amplifies value-relevant structure that generative models alone cannot recover.
This controlled setup thus clarifies why MAC-Flow’s value-guided distillation often outperforms
BC-based generative modeling in more complex multi-agent domains.
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Figure 15: XOR toy environment. (Left)The dataset contains two anti-aligned modes. (Center) The joint flow
recovers this non-factorizable structure. (Right) Factorized policies collapse into an almost uniform product
distribution.

H.6 XOR STRESS TEST: FAILURE MODE ANALYSIS

Although we provide theoretical justification for our bound, this subsection presents empirical
counterexamples for transparency and trust, demonstrating how the method behaves in environments
that intentionally violate the assumptions underlying the theory.

When does IGM break? We analyze settings where the IGM factorization is provably invalid.
While MAC-F 1ow performs well in typical cooperative tasks, separability could fail under strong
inter-agent coupling. To build trust in our theoretical claims, we present a controlled stress test where
factorization is guaranteed to break.

XOR coordination examples. We introduce a minimal two-agent continuous XOR task in which
the optimal joint actions are anti-aligned, e.g., (—1,+1) and (+1, —1). Because the reward depends
entirely on the relative actions of the agents, no per-agent Q-function can recover the optimal strategy
independently, making IGM mathematically impossible in this domain. This setting provides a clean,
analyzable failure case for joint-to-factorized policy distillation.

Empirical counterexamples. We train the MAC-F 1 ow joint policy on an offline dataset exhibiting
two sharp, disconnected high-density XOR modes. The learned flow successfully reconstructs these
modes and captures their fundamentally non-separable geometry, confirming that the flow-matching
stage is expressive enough to model complex, multi-modal joint behaviors. However, when this joint
flow is distilled into per-agent policies, the factorized representation collapses into a near-independent
product distribution, failing to reproduce the anti-aligned high-density regions and instead placing
probability mass around the center of the action space. This degradation arises despite the joint model
being correct, indicating that the failure is due to the intrinsic non-separability of the coordination
structure rather than optimization or training artifacts.

Summary. The XOR stress test provides exactly the concrete failure mode. In this environment, the
optimal joint action is intrinsically anti-aligned, causing the assumptions behind IGM factorization
to break. As a result, value bounds cease to be predictive because the global optimum cannot be
decomposed into per-agent optima. Consequently, MAC—F 1ow underperforms not due to model
capacity or training issues, but because the coordination structure is fundamentally non-separable.
This controlled setting, therefore, offers a transparent counterexample.
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H.7 PAYOFF GAME: ANALYSIS ACCORDING TO INTERACTION STRENGTH

To validate the value gap and W5, we design a pay-off game according to the interaction strength,
as an extension of the pure coordination game in Appendix H.5. The MDP setup is the same as the
pure coordination game: each agent can select an action in {0, 1}, and the team reward is defined as
(0,0)=0,(1,0)o0r (0,1) =1,(1,1) = 2.

How do we define interaction? In this example, we define interaction strength as the degree to
which one agent’s optimal action depends on the other agent’s action, or equivalently, how far the
joint action distribution deviates from a factorized form p(a', a?) = p(a')p(a?). Under this view,
diagonal joint actions (0,0) and (1, 1) represent strong interaction, because the optimal behavior
requires perfectly matching actions and thus induces full coupling. In contrast, off-diagonal actions
(1,0) and (0, 1) correspond to weak interaction, where each agent’s marginal behavior remains nearly
independent. To probe this, we generate datasets by mixing diagonal and off-diagonal modes with a
controllable interaction parameter ¢ € [0, 1].

D¢ = ¢ x {(030), (17 1)} + (1 - C) X {(07 1)7 (170)}

Herein, a = 0 yields purely weak interaction, and o = 1 yields purely strong interaction.

Results. Figure 16 compares the flow joint policy and individual policies trained under increasing
interaction strengths ({0.00,0.25,0.50,0.75,1.00}) using the sampled joint-action matrices, the
return, and the corresponding Wasserstein distance Ws. In Figure 16 (a), across all interaction levels,
the flow joint model reproduces the offline dataset distribution. It means that the BC flow learning is
effectively capturing the observed joint-action modes. On the other hand, the individual policy shows
a different pattern driven by the IGM-based Q maximization rather than simply BC. As interaction
increases, the IGM objective encourages the individual policies to concentrate probability mass on
the optimal joint actions rather than merely reproducing the empirical frequencies.

To quantify its differences, Figure 16 () clarifies how interaction strength influences the learned
policies. The flow joint policy achieves the near-optimal reward of approximately 1.0, matching
the reward level of the dataset since it directly models the full joint action distribution. In contrast,
the return of the individual policy increases gradually as the interaction strength rises. This occurs
because the number of samples in the optimal condition increases, thereby making the conditions for
identifying coordinated behaviors more pronounced. Next, Figure 16 (c¢) confirms that W5 rises with
the interaction strength, reflecting the growing structural mismatch between the expressive joint flow
and the restricted factored representation.

Summary. As interaction strength increases, the Wasserstein distance Ws between the joint and
individual policies grows, reflecting the structural mismatch that factorized policies cannot eliminate.
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