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Abstract

Interactive 3D point cloud segmentation enables effi-
cient annotation of complex 3D scenes through user-guided
prompts. However, current approaches are typically re-
stricted in scope to a single domain (indoor or outdoor),
and to a single form of user interaction (either spatial
clicks or textual prompts). Moreover, training on multi-
ple datasets often leads to negative transfer, resulting in
domain-specific tools that lack generalizability. To address
these limitations, we present SNAP (Segment aNything in
Any Point cloud), a unified model for interactive 3D seg-
mentation that supports both point-based and text-based
prompts across diverse domains. Our approach achieves
cross-domain generalizability by training on 7 datasets
spanning indoor, outdoor, and aerial environments, while
employing domain-adaptive normalization to prevent neg-
ative transfer. For text-prompted segmentation, we auto-
matically generate mask proposals without human interven-
tion and match them against CLIP embeddings of textual
queries, enabling both panoptic and open-vocabulary seg-
mentation. Extensive experiments demonstrate that SNAP
consistently delivers high-quality segmentation results. We
achieve state-of-the-art performance on 8 out of 9 zero-shot
benchmarks for spatial-prompted segmentation and demon-
strate competitive results on all 5 text-prompted bench-
marks. These results show that a unified model can match or
exceed specialized domain-specific approaches, providing a
practical tool for scalable 3D annotation. Project page is
at https://neu-vi.github.io/SNAP/

1. Introduction

Inspired by the success of SAM [1] for 2D images, we study
interactive segmentation for 3D point clouds in this paper,
allowing users to create high-quality annotations at scale
with minimal effort. While supervised deep learning has
fueled significant progress in visual learning, its reliance
on vast labeled datasets presents a major bottleneck in the
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Figure 1. Comparison of models on IoU@1 Click across mul-
tiple domains. SNAP is a unified interactive point cloud segmen-
tation model trained on multiple datasets spanning multiple do-
mains. It generalizes robustly across a wide array of benchmarks.

3D domain, where manual annotation is notoriously diffi-
cult and time consuming.

Current interactive point cloud segmentation methods
suffer from critical limitations that hinder their adoption as
general-purpose annotation tools. Most existing approaches
lack generalizability, being designed for specific domains
such as indoor scenes [2—4] or outdoor environments [5].
This domain-specific design stems from the significant
statistical differences between point cloud types: indoor
scenes feature dense, structured environments with clear ob-
ject boundaries, while outdoor scenes contain sparse, large
scale structures with varying point densities. Training mod-
els across these diverse domains introduces negative trans-
fer effects that degrades performance without careful archi-
tectural considerations [6]. Additionally, current methods
lack flexibility in prompt modalities, typically supporting ei-
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ther spatial inputs (e.g., clicks) [2—5] or text descriptions[7],

but rarely both. This limitation restricts users to specific

annotation workflows, preventing adaptation to different la-
beling needs and use cases.

To address these limitations, we present SNAP (Segment
Anything in aNy Point cloud), a unified model that sup-
ports both spatial and text-based prompts To achieve
cross-domain generalizability, we train on seven diverse
datasets [8—14] spanning indoor, outdoor, and aerial do-
mains, employing domain-wise normalization to mitigate
negative transfer effects caused by statistical shifts between
datasets [15]. For text-prompted segmentation, we first in-
troduce a a simple iterative algorithm to automatically gen-
erate prompt points without human intervention. These
prompt points are used via the spatial-prompted segmen-
tation pipeline to generate mask proposals, which are then
matches against CLIP [16] embeddings of textual prompts
to run text-prompted segmentation. During inference, this
approach supports both panoptic segmentation with pre-
defined categories and open-vocabulary segmentation with
novel classes.

Extensive experiments demonstrate that SNAP consis-
tently predicts high-quality spatial masks and correct class
labels across a diverse range of indoor [11, 17-19], out-
door [8-10, 20-22], and aerial [13, 14, 23, 24] point clouds.
For point-prompted segmentation, SNAP sets a new state-
of-the-art on 8 out of 9 zero-shot benchmarks. For text-
prompted segmentation, SNAP shows competitive results
on all 5 evaluated benchmarks. These results demonstrate
that a single, unified model can match or exceed the perfor-
mance of specialized, domain-specific approaches, shown
in Fig. 1. In summary, our contributions are as follows:

* We introduce SNAP, a model for interactive point cloud
segmentation that works across indoor, outdoor, and
aerial domains.

* SNAP offers flexibility to use multi-modal prompts like
points and text to segment objects of interest, and predicts
classes as well as spatial masks.

* We introduce an automatic prompt points generation al-
gorithm that bootstraps the panoptic labeling process
without human intervention.

* SNAP achieves state-of-the-art performance across mul-
tiple datasets across various domains and is usable as an
out-of-the-box semi-automated labeling tool.

2. Related Work

Interactive 3D segmentation with spatial prompts. In-
teractive segmentation has become well established in 2D
since the introduction of SAM [1], but remains com-
paratively underexplored in 3D. Early works such as
InterObject3D[2] and AGILE3D[3] focused on indoor
point clouds, using positive/negative clicks for single or
multi-object segmentation. Point-SAM][4] leveraged SAM-

generated pseudo-labels to support indoor and part-level
segmentation. Interactive4D [5] adopted a 4D setup on out-
door LiDAR sequences. However, these works are gener-
ally restricted in their usability to either indoor or outdoor
scenes and show limited generalizability to out of domain
point clouds. SNAP, in contrast, is designed to perform ro-
bustly across different domains.

Text-based 3D segmentation. Another line of research in-
troduces natural language as a flexible interface for 3D seg-
mentation. Within this area, open-vocabulary segmentation
methods [25-28] aim to recognize novel or user-specified
categories beyond a fixed label set. OpenScene [25]
achieves this directly in the 3D domain by predicting per-
point CLIP embeddings without relying on images. In con-
trast, [26—28] utilize either original RGB images or ren-
dered multiview images to extract CLIP image features,
which are aligned with text embeddings to enable text-based
segmentation. A complementary direction is panoptic seg-
mentation, where the goal is to provide instance-level pre-
dictions across all categories. [7, 29] exemplify this ap-
proach by predicting per-instance CLIP tokens and aligning
them with a predefined class vocabulary to support class-
specific instance segmentation. SNAP is able to accommo-
date both open-vocabulary and panoptic settings within a
single framework.

Lifting 2D foundation models for 3D segmentation. Due
to the limited availability of annotated 3D data, recent
works like SAM3D [30] and SAMPro3D [31] focus on lift-
ing robust 2D foundation models into the 3D domain. How-
ever, they require paired image and point cloud data, which
limits their usability in real-world use cases with LiDAR
only datasets or legacy datasets. [4, 7, 32] employs SAM [1]
to generate pseudo-labels provided RGB images and use
them to train 3D models on indoor scenes, with Point-
SAM [4] further addressing part-level segmentation. While
this process helps generate significant amounts of training
data, this pseudo-labeling process invariably introduces la-
bel noise. SNAP avoids this problem altogether by pooling
publicly available datasets for training and establishes state-
of-the-art performance on several unseen datasets.

3. Method

In this section, we present the overall framework of SNAP,
which is organized into 4 parts: (1) Point Cloud Encoding,
(2) Spatial-prompted Segmentation, (3) Text-prompted Seg-
mentation, and (4) Training. Fig. 2 provides an overview of
our approach.

3.1. Point Cloud Encoding

The input point cloud is represented by its XYZ coordi-
nates, denoted as P = {p, € R? lNzl, where N is the num-
ber of points. We use the Point Transformer V3 (PTv3 [33])
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Figure 2. Overview of SNAP. SNAP encodes point clouds and
prompts separately, then uses a Mask Decoder to generate seg-
mentation masks. Text prompts are handled by matching CLIP
embeddings with predicted mask embeddings for semantic classi-
fication.
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Figure 3. Point clouds from different domains vary signifi-
cantly in their properties. (a) STPLS3D provides dense point
clouds from an aerial view using RGB photogrammetry in the 50m
range, (b) KITTI provides lidar data in the 150m range, (c) Scan-
Net provides point clouds in the 10m range.

to extract point-wise embeddings F,. € RN P To support
cross-domain generalization, we replace the regular batch
normalization in PTv3 with domain normalization.
Domain Normalization for Multi-Dataset Training.
Training a single model on multiple point cloud datasets
often leads to lower performance than multiple per-dataset
models due to negative transfer caused by significant distri-
butional differences between various datasets [6], as shown
in Fig. 3. A straightforward approach to mitigate this
is dataset-specific normalization [6], which learns unique
normalization parameters for each dataset in the training
set. While effective at addressing distributional differences
among known datasets, this method presents practical chal-
lenges: users need to select appropriate normalization pa-
rameters at test time, which can be ambiguous when the
source of a point cloud at test-time differs from the train-
ing datasets. Moreover, dataset-specific normalization may
limit knowledge transfer between related datasets that could
benefit from shared representations.

To address the limitation, we propose domain-specific
normalization, which groups datasets into broader domains
with similar statistical properties (e.g., indoor, outdoor, or
aerial) and learns a separate set of normalization parame-
ters for each domain. This strategy allows our model to
effectively adapt to different data distributions while main-
taining the flexibility to be applied to new datasets by iden-
tifying their general domain, a more intuitive decision than
selecting specific dataset parameters as shown in Fig. 4.
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Figure 4. Dataset Norm vs Domain Norm. Domain-norm simpli-
fies the overall architecture and improves zero-shot generalization.

Formally, we denote the set of domains as D = {D;}.

Domain normalization for the k-th layer’s activations from

the j-th domain, %k is expressed as:

x¥ — E[x¥]
Xj = —F——= 7] + /3], ()
Var[x";] +e

where 'yj’vC and BJ’? are learned domain-specific scale and
shift parameters. Compared with standard batch and
dataset-specific normalizations, this domain-specific design
allows the model to effectively adapt the normalization to
the distinct statistics of each domain while sharing the core
model weights across all domains.

3.2. Spatial-prompted Segmentation

Spatial Prompt Encoder. Given a spatial prompt point
Py € R3, we identify its nearest neighbor in the point
cloud: i* = argmin; ||ps, — pil|,, and retrieve the cor-
responding point embedding, fi.,, = f;«, from the point-
wise PTv3 embeddings F,.. We also compute positional
encodings of the prompt point: f,os = ¢(psp), Where ¢(-)
is the Fourier encoding function as in [34]. The final spa-
tial prompt embedding combines semantic features and the
positional encodings, which help preserve spatial informa-
tion: Fy, = @ ([fiem || fpos)) € R where @,() is a
learned projection function, and [- || -] is feature concatena-
tion. Given P prompt points (clicks) on M objects, we get
Fsp c RM ><P><D.

Mask Decoder. The mask decoder module takes in two
inputs: F,. € RY*P for the point cloud embeddings,
and Fy, € RM*P*D for the prompt embeddings. In-
spired by the design in SAM [1], we additionally introduce
three task-specific learnable tokens per object. These to-
kens are responsible for predicting the final mask, its con-
fidence score, and CLIP embeddings, respectively, result-
ing in Fy, € RMX(P+3)xD " Following the approach of
SAM [1], we first tile the point embeddings to match the
prompt dimension: F,. € RM*N*D_ The decoder then
uses a series of transformer blocks to iteratively refine the
embeddings. The process is designed to first incorporate
contextual information from the point cloud into the prompt
embeddings, and then use the refined prompts to condition



the point cloud embeddings. Within each block, the updates
occur in the following sequence:

* Prompt Self-Attention: Z; = U1 (Fyp, Fyp).

* Prompt-to-point Cross-Attention: Zo = W¥o(Zq, f‘pc).

* Feedforward Network (FFN): Zy, = ®(Z).

* Point-to-Prompt Cross-Attention: Z,. = \113(ch, Z,).
Here, each \II(,) denotes a multi-head attention block. Each
of them takes two inputs, where the first denotes the query
and the second indicates the key and value. ® is a position-
wise feedforward network. The final output of the en-
tire decoder module is a set of refined prompt embeddings
Zs, € RM*(P+3)xD anq conditioned point cloud embed-
dings Zp, € RM*N*D,

To generate predictions, we first separate the learnable
token embeddings from the refined prompt embeddings Zg,.
Recall that during prompt encoding, we appended three
learnable tokens to each object’s prompt sequence. We ex-
tract the following embeddings accordingly: mask token
embeddings Zp. € RM*1XP CLIP token embeddings
Zeup € RMXIXD mask confidence score token embed-
dings Zs € RM*1XD and auxiliary mask token embed-
dings Zu € RM*PXD and retain the original prompt point
embeddings as auxiliary embeddings Z,,x € RM*FxD,
The first three token embeddings are fed into dedicated pre-
diction heads to generate mask, mask confidence scores,
and CLIP embeddings, while the auxiliary embeddings are
used for an additional supervision described in Sec. 3.4.

e Mask Head. We pass the mask token embeddings
Zimask € RM>1XD through a small MLP and then com-
pute the dot product between the mask token embeddings
and point cloud embeddings to get M segmentation logits
Liask = Zpe - (Fmask) | € RM*N. The final segmenta-
tion masks can then be obtained by applying a sigmoid
function o to the logits: Mask = 0 (Limask)-

* Confidence Score Head. Mask confidence score predic-
tions can be similarly obtained by passing the mask score
token embeddings through a MLP: Lg = ®g(Zs) and ap-
plying a sigmoid function o: S = o(Lsg).

¢ CLIP Embedding Head. Motivated by SAL [7], we
learn to predict CLIP embeddings for each mask using
a MLP (I)CLIP: LCLIP = CI)CLIP(ZCLIP)~ We show in Tab. 6
that this also improves segmentation accuracy.

3.3. Text-prompted Segmentation

Our text-prompted segmentation pipeline consists of two
stages: (1) automatic generation of prompt points to pro-
duce mask proposals via our spatial-prompted segmentation
module, and (2) matching of predicted CLIP embeddings
from each mask to the input textual prompt.

Automatic Prompt Points Generation. To compre-
hensively segment the input point cloud without manual
prompts, we employ an iterative coarse-to-fine strategy.

Starting with coarse voxelization, we use voxel centers as
prompt points to generate initial mask proposals. We then
identify unsegmented regions and generate new prompts us-
ing progressively smaller voxel sizes in the unsegmented re-
gions, continuing for a fixed number of iterations. Finally,
non-maximum suppression removes redundant overlapping
masks. This approach ensures comprehensive coverage
while avoiding redundant computation in well-segmented
regions, striking a better balance between accuracy and ef-
ficiency compared to uniform grid sampling as in the 2D
counterpart of SAM [1]. See § 7.3 for more details.

Text Prompt Encoder and Matching. To classify the gen-
erated mask proposals, we encode input text prompts using
the CLIP text encoder [16]. During training, we use cate-
gory names as text prompts to train SNAP. Specifically, we
wrap category names in full sentences (e.g., a photo of
a class_name). At inference, the generated mask pro-
posals are matched to text queries by comparing their pre-
dicted CLIP embeddings with encoded text prompts. This
enables both panoptic segmentation using predefined vo-
cabularies and open-vocabulary segmentation for novel ob-
ject classes.

3.4. Training

Click Sampling Strategy. Following AGILE3D [3] and
Interactive4D [5], we use an iterative click sampling strat-
egy to simulate user clicks. Unlike their computationally
intensive process of calculating and then ranking error re-
gions for additional clicks, we adopt a simpler approach by
randomly sampling clicks from the unsegmented regions of
each object.

Training Losses. In line with prior works [1, 3, 5], we
supervise our mask predictions using the ground truth an-
notated instance segmentation labels using Focal [35] and
Dice [36] loss. Following [5], we also incorporate weights
on these losses to modulate them based on proximity to the
user clicks. Additionally, to encourage each click to in-
dependently yield a plausible mask prediction, we use an
auxiliary mask loss (L,,x), which adopts the auxiliary mask
token embeddings (as defined in Sec. 3.2) to generate addi-
tional mask predictions. To improve the reliability of mask
confidence score estimation, we also introduce a score pre-
diction loss (Lcore). Specifically, the target score for each
mask is defined as the Intersection-over-Union (IoU) be-
tween the predicted mask and its corresponding ground-
truth mask. To supervise the predicted class labels, we use
Lex; to penalize incorrect alignment between the CLIP em-
beddings of predicted text tokens for each mask and the
class vocabulary, using a cosine distance loss. Our overall
loss function can be written as:

ESNAP = £foca1 + Edice + [faux + Escore + Etexb (2)

See § 7.2 for additional details of each loss term.



Table 1. In-distribution interactive point cloud segmentation.
SNAP-dataset refers to the model trained exclusively on the re-
spective dataset. T denotes the method is evaluated by us.

IoUQE 1
Method @1 @2 @3 @5 @10

Trained and evaluated on SemanticKITTI

AGILE3D [3] 53.1 637 70 767 833
Interactive4D [5]  67.5 739 783 834 882
SNAP - KITTI 68.1 759 80.1 845 88.7
SNAP - C 71.5 781 810 86.0 90.1

Trained and evaluated on ScanNet20

InterObject3D [2] 40.8 559 639 724 799

AGILE3D [3] 633 709 754 799 837
Point-SAMT [4] 527 69.6 759 80.6 833
SNAP - SN 68.6 742 784 821 84.6
SNAP - C 677 747 785 823 855

4. Experiments
4.1. Experimental Setup

Datasets. We train SNAP on 7 diverse datasets with
ground-truth instance segmentation labels, which span
three domains: (i) indoor scenes from ScanNet [11] and
HM3D [12, 37]; (ii) outdoor driving sequences from Se-
manticKITTI [8, 20], nuScenes [9], and Pandaset [10];
and (iii) aerial point clouds from STPLS3D [13] and
DALES [14, 23]. We evaluate zero-shot performance on
held-out datasets from each domain: S3DIS [19] (full and
crops), ScanNet++ [17], and Matterport3D [18] for indoor;
Waymo [22] and KITTI-360 [21] (full, crops, and single
scan) for outdoor; and UrbanBIS [24] for aerial. See § 8.2.

Evaluation Metrics. Following conventions from [2-5],
we evaluate spatial-prompted segmentation using loU@F,
the average intersection over union (IoU) achieved with k
clicks per object across all objects. To assess object cate-
gory prediction capabilities, we use the mean Average Pre-
cision (mAP) metric following [25-27] and for panoptic
segmentation, we use panoptic quality (PQ), segmentation
quality (SQ), and recognition quality (RQ) as done in [7].

Model Variants. SNAP operates on XYZ coordinates only,
without relying on any additional per-point attributes (e.g.,
color, normals, intensity), as such features are not con-
sistently available across datasets. As shown in Sec. 4.4,
using only XYZ coordinates achieves performance com-
parable to models that leverage all available modalities,
while avoiding the dependency on dataset-specific prop-
erties. We evaluate 6 SNAP variants to provide compre-
hensive comparisons. First, we train dataset-specific mod-
els: SNAP-KITTI on SemanticKITTI [8] and SNAP-SN
on ScanNet [11]. Second, we train domain-specific mod-
els that leverage all available in-domain datasets: SNAP-

Indoor, SNAP-Outdoor, and SNAP-Aerial. Finally, SNAP-
C represents our complete model trained across all datasets,
serving as our most generalizable variant. In Sec. 4.3,
SNAP-C@auto refers to the automatic prompt points gen-
eration setting, in which the model is provided solely with
the point cloud to enable a fair comparison with baseline
methods.

4.2. Spatial-prompted Interactive Segmentation

To fairly evaluate SNAP against other purely interactive
segmentation baselines like [3-5], we first evaluate the
predicted instance mask quality without taking the class-
prediction into account (class-agnostic), as typically done
in prior methods on interactive point cloud segmentation.

In-distribution Evaluation. In Tab. 1 we compare SNAP’s
performance on the SemanticKITTI [8] and ScanNet [11]
datasets, where SNAP outperforms all prior baselines on
both datasets. Notably, while AGILE3D [3] needs to be
trained separately for both datasets, SNAP is evaluated with
the same set of parameters for both datasets. This versatility
makes SNAP a more practical segmentation tool, which can
thus be evaluated on a broader set of datasets.

Zero-Shot Evaluation. To test the generalization capabil-
ities of the SNAP, we evaluate on 9 unseen benchmarks
covering indoor, outdoor, and aerial domains. As shown
in Tab. 2, SNAP-C outperforms the baseline AGILE3D [3],
Point-SAM [4] and Interactive4D [5] on 8 out of 9 bench-
marks. Particularly in the 1-Click experiments, SNAP-C
provides a 20.6% average improvement across all bench-
marks with a single set of parameters. This positions
SNAP-C as a practical, general-purpose tool for interac-
tive segmentation, addressing the key limitation of existing
domain-specific approaches.

4.3. Text-prompted Segmentation

For text-prompted segmentation, we evaluate SNAP’s ef-
fectiveness for panoptic segmentation and open-vocabulary
segmentation. Our primary evaluation targets SNAP-
C@auto; we additionally report SNAP-C@1 Click as an
upper-bound reference, with the click sampled from the
ground-truth masks to simulate ideal user input. SNAP-
auto takes only the point cloud as input and outputs panoptic
segmentation masks like the baselines we compare against.

Panoptic Segmentation. SAL [7] pioneered automated
panoptic segmentation on outdoor datasets, making it our
primary baseline for outdoor scenes. As shown in Tab. 3,
SNAP-C@auto, which has the equivalent setting to SAL
with only point clouds as input, performs robustly against
it and improves PQ score by 3.4 points on SemanticKITTI
while remaining comparable on nuScenes (37.9 PQ vs 38.4
from SAL). With single-click guidance, SNAP-C@1 Click
achieves even better results on both datasets.



Table 2. Zero-shot interactive point cloud segmentation. We
compare SNAP with the current methods for interactive segmenta-
tion across different domains on several unseen datasets. T denotes
that the methods are evaluated by us.

Table 3. Panoptic segmentation on outdoor Lidar datasets. We
compare the SNAP-C @ auto variant with SAL [7] for panoptic
segmentation on outdoor lidar datasets. We also show SNAP-C
@ 1 Click results as a reference that represents the upper-bound
for SNAP-C @ auto. Note that SNAP-C @ auto represents the

‘ Dataset Method ToUQ¥ 1 equivalent setting to SAL [7] since the only input is raw point
\ @ @3 @5 clouds.
Point-SAM [4] 286 563 629 Method \ PQ RQ SQ PQrn PQst
ScanNet++ SANAP ¢ 522::( f17130 3?023 Evaluation — SemanticKITTI
Point-SAM! [4] 111 672 737 SAL [7] 248 323 668 174 302
Matterpor3D  SNAP - C 526 696 752 SNAP - C @ auto 282 341 78.6 207 344
5 A SNAP-C @ 1Click | 40.1 473 81.6 307 469
3 +11.5 +24 +1.5
E AGILE3D [3] 587 774 836 Evaluation — nuScenes
S3DIS Point-SAM [4] 459 716 84.6 SAL [7] 384 478 772 475 292
(crops) SNAP-C 56.6 73.8 809 SNAP - C @ auto 379 47.1 822 331 524
A 2.1 36  -37 SNAP-C @ 1 Click | 47.2 56.1 839 403 56.2
S3DIS Point-SAM' [4]  35.6 68.0 76.3
(Full) SNAP-C 53.6 711 77.6
A +18.0 +3.1 +1.3
Point-SAM' [4] 128 430 53.1
Waymo Interactive 4D [5] 72 73 75
SNAP-C 69.8 823 86.6
A +57.0 +39.3 +33.5
Point-SAMT [4] 6.8 227 28.1
= KIE 51)360 SNAP - C 231 401 48.1
% A +16.3 +17.4 +20.0
g AGILE3D [3] 363 473 535 “Segment bar table.” “Segment cooking stove.”
KITTI-360 Interactive 4D [5]  47.7 594 64.1 Figure 5. Qualitative segmentation results of open-set scene un-
Single Scan  SNAP - C 604 64.6 67.7 derstanding on the ScanNet++ Dataset. Given a text prompt in
A +12.7  +52 436 the format of “Segment {open-set vocabulary}”, our SNAP model
finds the corresponding masks [l in the scenes.
AGILE3D [3] 34.8 427 444
KITTI-360 Point-SAM [4] 494 744 817
(crops) SNAP - C 65.6 76.1 80.0 Results are summarized in Tab. 4, where baseline meth-
A +162 +1.7 -17 ods are trained on ScanNet200 [11]. SNAP-C demon-
— Point-SAM' [4] 393 791 894 strates strong performance across 3 zero-shot datasets with-
2 UrbanBIS SNAP - C 71'6 86.2 90‘2 out using image embeddings. On Matterport3D [18],
:t) A +32'3 +7t P oj s SNAP-C@auto achieves 16.5 AP, substantially outperform-

Open-Vocabulary Segmentation. There exist limited
number of approaches for direct alignment between 3D
point clouds and CLIP [16] text embeddings without in-
termediate image representations, we therefore evaluate
against three non-interactive instance segmentation base-
lines. First, OpenScene (3D Distill) [25] represents the
most comparable approach to ours as it only uses the pre-
dicted per point CLIP embeddings during inference without
requiring images. Second, Openlns3D [26] generates class-
agnostic instance masks and render multiview images of the
input point cloud for CLIP [16] based segmentation. Third,
OpenMask3D [27] and SAI3D [28] leverage the original
2D images from the dataset to perform open-vocabulary in-
stance segmentation.

ing baselines which rely on images and CLIP image em-
beddings. This is largely attributed to the large overlap
between semantic classes of Matterport3D [18] and Scan-
Net200 [11]. On Replica [38] and S3DIS [19], SNAP-
C@auto shows competitive results against baselines that
have access to visual information and surpasses the image-
free OpenScene(3D Distill) [25]. We also include qualita-
tive results on the ScanNet++ [17] dataset in Fig. 5.

In summary, unlike methods that need RGB images or
pre-computed CLIP embeddings, SNAP-C@auto performs
open-vocabulary segmentation directly on point clouds and
achieves competitive results against image-based methods.
The image-free approach also offers practical advantages
for handling LiDAR-only datasets, synthetic data, or legacy
datasets where corresponding images were never collected.



Table 4. Open-Vocabulary Segmentation. We evaluate the
SNAP-C @ auto variant against image-based and image-free open
vocabulary segmentation models. We also show SNAP-C @ 1
Click results as a reference that represents the upper-bound for
SNAP-C @ auto. Note that SNAP-C @ auto represents the

equivalent setting to baseline methods since the only input is raw

point clouds. "Uses RGB images, * Uses CLIP image embeddings
from rendered point cloud views.

Uses CLIP
Model ImgT IE.i AP AP50 AP25
Zero Shot - Matterport3D
OpenMask3D [27] v v oo 77 139 203
SAI3D [28] v v 89 153 209
SNAP - C @ auto X X 165 252 30.7
SNAP - C @ 1 click X X 183 282 347
Zero Shot - Replica
OpenMask3D [27] v v 131 184 242
OpenlIns3D [26] X v 13.6 18.0 19.7
OpenScene(3D Distill) [25]| X X 82 105 12.6
SNAP - C @ auto X X 101 11.7 13.8
SNAP - C @ 1 click X X 11.7 145 154
Zero Shot - S3DIS
Openlns3D [26] ‘ X v 21.1 283 295
OpenScene(3D Distill) [25] | X X 152 215 237
SNAP - C @ auto X X 161 23.8 30.9
SNAP - C @ 1 click X X 17.6 255 33.6

Table 5. Input Properties Ablations. X - XYZ coordinates, C -
Color, N- Normals, S-Strength / Lidar intensity. - marks property
data not available.

Dataset |X C N S IoU@I IoU@5 IoU@10
SemanticKITTI | v - - VvV 682 84.5 88.7
SemanticKITTI | v' - - X 681 845 887
ScanNet20 vV /- 696 830 855
ScanNet20 v v X - 688 82.1 84.6
ScanNet20 v X vV - 693 80 85
ScanNet20 v X X - 686 81 846
STPLS3D vV - - 679 789 839
STPLS3D v X - - 672 789 839

4.4. Ablation Studies

Effect of Input Properties. We conducted an ablation
study to evaluate the contribution of different input prop-
erties to our model’s performance, with results summa-
rized in Tab. 5. The experiments reveal that SNAP re-
lies predominantly on geometric features. On the Scan-
Net20 dataset, the inclusion of surface normals (N) con-
sistently improves performance across all metrics, boosting
IoU@1 from 67.4 to 68.3. In contrast, color information

Table 6. Loss Function Ablations. We report loUQFE with dif-
ferent combinations of Focal, Dice, Auxiliary, Weighted, and Text
losses on the ScanNet20 dataset.

Component IoUQE 1
Dice Focal Aux Weighted Text‘ @] @5 @10
v v 66.7 80.5 82.4
v v v 67.3 81.0 83.2
v v v v 67.5 81.7 83.7
v v v v v |68.6 82.1 84.6

(C) appears to be largely redundant; its inclusion provides
no discernible benefit when normals are present and only
a marginal gain otherwise. This trend is consistent across
other datasets, where Lidar intensity (S) on SemanticKITTI
and color on STPLS3D offer only minor improvements to
IoU@1. While surface normals improve performance, com-
puting accurate normals is challenging for real-world point
clouds. Therefore, SNAP operates solely on XYZ coordi-
nates to ensure applicability across diverse data sources.

Effect of Loss functions on Mask Accuracy. SNAP uses
a combination of loss functions to guide the network. To
check the effectiveness of each module, we run ablations by
adding each component sequentially. The results are sum-
marized in Tab. 6. Results indicate that auxiliary loss and
weighted loss improve performance at a higher number of
clicks. Including text classification loss leads to the highest
improvements and indicates that semantic understanding is
important for segmentation tasks.

Effect of Normalization Strategies. We evaluate 3 nor-
malization strategies to validate our domain-based design
choice: (1) a single model with standard batch normal-
ization across all data, (2) dataset-specific normalization
with individual layers for each training dataset, and (3)
our proposed domain normalization with separate layers for
each domain. As shown in Tab. 7, batch normalization
shows reasonable in-distribution performance (64.3 IoU@ 1
on SemanticKITTI) but tends to underperform on zero-shot
datasets. Dataset normalization can achieve slightly higher
scores on in-distribution sets , but this comes at the cost
of limited generalization. Domain-specific normalization
performs the best in zero-shot generalization, suggesting
potential benefits to domain-level grouping over dataset-
specific parameters. More importantly, this simple domain-
norm translates into a simple domain-type checkbox selec-
tion, making it highly user-friendly.

Effect of Progressively Adding Datasets. To verify the ef-
fectiveness of scaling up training data, we evaluate various
SNAP variants on in-distribution and unseen datasets. As
shown in Tab. 8, scaling up the training set leads to consis-
tent improvements in performance over both in-distribution
as well as unseen datasets. SNAP-C consistently matches
or surpasses the performances of single dataset or single do-



Table 7. Domain Normalization Ablation. We compare 3 normalization strategies for training a multi-dataset model: Batch Norm,
Dataset Norm, and Domain Norm. The applied normalization for Dataset Norm and Domain Norm is provided in zeal beneath each result.

IoUQE 1
Model In-Distribution Zero-Shot
SemanticKITTI ~ ScanNet20 STPLS3D Waymo ScanNet++ UrbanBIS
@1 @5 @1 @5 @5 \ @1 @5 @I @5 @l @5
Batch Norm 64.3 83.9 635 81.2 68.4 ‘ 52.1 643 381 562 313 6l1.1

Norm used KITTI ScanNet

71.5 86.0 67.7 823

Outdoor Indoor

Domain Norm

Norm used

|
|
|
|
|
Dataset Norm ‘ 72.0 86.1 69.5 83.8

STPLS3D KITTI

79.0 ‘ 562 763 485 673 618 778
ScanNet STPLS3D

80.4 ‘ 69.8 86.6 52 732 716 90.2

Aerial Outdoor Indoor Aerial

Table 8. Effect of Adding Datasets. We progressively evaluate baseline models trained on single datasets (SNAP-SN or SNAP-KITTI) and
baseline models trained on specific domains SNAP-Indoor, SNAP-Outdoor, and SNAP-Aerial against SNAP-C, the complete model trained
on all data. The gray-shaded cells denote evaluations performed on out-of-distribution datasets.

\ IoUQFK 1
‘ In-Distribution Zero-Shot
Model ‘ SemanticKITTI ScanNet20 STPLS3D Matterport3D S3DIS Full KITTI-360 Full Waymo  UrbanBIS
@l @5 |el e5|e@l e5|el @5 |@el @5|@ @5 |e@l @5|@ @5
SNAP - SN 31 59 |686 82125 41 [534 713 [514 700[02 05 [07 31|63 168

SNAP - KITTI | 68.1 84.5 13.8 33.6 (246 529

SNAP - Indoor 3.1 15.3 66.0 81.3| 59 18.6|49.9
SNAP - Outdoor | 71.3 85.7 149 435|364 579 |15.1
SNAP - Aerial | 27.1 57.9 63 19.1 658 79.1| 94
SNAP-C 71.5 86.0 67.7 82.3|67.8 80.4|52.6

333 | 11.6 29.1 | 6.7 29.7 482 66.3|43.1 713
742 |519 769 | 0.2 2.1 1.1 65 | 34 33.6
392 | 149 43.6| 183 44.6 68.5 86.0459 78

212 | 73 206 | 5.6 19.4 25.1 60.4 |74.2 869
752 |53.6 77.6 |23.1 48.1 69.8 86.6 | 71.6 90.2

Table 9. Comparison of Automatic Prompt Points Generation
Strategies. We evaluate our iterative prompting approach against
four baseline methods on ScanNet200. Best results are highlighted
in bold, and second best results are underlined.

Head Common Tail | Time

Approach | AP APso APas b AP mAP| (s)

Uniform grid [ 39.1 58.5 68.8 39.8 40.6 363 | 1421
FPS 362 545 65.0 38.6 384 304 702
HDBSCAN |47 65 72 65 5.4 1.7 | 714
Ours 387 584 69.2 382 39.7 38.1| 461

main models, suggesting that the proposed domain normal-
ization is largely able to reduce the effects of any negative
transfer from cross-domain datasets.

Design Choices for Automatic Prompt Points Genera-
tion. To generate prompt points automatically, we ini-
tially considered uniform grid sampling following SAM [1].
However, this approach faces a fundamental trade-off: large
voxel sizes miss small objects while small voxels yield com-
putationally prohibitive numbers of points. Alternative ap-
proaches like Farthest Point Sampling and HDBSCAN [39]
require scene-specific tuning and generally undersample
dense regions while oversampling sparse regions. Our it-
erative approach addresses these limitations and maintains

uniform sampling independent of local point density. As
shown in Tab. 9, this strategy achieves comparable cover-
age to naive grid sampling (39.1 AP vs 38.7 AP) with signif-
icantly fewer points, reducing computation time by 68%.
Notably, our approach excels on tail classes (38.1 mAP),
outperforming all baselines.

5. Conclusion

In this paper, we introduced SNAP, a unified model for
flexible promptable point cloud segmentation that is com-
patible with both spatial and textual prompts. By training
on heterogeneous datasets with cross-domain normalization
SNAP demonstrates state-of-the-art performance across a
wide range of datasets. We believe that this unified model
will come across as a handy tool for users, moving away
from the need for dataset or domain specific models. For
future work, following the promising trend found in this
paper, investigating the effect of scaling up further via self-
supervised or weakly-supervised learning on unlabeled data
is an appealing direction.
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