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ABSTRACT

Honey bees are a popular model for complex social systems, in which global behav-
ior emerges from the actions and interactions of thousands of individuals. While
the average life of a bee is organized as a sequence of tasks roughly determined by
age, there is substantial variation at the individual level. For example, young bees
can become foragers early in life, depending on the colony’s needs. Using a unique
dataset containing lifetime trajectories of all individuals over multiple generations
in two honey bee colonies, we propose a new temporal matrix factorization model
that jointly learns the average developmental path and structured variations of indi-
viduals in the social network over their entire lives. Our method yields inherently
interpretable embeddings that are biologically plausible and consistent over time,
which allows comparing individuals regardless of when or in which colony they
lived. Our method provides a quantitative framework for understanding behavioral
heterogeneity in complex social systems applicable in fields such as behavioral
biology, social sciences, neuroscience, and information science.

1 INTRODUCTION

Animals living in large groups often coordinate their behaviors, resulting in emergent properties
at the group level, from flocking birds to democratic elections. In most animal groups, the role an
individual plays in this process is thought to be reflected in the way it interacts with group members.
Technological advances have made it possible to track all individuals and their interactions in animal
societies, ranging from social insects to primate groups (Mersch et al., 2013; Gernat et al., 2018;
Mathis et al., 2018; Graving et al., 2019; Pereira et al., 2019). These datasets have unprecedented
scale and complexity, but understanding these data has emerged as a new and challenging problem in
itself (Pinter-Wollman et al., 2014; Krause et al., 2015; Brask et al., 2020).

A popular approach to understand high-dimensional data is to learn semantic embeddings (Frome
et al., 2013; Asgari & Mofrad, 2015; Camacho-Collados & Pilehvar, 2018; Nelson et al., 2019). Such
embeddings can be learned without supervision, are interpretable, and are useful for accomplishing
downstream tasks. Individuals in animal societies can be described with semantic embeddings
extracted from social interaction networks using matrix factorization methods. For example, in
symmetric non-negative matrix factorization (SymNMF), the dot products of any two animals’ factor
vectors reconstruct the interaction matrix (Wang et al., 2011; Shi et al., 2015), see Figure 1 a and b).
If the embeddings allow us to predict relevant behavioral properties, they serve our understanding as
semantic representations. However, in temporal settings where the interaction matrices change over
time, there is no straightforward extension of this algorithm. The interaction matrices at different time
points can be factorized individually, but there is no guarantee that the embeddings stay semantically
consistent over time, i.e. the prediction of relevant behavioral properties will deteriorate.

In living systems, interaction dynamics are highly variable; individuals differ in when they appear in
the data and how long they live. Different non-overlapping groups of individuals, e.g. from different
years, may not interact with each other at all. How can we find a common semantic embedding even
in these extreme cases? How do we learn embeddings that generalize to different groups and still
provide insights into each individual’s functional role? If animals take on roles partially determined
by a common factor, such as age, how can we learn this dependency?

Several approaches to extend NMF to temporal settings have been proposed in a variety of problem
settings. Yu et al. (2016) and Mackevicius et al. (2019) propose a factorization method for time
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Figure 1: For a daily snapshot of a temporal social network, symmetric NMF is able to extract
meaningful factor representations of the individuals. Colors represent the interaction frequencies of
all individuals (a). The age-based division of labor in a honey bee colony is clearly reflected in the
two factors - same-aged individuals are likely to interact with each other (b). For long observation
windows spanning several weeks, the social network changes drastically as individuals are born,
die, and switch tasks (c). Here, we investigate how a representation of temporal networks can be
extracted, such that the factors representing individuals can be meaningfully compared over time, and
even across datasets.

series analysis. Gauvin et al. (2014) focus on the analysis of communities that are determined by
their temporal activity patterns. Jiao et al. (2017) consider the case of communities from graphs
over time and enforce temporal consistency with an additional loss term. Yu et al. (2017) and Wang
et al. (2017) represent networks as a function of time. Temporal matrix factorization can be seen as a
tensor decomposition problem, for which methods with many applications have been proposed in the
literature, see Kolda & Bader (2009) for a review. In particular, time-shifted tensor decomposition
methods have been used in multi-neuronal spike train analysis when recordings of multiple trials
from a population of neurons are available (Mørup et al., 2008; Williams, 2020). However, to our
knowledge, no method yet considers the case of entities following a common trajectory depending on
an observable property (e.g., the age of an individual), which we show to be a powerful inductive
bias.

We approach this question using honey bees, a popular model system for studying individual and
collective behavior (Elekonich & Roberts, 2005). Bees allocate tasks across thousands of individuals
without central control, using an age-based system: young bees care for brood, middle-aged bees
perform within-nest labor, and old bees forage outside (Seeley, 1982; Johnson, 2010). Colonies are
also organized spatially: brood is reared in the center, honey and pollen are stored at the periphery,
and foragers offload nectar near the exit. Therefore, an individual’s role is partially reflected in its
location, which allows us to evaluate whether the embeddings our method learns are semantically
meaningful.

We propose jointly learning two meaningful representations of honey bee social behavior: 1) an
individuality embedding that characterizes the lifetime behavior of each individual and 2) a daily
representation of the individual’s functional position in the social network that can be derived from
the individuality embeddings. We show that these representations can be learned in an unsupervised
fashion, using only interaction matrices of the individuals over time. We analyze a dataset obtained
by tracking thousands of individually marked honey bees in two colonies, at high temporal and spatial
resolution over a total of 155 days, covering entire lifespans and multiple generations. We evaluate
how well the embeddings capture the semantic differences of individual honey bee development by
evaluating their predictiveness for different tasks and behaviorally relevant metrics.
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Figure 2: Overview of the method: We learn a parametric function describing the mean life trajectory
m(c(t, i)) and a set of basis functions of individual variation b(c(t, i)), where c(t, i) is the age of
individual i at time t (a). For each individual, an embedding is learned consisting of one scalar per
basis function that scales the contribution of the respective basis function - this vector of weights
makes up the individuality embedding of an individual (b). The mean trajectory m(c(t, i)) plus a
weighted sum of the basis functions b(c(t, i)) constitute the lifetime trajectory of each individual (c).
At each time point, factors can be extracted from the individual lifetime trajectories (d) to reconstruct
the interaction affinity between individuals (e). Note that the lifetime trajectories are functions of the
individuals’ ages, while interactions can occur at any time t.

Our method can be used to study dynamic groups in which individual units change their latent
properties over time, and group composition is not fixed due to birth, death, or migration of individuals.
We provide a new perspective on how to extract fundamental factors that underlie behavioral and
developmental plasticity in animal groups.

2 METHODS

2.1 TEMPORAL NMF ALGORITHM

SymNMF factorizes a matrix A ∈ RN×N
+ such that it can be approximated by the product FF T ,

where F ∈ RN×M
+ and M � N :

F̂ = argmin
F≥0

∥∥∥A− FF T
∥∥∥2 Ai,j ≈ f(i) · f(j)T f(i) = Fi,: f(i) ∈ RM+ (1)

When applied to social networks, f(i) can represent the role of an entity within the social network
A (Wang et al., 2011; Shi et al., 2015) - however, in temporal settings, factorizing the matrices for
different times separately will result in semantically inconsistent factors F .

Here we present a novel temporal NMF algorithm (TNMF) which extends SymNMF to temporal
settings in which A ∈ RT×N×N

+ changes over time t. We assume that the entities i ∈ {0, 1, . . . , N}
follow to some extent a common trajectory depending on an observable property (for example the
age of an individual). We represent an entity at a specific point in time t using a factor vector f+(t, i)
such that

Ât,i,j = f+(t, i) · f+(t, j)T Â ∈ RT×N×N
+ f+(t, i) ∈ RM+ (2)

3



Under review as a conference paper at ICLR 2021

In contrast to SymNMF, we do not directly factorize At to find the optimal factors that reconstruct the
matrices. Instead, we decompose the problem into learning an average trajectory of factors m(c(t, i))
and structured variations from this trajectory o(t, i) that depend on the observable property c(t, i):

f(t, i) = m(c(t, i)) + o(t, i) f+(t, i) = max(0,f(t, i)) (3)

c : NT×N → N m : N→ RM+ o : NT×N → RM

This decomposition is an inductive bias that allows the model to learn semantically consistent factors
for entities, even if they do not share any data points (e.g., there is no overlap in their interaction
partners), as long as the relationship between functional role and c(t, i) is stable. Note that in the
simplest case c(t, i) = t, TNMF can be seen as a tensor decomposition model, i.e. the trajectory
of all entities is aligned with the temporal dimension t of A. In our case, c(t, i) maps to the age of
individual i at time t.

While many parameterizations for the function o(t, i) are possible, we only consider one particular
case in this work: We learn a set of individuality basis functions b(c(t, i)) (shared among all entities)
that define a coordinate system of possible individual variations and the individuality embeddings φ,
which capture to what extent each basis function applies to an entity:

o(t, i) =

K∑
k=0

φi,k · bk(c(t, i)) φ : RN×K bk : NT → R (4)

where K is the number of learned basis functions. This parameterization allows us to disentangle the
forms of individual variability (individuality basis functions) and the distribution of this variability
(individuality embeddings) in the data.

We implement the functions m(c(t, i)) and b(c(t, i)) with small fully connected neural networks
with non-linearities and several hidden layers. The parameters θ of these functions and the entities’
embeddings φ are learned jointly using minibatch stochastic gradient descent:

θ̂, φ̂ = argmin
θ,φ

∥∥∥A− Â
∥∥∥2 (5)

Note that non-negativity is not strictly necessary, but we only consider the non-negative case in this
work for consistency with prior work (Wang et al., 2011; Shi et al., 2015). Furthermore, instead
of one common property with discrete time steps, the factors could depend on multiple continuous
properties, i.e. c : RT×N → RP , e.g. the day and time in a intraday analysis of social networks.

2.2 REGULARIZATION

Due to the inductive bias, the model performs well without additional explicit regularization in the
datasets considered in this work (see Table 2). However, we find that the model’s interpretability can
be improved using additional regularization terms without significantly affecting its performance. We
encourage sparsity in both the number of used factors and individuality basis functions by adding L1

penalties of the mean absolute magnitude of the factors f(t, i) and basis functions b(c(t, i)) to the
objective. We encourage individuals’ lifetimes to be represented with a sparse embedding using an
L1 penalty of the learned individuality embeddings φ.

We also introduce an optional adversarial loss term to encourage the model to learn embeddings
that are semantically consistent over time, i.e. to only represent two entities that were present in
the dataset at different times with different embeddings if this is strictly necessary to factorize the
matrices A. We jointly train a discriminative network d(φi) that tries to classify the time of the first
occurrence of all entities based on their individuality embeddings φ. The negative cross-entropy loss
of this model is added as a regularization term to equation 5 in a training regime similar to generative
adversarial networks (Goodfellow et al., 2014). See appendix A.2.1 for more details and A.4 for an
ablation study of the effect the individual regularization terms have on the results of the model.

2.3 DATA

2.3.1 HONEY BEE DATA
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Table 1: Honey bee datasets
Dataset Days Individuals Interaction pairs

BN16 56 2443 43 174 748
BN19 99 6843 167 366 381

Two colonies of honey bees were continuously
recorded over a total of 155 days. Each individ-
ual was manually tagged at emergence, so the
date of birth is known for each bee. Locations
and identities of all honey bees (N=9286) were
extracted from the raw images and used to con-
struct daily aggregated temporal interaction networks based on the counts of spatial proximity events.
The dataset also contains labels that can be used in proxy tasks (see section 2.5) to quantify if the
learned embeddings and factors are semantically meaningful and temporally consistent. See table 1,
and appendix A.1 for details. We publish the data together with this paper1.

2.3.2 SYNTHETIC DATA

Although some ground truth labels exist for the honey bee datasets (section 2.5), factorizing these data
is still fundamentally an unsupervised learning problem. We generated synthetic datasets to evaluate
whether the model can identify groups of individuals with common latent factors that determine their
interaction frequencies. We model a common lifetime trajectory and groups of individual variation
of factors using smoothed Gaussian random walks. We randomly assign individuals to a group
with random times of emergence and disappearance from the data and compute interaction matrices
by calculating the dot product of the factors of 1024 individuals for 100 simulated days. We then
measure how well the individuality embeddings φ of a fitted model correspond to the truth groups
using the adjusted mutual information score (Vinh et al., 2009), and the mean squared error between
the ground truth factors and the best permutation of the factors f+. We evaluate the model on 128
different random synthetic datasets with increasing Gaussian noise levels in the interaction tensor.
See appendix A.1.2 for more details on the generation process.

In both datasets, we define c(t, i) as the age in days of an individual i at time t.

2.4 BASELINE MODELS

Symmetric NMF: We compute the factors that optimally reconstruct the original interaction matrices
using the standard symmetric NMF algorithm (Shi et al., 2015; Kuang et al., 2015), for each day
separately, using the same number of factors as in the TNMF model.

Aligned symmetric NMF: We consider a simple extension of the standard SymNMF algorithm that
aligns the factors to be more consistent over time. For each pair of subsequent days, we consider
all combinatorial reorderings of the factors computed for the second day. For each reordering, we
compute the mean L2 distance of all individuals that were alive on both days. We then select the
reordering that minimizes those pairwise L2 distances and greedily continue with the next pair of
days until all factors are aligned. Furthermore, we align the factors across colonies (where individuals
cannot overlap) as follows: we run this algorithm for both datasets separately and align the resulting
factors by first computing the mean embedding for all individuals grouped by their ages. As before,
we now select from all combinatorial possibilities the reordering that minimizes the L2 distance
between the embeddings obtained from both datasets. See section A.5.1 for pseudo code.

Tensor decomposition: We also compare against a constrained non-negative tensor decomposition
model with symmetric factors F ∈ RN×M

+ and temporal dynamics constrained to the diagonals, i.e.
D ∈ RT×M×M

+ and Dt = diag(dt), dt ∈ RM+ .

Ât = FDtF T (6)

F̂ , D̂ = argmin
F ,D

T−1
T∑
t=0

∥∥∥At − Ât

∥∥∥2 (7)

Temporal NMF models: We evaluate variants of the temporal symmetric matrix factorization
algorithms proposed by Jiao et al. (2017) and Yu et al. (2017).

1See Anonymous (2020) for dataset
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For the tensor decomposition and temporal NMF baselines, we follow the procedure given above for
the Aligned symmetric NMF to find the optimal reordering to align the factors obtained by applying
models to the two datasets separately.

2.5 EVALUATION METRICS

Reconstruction: We measure how well the original interaction matrices A can be reconstructed from
the factors. We do not require the model to reconstruct the interaction matrices as well as possible
because we only use the reconstruction as a proxy objective to learn a meaningful representation. Still,
a high reconstruction loss could indicate problems with the model, such as excessive regularization.

Consistency: We measure to what extent the individuality embeddings φ change over time. For each
model, we train a multinomial logistic regression model to predict the source cohort (date of birth) and
calculate the area under the ROC curve (AUCcohort) using a stratified 100-fold cross-validation with
scikit-learn (Pedregosa et al., 2011). The baseline models do not learn an individuality embedding;
therefore we compute how well the model can predict the cohort using the mean factor representation
of the individuals over their lives. We define consistency as 1− AUCcohort of this linear model. Note
that a very low temporal consistency would indicate that the development of individual bees changes
strongly between cohorts and colonies, which we know not to be true.

Mortality and Rhythmicity: We evaluate how well a linear regression model can predict the mortality
(number of days until death) and circadian rhythmicity of the movement (R2 score of a sine with a
period of 24 h fitted to the velocity over a three-day window). These metrics are strongly correlated
with an individual’s behavior (e.g. foragers exhibit strong circadian rhythms because they can only
forage during the daytime; foragers also have a high mortality). We follow the procedure given in
Wild et al. (2020) and report the 100-fold cross-validated R2 scores for these regression tasks.

For this data, we expect the factors f+ and individuality embeddings φ to be semantically meaningful
and temporally consistent if they reflect an individual’s behavioral metrics (mortality and rhythmicity)
and if they do not change strongly over time (measured in the consistency metric).

3 RESULTS

We implemented the model using PyTorch (Paszke et al., 2019) and trained it in minibatches of 256
individuals for 200 000 iterations with the Adam optimizer (Kingma & Ba, 2015). See appendix A.2.3
for the architecture of the learned functions, a precise description of the regularization losses, and
further hyperparameters. The code is publicly available 2.

inf -18 -24 -27 -30 -32
SNR in dB

0.00

0.25

0.50

0.75

1.00

A
M

Is
co

re

inf -18 -24 -27 -30 -32
SNR in dB

10−1

100

M
SE

(f
ac

to
rs

)

TNMF TNMF (regularized) SymNMF

Figure 3: AMI score and mean squared error between true factors and the best permutation of learned
factors for increasing noise levels. The median values over 128 trial runs are shown.

3.1 SYNTHETIC DATA

We factorize the interaction matrices of the 128 synthetic datasets with varying levels of Gaussian
noise. We confirmed that our model converges in all datasets and evaluate whether we can distinguish

2https://anonymous.4open.science/r/b2b7e2fc-aa04-4cf8-85c7-646d8dc46400
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Figure 4: Left: Mean lifetime trajectories according to m(c(t, i)). The model learns a sparse
representation of the functional position of the individuals in the social network. f0 (blue) mostly
corresponds to middle-aged and older bees, and f1 (orange) predominantly describes young bees.
Only factors with a mean magnitude of at least 0.01 are shown. Even though the model uses only
these two factors, it is still expressive enough to capture individual variability, as can be seen in
randomly sampled individuals’ lifetime trajectories. Right: The individual factors f+ and the
proportion of time the individuals spent on different nest substrates. The strong correlation indicates
that the learned factors are a good representation of the individuals’ roles in the colonies. Note that
the factors have been divided by their standard deviation here for ease of comparability.

the individuals’ ground truth group assignments. To that end, we extract the individuality embeddings
φ from the models and measure how well they correspond to ground truth data using the adjusted
mutual information (AMI) score. Furthermore, we measure the mean squared error between the best
permutation of learned factors f+ and the ground truth factors. We find that for low levels of noise,
our model can identify the truth group assignments with high accuracy, and are still significantly
better than random assignments even at very high levels of noise (see figure 3). Note that for this
experiment, we evaluated a model with the same hyperparameters as used in all plots in the results
section (see Table 2) and a variant without explicit regularization except the L1 penalty of the learned
individuality embeddings φ (λembeddings, because this regularization is required to meaningfully extract
clusters), which was set to 0.1. See appendix A.1.2 for more details on the synthetic datasets.

3.2 HONEY BEES

Mean lifetime model: The model learns a sparse representation of the developmental trajectory of
a honey bee in the space of social interactions. Only two factors are effectively used (they exceed the
threshold value of 0.01). These factors show a clear trend over the life of a bee, indicating that the
model captures the temporal aspects of the honey bee division of labor (See Figure 4).

Interpretability of factors: To understand the relationship between the factors and division of labor,
we calculate how the factors map to the fraction of time an individual spent on the brood area, honey
storage, or dance floor (where foragers aggregate). Time spent on these different substrates is a strong
indicator of an individual’s task. The factor f1, which peaks at young age (Figure 4), correlates with
the proportion of time spent in the brood area, while a high f0 indicates increased time spent on the
dance floor. Therefore, the model learned to map biologically relevant processes.

Individuality basis functions and individuality embeddings: Due to the regularization of the
embeddings, the model learns a sparse set of individuality basis functions. As encouraged by the
model, most individuals can predominantly be described by a single basis function. That means
that while each honey bee can collect a unique set of experiences, most can be described with a few
common individuality embeddings which are consistent across cohorts and colonies. In the context of
honey bee division of labor, the basis functions are interpretable because the factors correspond to
different task groups. For example, b12(c(t, i)) (accounting for≈ 10.7% of the individuals) describes
workers that occupy nursing tasks much longer than most bees. As the individuality embeddings φ
only scale the magnitude of the basis functions, they can be interpreted in the same way. Individual
lifetime trajectories in the factor space can be computed based on the mean lifetime trajectories (m),
individuality basis functions (b(c(t, i))) and individuality embeddings (φ). See figure 5 for examples
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of individual lifetime trajectories from workers that most strongly corresponded to the common
individuality basis functions.
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Figure 5: a) Magnitude of factor offsets for the five most common individuality basis functions over
age bk(c(t, i)). The percentage of individuals that most strongly correspond to the individual basis
functions is shown in the column titles. More than 60% of the individuals strongly correspond to
one of the five basis functions shown here. b) Because the basis functions describe individuality
offsets from the mean lifetime trajectory, it may be easier to interpret them by visualizing individual
examples. For each of the basis functions (top row), we show a lifetime trajectory of an individual
that corresponds to that basis function (bottom row). Note that individuals can die or disappear at any
time (solid lines). The mean lifetime trajectories are shown as dotted lines in the background.

Evaluation: We verify that the learned representations of the individuals are meaningful (i.e., they
relate to other properties of the individuals, not just their interaction matrices) and semantically
consistent over time and across datasets using the metrics described in the section Evaluation
metrics. We compare variants of our model with different adversarial loss scaling factors and factor
L1 regularizations, the baseline models, and the individuals’ ages. We expect a good model to
be temporally consistent and semantically meaningful. All variants of our model outperform the
baselines in terms of the semantic metrics Mortality and Rhythmicity, except for the Yu et al. (2017)
model, which performs comparably well in the Mortality metric. The adversarial loss term further
increases the Consistency metric without negatively affecting the other metrics. A very strong
adversarial regularization (see row with λadv = 1 in Table 2) prevents the model from learning a good
representation of the data. See Table 2 for an overview of the results. We also evaluate the tradeoff
between the different metrics using a grid search over the hyperparameters (see appendix A.3).

Scalability: The functions m(c(t, i)) and b(c(t, i)) are learned neural networks with non-linearities.
The objective is non-convex and we learn the model parameters using stochastic gradient descent.
Optimization is therefore slower than the standard NMF algorithms that can be fitted using algorithms
such as Alternating Least Squares (Kim et al., 2014). We found that the model converges faster if
the reconstruction loss of the age based model m(c(t, i)) is additionally minimized with the main
objective in equation 5. Due to the minibatch training regime, our method should scale well in
larger datasets. Small neural networks were sufficient to learn the functions m(c(t, i)) and b(c(t, i))
in our experiments. Most of the runtime during training is spent on the matrix multiplication
f+(t, i) · f+(t, j)T and the corresponding backwards pass.

4 CONCLUSION

Temporal NMF factorizes temporal matrices with overlapping and even disjointed communities by
learning a common embedding of the lifetime development of the individual entities. In the context
of honey bees, this embedding is biologically meaningful, consistent over time, and shows that
interaction patterns follow a common lifetime trajectory. Differences from the mean are described
in a coordinate system of individual variability. Honey bee colonies are known to exhibit suites of
correlated traits (Wray et al., 2011), but this method provides a perspective at the individual level and
opens the possibility for understanding how colony-level traits respond to biotic and abiotic pressures.
The basis functions are interpretable with respect to the division of labor within colonies and offer a
valuable tool to understand and quantify the influence of experimental manipulations (e.g. pesticides
or increased predatory pressure) on an individual, even between experimental trials on completely
different sets of individuals. While we applied our method to honey bees as an exemplary system
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Table 2: Evaluation metrics
Model

Method Variant
∥∥∥A− Â

∥∥∥2

↓ Consistency ↑ Mortality ↑ Rhythmicity ↑

Age - - - 0.02 0.20
SymNMF Vanilla 0.9 0.18 0.01 0.02
SymNMF Aligned 0.9 0.12 0.09 0.35
Tensor decomp. - 1.36 0.03 0.06 0.09
Jiao et al. (2017) γ = 0.1 0.9 0.19 0.02 0.05
Jiao et al. (2017) γ = 1 1.15 0.15 0.01 0.04
Yu et al. (2017) β = 0.01, d = 5 1.59 0.03 0.17 0.06

TNMF No regularization 1.21 0.17 0.30 0.48
TNMF λadv = 0, λf = 0.01 1.26 0.18 0.10 0.40
TNMF λadv = 0.1, λf = 0.01 1.28 0.35 0.20 0.42
TNMF λadv = 1, λf = 0.01 1.88 0.5 0.03 0.25
TNMF λadv = 0, λf = 0.1 1.31 0.19 0.09 0.38
TNMF λadv = 0.1, λf = 0.1 1.33 0.37 0.10 0.42

Table 3: The evaluation metrics for TNMF and the baseline models described in section 2.5. See
appendix A.2.3 and A.5 for descriptions of the hyperparameters used. Note that the SymNMF model
reconstruction loss can be seen as a lower bound for the matrix factorization models considered here,
and imposing a temporal structure or regularization causes all models to explain less variance in the
data. However, for all models except TNMF this does not result in a significant increase of the other
metrics. The underlined model is used in all plots in the results section.
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Figure 6: Left: Hierarchical clustering of individuality embeddings: Most individuals strongly
correspond to a single individuality basis function, making it easy to cluster their lifetime social
behavior (i.e. each individual has a high value in a single dimension for their individuality embedding).
Because each cluster is strongly associated with a specific individuality basis function, and because
each basis function is interpretable (Figure 4), these blueprints of lifetime development can also be
intuitively understood and compared. Right: TSNE plots of the individuality embeddings colored
by cluster (left) and the maximum circadian rhythmicity of an individual during her lifetime (right),
indicating that the embeddings are semantically meaningful.

with many individuals that exhibit an entangled, non-overlapping social structure, our method can be
applied to any setting in which some interaction structure follows a general pattern over an observable
(such as time) to detect structured deviations at the individual level.
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