
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REDUCING SYMMETRY MISMATCH CAUSED BY
FREELY PLACED CAMERAS IN ROBOTIC LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Equivariant policy learning has been shown to solve robotic manipulation tasks
with minimal training or demonstration data. However, the effectiveness of equiv-
ariance depends on whether transformations of the scene align with simple trans-
formations of the input data. This is true when the camera is in a top-down view,
but in the common case where a camera views the robot workspace from the side,
there is a symmetry mismatch, reducing model performance. We show that equiv-
ariant methods perform better when camera images are transformed to appear as
top-down images. Our approach is simple to implement, works for RGB and
RGBD images, and reliably improves performance across different view angles
and learning algorithms.

1 INTRODUCTION

Policy learning methods in robotics typically rely on expert demonstrations or environment inter-
actions, which are costly and time-consuming to provide. A growing body of work has shown that
equivariant networks significantly reduce the amount of data needed to solve manipulation tasks by
building symmetry into the model as an inductive bias (Wang et al., 2022c; Simeonov et al., 2022).
Since robotics tasks often require generalizing across spatial transformations of the scene or objects,
networks that are equivariant to rotations and translations of the input can learn robust policies with
significantly less training data than would otherwise be needed.

Most existing work on equivariant robot learning assumes that the symmetry transformations are
easy to compute over the input space. This is usually required due to how we create equivariant
networks; the action of the symmetry group is used to generate a weight-sharing scheme which
constrains the networks layers. However, this can be a problem in robotics when the viewpoint of
a physical camera does not align well with the axis about which a rotation symmetry exists in the
environment. In particular, an important and standard setting in robotic manipulation involves a
camera which views a scene from the side (a “sideview”) (Luo et al., 2024; Mandlekar et al., 2023;
Brohan et al., 2023), not from the top. This presents a challenge because these robotics domains are
generally symmetric about the vertical gravity axis and this axis does not align well with the camera
viewpoint (e.g. see Figure 1). The task symmetry is given by rotating and translating objects in the
scene, but computing the new sideview image is not a simple image transform due to occlusion and
perspective.

Wang et al. (2022b) showed that equivariant networks can still be effective when there is some
mismatch between the symmetry group used to constrain the model and the physically accurate
task symmetry. Specifically, they found that using image rotations on sideview images to capture
O(2) actions on the scene is better than not using equivariance. Nevertheless, there is a noticeable
performance gap when compared to the top-down image setting.

In this work, we investigate how to reduce this gap. We find that simple, well-known computer vision
techniques can be employed as a preprocessing step to improve performance for O(2) equivariant
robot learning. In the case of sideview RGBD images, the depth channel allows us to interpret the
image as a point cloud and reproject the image from a top-down view, filling in missing data with
interpolation. In the case of RGB images, a homographic perspective transform can approximate a
top-down view. These steps can be added to existing equivariant methods and do not require access
to privileged information or additional training data. We evaluate the approach on a set of simulated
robotic manipulation tasks where the camera views the scene at an angle.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: When a camera is freely-placed in a robot environment, there is mismatch between the
symmetric transformations of the robot workspace and of the image. This mismatch reduces perfor-
mance of equivariant methods. The ideal input is a top-down image (blue), but this is not practical
since the arm is in the way. We propose using a reprojected image (orange), which converts the
sideview image (green) to a top-down view.

The contributions for this work are:

• Two simple image preprocessing steps that reduce the mismatch between image transfor-
mations and the true O(2) symmetry in robotic manipulation environments,

• Empirical analysis showing a consistent performance boost for O(2) equivariant robot
learning across many settings including reinforcement learning, imitation learning, mul-
tiple view angles, and both RGBD and RGB images.

2 RELATED WORKS

Equivariant Robot Learning Robot learning is an ideal setting for equivariant networks because
data is limited and tasks are almost always equivariant to spatial transformations of the scene. Many
works have used SO(2)- or SE(2)-equivariant convolutional networks with top-down camera images
to learn robotic grasping (Zhu et al., 2022), pick and place (Huang et al., 2022), and closed-loop
manipulation skills (Wang et al., 2022c; Jia et al., 2023). Other works explored SO(3)- or SE(3)-
equivariant networks that operate on point clouds or voxel grids to learn pick-and-place (Pan et al.,
2023; Simeonov et al., 2022; Ryu et al., 2022; 2023; Huang et al., 2024a), or general manipulation
skills (Brehmer et al., 2024; Yang et al., 2023). However, the prior works typically require a carefully
designed input (i.e., top-down images) to align the input symmetry with the task symmetry. Unlike
these works, our effort explores a more general setting where the input symmetry does not align
with the task symmetry.

Learning Latent or Approximate Symmetry For some learning problems, there could be a mis-
match between the symmetry in the ground truth function and the symmetry in the equivariant
network because the symmetry cannot be easily described in the input space or the ground truth
function is only partially symmetric. Falorsi et al. (2018) and Park et al. (2022) showed that sym-
metric neural representations can be extracted using traditional networks with a self-supervised loss.
These symmetric representations can be further processed with equivariant layers leading to im-
proved generalization (Esteves et al., 2019; Klee et al., 2023). Another solution to combat this
problem is to use approximate or relaxed equivariant neural networks (Wang et al., 2022e; 2024b;
Huang et al., 2024b) to relax the equivariant constraint in the network to better match the symmetry
in the ground truth function. Alternatively, Wang et al. (2022b) showed that even with the symmetry
match, a fully equivariant model that enforces symmetry to out-of-distribution data can still out-
perform non-equivariant baselines, as long as the symmetry in the model does not conflict with the
ground truth function (Wang et al., 2024a). A similar finding was shown in De Silva et al. (2023)
where training with out-of-distribution data could aid learning. Although the solution of Wang et al.
(2022b) is simple and effective, there remains a significant performance gap compared to not having
the symmetry mismatch. Our work provides a simple means to close this gap.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Image Reprojection in Deep Learning Image reprojection, or transforming an image between
projected coordinate spaces or camera frames, is a well-known and common technique in computer
vision, graphics and robotics. In the context of deep learning, perspective transforms have been used
as data augmentation to improve robustness for pose estimation (Mohlin et al., 2020). Jaderberg
et al. (2015); Gao et al. (2020) proposed adding affine and perspective transforms with trainable
parameters to convolutional networks. In robot learning, some works (Goyal et al., 2023; Ten Pas
et al., 2017) have projected images from 3D data like voxels or point clouds as input which enabled
much faster training and inference. Lin et al. (2023) trained a Neural Radiance Field representation
of a scene then rendered novel view images. A CNN was trained to predict SO(2) manipulation
actions in the respective image planes. Our work also uses reprojection to align the action space
with the image plane. However, our work does not need to be trained so it is well-suited for settings
with limited data.

3 BACKGROUND

3.1 EQUIVARIANT NETWORKS

An equivariant function preserves symmetry in the input and output spaces. Given a symmetry
group G that acts on domain x ∈ X and codomain y ∈ Y with group representations ρx and ρy ,
respectively, a function f is equivariant to G if

f(ρx(g)x) = ρy(g)f(x) (1)

for all g ∈ G. In other words, applying a transformation to the input produces a transformed
output. Notice that the representations ρx and ρy are assumed to be known in advance in order
to design networks that satisfy the equivariant constraint. For example, equivariant convolutional
networks are implemented by constructing kernels K that satisfy the equivariant kernel constraint
K(gv) = ρout(g)K(v)ρin(g)

−1 where ρin and ρout are the representations for the input and output
of the layer (Cohen et al., 2019).

Equivariant networks are composed of equivariant layers and equivariant activation functions. To
properly leverage symmetry this way, it is common to assume that the input is structured such that
group representations ρx(g) can be easily defined and computed. For example, when the input is an
image and G = SO(2), a top-down image is typically used where the group representation on the
input is defined as image rotation.

3.2 EQUIVARIANT POLICY LEARNING

Policy learning is a framework for solving decision problems. The objective is to train a policy
network π : S → A that maps from states to actions in order to achieve some desired outcome
or behavior. In reinforcement learning, the policy is optimized to select actions that maximize the
value of the state action pair, where the value function Q : S×A → R is represented with a separate
critic network. In imitation learning, the policy is optimized to match the distribution arising from a
dataset of expert demonstrations.

Wang et al. (2022c) showed that many relevant robotics tasks can be expressed as group-invariant
MDPs. In these cases, the optimal policy network is equivariant: ρa(g)π(s) = π(ρs(g)s) for all
g ∈ G, s ∈ S. Note that the representations ρs and ρa may flexibly define how observations and
action variables should change or remain invariant. A straightforward example is robotic grasping:
if the scene is transformed then the optimal grasp pose is transformed in the same way, but the
optimal gripper opening remains fixed. The reward function is invariant which means the optimal
critic network is also invariant: Q(s, a) = Q(ρs(g)s, ρa(g)a) for all g ∈ G, s ∈ S.

3.3 EXTRINSIC SYMMETRY

Although prior works (Wang et al., 2022a;d; Jia et al., 2023; Nguyen et al., 2023; Liu et al., 2023)
demonstrated promising results with equivariant policy learning in various problem settings, they all
require an aligned, top-down image observation, which limits the generalizability of the method. Re-
cently, Wang et al. (2022b) showed that equivariant policy learning still outperforms non-equivariant
methods with an arbitrary camera view (this is called extrinsic equivariance because the symmetry

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

will transform the non-top-down image out-of-distribution), but there is a significant performance
gap comparing extrinsic equivariant methods with the ideal top-down setting. In this work, we in-
vestigate the performance gap and propose a simple yet efficient method that improves equivariant
policy learning with an arbitrary camera angle.

4 METHOD

In robotic manipulation tasks, we want the equivariant network to generalize across transformations
of the physical scene. In the case of a sideview camera image, there is a mismatch between the
transformations in image space and in world space. In this section, we describe two ways to prepro-
cess sideview images, such that the resulting image features transform similarly to the underlying
physical scene. Both preprocessing approaches are simple to implement. They do not require any
pre-training or modification to the robot or sensor setups, and only require knowledge of the camera
intrinsics and extrinsics.

4.1 REPROJECTION OF RGBD IMAGES

Figure 2: Illustration of RGBD re-
projection from sideview (green)
to top-down (blue) camera view.

We know that the ideal case for an equivariant network is an
image captured by a top-down camera. When the sideview
camera captures RGBD images, we can generate a colored
point cloud and render a new image using an imaginary top-
down camera (see Figure 2).

The process for reprojecting an RGBD image onto another im-
age plane is well-known, and implemented in several libraries
(Bradski, 2000; Zhou et al., 2018). We describe the process
in some detail here. Given camera principal point (cx, cy) and
focal lengths fx, fy , we first generate a point cloud in the side-
view camera frame from the depth image, D(u, v) : Z2 → R,
by computing 3D coordinates for each pixel location (u, v)

x = D(u, v) · (u− cx)/fx (2)
y = D(u, v) · (v − cy)/fy (3)
z = D(u, v) (4)

Next, we rotate and translate the point cloud into the frame of a virtual top-down camera, call
these new points (x′, y′, z′). Finally, we render the transformed points with an orthographic camera
centered above the workspace, as shown here:

u′ = h · (x′/T + 0.5) (5)

v′ = w · (y′/T + 0.5) (6)

where T is the size of the rendered workspace, and h,w are the image dimensions.

This step produces coordinates on the continuous 2D image plane, e.g. (u′, v′) ∈ R2. To generate
an image array, we bin all values corresponding to a discrete pixel and select the one with the lowest
value of z′. We compute RGB color values for the new image by keeping track of which pixel in the
original image produced the depth value in the new image. In practice, we discard all points in the
point cloud above the gripper height before rendering, to prevent the robot arm from occluding the
scene in the reprojected image.

Occluded Regions The RGBD image represents a partial point cloud of the scene so the repro-
jected top-down image will contain empty regions due to occlusion. We assume the original image
contains all necessary information to solve the problem so the occlusions should not prevent learn-
ing. The occlusions create extrinsic symmetry (Wang et al., 2024a). That is, the occlusions are
always located above an object in the image but the equivariant networks expects them to be dis-
tributed symmetrically around the object. As extrinsic symmetry can harm performance, we infill
the occluded regions with nearest neighbor interpolation (see Appendix A.1). This reduces extrinsic
symmetry, but may not be a general solution when the scene is highly cluttered. In robotic ma-
nipulation environments, placing the camera higher up (e.g. closer to top-down) reduces occlusion

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

from objects, but increases occlusion from the gripper and robot arm. We explore this empirically
in Section 5.6 and Appendix A.5.

4.2 PERSPECTIVE TRANSFORM OF RGB IMAGES

RGB images are a popular input modality for robotic manipulation due to their low cost (Zhao
et al., 2023) and ability to capture information at small distances (Luo et al., 2024). An RGB image
does not contain spatial information about the scene so we cannot perform the reprojection step
from above. Instead, we propose applying a perspective transformation to align the ground plane of
the world with the image plane (this technique is sometimes referred to as perspective removal or
correction). A perspective transformation is a linear mapping of coordinates between two 2D planes.
This linear mapping is described using a homography matrix.

In this setting, we want a mapping that sends the four corners of the robot workspace (3D positions
on the ground plane) to the four corners of the image plane (see Figure 3). The first step is to
calculate the pixel coordinates of the robot workspace in the image. We transform the 3D position
of the workspace corners into the camera frame using the rotation and translation of the camera in
the world frame, R ∈ SO(3) and t ∈ R3, respectively. Then, we project onto the image plane
using the camera intrinsic matrix K. Given a point x ∈ R3, we calculate the pixel location as a
homogeneous coordinate y = K(Rx+ t).

The next step is to compute the homography matrix given the four workspace corner pixels and the
image corner pixels. (We use the OpenCV implementation (Bradski, 2000)). In the final step, we
generate a new image by transforming all pixel locations with the homography matrix and interpolate
the values onto an image grid.

Figure 3: Illustration of perspective trans-
form, with workspace marked as dashed line.
Objects above the plane are visually distorted
by the transform.

Out-of-plane Distortion A perspective transfor-
mation maps features from one 2D plane to another.
If the scene captured by the camera only included
the ground plane, the transformed image would per-
fectly represent the scene from a top-down view. In
practice, robotic manipulation environments contain
3D objects on top of the ground plane. The appear-
ance of these objects is distorted in the perspective
transformation, with more distortion the higher the
object is above the plane. The distortions make it
harder to learn an policy, so we propose two modifi-
cations to the input to enable the policy to resolve the
location and appearance of the gripper and objects.
We describe the modifications below.

The robotic gripper is substantially distorted and occasionally even shifted outside the frame of view
(see Figure 3 right). To re-inject information about the gripper, we concatenate a ‘gripper image’
along the channel dimension the transformation. The gripper image illustrates where the gripper
fingers would lie in the new image plane; the pixel value at the gripper finger locations conveys the
gripper height (see Appendix A.1 for a visualization).

The distortion of objects presents a unique challenge to a rotationally equivariant network. Such a
network cannot form filters that are specific to an absolute orientation. Thus, an equivariant network
will not be able to easily resolve the distortions of objects which always occur toward the top of the
original image. To overcome this we encode the camera viewpoint as a 2D vector pointing from the
workspace center toward the camera and append this information as an additional two channels. In
practice, the two channels are encoded as a pho1 feature, which rotates in 2D as the image is rotated.

5 EXPERIMENTS

The image preprocessing steps described in Section 4 reduce the mismatch between how the O(2)
group acts on the image and on the environment. However, they also introduce some artifacts or
distortions into the image which may harm learning. In this section, we empirically evaluate the
benefits of the preprocessing steps for equivariant robot learning from sideview images.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.1 MANIPULATION ENVIRONMENTS

We evaluate our method on six robotic manipulation environments from BulletArm (Wang et al.,
2022a), which uses the PyBullet simulator (Coumans & Bai, 2016–2021). The environments are il-
lustrated in Figure 4 and cover various manipulation skills such as picking, pushing and pulling. The
state of the environment is an RGB or RGBD image from a perspective camera as well as the grip-
per position and aperture. The action space is five-dimensional, relative gripper motion in x, y, z, θ,
where θ is rotation about the z-axis, and target gripper aperture λ. The action space is decomposed
into equivariant components (x, y) and invariant components (z, θ, λ). The reward is sparse: +1 if
the task is completed and 0 otherwise. All environments are O(2)-symmetric; if scene is rotated or
reflected in the XY-plane, then the optimal action should be rotated or reflected accordingly. Addi-
tionally, the objects in the scene are randomly placed and oriented in the workspace upon reset, so
the optimal policy must generalize to unseen spatial configurations.

(a) Block Picking (b) Block Pushing (c) Block Pulling (d) Drawer Opening (e) Block Stacking (f) Block in Bowl

Figure 4: BulletArm environments. The overlaid images illustrate when the objective of each task.

5.2 POLICY LEARNING SETTINGS

We perform experiments in two policy learning settings, reinforcement learning and imitation learn-
ing. For reinforcement learning, we use Soft Actor Critic from Demonstrations (SACfD) (Wang
et al., 2022c), which prepopulates the replay buffer with some expert demonstrations. SACfD min-
imizes the original SAC loss terms (Haarnoja et al., 2018) and an L2 loss between the policy pre-
diction and the demonstration data, which speeds up the learning. For imitation learning, we use
behavior cloning which minimizes the L2 norm between the policy predictions and the demonstrated
actions. In all experiments, demonstration data is generated using the expert planner provided by
BulletArm. Additional details on the training process can be found in Appendix A.3.

5.3 BASELINES

In our experiments, we want to understand whether the proposed preprocessing steps help the equiv-
ariant networks learn. In the results section, we refer to networks that use reprojection as Reproj.
Equi and perspective transform as Persp. Equi. We directly compare to using the un-aligned, side-
view image with the equivariant network (Sideview Equi) as used in Wang et al. (2022b). By default,
the sideview image is generated with a camera angled at 45 degrees above the horizon. Additionally,
we baseline against an oracle observer Oracle Equi, which sees the environment from a top-down
view. These images have perfect symmetry match, so we expect the equivariant networks to per-
form best here. We refer to this baseline as an oracle, because it is almost impossible to achieve
such images in the real-world (multiple RGBD camera views must be fused, robotic mesh removed
and the image re-rendered). In addition, for the RGBD observation case, we include comparisons
to equivariant networks that take point clouds and voxel grids as input (which are transformed to
world space so there is perfect symmetry match). Finally, we compare to a non-equivariant baseline
(Sideview NonEqui) as a reference point, which takes sideview images as input.

All methods use networks with a similar number of trainable parameters and follow the same training
scheme (data augmentation, learning rate, etc.). See Appendix A.4 for more details on the network
architectures.

5.4 EVALUATION WITH RGBD IMAGES

The learning curves for SACfD with RGBD images are shown in Figure 5. We find that the proposed
re-rendering step boosts performance across all tasks. The performance boost is greatest for block

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

stacking, which is the hardest of the six tasks. Across all environments, the equivariant method
with the oracle observation learns an effective policy fastest. The slight performance gap between
Oracle and Reproj. Equi indicates that the occluded regions slow learning. Switching from nearest
neighbor interpolation to a pre-trained inpainting model may narrow this gap. The equivariant point
cloud method performs competitively with Reproj. Equi, underperforming slightly on the more
challenging block stacking and block in bowl tasks. As observed in prior work (Wang et al., 2022b),
the non-equivariant method underperforms equivariant methods even when the input group action is
inaccurate (sideview).

Figure 5: SACfD learning curves with RGBD images. Evaluation is performed every 200 environ-
ment steps. Results are averaged over three runs, shaded region shows standard deviation.

We observe the similar trends with behavior cloning. We compare performance on five environments
with different amounts of demonstration data (5, 10 and 50 demos). The oracle observation achieves
the highest success rate in nearly all settings as expected. Interestingly, using the reprojected obser-
vation slightly outperforms the oracle on block stacking (10 and 50 demos). Since block stacking
requires accurately placing a block on top of another, the gripper holding the top block occludes the
lower block in the oracle observation, which could make the policy harder to learn. This hypothesis
is supported by the fact that the equivariant point cloud method performs best on this task since it
operates directly on spatial data. When comparing across the number of demonstrations, we see that
the re-rendering step outperforms the sideview most when there is less training data. With sufficient
data, the equivariant network with sideview images learns to compensate for the inaccurate input
group action, as discussed by Wang et al. (2024a).

Table 1: Success Rates (%) on Behavior Cloning trained on 5, 10 and 50 expert demonstrations. We
report the maximum success rate achieved during training. Results are averaged over three seeds.

Block Picking Block Pushing Drawer Opening Block Stacking Block in Bowl

5 10 50 5 10 50 5 10 50 5 10 50 5 10 50

Oracle Equi 75.3 77.8 92.7 64.6 76.9 89.4 79.1 88.9 92.9 16.9 36.5 54.5 70.9 70.2 75.7

Reproj. Equi 77.0 84.7 92.5 75.4 86.5 92.0 70.1 80.7 91.9 24.5 41.6 56.5 61.8 66.1 74.4
Sideview Equi 49.9 75.2 92.1 42.5 59.1 89.5 46.2 66.6 89.2 6.3 16.9 30.2 29.6 50.0 68.6
Voxel Equi 65.6 85.2 91.2 44.5 50.1 84.5 63.2 75.6 90.3 25.5 33.7 - 44.0 55.6 68.1
Point Cloud Equi 79.3 83.3 85.8 73.8 82.7 91.5 51.8 70.3 92.7 45.3 55.5 64.2 66.3 69.1 75.8
Sideview NonEqui 40.3 56.2 76.4 30.6 50.0 82.0 34.9 57.1 80.4 3.7 4.5 7.6 12.4 22.0 45.0

5.5 EVALUATION WITH RGB IMAGES

We will now discuss the experiments with RGB images, where our proposed preprocessing step is a
perspective transformation. In comparison to the occlusions associated with reprojection, we expect
that the distortions from perspective transformation could confuse the network.

The results for SACfD with RGB images is shown in Figure 6. Using perspective transformation
increases the performance of the equivariant model on all tasks. The gap is smallest on the drawer
opening task, which makes sense because the drawer is tall and ends up distorted by the perspec-
tive transform. The performance on behavior cloning (Table 2) further shows the benefits of the
perspective transform. In two cases (blocking picking 10 demos and block stacking 50 demos), the
equivariant network with perspective transform even outperforms the oracle. However, for block
pushing and drawer opening, the sideview image outperforms the perspective transformed image
when trained on only five or ten demonstrations.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: SACfD learning curves with RGB images. Evaluation is performed every 200 environment
steps. Results are averaged over three runs, shaded region shows standard deviation.

Table 2: Success Rates (%) of behavior cloning with RGB images, given 5, 10 and 50 demonstra-
tions. We report the maximum success rate achieved during training, averaged over three seeds.

Block Picking Block Pushing Drawer Opening Block Stacking Block in Bowl

5 10 50 5 10 50 5 10 50 5 10 50 5 10 50

Oracle Equi 80.9 76.0 93.8 61.1 79.8 91.0 79.4 87.8 92.7 19.8 29.9 30.0 64.9 67.4 75.7

Persp. Equi 66.4 85.2 93.0 72.4 82.3 90.6 54.5 71.5 89.9 13.5 30.3 56.7 49.8 57.5 73.7
Sideview Equi 52.5 72.0 89.1 46.2 57.6 82.5 37.5 56.6 85.7 6.1 10.8 20.6 18.0 35.9 56.0
Sideview NonEqui 35.6 60.2 72.0 22.5 43.1 69.6 34.9 47.0 78.0 3.3 4.1 5.0 10.5 16.3 36.5

5.6 EFFECTS OF CAMERA ANGLE

In this section, we demonstrate that the proposed preprocessing steps are effective over a range of
camera view angles. The preprocessing steps are general, so they can be applied in any setting where
the camera parameters (intrinsic and extrinsic) are known. However, the farther the camera moves
from a top-down view, the more the processed image will contain occluded regions or distortions.

To understand how sensitive the method is to camera viewpoint, we recreate the behavior cloning
experiments from earlier, but modulate the viewing angle of the camera from 15 to 75 degrees
above horizontal. The results are reported in Figure 7 for both RGBD and RGB images, using
ten demonstrations. We find that the equivariant network achieves higher success rates as the view
angle increases. This was previously observed by Wang et al. (2022b) with equivariant SAC. Since
the equivariant networks we use assume that the problem symmetry is described as rotations of the
image, it makes sense that performance increases as the image appears more top-down.

With our preprocessing steps, the equivariant networks achieve strong performance at lower camera
view angles. At a view angle of 75 degrees, the robot arm often occludes large portions of the image,
which is why the non oracle methods do not appear to converge to the oracle at 90 degrees as one
would expect. On block stacking, the equivariant method with our preprocessing outperforms the
oracle. We believe this is because the sideview perspective is more informative to solve this task
(with a top-down view the top block occludes the lower block during placement).

(a) RGBD Images (b) RGB Images

Figure 7: Effect of View Angle on BC Performance. View angle is with respect to horizon (e.g. 90◦
is top-down view). Curves show average over three runs, shaded region is standard deviation.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

5.7 BREAKING OR RELAXING NETWORK EQUIVARIANCE

The reprojection and perspective transform operations discussed in Section 4 introduce artifacts into
the image, either due to missing pixels or distortion. These artifacts are linked to the original camera
view since occlusions and distortions always occur on the far side of objects. As the images are
processed with equivariant layers, the network will form representations of the rotated occlusions
and distortions even though they would never rotate in real life (the front of an object is never
occluded).

We proposed using interpolation to fill missing pixels and injecting view-direction information to en-
able the equivariant networks to learn effectively in the RGBD and RGB settings, respectively. Here,
we empirically justify these steps by comparing versions of our method using networks with normal,
broken and relaxed equivariance. For the relaxed version, we modify the equivariant network to use
relaxed group convolutions introduced by Wang et al. (2022e). Relaxed group convolutions contain
parameters which allow the model to deviate from perfect equivariance during training. The broken
equivariance version is what we propose using with the perspective transform, where we add a stan-
dard representation (pho1 feature) to the input that encodes the camera view direction. Since this
additional input vector provides a fixed frame of reference, it breaks the symmetry of the equivariant
model with respect to the observation. Additional details on these methods are in A.4.

Table 3: Effects of relaxing or breaking symmetry. Results are the maximum success rate (%) of a
behavior cloning agent given ten demonstrations, averaged over three runs.

Drawer Opening Block Stacking Block in Bowl

RGBD
Reproj. Equi 80.7 41.6 66.1
Reproj. Equi (relaxed) 72.6 12.2 34.3
Reproj. Equi (broken) 78.0 38.7 65.3

RGB
Persp. Equi. 71.5 30.3 57.5
Persp. Equi (relaxed) 63.1 17.6 33.5
Persp. Equi (broken) 76.0 43.7 65.5

We find that relaxing or breaking equivariance in the RGBD setting results in worse performance of
the policy (see Table 3). This suggests that the interpolation scheme effectively reduces the influence
of the occluded regions on the learning. In contrast, we find that breaking equivariance results in the
best performance in the RGB setting. In both settings, we find that the relaxed equivariance approach
does the worst, despite significant effort to tune the hyperparameters. We believe relaxation could
work in theory, but would have to be designed to specifically relax equivariance along a single
direction to work effectively on this problem, where there is very little data with which to learn the
relaxation weights.

6 CONCLUSION

In this work, we propose two simple preprocessing steps for O(2) equivariant robot learning with
sideview camera images. Since equivariant networks are designed for the case where the symmetry
action is well-defined on the input space, the preprocessing steps transform the sideview images to
look like images captured by a top-down camera. The first preprocessing step is reprojection, which
can be applied to an RGBD image. Reprojection generates a partial point cloud from the image,
then renders a new image with a virtual top-down camera frame. When depth information is not
available, we propose using perspective transform instead, which maps visual information from the
environment ground plane to a top-down camera frame.

Limitations We assume access to the camera extrinsics to perform the reprojection and perspective
transformation. It may be difficult to estimate the camera pose with respect to the workspace when
performing mobile manipulation or interacting with a complex workspace (e.g. no obvious ground
plane). It may be possible to use a trainable reprojection operation, such as (Jaderberg et al., 2015;
Gao et al., 2020), but it is unclear how well that would work with limited data. Another limitation is
that the preprocessing steps do not fully close the performance gap compared to the top-down image
case.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Gary Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for the Professional Pro-
grammer, 25(11):120–123, 2000.

Johann Brehmer, Pim De Haan, Sönke Behrends, and Taco S Cohen. Geometric algebra transformer.
Advances in Neural Information Processing Systems, 36, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Gabriele Cesa, Leon Lang, and Maurice Weiler. A program to build E(N)-equivariant steer-
able CNNs. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=WE4qe9xlnQw.

Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homo-
geneous spaces. Advances in neural information processing systems, 32, 2019.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2021.

Ashwin De Silva, Rahul Ramesh, Carey Priebe, Pratik Chaudhari, and Joshua T Vogelstein. The
value of out-of-distribution data. In International Conference on Machine Learning, pp. 7366–
7389. PMLR, 2023.

Carlos Esteves, Avneesh Sud, Zhengyi Luo, Kostas Daniilidis, and Ameesh Makadia. Cross-
domain 3D equivariant image embeddings. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 1812–1822. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/esteves19a.html.

Luca Falorsi, Pim De Haan, Tim R Davidson, Nicola De Cao, Maurice Weiler, Patrick Forré,
and Taco S Cohen. Explorations in homeomorphic variational auto-encoding. arXiv preprint
arXiv:1807.04689, 2018.

Cong Gao, Xingtong Liu, Wenhao Gu, Benjamin Killeen, Mehran Armand, Russell Taylor, and
Mathias Unberath. Generalizing spatial transformers to projective geometry with applications to
2d/3d registration. In Medical Image Computing and Computer Assisted Intervention–MICCAI
2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part III 23,
pp. 329–339. Springer, 2020.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694–710. PMLR,
2023.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Haojie Huang, Dian Wang, Robin Walters, and Robert Platt. Equivariant transporter network. arXiv
preprint arXiv:2202.09400, 2022.

Haojie Huang, Owen Howell, Xupeng Zhu, Dian Wang, Robin Walters, and Robert Platt. Fourier
transporter: Bi-equivariant robotic manipulation in 3d. arXiv preprint arXiv:2401.12046, 2024a.

Ningyuan Huang, Ron Levie, and Soledad Villar. Approximately equivariant graph networks. Ad-
vances in Neural Information Processing Systems, 36, 2024b.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. Advances
in neural information processing systems, 28, 2015.

Mingxi Jia, Dian Wang, Guanang Su, David Klee, Xupeng Zhu, Robin Walters, and Robert Platt.
Seil: Simulation-augmented equivariant imitation learning. In 2023 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1845–1851. IEEE, 2023.

10

https://openreview.net/forum?id=WE4qe9xlnQw
https://openreview.net/forum?id=WE4qe9xlnQw
http://pybullet.org
https://proceedings.mlr.press/v97/esteves19a.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

David M Klee, Ondrej Biza, Robert Platt, and Robin Walters. Image to sphere: Learning equivariant
features for efficient pose prediction. arXiv preprint arXiv:2302.13926, 2023.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Rein-
forcement learning with augmented data. Advances in neural information processing systems, 33:
19884–19895, 2020.

Yen-Chen Lin, Pete Florence, Andy Zeng, Jonathan T Barron, Yilun Du, Wei-Chiu Ma, Anthony
Simeonov, Alberto Rodriguez Garcia, and Phillip Isola. Mira: Mental imagery for robotic affor-
dances. In Conference on Robot Learning, pp. 1916–1927. PMLR, 2023.

Shiqi Liu, Mengdi Xu, Peide Huang, Xilun Zhang, Yongkang Liu, Kentaro Oguchi, and Ding Zhao.
Continual vision-based reinforcement learning with group symmetries. In Conference on Robot
Learning, pp. 222–240. PMLR, 2023.

Jianlan Luo, Zheyuan Hu, Charles Xu, You Liang Tan, Jacob Berg, Archit Sharma, Stefan Schaal,
Chelsea Finn, Abhishek Gupta, and Sergey Levine. Serl: A software suite for sample-efficient
robotic reinforcement learning. arXiv preprint arXiv:2401.16013, 2024.

Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan,
Yuke Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using
human demonstrations. arXiv preprint arXiv:2310.17596, 2023.

David Mohlin, Josephine Sullivan, and Gérald Bianchi. Probabilistic orientation estimation with
matrix fisher distributions. Advances in Neural Information Processing Systems, 33:4884–4893,
2020.

Hai Huu Nguyen, Andrea Baisero, David Klee, Dian Wang, Robert Platt, and Christopher Amato.
Equivariant reinforcement learning under partial observability. In Conference on Robot Learning,
pp. 3309–3320. PMLR, 2023.

Chuer Pan, Brian Okorn, Harry Zhang, Ben Eisner, and David Held. Tax-pose: Task-specific
cross-pose estimation for robot manipulation. In Conference on Robot Learning, pp. 1783–1792.
PMLR, 2023.

Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan Willem van de Meent, and Robin Walters. Learning
symmetric embeddings for equivariant world models. arXiv preprint arXiv:2204.11371, 2022.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017.

Hyunwoo Ryu, Hong-in Lee, Jeong-Hoon Lee, and Jongeun Choi. Equivariant descriptor fields: Se
(3)-equivariant energy-based models for end-to-end visual robotic manipulation learning. arXiv
preprint arXiv:2206.08321, 2022.

Hyunwoo Ryu, Jiwoo Kim, Junwoo Chang, Hyun Seok Ahn, Joohwan Seo, Taehan Kim, Jongeun
Choi, and Roberto Horowitz. Diffusion-edfs: Bi-equivariant denoising generative modeling on se
(3) for visual robotic manipulation. arXiv preprint arXiv:2309.02685, 2023.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Anthony Simeonov, Yilun Du, Andrea Tagliasacchi, Joshua B Tenenbaum, Alberto Rodriguez,
Pulkit Agrawal, and Vincent Sitzmann. Neural descriptor fields: Se (3)-equivariant object rep-
resentations for manipulation. In 2022 International Conference on Robotics and Automation
(ICRA), pp. 6394–6400. IEEE, 2022.

Andreas Ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp pose detection in point
clouds. The International Journal of Robotics Research, 36(13-14):1455–1473, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dian Wang, Colin Kohler, Xupeng Zhu, Mingxi Jia, and Robert Platt. Bulletarm: An open-source
robotic manipulation benchmark and learning framework. In The International Symposium of
Robotics Research, pp. 335–350. Springer, 2022a.

Dian Wang, Jung Yeon Park, Neel Sortur, Lawson LS Wong, Robin Walters, and Robert Platt. The
surprising effectiveness of equivariant models in domains with latent symmetry. arXiv preprint
arXiv:2211.09231, 2022b.

Dian Wang, Robin Walters, and Robert Platt. So(2)-equivariant reinforcement learning. arXiv
preprint arXiv:2203.04439, 2022c.

Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant q learning in spatial action
spaces. In Conference on Robot Learning, pp. 1713–1723. PMLR, 2022d.

Dian Wang, Xupeng Zhu, Jung Yeon Park, Mingxi Jia, Guanang Su, Robert Platt, and Robin Walters.
A general theory of correct, incorrect, and extrinsic equivariance. Advances in Neural Information
Processing Systems, 36, 2024a.

Rui Wang, Robin Walters, and Rose Yu. Approximately equivariant networks for imperfectly sym-
metric dynamics. In International Conference on Machine Learning, pp. 23078–23091. PMLR,
2022e.

Rui Wang, Elyssa Hofgard, Han Gao, Robin Walters, and Tess E. Smidt. Discovering symmetry
breaking in physical systems with relaxed group convolution, 2024b.

Maurice Weiler and Gabriele Cesa. General E(2)-Equivariant Steerable CNNs. In Conference on
Neural Information Processing Systems (NeurIPS), 2019. URL https://arxiv.org/abs/
1911.08251.

Jingyun Yang, Congyue Deng, Jimmy Wu, Rika Antonova, Leonidas Guibas, and Jeannette Bohg.
Equivact: Sim (3)-equivariant visuomotor policies beyond rigid object manipulation. arXiv
preprint arXiv:2310.16050, 2023.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data processing.
arXiv preprint arXiv:1801.09847, 2018.

Xupeng Zhu, Dian Wang, Ondrej Biza, Guanang Su, Robin Walters, and Robert Platt. Sample
efficient grasp learning using equivariant models. arXiv preprint arXiv:2202.09468, 2022.

12

https://arxiv.org/abs/1911.08251
https://arxiv.org/abs/1911.08251


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 EXAMPLE IMAGES BEFORE AND AFTER PREPROCESSING

In this section, we show example images of the manipulation environments before and after prepro-
cessing. It may be easier to understand how the preprocessing aligns the image by seeing examples.
Also, the visual artifacts from occlusion and distortion can be seen clearly (Figure 9 & 10).

Figure 8: Example RGB images from sideview camera at different camera angles. Images taken
from the middle of expert demonstration.

Figure 9: Example RGB images after perspective transform. The view angle of the sideview camera
indicated at the top. Images taken from the middle of expert demonstration.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 10: Example RGBD images after projection (depth channel not visualized here). The view
angle of the sideview camera is indicated at the top. Images taken from the middle of expert demon-
stration. The occluded regions are inpainted with nearest neighbors (these regions are clearly visible
with the yellow bowl).

(a) Sideview Image (b) Perspective Image and Gripper Image (c) Oracle Image

Figure 11: Illustration of the gripper finger image that is added after performing a perspective trans-
formation. When the sideview image is transformed, information about the position of the gripper is
distorted, so we add an additional channel describing where the gripper fingers are in the top-down
view.

A.2 ENVIRONMENT DETAILS

All manipulation environments are available in the BulletArm repository (Wang et al., 2022a). We
use a perspective camera to render 152 by 152 images. The camera is positioned to capture the robot
workspace with some padding on all sides, since we apply random crop augmentations (producing
128 by 128 images) during training. We add a channel to all images that contains the current gripper
aperture.

A.3 TRAINING DETAILS

Soft Actor Critic from Demonstrations (SACfD) We follow the implementation of SACfD from
(Wang et al., 2022c). We use a learning rate of 0.001, a batch size of 128, a discounting factor of
0.99, a target update interval of 100 optimization steps, a weighting of 1.0 on the expert action
loss, and the Adam optimizer with default parameters. We use separate actor and critic networks.
The number of demonstrations and training steps varies by environment (this is common practice
from earlier work such that there is convergence across tasks of different difficulty). We use 20
demonstration episodes and 5,000 environment steps for all tasks except block in bowl and block

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

stacking, which are given 50 demonstrations and 10,000 environment steps. We run five simulators
in parallel during training, and perform a single optimization step after every joint environment
interaction (5 to 1 ratio of environment steps to optimization steps). We use a prioritized experience
replay buffer (Schaul et al., 2015) to store the transitions with parameters: ϵ = 1e − 6, α = 0.6
and β = 0.4. We randomly rotate transitions four times when adding to the replay buffer, and
apply another random crop augmentation when sampling from the buffer similar to RAD (Laskin
et al., 2020). We evaluate the learned policies every 200 environment steps throughout training by
averaging the discounted sum of rewards over 100 episodes (this is what we show in the learning
curve plots).

Behavior Cloning (BC) The policy network in behavior cloning is optimized with a mean squared
loss between the expert action and the predicted action. We use a learning rate of 0.001, a batchsize
of 128, and the Adam optimizer with default parameters. We train for 5,000 optimization steps
for all BC experiments. Every 200 optimization steps, we evaluate the learned policy by averaging
the success rate over 100 rollouts. In the tables, we report the maximum success rate achieved
throughout training.

Our experiments were run on NVIDIA RTX 2080 GPUs with 12Gb of GPU RAM. Each run takes
around 2-4 hours on a single GPU, depending on whether it is 5K or 10K steps.

A.4 NETWORK DETAILS

The SACfD agent has an actor and a critic network. The behavior cloning agent uses the same actor
network architecture as SACfD. The actor and critic networks share similar architectures: an image
encoder followed by an MLP head.

Equivariant Image Encoder The equivariant encoder is a D4-equivariant convolutional network
implemented with escnn (Cesa et al., 2022; Weiler & Cesa, 2019). The encoder has seven 2D
convolution layers, with ReLU activations, and maxpooling such that the 128-by-128 input image
is gradually downsampled to a 1x1 feature map. The input representation is trivial, and all internal
representations are regular. The output of the network is a 128-dimensional regular representation.
The equivariant image encoder has 1.1 M trainable parameters.

Equivariant Actor The equivariant actor is composed of an equivariant image encoder (described
above) and a final equivariant linear layer. This final layer is D4-equivariant that maps from a 128-
dimensional regular representation to the action representation: (axy, az, aθ, aλ), where axy is a ρ1
representation (2D vector) and az, aθ, aλ are ρ0 representations (scalars). This is the actor network
used by Sideview Equi, Oracle Equi, Reproj. Equi, Persp. Equi, for all experiments.

Equivariant Critic The equivariant critic includes the equivariant image encoder and two MLP
heads. The action is concatenated to the output of the image encoder (this forms a mixed repre-
sentation: 128 regular representations and the action representation described above). This mixed
representation is processed independently by two MLPs. Each MLP is a D4 equivariant linear layer,
followed by a ReLU, a group pooling operation, and a final D4 equivariant layer. The output of each
MLP is a scalar value describing the value of the state-action pair. SAC uses the minimum of the
two predicted state-action values to update the critic and actor parameters (Haarnoja et al., 2018).
This is the critic network used by Sideview Equi, Oracle Equi, Reproj. Equi, Persp. Equi, for all
experiments.

Non Equivariant Image Encoder The non equivariant image encoder shares the exact same ar-
chitecture as the equivariant encoder, where all convolutional layers are standard 2D convolutions.
The size of the hidden dimensions inside the network are adjusted such that number of trainable
parameters matches the equivariant encoder (1.1 M parameters).

Non Equivariant Actor The non equivariant actor is composed of the non equivariant image en-
coder and a linear layer. The linear layer predicts the five-dimensional action (plus an additional five
values for the standard deviation when using SACfD). This is the actor network used by Sideview
NonEqui in all experiments.

Non Equivariant Critic The non equivariant critic is composed of the non equivariant image en-
coder and two MLPs. The action is concatenated to the output of the image encoder and then pro-

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

cessed separately by two MLPs. Each MLP has two linear layers separated by a ReLU activation.
This is the critic network used by Sideview NonEqui in all experiments.

Equivariant Point Cloud Encoder The architecture evaluated in Table 1 is described here. We
implement a D4-equivariant PointNet++ architecture (Qi et al., 2017), where all linear layers in the
original network are replaced with equivariant versions. We use regular representations throughout
the network, so equivariance is preserved through the ReLU activations and pooling schemes. The
network is composed of three point set abstraction blocks with multi-scale grouping, and one point
set abstraction block with single scale grouping, and a final linear layer that produces the equivari-
ant action representation described in the equivariant actor above. The dimensionality of the hidden
dimensions is modified so the number of trainable parameters is comparable to the other baselines
(1.2 M parameters). The point cloud network runs significantly slower than the convolutional archi-
tectures, and a batchsize of 128 does not fit in 12Gb of GPU memory. We downsample the scene
point clouds to 1024 points, and normalize the coordinates during training and evaluation.

Equivariant Voxel Encoder This network was constructed by modifying the architecture of the
equivariant image encoder to use 3D convolutional layers instead of 2D convolutional layers. The
3D convolutional layers were instantiated using D4 equivariance constraints on the weights. We
reduced the number of channels at each layer such that the resulting encoder had comparable number
of parameters to other baselines. Additionally, we set the strides and pooling in the z-direction such
that the downsampling occurred gradually in all three dimensions. We generated voxel grids from
RGBD observations using a grid size of 0.625cm, resulting in a 64x64x32 grid observation.

Relaxed Equivariance We use the same equivariant actor architecture but substitute all equivariant
convolution layers in the encoder with relaxed group convolution layers (Wang et al., 2022e). We
use a single filter bank to keep the number of parameters similar (the relaxed equivariant network
ends up with 1.6 M parameters since it does not use steerable kernels). We tested a range of values
for the regularization values: {1, 0.1, 0.01, 1e− 4, 1e− 6} and 1e− 4 performed best.

Broken Equivariance We use the same equivariant actor network as above. The only modification
is that we modify the input of the network to accept two additional channels. These channels contain
a 2D vector pointing toward the camera viewpoint, and the network treats them as ρ1 equivariant
features. The idea is illustrated in Figure 12

Figure 12: Illustrating symmetry breaking information, in the form of a 2D vector pointing toward
camera. Any rotations of the image will also rotate the 2D vector, which means the equivariant
netowrk can selectively process information based on the camera viewpoint (e.g. the distortion is
always in the opposite direction of the camera viewpoint).

All networks were implemented and trained with PyTorch (Paszke et al., 2017).

A.5 INTERPOLATION SCHEMES FOR RGBD REPROJECTION

In our RGBD reprojection approach, we infill occluded regions of the rendered image with interpo-
lation. We conduct an experiment to understand the benefits of interpolating the occluded regions.
The experiment compares nearest neighbor interpolation to local interpolation and no interpolation

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

on several behavior cloning tasks (see Table 4). We visualize each form of interpolation in Figure 13.
Interpolations are performed independently on each channel of the RGBD image. The results show
that using nearest neighbor interpolation achieves around 10% higher success rate than using local
or no interpolation. We hypothesize that the occlusions in the reprojected image present a challenge
to the rotationally-equivariant network that we use. Even though occlusions are directionally-biased
(they are always on the side of the object away from the camera), the network must reason about
them in all directions because of the equivariance constraints. For more complex scenes, nearest
neighbor interpolation may be insufficient. In the future, we will explore using image inpainting
models, which are very effective on realistic RGB images.

Figure 13: Illustration of interpolation schemes for reprojected image observations. Images are
captured at a view angle of 45 degrees and then reprojected to a top-down view.

Table 4: Comparing Interpolation Schemes with RGBD Reprojection on BC tasks with ten demos.
Results are reported as average best success rate over three runs.

Drawer Opening Block Stacking Block in Bowl

5 10 50 5 10 50 5 10 50

Nearest Interpolation 70.1 77.5 91.9 24.5 36.2 56.5 61.8 58.5 74.4
Local interpolation 44.5 69.4 91.2 6.0 31.3 61.7 44.1 54.1 69.9
No interpolation 52.0 69.3 89.8 11.9 25.2 42.4 41.0 49.2 71.8

A.6 PERSPECTIVE TRANSFORM GROUND HEIGHT

The perspective transform assumes that all the image features live on a single plane, which we set
to be the lower plane of the workspace, e.g. table surface. As we have already mentioned, this
assumption is clearly violated for robotics tasks that contain 3D objects on top of the plane. Without
access to depth information, we cannot identify and correct for distortions of the out-of-plane image
features. Nevertheless, it is possible that the choice of ground plane may impact performance. We
ran experiments to understand how the height of the plane used in the perspective transform affects
performance. The results are reported in tab:sideview:persp-heights.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We find that the performance is robust to minor changes in the plane height of the perspective
transform. For block stacking, the best performance is achieved with a plane height of 2.5 cm,
which is roughly the height of the block. For drawer opening and block in bowl, the performance is
stable up to 5.0 cm above the table surface. We believe any plane height that is within the working
area of the task, e.g. the space where the dexterous behavior occurs, should work well. We also
evaluated a relative plane height, where the plane height is dynamically set to be the height of the
gripper fingers. A relative plane height does not work well at all, likely because the way objects
distort changes based on robot actions, which confuses the convolutional network. We hope to
investigate this setting more deeply in the future, since it could be useful for robotic manipulation
tasks where there is no obvious working surface, such as handing off objects between manipulators.

Table 5: Comparing Ground Plane Height in Perspective Transform. BC with 10 demos

Persp. Plane Height Drawer Opening Block Stacking Block in Bowl

0.0 cm 76.0 43.7 65.5
2.5 cm 76.4 47.5 65.0
5.0 cm 76.5 35.6 63.3

dynamic 11.2 0.0 0.5

18


	Introduction
	Related Works
	Background
	Equivariant Networks
	Equivariant Policy Learning
	Extrinsic Symmetry

	Method
	Reprojection of RGBD Images
	Perspective Transform of RGB Images

	Experiments
	Manipulation Environments
	Policy Learning Settings
	Baselines
	Evaluation with RGBD Images
	Evaluation with RGB Images
	Effects of Camera Angle
	Breaking or Relaxing Network Equivariance

	Conclusion
	Appendix / supplemental material
	Example Images Before and After Preprocessing
	Environment Details
	Training Details
	Network Details
	Interpolation Schemes for RGBD Reprojection
	Perspective Transform Ground Height


