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Abstract: Humans can learn to manipulate new objects by simply watching oth-
ers; providing robots with the ability to learn from such demonstrations would
enable a natural interface specifying new behaviors. This work develops Robot
See Robot Do (RSRD), a method for imitating articulated object manipulation
from a single monocular RGB human demonstration given a single static multi-
view object scan. We first propose 4D Differentiable Part Models (4D-DPM), a
method for recovering 3D part motion from a monocular video with differentiable
rendering. This analysis-by-synthesis approach uses part-centric feature fields in
an iterative optimization which enables the use of geometric regularizers to re-
cover 3D motions from only a single video. Given this 4D reconstruction, the
robot replicates object trajectories by planning bimanual arm motions that induce
the demonstrated object part motion. By representing demonstrations as part-
centric trajectories, RSRD focuses on replicating the demonstration’s intended
behavior while considering the robot’s own morphological limits, rather than at-
tempting to reproduce the hand’s motion. We evaluate 4D-DPM’s 3D tracking
accuracy on ground truth annotated 3D part trajectories and RSRD’s physical ex-
ecution performance on 9 objects across 10 trials each on a bimanual YuMi robot.
Each phase of RSRD achieves an average of 87% success rate, for a total end-
to-end success rate of 60% across 90 trials. Notably, this is accomplished using
only feature fields distilled from large pretrained vision models — without any
task-specific training, fine-tuning, dataset collection, or annotation. Project page:
https://robot-see-robot-do.github.io
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1 Introduction

Consider teaching a robot to manipulate an articulated object in your house such as a pair of scissors
or sunglasses. The most natural way to do this is simply to pick up the object, show it to the
robot, and then demonstrate how to use it with your own hands. This is how children learn — from
observing adults — despite the cross-morphology gap between the large hands of adults and the
small hands of a child. A key insight that enables visual imitation across a morphology gap is not to
focus on the exact motion of the manipulator (i.e., hand), but observe the consequence of the action
at the object level. If the 3D motion of an object and its parts can be perceived, one could plan to
manipulate the object such that the perceived 3D motion to be replicated.

This paper proposes Robot See Robot Do, an object-centric method for manipulating objects with
moveable parts from a single human demonstration given 1) a static multi-view object scan and 2)
a monocular human interaction video. These inputs are easily captured with any smartphone. The
See phase builds a model of the object, groups it into movable parts, and recovers their 3D motion
trajectories. During robot deployment in the Do phase, the robot is presented with the same object in
an unknown pose in the workspace. The robot registers the recovered 3D object trajectory from the
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Figure 1: Robot See Robot Do. To visually imitate articulated object motion RSRD first recon-
structs a part-aware feature field. Given an input demonstration video, we then track the object part
motion using the feature field. Next, the robot recognizes the object in its workspace and plans a
bimanual trajectory to achieve the demonstrated object motion.

demonstration to the pose of the object in the world, then plans a bimanual end-effector trajectory
to induce the same 3D motion on the object as perceived in the demonstration video. Because the
demonstrations are recovered in an object-centric manner, the same demonstration can be reused for
different robots, grippers, and re-orientations of the object.

Recovering the 3D movement of an object and its parts from a monocular video is challenging
due to the under-constrained nature leading to degenerate solutions. In this paper, we propose 4D-
Differentiable Part Models (4D-DPM), a method which uses a decomposed 3D feature field to re-
cover part and object motion from monocular videos. 4D-DPM leverages an analysis-by-synthesis
paradigm, where a model of 3D part motion is iteratively compared to visual observations and
fit through optimization. 4D-DPM first processes the multi-view static video of an object with
GAREField [1] to construct a 3D Gaussian Splat [2] segmented into parts. Then, it embeds DINO [3]
feature fields into each object part, which enables tracking the object motion in a monocular video by
comparing it to video-computed DINO features through differentiable rendering. By leveraging the
0-shot performance of visual representations in large pretrained models, 4D-DPM enables tracking
a wide variety of objects without any fine-tuning or task-specific dataset collection. Additionally,
4D-DPM can naturally incorporate any prior one can represent with a differentiable loss function;
for example temporal smoothness and as-rigid-as-possible prior.

During deployment, RSRD generates a set of candidate grasps for moving each desired subpart, then
finds a collision-free bimanual motion that rigidly tracks the motion of grasped objects throughout
the trajectory. To determine which parts to grasp, we recognize hand-part contacts in the demon-
stration video and softly bias robot grasps towards these parts. Notably, RSRD does not attempt to
copy the motion of human hands, allowing it to find robot motions which achieve the same object
trajectory with different embodiment.

We evaluate RSRD on a variety of 9 articulated objects, ranging from tools to plushies, assessing
its flexibility to function on a diverse range of objects. Notably, several demonstrations are accom-
plished with bimanual manipulation, fully lifting the object off the workspace. For tracking, RSRD
achieves an average distance error of 7.5 mm compared to ground truth part poses; ablations high-
light the importance of both as-rigid-as-possible regularization and DINO for successful tracking.
For real-world robot experiments, we employ a bimanual YuMi robot to measure success rates across
four distinct phases of the RSRD robot execution pipeline, with each object placed in 10 different
orientations within the robot’s workspace. The results demonstrate a success rate of 94% for ini-
tial pose registration and 87% for trajectory planning. Initial grasps and motion execution recorded
success rates of 83% and 85% respectively; end-to-end, this means that RSRD achieves successful



Figure 2: 4D Reconstruction of Articulated Objects. Keyframes from the motion trajectories
overlaid over monocular RGB demonstrations with parts colorized, and along with two viewpoints.
See more qualitative results on the website.

imitation for 60% of initial object positions. Importantly, these results are achieved solely through
feature fields derived from pretrained vision models, without relying on any task-specific training,
fine-tuning, data collection, or annotation.

2 Related Work

Recovering 3D Motion for Objects with Moving Parts. Reconstructing the 3D motion trajec-
tory of articulated object from a single video is extremely challenging as it involves detecting and
reconstructing individual parts and recovering their poses across space and time. A substantial body
of work bypasses the reconstruction problem and utilizes point clouds to perceive articulated parts,
with inputs ranging from sequences of articulated motions of objects [4, 5, 6, 7] to single point
clouds [8, 9, 10, 11, 12, 13]. More similar to our approach are works that take in visual observations
as input for joint reconstruction and part segmentation. Given the challenging nature of model-
ing moving objects, most work require either RGB-D videos or multi-view observations at multiple
states [14, 15, 16, 17] as input. There exist monocular based articulated object tracking methods, but
they typically require known kinematic chains [18, 19] or category-specific priors [20, 21]. In con-
trast, after seeing the object once, RSRD functions from purely monocular interaction input video.
In addition, unlike previous work that relies on training in small-scale datasets with part-level anno-
tations [22], we distill the segmentation of the parts from SAM [23] into 3D using GARField [1],
which generalizes well to objects in the wild.

Learning from one demonstration. Human videos are valuable resources for learning object in-
teraction behaviors. Extensive research [24, 25, 26, 27] has leveraged human video data to learn
robot manipulation, but techniques largely still require additional robot teleoperation data for target
tasks or paired human-robot data to bridge the morphology gap. Also related to our method are
works that learn manipulation policies from a single demonstration [28, 29, 30, 31, 32, 33], many
of which learn from humans [34, 35, 36]. While these methods enable a robot to perform tasks
from one demonstration, they require extensive in-domain data and well-curated meta-training tasks
for training, which limits the generalization of the learned policy. In contrast, our method enables
manipulation from a single human video using an object-centric formulation, without requiring ex-
tensive training with in-domain data. Our setting only requires an additional multiview capture to
obtain the 3D scan of the manipulated object, which can be achieved with a smartphone camera.

Object-centric representations for robot manipulation. Object-centric representations have en-
abled a broad range of capabilities for robot manipulation. Many existing works have focused on
how representations for objects can be learned from specific classes of data, for example by us-
ing 3D structure as a signal for contrastive learning [37], intermediate object properties as a bot-



i ~ N

DINO Mono-Depth
t LDINO tLM{mn

Initial State
....... DINO Depth Lygap= Y, lld; —dill,

Figure 3: 4D Differentiable Part Models (4D-DPM). Left: DINO features and depth are rendered
from per-timestep optimizable part pose parameters, and compared with extracted DINO features
and monocular depth from the input frame. Right: an ARAP loss penalizes gaussians from devi-
ating too far from their initial configuration with respect to neighbors. Together these losses flow
backwards into the part poses and are optimized with gradient descent to recover 3D part motion.

tleneck for image prediction [38], or canonical object views as conditioning [39]. Others have
shown how object-centric approaches can be used to improve generalization in robot manipula-
tion via imitation [40, 41, 32, 33, 42, 43] or reinforcement [44, 45] learning, as well as to aug-
ment robots with semantic [46], relational [47, 48, 49, 50], uncertainty-based [51, 52, 53], sym-
bolic [54, 55, 56, 57, 58, 59], and part-aware [60, 61] reasoning. In RSRD, we show how relative
motion tracked via part-centric representations can be used for single-shot imitation. Importantly,
these representations do not require fixed object categories or task-specific data. Instead, we rely on
and reap the open-world benefits of large pretrained models.

Feature fields for robotics. 3D neural fields have recently been explored in robotics, beginning
with exploring leveraging Neural Radiance Fields [62] (NeRFs) as as high-quality visual recon-
struction for grasping [63, 64] and navigation [65], and more recently by leveraging its ability to
embed higher dimensional features for language-guided manipulation [66, 67]. A core limitation of
neural fields is their slow training speed, an issue which is ameliorated by 3D Gaussian Splatting
(3DGS) [2], a technique for representing radiance fields as a collection of oriented 3D gaussians
which can be differentiably rasterized quickly on modern GPUs. Concurrent works transfer high-
dimensional feature fields to 3DGS for rapid training and rendering, as well as language-guided
robot grasping [68, 69]. One remaining core limitation is that these representations are static, and
must be re-scanned after moving the environment. Wang et al. [70] showed promising results on
tracking DINO embedded object keypoints in 3D from multi-view cameras. In this work, we de-
velop a method for recovering 3D motion of 3DGS feature fields from a monocular video.

3 Problem and Assumptions

Given a bimanual robot with parallel-jaw grippers, a multi-view object scan of an object with two
or more movable parts, and a monocular human demonstration, the goal is to manipulate the object
through the same configuration change starting from an unknown location in the robot’s workspace.
We focus on articulated objects with one or more rotary or prismatic joints, and assume that internal
part deformation is negligible. We also assume the object scan is taken in the same starting config-
uration as the demonstration, and that the input video has a static viewpoint with clear visibility of
the subpart being manipulated.

4 Method

RSRD first builds a 4D Differentiable Part Model of the object segmented into parts embedded with
feature descriptors (Sec 4.1), and uses these dense part descriptors to recover 3D motion from a
monocular video (Sec 4.2). Next, during deployment the robot recognizes the pose of the object in
its workspace and plans actions which emulate the human’s to bring it through the same range of
motion (Sec. 4.3).
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Figure 4: ARAP Ablation. ARAP is a simple but effective prior for improving 3D motion recovery
by preventing small or under-observed parts from drifting.

4.1 Constructing 4D Differentiable Part Models

Given a static multi-view capture of the object of interest, we first construct a 3D model for the ob-
ject using Gaussian Spatting (3DGS). We leverage 3DGS because it has been shown to be orders of
magnitude faster in reconstructing and rendering both visual appearance and high-dimensional fea-
ture fields [2, 69], while in addition providing an explicit representation that can be easily segmented
into objects and subparts. In parallel, we train a GARField [1] from the same capture. GARField
can cluster the 3D Gaussians into discrete groups of varying granularities, controlled by a scale pa-
rameter. This allows manual segmentation of the 3D object from the background by clicking it in
the scene, and manual decomposition of the object into parts by selecting a scale parameter at which
to break apart the object where all relevant parts are separated. For more implementation details
please see the Appendix.

4.2 Monocular 3D Part Motion Recovery

Recovering 3D motion of object parts from a single RGB video is a highly underconstrained and
challenging problem. To tackle it, we propose an analysis-by-synthesis approach (Fig. 3). Instead
of feed-forward inference we optimize, or synthesize, a model of the object parts over time, to
understand (i.e analyze) their motion. 4D part pose over time is represented as a trajectory of SE(3)
poses per time-step, where each consecutive timestep is initialized from the previous. This approach
leverages the differentiable rendering of feature fields to backpropagate pixel errors into 3D pose
deltas. This is appealing over feedforward tracking methods as it can be integrated with sophisticated
regularizations like geometric rigidity or temporal smoothing through optimization, as we leverage
in this work. In addition, 4D-DPM’s use of large pretrained vision models lends robustness to a
large diversity of objects zero-shot.

Part Motion Optimization from Video To obtain pose updates for an object’s parts given a new
frame, we render the 4D-DPM at a virtual camera with the same intrinsics as the input video to
obtain rendered outputs including RGB images, depth maps, and DINO feature maps. In parallel,
we extract DINO features from the input video frame, and compare them directly to the rendered
features with an MSE loss. Because rendering is fully differentiable with respect to the part poses,
by backpropagating through the entire rendering process the poses of individual object parts can
be optimized with gradient descent (Fig 3). We experimentally validate that DINO features offer
a much more robust optimization target than photometric loss, and so all experiments use DINO
instead of photometric (Tab 2).

3D Regularization Priors Reliably tracking pose from pure monocular RGB is a significant chal-
lenge because of depth ambiguity. 4D-DPM uses the fact that all object parts can be jointly op-
timized, allowing for regularizing the optimization with external 3D priors using auxiliary losses.
We use two 3D priors: a regularization from a mono-depth prediction network and a local as-rigid-
as-possible (ARAP) penalty. These losses are added to the primary DINO loss described above,
please see the Appendix for hyperparameters. The first regularization Lo, imposes a soft con-
straint towards outputs from Depth Anything [71]. To account for the fact that mono-depth output
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Figure 5: Hand Alignment: RSRD uses HaMeR [74] to detect and align human hand poses to the
demonstrations. Detections are used to rank part pairs for grasping (Sec 4.3).

is non-metric, we use the ranking-based loss proposed in Sparse-NeRF [72]. Specifically, we sam-
ple pairs of points within the rendered object mask and enforce their relative depth orders between
our rendered depth and the mono-depth to match. The object mask is eroded by 5 pixels to reduce
sensitivity to misalignment.

The second loss is an adaptation of as-rigid-as-possible (ARAP) [73] loss, which is only applied to
boundary gaussians between parts. We compute Lagap by finding boundary gaussians between each
pair of parts, defined by a radius threshold of 2.5 mm on their centers, and storing the initial distance
between neighboring pairs diy;. During optimization we impose a loss penalizing gaussians from
drifting away from that initial distance >, ; p(dii — ddlirent)- Larap does not penalize neighboring
gaussians from rotating with respect to one another, allowing hinging movement easily.

Initialization During robot execution and for the first frame of each demonstration video, 4D-
DPM must estimate the object’s SE(3) pose either for manipulating the object, or initializing the 3D
motion estimation for subsequent frames. To initialize the object pose for a single frame, RSRD first
approximately locates the object in the 2D image. To do this, we compare the object’s 3D DINO
features to the frame’s 2D DINO features, finding mutual nearest neighbors between 3D gaussian
and pixel features. The pixel centroid of these matches creates a ray in 3D space, along which we
place the centroid of the object in 3D at a fixed distance from the camera. 4D-DPM then executes
8 seeds of object pose optimization for 200 iterations, rotating about the object’s gravity axis, and
select the pose with lowest loss. During robot execution, the exact same procedure is used with
stereo depth instead of monocular depth.

4.3 Object Motion and Grasp Planning

Once the poses of the object parts are registered in the world frame of the robot, we plan feasible
robot trajectories to impart the desired motion onto the object. This takes place in three stages: 1)
part selection, to decide which parts should be moved; 2) grasp planning, to decide which parts
are kinematically reachable by the robot; and 3) trajectory planning, to decide which parts can be
manipulated through the full part trajectory performed in the demonstration.

Hand-Guided Part Selection We first create a list of candidate parts for the robot to interact
with, by estimating which ones the human hand interacts with. Note the naive method of choosing
the maximally-traveled part will fail if object parts are coupled. For example, for “opening the
scissors”, where all parts move the same distance, the motion cannot actuate the scissors if the
chosen parts are the scissor blade and handle rigidly connected to each other. Biasing with the
hand helps avoid these degenerate pairs. We emphasize these detections are only used to bias part
selection, but not grasps, since hands can perform grasps impossible with a parallel-jaw gripper.

To detect the human hands in 3D, we use HaMeR [74] to detect hand pose meshes. We calculate
the hand’s metric size and pose by matching it to the estimated metric depth of the hand, which
we calculate by scaling and shifting the image monodepth by the rendered object gaussian depth.
Then, we register part-hand interactions by computing the part-hand assignments which globally
minimizes thumb and index finger distance to the given parts across the trajectory. Finally, a ranked
list of actuated object parts is calculated based on the part distance metric.

Part-Centric Grasp Planning Before we ask a robot to reliably execute object motions, we must
first account for the limitations of a robot parallel-jaw gripper. Mainly, the human hand can flexibly



Objects Init.  Traj. Grasp Exec.

Red Box 10/10  9/10 8/9 4/8
Nerf Gun 10/10 10/10  &/10 7/8
Scissors 9/10 7/9 5/7 5/5
Sunglasses  8/10 8/8 7/8 717

Bear 10/10  7/10 6/7 6/6
Stapler 9/10 9/9 79 117
Light 10/10  10/10  8/10 6/8

Wirecutter  10/10  10/10  7/10 6/7
USB Plug 8/10 7/8 717 6/7

Total 84/90 T77/84 63/77 54/63

Table 1: Physical Trials. We report success of indi-
vidual stages of the RSRD pipeline: object pose in-
Figure 6: Example Robot Executions. Ar- tialization, trajectory planning, grasp execution, and
rows indicate direction of motion. motion execution.

slide around an object part with controlled contact, or use prehensile motion or wide grabs — which
might not be possible with a robot. Thurs, it is important that the robot stays rigidly attached to the
object part throughout the trajectory, and every part must have viable grasps, should that part need
to be manipulated. We analytically generate part-centric grasps by sampling antipodal grasps on the
meshified parts, from which we calculate the target EE pose. See appendix for more details.

Robot Trajectory Planning Given the candidate list of parts, part-centric grasps, and part mo-
tions, we exhaustively search for collision-free, kinematically feasible robot trajectories. We first
create a list of parts [p1,pa, ...], or a list of part-part pairs [(p1, p2), ...] for bimanual tasks. Then,
for each candidate part(s), we generate a list of robot end-effector pose motions, each starting from
one of the 480 part-centric grasps. We implement a sparse Levenberg-Marquardt solver that per-
forms trajectory optimization for each part motion. Trajectories that deviate too far from the target
end-effector poses are rejected. For the remaining trajectories, we use cuRobo [75] for collision
avoidance checks and to plan robot approach motions. We return the first successful trajectory for
physical execution. In bimanual experiments, the robot lifts the object with both hands 2cm off the
workspace to avoid table collisions.

5 Experimental Results

For physical execution, we use an ABB YuMi robot because of its 7-DoF bimanual arms, and equip
it with soft 3D-printed parallel-jaw grippers from Elgeneidy et al. [76]. Extra compliance from soft
caging grasps is helpful for making robot execution less sensitive to error in object tracking. We
use a ZED 2 stereo camera for providing depth estimates for more accurate object registration. To
capture data for demonstrations we use the Polycam phone scanner, which provides posed cameras
with metric scale. We collect demonstrations for articulated objects (Fig. 2) which consist of a
human demonstrating a degree of freedom to actuate with one or both hands clearly visible. In
this work we use demonstration videos which clearly show the object-hand interaction with simple
backgrounds and leave complicated in-the-wild videos to future work.

5.1 Demonstration Execution

To test how well RSRD can transfer human demonstrations to a robot, we select 9 articulated objects
for the robot to actuate, listed in Tab. 1 and detailed in the Appendix. We run 10 trials for each
object on the robot, varying the z orientation of the object 360° about its centroid while remaining
centered in the robot workspace. This means in half of the experiments the initial pose of the object
is flipped as compared to the demonstration video, necessitating 3D object-centric reasoning to
perform the task. We measure the success rate of each stage of the pipeline: pose initialization, grasp
planning, physically grasping, and executing the motion. The final state is evaluated qualitatively by



Method \ Red Box  Nerf Gun Toy Drawer Sunglasses Frog \ Average

4D-DPM 8.16+0.77 3.37+0.64 5.85+1.52 4.58+0.39 10.10+2.02 | 6.41+1.07
No Depth 9.20+340  3.71+053 6.87+1.40 4.66+069  21.434300 | 9.17+1.80
No ARAP 13.05+255  4.06+0.49 7.74+1.45 13.45+213  17.27+3.00 | 11.11+1.92
Photometric | 47.14+493 58.87+739  74.23+6.02 56.34+211 47.09+7.15 | 56.73+5.52

Table 2: Object Part Pose Tracking Evaluation. We report object part pose tracking accuracy
measured by average point-distance (ADD). RSRD significantly outperforms photometric tracking,
owing to its use of DINO features as a robust optimization target.

an experimenter who watches the robot’s full motion, and checks if the robot imparted semantically
similar part motion as the demonstration video (e.g., “close the sunglasses”).

Full results are reported in Table 1. Overall, RSRD can reliably register objects in the correct
pose in 84 of 90 trials, after which it plans feasible robot motions for 77 of 84 registered poses.
This highlights RSRD’s flexibility to object re-orientation within the workspace, reproducing object
motions even though the object is mirrored with respect to the input demo. When physically grasping
and executing these motions, RSRD succeeds for 63 of 77 final plans. This performance dropoff
comes primarily from the very low grasp error tolerance needed to accomplish tasks, with many
cases narrowly missing grasps after grazing the object during approach. For the red box, subtle
tracking shift causes the demonstration to lift upwards by around 3cm in the workspace, lifting the
box in the air and sometimes dropping it on its side rather than upright.

5.2 Motion Recovery Ablations

We evaluate part tracking performance on 5 objects by capturing their demonstrations with a stereo
camera, then manually annotating the ground truth part pose at select keyframes to match the stereo
depth obtained from RAFT-Stereo [77]. By aligning gaussians with the depth obtained from the
Zed camera, we ensure the correspondence between the annotated poses and actual depth informa-
tion. Following Wen et al. [78], we report average point-wise distance (ADD) and compare against
3 ablations of our method: 4D-DPM without ARAP, 4D-DPM without depth regularization, and
Photometric only tracking. Results are reported in Table 2. Motion recovery with DINO feature
fields strongly outperforms photometric tracking, which diverges severely in most cases because of
an inability to distinguish between foreground and background.

6 Discussion

Limitations and Future Work The main limitation of RSRD is the assumption that object start
configurations match their demonstration, and thus is sensitive to small amounts of difference in
initial configurations. Future work will study how to adapt to these cases. In addition, the existence
of manual segmentation phase should ideally be automated to increase scalability of the method,
perhaps based on the perceived motion in the demonstration. Because the method uses monocular
RGB input only, it is also sensitive to the quality of the object scan and the viewing angle of the
demonstration video, sometimes struggling in cases where the background in the demonstration
is too complicated, overpowering the DINO features on the object. Finally, the tracker struggles
with highly symmetric or featureless objects where DINO doesn’t provide enough motion cues, or
objects with small parts. Robot execution in RSRD currently assumes rigid parallel-jaw grasps, an
assumption which would be interesting to lift in future work for planning non-prehensile motions.

Conclusion This paper presents Robot See Robot Do, a method for teaching articulated object
motions with a single monocular human demonstration, and replicating them on a bimanual robot.
It takes advantages of neural feature fields for building a part-aware model of the object which
can be tracked in an input monocular video without the need for labeled part datasets. Because of
its object-centric nature, RSRD can apply learned demonstrations to arbitrary reorientations of the
object while transfering demonstration morphology.
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A Appendix

A.1 TImplementation Details

Part-Centric Feature Fields We train a dense feature field over this object to facilitate tracking
in the later stage supervising the feature field using each view’s DINO feature map as in prior
work [67, 66, 79, 69]. Each Gaussian is embedded with a feature vector of dimension D, which can
be projected onto the DINO space with a small MLP applied per-pixel. The part-centric feature field
is trained with a per-pixel MSE loss for 6000 steps, around 3 minutes. The result is an object model
which can be differentiably rendered at high framerate (30fps HD), separated into parts with dense
feature descriptors whose poses can be differentiated through with respect to pixels and time. We
build on Nerfstudio’s [80] Splatfacto variant of 3DGS, which includes improvements like camera
pose optimization and feature rasterization, using the gsplat [81] rasterization backend.

Our implementation is built on Nerfstudio’s Splatfacto model, taking advantage of the same splitting
and culling logic. We represent DINOv2 ViT-B/14 features by taking the PCA across all input image
features to compress them to 64 dimensions, then assign every gaussian a learnable 32-dimension
vector. These vectors can be rasterized with the exact same rendering equations as RGB, using
the N-D rasterization implementation from the gsplat library. After rasterization, pixel values are
passed through a 4-layer, 64-wide MLP to output the final 64-dimension features. The outputs are
supervised with a simple MSE loss against the image features. We additionally apply a nearest-
neighbors total-variation loss, which at each step minimizes the standard deviation of a gaussian
with its 3 neighbors, encouraging feature embeddings to be spatially smooth. To refine camera
poses from their potentially noisy initialization from Polycam, we enable camera optimization from
view matrix gradients propagated from RGB rasterization.

3D Motion Recovery To reduce high-frequency noise in the rendered DINO features, we blur
them with a kernel equal to the ViT patch size, and clip DINO features which correspond to low
alpha in the rendered view, which can correspond to stray floating gaussians. Pose optimization is
first done per-frame with no temporal smoothing, iterating 50 steps with the Adam [82] optimizer.
We optimize pose offsets represented as quaternions and translations, such that transforms apply
relative to each object part centroid. Over the course of the optimization for each frame, the learning
rate is initialized high, then decayed by a factor of 5x to allow poses to settle. To improve the
temporal coherence of motion recovery, after per-frame tracking we jointly optimize all frames at
once with a Laplacian temporal smoothness loss on neighboring poses. See Fig 3 for an illustration.

We use the robust loss p proposed in Barron [83], setting a = 1.0 for objects whose parts stay
attached, and a = 0.1 for objects containing separable parts (nerf gun, USB cable), which decreases
the strength of the loss for gaussians which deviate far away.

During loss calculation we weight the three optimization objectives with Aygrap = 0.2, Ayyono =
0.5, Aprno = 1 before summing. Adam’s learning rate is decreased from 0.005 to 0.0005 over the
course of 50 steps each frame with an exponential decay. During tracking we sample 30,000 random
pairs within the object mask to use with the sparse depth loss, where the object mask is defined by
pixels with rendered alpha values over 0.9 (mostly opaque).

Speed We train the part-centric feature field for 6000 steps, which takes about 3 minutes on an
RTX 4090 GPU. Prior to this, we train a GARField model to 10000 steps, which takes around 5-10
minutes depending on the number of input images. During tracking, our trajectories consist of 3-4
second video clips at 30fps, and tracking runs at approximately 1.4sec/frame, taking 2-3 minutes
total per trajectory. Notably, hand detection account for a substantial portion of the time spent per
frame, and without hand tracking can run at approximately 1.2fps. Detecting the object pose in the
robot’s workspace takes 30 seconds to run the multi-seed optimization search. Computing grasps
and motion planning collision-free trajectories takes around 1 minute for single hand demonstrations
and 3 minutes for bimanual demonstrations. Speeding up and streamlining the pipeline is a clear
opportunity for future work to study.
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Grasp and Motion Planning We use an analytic grasp generation method to guarantee grasps on
every part, because off-the-shelf grasp planners tend to focus on holistic object grasping rather than
part-level. It first converts each group of gaussian centers to a mesh by taking its alpha shape, then
smooths and decimates it to produce smooth normals. We sample 20 antipodal grasps axes per part
using the grasp procedure described in Mahler et al. [84], then augment them with rotation and and
grasp axis translation into 480 grasps which are stored in the part frame for later usage.

As described in main text’s section 4.3, part contact selection outputs a ranked list of candidate
object parts to interact with, from human hand detection. Then, the planner attempts to find the first
set of parts where the motion is executable. For bimanual tasks the list is composed of length-two
tuples [(p1,p2), ---], one part for each hand, and we exhaustively check over both arms i.e., left arm
to p; and right to py, and vice versa. We first optimize for the robot motion following the pose
of the desired object using a trajectory optimizer implemented via sparse Levenberg-Marquardt in
JAX [85], optimizing for smooth joint positions given a set of 6D robot gripper poses, as cuRobo
does not provide a waypoint-based trajectory optimization. Then, for the successful trajectories, we
use cuRobo to plan collision-free trajectories to the pre-grasp and grasp pose for each part.

A.2 Experiment Details
Robot Trials Please see the supplemental video for example executions of these motions on the
robot, as well as failure case videos.

The experiment motions for each objects are as follows:

. Red Box: Closing the box, by lowering the lid

. Nerf Gun: Sliding back the firing mechanism of the gun

. Scissors: Closing, then opening the scissors

. Sunglasses: Folding back the left leg of the sunglasses

. Bear: Waving the right arm of the bear

. LED Light: un-folding the LED light panel 90 degrees up
. Wirecutter: closing and opening

. Stapler: folding the stapler closed from an open position

O 0 3 N Lt AW N =

. USB Plug: unplugging the usb cable from a power brick
Tracking Evaluation 3D pose for part trajectories is manually annotated for keyframes by visu-

alizing the dense RGB-pointcloud obtained from the depth camera in a 3D viewer, then manually
moving the rendered gaussian splat of the object part to align with this pointcloud.
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