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Abstract

This work bridges the gap between staggered adoption de-
signs and survival analysis to estimate causal effects in set-
tings with time-varying treatments, addressing a fundamen-
tal challenge in medical research exemplified by the Stanford
Heart Transplant study. In medical interventions, particularly
organ transplantation, the timing of treatment varies signifi-
cantly across patients due to factors such as donor availability
and patient readiness, introducing potential bias in treatment
effect estimation if not properly accounted for. We identify
conditions under which staggered adoption assumptions can
justify the use of survival analysis techniques for causal infer-
ence with time-varying treatments. By establishing this con-
nection, we enable the use of existing survival analysis meth-
ods while maintaining causal interpretability. Furthermore,
we enhance estimation performance by incorporating dou-
ble machine learning methods, improving efficiency when
handling complex relationships between patient characteris-
tics and survival outcomes. Through both simulation studies
and application to heart transplant data, our approach demon-
strates superior performance compared to traditional meth-
ods, reducing bias and offering theoretical guarantees for im-
proved efficiency in survival analysis settings.

Introduction
In healthcare, understanding the causal effect of medical in-
terventions on patient survival is crucial. Heart transplanta-
tion is a compelling example, as demonstrated by the Stan-
ford Heart Transplant study (Crowley and Hu 1977; Zhu
et al. 2021), where patients with end-stage heart failure un-
dergo surgery to replace their failing hearts with healthy
donor hearts. While this procedure is likely to extend pa-
tients’ lives on average, researchers are particularly inter-
ested in how treatment effects vary with patient character-
istics and surgical details. Understanding these heteroge-
neous treatment effects—how the impact varies as a function
of patient characteristics—is essential for improving patient
selection criteria, optimizing intervention timing, and ulti-
mately enhancing survival outcomes in transplant medicine
(Trulock et al. 2007; Kilic et al. 2021; DeFilippis et al. 2022)

However, measuring the causal effect of such medical in-
terventions is not straightforward. After a patient is listed
as a candidate for heart transplant, they must wait for an
available donor heart before undergoing the procedure (Al-
mond et al. 2009). This means patients who receive heart

transplants experience both control time (waiting period)
and treatment time (post-transplant period). Furthermore,
the treatment timing is random and highly variable. The
waiting time for a heart transplant ranges from a few days to
more than a year (Evans et al. 1986; O’Connell et al. 1992).
This situation differs from traditional causal inference where
treatment and control groups are determined at the study’s
outset and remain fixed throughout.

Staggered adoption designs in econometrics (Athey and
Imbens 2022) provide a way to estimate causal effects
with random treatment times. These designs compare out-
comes between treated and yet-to-be-treated units, using
later-treated units as controls for earlier-treated ones. While
these designs work well for repeatedly measured continuous
outcomes, they cannot handle time-to-event outcomes that
are observed only once—either at the event occurrence (such
as mortality) or at study end. This limitation stems from
staggered adoption’s reliance on multiple outcomes per unit,
whereas survival settings provide only a single endpoint.

To address this challenge, we extend staggered adoption
designs to time-to-event outcomes by integrating survival
analysis techniques (Cox 1972; Klein and Moeschberger
1997; Fleming and Harrington 2005; Kalbfleisch and Pren-
tice 2011). Using hazard functions to model instantaneous
event probabilities allows us to characterize outcomes con-
tinuously over time, spanning both control and treatment pe-
riods. Our key contribution lies in establishing conditions
under which these hazard-based models enable valid causal
inference.

In addition to handling random treatment timing, we must
address the complex, non-linear relationships between co-
variates and outcomes that often arise in real-world applica-
tions (Hastie et al. 2009). To handle these complexities, we
employ double machine learning (DML) techniques (Cher-
nozhukov et al. 2018; Künzel et al. 2019; Nie and Wager
2021; Gao and Hastie 2021) in our estimation procedure.
DML provides a powerful framework for improving estima-
tion efficiency, allowing us to flexibly model non-linear re-
lationships while maintaining robustness to potential model
misspecifications.

The contributions of this paper are twofold. First, we
bridge the gap between staggered adoption designs and sur-
vival analysis by identifying conditions under which time-
varying treatment effects can be estimated in a survival



framework. Specifically, we show how key assumptions
from staggered adoption designs can be adapted to justify
the use of existing survival analysis techniques for causal
inference with time-varying treatments. Second, we pro-
pose an estimator that addresses the complexity of real-
world data, enhancing performance through Double Ma-
chine Learning (DML) techniques to ensure unbiased and
efficient estimation of treatment effects, thereby advancing
survival analysis methods for handling time-varying treat-
ments.

Literature Review
Prior work combining causal inference with survival anal-
ysis has primarily focused on static treatments or simple
time-varying confounders. While (Robins, Rotnitzky, and
Zhao 1992) and (Hern’an 2010) established foundational
frameworks, and (Li and Greene 2015) developed doubly ro-
bust estimators, these approaches don’t fully address random
treatment timing. (Vansteelandt and Joffe 2014)’s work on
time-varying treatments considers only scheduled interven-
tions that can be reversed, unlike our setting with stochastic,
irreversible treatments.

In econometrics, (Athey and Imbens 2022) and
(Goodman-Bacon 2021) developed methods for han-
dling random treatment timing in panel data, while (Sun and
Abraham 2021) highlighted biases from ignored treatment
effect heterogeneity. However, these approaches require
repeated outcome measurements. Our work bridges this
gap by adapting (Shaikh and Toulis 2021)’s Cox model
framework, originally designed for continuous outcomes, to
handle time-to-event data with staggered adoption patterns.

The organization of the paper is as follows: In Section
2, we formalize the notation, introduce assumptions for the
causal framework, and present the statistical problem. In
Section 3, we review existing methods for handling time-
varying treatments in survival analysis. In Section 4, we in-
troduce our double machine learning framework for robust
estimation of heterogeneous treatment effects. In Section
5, we present simulation results demonstrating the perfor-
mance of our method. In Section 6, we analyze the Stanford
Heart Transplant dataset to evaluate treatment effect hetero-
geneity. Section 7 concludes with a discussion of our find-
ings and limitations.

Problem Set Up
Notation and data
Let capital letters denote random variables and lowercase
letters denote their realizations. Consider i = 1, ..., N units.
Let Ti ∈ [0,∞) denote the time until an event of interest
occurs, such as time until mortality in transplant studies.
Each unit i has a set of potential outcomes for Ti, denoted
as {Ti(a) ∈ [0,∞]}, where a represents the date (or time)
when a binary treatment is first adopted by the unit. We re-
fer to this as the adoption date, consistent with the terminol-
ogy used in the staggered adoption literature (e.g., (Athey
and Imbens 2022)). A unit can adopt the treatment at any
of the time point a ∈ [0,∞), or not adopt the treatment
at all during the time of observation, which we denote as

a = ∞. We take a super-population perspective of Ti(a),
i.e., Ti(a) ∼ P are i.i.d. for some probability distribution P ,
the choice of which is discussed below. We observe for each
unit in the population the adoption date Ai ∈ [0,∞]. The
observed event time of interest is denoted as Ti.

We also observe pre-treatment covariates Xi ∈ Rp. We
adapt the following standard causal assumptions from (Ru-
bin 1974):
Assumption 1 (Stable Unit Treatment Value Assumption,
SUTVA): Each unit’s potential outcome is determined solely
by its own treatment assignment, with no interference be-
tween units and uniform treatment versions. For each unit
i,

Ti = Ti(Ai)

where the observed outcome equals the potential outcome
under the assigned treatment. This assumption tells how po-
tential outcomes map to observed outcomes.
Assumption 2 (Unconfoundedness): The treatment assign-
ment is unconfounded, conditional on covariates Xi. For-
mally,

Ai ⊥⊥ Ti(a) | Xi

meaning that the treatment assignment Ai is independent of
the potential outcome Ti(a), given the covariates Xi.
Assumption 3 (Overlap): The probability of receiving
treatment at time t, conditional on covariates, is strictly be-
tween 0 and 1 for all units. Specifically,

P (Ai ≤ t | Xi) = at(Xi) ∈ [ϵ, 1− ϵ] for some ϵ > 0.

This assumption ensures that each unit has a non-zero prob-
ability of receiving either treatment or control.

Distributional Assumption and Introduction of
Hazard
For the triplet of covariates, treatment, and outcome
(Xi, Ai, Ti), we impose the following general distributional
assumptions:

Xi ∼i.i.d. fX

Ai | Xi ∼ k(· | Xi)

Ti(a) | Xi ∼ f(· | a,Xi)

Here, fX represents the marginal density of the covariates
on Rp, without any additional parametric assumptions. The
functions k(· | x) and f(· | a,Xi) denote conditional densi-
ties on [0,∞], corresponding to the treatment and outcome,
respectively.

We also need to account for censoring. Censoring oc-
curs when the event of interest—in this case, patient mor-
tality—is not observed for all units within the study period.
The censoring time, denoted as Ci ∈ [0,∞], represents the
time at which the unit’s data becomes unavailable for obser-
vation.

Censoring can arise for several reasons: a patient may be
lost to follow-up, the study period may end before mortality
is observed, or administrative reasons may prevent further
observation. For censored units, the exact event time Ti is
unknown; we only know that it exceeds the censoring time



Ci. To handle this, we introduce a binary indicator variable
∆i, where ∆i = 0 indicates censored data and ∆i = 1 in-
dicates fully observed event times. Thus, the observed data
consists of covariates Xi, treatment adoption time Ai, ob-
served time Ui = Ti ∧ Ci (the minimum of event time and
censoring time), and censoring indicator ∆i. We can repre-
sent each unit’s data as the tuple (Xi, Ai, Ui,∆i).

When censoring is present, we cannot directly estimate
the distribution of event times. Instead of using the proba-
bility density function (pdf) f(· | a,Xi), we parameterize
the distribution using the hazard function h(· | a,Xi) (Cox
1972; Kalbfleisch and Prentice 2011). The hazard function
h(t) at time t represents the instantaneous rate of event oc-
currence:

h(t) = lim
∆t→0

Pr(t ≤ T < t+∆t | T ≥ t)

∆t
.

The hazard function is particularly useful for censored
data because it characterizes the risk of an event at time t,
given survival up to that time.

Note that for each fixed x, the number of counterfactual
hazard functions h(· | a,Xi) is infinite, as a is continuous
on [0,∞]. To address this complexity, we introduce two “ex-
clusion” assumptions that simplify the model.

The first assumption states that the exact future transplant
date doesn’t affect current outcomes (Abbring and Van den
Berg 2005; Abbring 2008):
Assumption 4: No Anticipation
For all i and for all adoption dates a such that t < a,

h(t | a,Xi) = h(t | ∞, Xi)

This reduces the infinite set of potential distributions for
t < a to a single one by assuming that before treatment
adoption, the outcome event follows the baseline (or control)
hazard f0. In practical terms, this means that future treat-
ment adoption does not influence current outcomes.

The second assumption asserts that conditional on treat-
ment adoption, the magnitude of the adoption time does not
matter for potential outcomes, but o This assumption is more
restrictive but likely holds when a unit’s characteristics X
and event time T have a stable relationship that does not .
However, this assumption might not hold when (X) and (T)
have a dynamic relationship—for example, when the effec-
tiveness of the transplant depends on how long the patient
has had it, or when patient characteristics change signifi-
cantly over time post-transplant.
Assumption 5: Invariance to History
For all i and for all adoption dates a such that t ≥ a,

h(t | a,Xi) = h(t | 0, Xi)

Together, assumption 4 and 5 enable us to simplify to only
two hazard functions—one for the control, h0(t | Xi) =
h(t | ∞, Xi), and one for the treated, h1(t | Xi) = h(t |
0, Xi). These assumptions have been widely adopted in the
Difference-in-Differences (DID) literature. For a compre-
hensive list of related works, see Section 3.2 in (Athey and
Imbens 2022).

We can now represent the hazard for the potential out-
come, h(t|a,Xi) by the following:

h(t|a,Xi) = h0(t|Xi) ·
(︃
h1(t|Xi)

h0(t|Xi)

)︃wt

(1)

where wt := 1(t ≥ a) is a binary function that indicates
whether treatment has begun at time t.

We model the hazard using the proportional hazards
model (Cox 1972):

h0(t | x) = λ(t) exp(η0(x))

h1(t | x) = λ(t) exp(η1(x))
(2)

where λ(t) represents the baseline hazard function, which
captures the underlying risk of event at time t when all co-
variates are at their reference levels. The functions η0(x)
and η1(x) can be either linear or non-linear functions of
the covariates. A key advantage of this model is its ability
to decouple the time component, λ(t), from the covariate-
dependent components, η0(x) and η1(x). This leads to a
simplified treatment effect definition where the time com-
ponent cancels out:

τ(x) = log

(︃
h1(t | x)
h0(t | x)

)︃
= log (h1(t | x))− log (h0(t | x))
= η1(x)− η0(x)

(3)

We refer to this as the heterogeneous log hazard ratio
(HLHR), which measures the treatment effect on the hazard
rate for a patient with covariate profile x.

In this paper, we assume that the treatment effect, τ(x),
follows a linear parametric form. While more flexible spec-
ifications are possible, we focus on this linear specification
for several reasons. First, in the context of heart transplant
studies, key patient characteristics like age, medical history,
and physiological measures often have approximately lin-
ear relationships with treatment outcomes (Choudhry et al.
2019). Second, this specification mirrors the successful pro-
gression in the causal inference literature, where initial work
on heterogeneous treatment effects for continuous outcomes
began with linear models before expanding to more complex
specifications (Imai and Ratkovic 2013; Kennedy 2023).
Specifically, for some β ∈ Rp, we model τ(x) as:

τ(x) = βTx (4)
As a result, the hazard function can be expressed as:

h(t | a, x) = λ(t) exp (η0(x) + wt · τ(x)) (5)

where λ(t) is the baseline hazard and wt = 1(t ≥ a) is
an indicator function that denotes whether the treatment has
been adopted by time t.

Review of Handling Time-Varying Treatment
in Survival Models

In this section, we review the incorporation of time-varying
variables in survival models, as discussed in (Fisher and Lin
1999; Kalbfleisch and Prentice 2011).



Review of Partial Likelihood and Ordinary Cox
Regression

We begin by revisiting the ordinary Cox regression model to
guide the reader through the derivation of maximum partial
likelihood. In this subsection, we assume treatment is fixed
from the start. Under this assumption, the hazard function
takes the form:

h(t|w, x) = λ(t) exp(η0(x) + w · τ(x)) (6)

where η0(x) represents the control group log hazard as a
function of covariates x, and w is the treatment indicator.

The partial likelihood (Cox 1972) is constructed by sum-
ming terms over the instances when an event (e.g., conver-
sion) occurs, that is, when ∆i = 1 for a particular unit i. Let
Ri = {j : Uj ≥ Ui} denote the risk set for unit i, repre-
senting the set of individuals who have not yet experienced
the event at time Ui. Furthermore, denote Wi as the treat-
ment status for individual i. The log partial likelihood for
the model is then expressed as follows:

pln (τ, η0) := log

(︄ ∏︂
∆i=1

h(Ti|Wi, Xi)∑︁
j∈Ri

h(Ti|Wj , Xj)

)︄

=
∑︂
∆i=1

(︄
η0(Xi) +Wiτ(Xi)

− log

(︄ ∑︂
j∈Ri

exp(η0(Xj) +Wjτ(Xj))

)︄)︄
,

(7)
To estimate the parameters η0 and τ , we maximize this

partial likelihood. This method is widely used in practice
due to its robustness, as it does not require explicit specifi-
cation of the baseline hazard function λ(t), while still main-
taining desirable statistical properties (Andersen et al. 1993).

Review of Handling Time-Varying Treatment

To accommodate time-varying treatment, we replace the
fixed treatment indicatorw with a time-varying indicatorwt:

h(t|a, x) = λ(t) exp(η0(x) + wtτ(x)) (8)

where wt = 1(t ≥ a) indicates whether the treatment has
been initiated by time t.

To address the issue of time-varying covariates, we incor-
porate time variation into the partial likelihood framework
(Fisher and Lin 1999; Kalbfleisch and Prentice 2011). This
extension allows for the correct modeling of covariates that
change over time.

We retain the risk set Ri as defined previously. Let
Wi(t) = 1(Ai < t) represent the treatment status of unit i
at time t. The partial likelihood for this time-varying model
is then expressed as:

pln (τ, η0) :=
1

n

∑︂
∆i=1

(︄
η0(Xi) +Wi(Ui)τ(Xi)

− log

(︄ ∑︂
j∈Ri

exp
(︁
η0(Xj) +Wj(Ui)τ(Xj)

)︁)︄)︄
,

(9)

This approach of incorporating time-varying treatments
within the partial likelihood framework maintains desir-
able statistical properties and produces consistent estima-
tors (Kalbfleisch and Prentice 2011). Recent work by (Tay,
Narasimhan, and Hastie 2023) has extended this framework
to allow lasso fitting when η0 is non-linear.

Double Machine Learning Estimator
We now focus on efficient estimation of the treatment ef-
fect function τ(x) in the time-varying Cox proportional haz-
ards model specified in Equation 6. As mentioned above, a
straightforward approach would be jointly estimating τ(x)
and the baseline hazard η0 using the pseudo-likelihood in
Equation 9.

However, this direct approach faces significant challenges
because the baseline hazard η0 acts as a nuisance func-
tion, and its estimation can interfere with the consistent es-
timation of the treatment effect. Traditional outcome-based
methods that rely on correctly specifying the outcome model
(in this case, the hazard function) are particularly vulnerable
in this setting. This vulnerability arises because misspeci-
fication of the baseline hazard can directly bias the treat-
ment effect estimates through the partial likelihood struc-
ture—errors in estimating η0 propagate non-linearly through
the risk set calculations, leading to biased estimates of τ(x).

To address these challenges, we adopt a double machine
learning (DML) framework (Chernozhukov et al. 2018;
Künzel et al. 2019; Nie and Wager 2021; Gao and Hastie
2021). The key insight of DML is to introduce propensity
score estimation alongside the outcome model, providing
double robustness and improved convergence rates.

Under the DML framework, the treatment effect estima-
tor achieves favorable convergence rates through the product
of nuisance parameter estimation errors. More precisely, let
e0(x) = at(x) be our time-varying propensity score as de-
fined in Equation 10, and let η0(x) be our baseline log haz-
ard function as defined in Equation 6. If we denote the L2
convergence rates of their estimators as ∥ê−e0∥2 = Op(r

e
n)

and ∥η̂0−η0∥2 = Op(r
η
n) respectively, then through careful

orthogonalization of the score function, the treatment effect
estimator satisfies:

∥τ̂ − τ0∥2 = Op(r
e
n · rηn +

1√
n
)

This product structure is crucial: even if one nuisance
component converges at a slower rate (e.g., ren = n−1/4),
the treatment effect estimator can still achieve the optimal√
n-rate of convergence as long as the other component con-

verges sufficiently fast (e.g., rηn = n−1/4). This property,



known as rate double robustness, makes the estimator ro-
bust to moderate misspecification of either nuisance compo-
nent. For a comprehensive theoretical analysis of these con-
vergence properties in the general framework of orthogonal
statistical learning, we refer readers to (Foster and Syrgkanis
2023).

Time-Varying Causal Survival Learner (TV-CSL)
Building upon the work of (Gao and Hastie 2021), we pro-
pose TV-CSL (Time-Varying Causal Survival Learner) to
handle time-varying treatments. The model is characterized
by:

at(x) =

∫︁ t

0
P(∆ = 1 | A = s,X)f(A = s|X)ds∫︁∞

0
P(∆ = 1 | A = s,X)f(A = s|X)ds

= P(A ≤ t|∆ = 1, X).,

νt(x) = τ(x) · at(x) + η0(x)

(10)

Here, at(x) = P(A ≤ t | ∆ = 1, X) represents the prob-
ability of adoption by time t for non-censored data. This
is analogous to the “treatment probability” or the propen-
sity score at time t. When all data is not censored, at(x) =
P(A ≤ t | X). The full estimation procedure is presented in
Algorithm 1.

Our work differs from (Gao and Hastie 2021), which de-
veloped a DML method for linear heterogeneous effects un-
der a Cox model with treatment fixed at baseline, in two key
aspects. First, the outcome models differ: their work uses the
hazard form in Equation 6, while we use the time-varying
form in Equation 8. Second, the propensity scores are dis-
tinct: their nuisance function maps covariates x to proba-
bilities in (0, 1), whereas our propensity score is a function
of both x and t, representing the cumulative distribution of
adoption time A conditional on X .

Theoretical justification
Similar to existing causal inference literature (Nie and Wa-
ger 2021; Künzel et al. 2019), we can derive theoretical re-
sults for the reduction of the learning rate.

Proposition 1 (Convergence Rate of Parameter Estimation).
Let the model for at(x) be denoted as γ(x). Under the fol-
lowing regularity conditions:

1. The covariates X are bounded, the true parameter β0
lies in a bounded region B, and the nuisance functions
γ0(x), η0(x) along with their estimators γn(x), ηn(x)
are uniformly bounded;

2. The minimal eigenvalues of the score derivative
∇βs(γ(x), η(x), β)

1 in B are lower bounded by some
constant C > 0;

If ∥γn(x)− γ0(x)∥2 = O (αn), ∥ηn(x)− η0(x)∥2 =
O (ρn), and αn → 0, ρn → 0, then

∥βn − β0∥2 = Õ
(︂
αnρn + n−1/2

)︂
(11)

1See the Appendix for a definition of the score

Algorithm 1 Cox Model with Partial Likelihood for Time-
Varying Treatment (Under No Censoring)

1: Input: Dataset {(Xi, Ti,∆i, Ai)}ni=1, where Xi are co-
variates, Ti are survival times, ∆i are event indicators,
and Ai are treatment adoption dates

2: First Stage (Fold One):
3: Estimate propensity score at(x) = P (Ai ≤ t|Xi =
x,∆i = 1)

4: Estimate nuisance function νt by:
5: 1. Maximizing the partial likelihood (Equation 9)

to obtain η̂0(x) and τ̂(x)
6: 2. Computing ν̂t(x) = τ̂(x) · ât(x) + η̂0(x)
7: Second Stage (Fold Two):
8: Estimate treatment effect τ(x) by solving:

β̂ = min
β′

1

n

∑︂
∆i=1

[︂
ν̂τi(Xi) + (Wi(τi)− âτi(Xi))X

⊤
i β

′

− log
(︂ ∑︂

l∈Ri

exp(ν̂τi(Xl) + (Wl(τi)− âτi(Xl))X
⊤
l β

′)
)︂]︂

9: where:
10: Wi(t) = 1(Ai < t) ▷ Treatment status at time t
11: Ri = {j : Uj ≥ Ui} ▷ Risk set for subject i
12: τi = Ui for i where ∆i = 1 ▷ Event times
13: Output: Estimated treatment effect function τ̂(x) =

xT β̂

Proof: See Appendix.
Proposition 1 states that for τ̂(x) = x⊤β̂ to reach a cer-

tain level of accuracy, the conditions on ât(x) and η̂0(x) are
relatively loose. Specifically, if we want the estimate of β
to achieve n−1/2 convergence, we only need the product of
the convergence rates of the outcome model η0(x) and treat-
ment model at(x) to be n−1/2. For example, η0(x) could
converge at rate n−1/4 and at(x) at rate n−1/4. In compar-
ison, outcome-based methods that do not use the treatment
model at(x) can only achieve n−1/4 convergence rate.

Simulation Study
We evaluate our method’s performance through simulation
studies comparing TV-CSL against existing approaches.

Simulation Design
Let Xi = (Xi1, Xi2, Xi3)

⊤ ∈ R3 denote baseline covari-
ates generated fromXi ∼ N (0, I3). Treatment times follow
Ai | Xi ∼ Exp(Xi2 + Xi3). Survival times are generated
through the hazard function:

h(t | a, x) = t · exp(η0(x) + 1(a ≤ t)τ(x))

where η0(x) = − 1
2 · ς(X1) · ς(X10) with scaled sig-

moid ς(x) = 2

1+e−12(x− 1
2
)
, and treatment effect τ(x) =

x1 + x2 + x3. We implement random censoring with
Ci = min(20, C̃i), where C̃i ∼ Exp(0.1), yielding
75% non-censored observations. The simulation was re-
peated 100 times for each scenario, with sample sizes n ∈
{200, 500, 1000, 2000}.



Methods for Comparison
We evaluate two approaches for estimating heterogeneous
treatment effects:

S-Lasso Method: Employs a single regression combin-
ing baseline risk η0 and treatment effect τ through additive
specification. For both components, we consider:

• Linear specification: η0(x) = β1X1+β2X2+β3X3 and
τ(x) = ω0W +

∑︁3
j=1 ωj(W ·Xj)

• Complex specification: Includes natural splines, squared
terms, and all pairwise interactions

The combined model is fit using Lasso regularization with
cross-validated penalty parameter.

TV-CSL Method: Implements doubly robust estimation
through cross-fitting in two stages:

• First stage estimates treatment model at(x) = P (A ≤
t | X = x) under both correct (all covariates) and mis-
specified (single covariate) settings

• Second stage estimates baseline outcome model using
Lasso with specifications matching S-Lasso

Performance is evaluated using Mean Squared Error
(MSE):

MSE =
1

n

n∑︂
i=1

(τ̂(Xi)− τ(Xi))
2

Results
Our simulation results demonstrate the relative performance
of TV-CSL and S-Lasso under various specifications, focus-
ing on estimation accuracy and robustness to model mis-
specification. We examine two key aspects: the impact of
the treatment model specification and the performance un-
der complex treatment effect specifications.

Effect of Treatment Model Specification We first exam-
ine how the treatment model specification affects estimation
quality. To isolate this effect, we maintain a correctly speci-
fied HTE model to ensure optimal conditions for both meth-
ods.

The results are shown in Figure 1. Both methods achieve
lower MSE with the complex baseline outcome specifica-
tion, which aligns with the true data-generating process
where the baseline hazard (η0) follows a non-linear pattern.

Comparing TV-CSL and S-Lasso, we observe that TV-
CSL consistently outperforms S-Lasso regardless of treat-
ment model specification, with the performance advantage
being more pronounced when the treatment model is cor-
rectly specified. This aligns with our theoretical findings that
the convergence rate depends on the product of errors in the
nuisance estimators.

Notably, TV-CSL maintains its advantage over S-Lasso
even when the treatment model is misspecified. This ro-
bustness can be attributed to the simplicity of our treatment
model, where minor misspecifications have limited impact
on the overall estimation error. The double machine learn-
ing framework effectively mitigates the impact of treatment
model misspecification, allowing TV-CSL to maintain ro-
bust performance.

Figure 1: MSE Comparison between S-Lasso and TV-CSL
Methods by Sample Size. Panels show combinations of
baseline hazard (η0) and propensity score specifications. Er-
ror bars: ±1.96 Monte Carlo SE.

Performance Under Complex Treatment Effect Specifi-
cations While our previous analysis focused on a linear
(correctly specified) HTE model, we now evaluate the per-
formance when using a complex model to estimate the HTE.
Figure 2 presents these results.

For both methods, holding the outcome model fixed, the
use of complex HTE specifications leads to higher MSE,
though the magnitude of this increase varies between meth-
ods. This increased error can be attributed to the additional
complexity in estimating the treatment effect model.

TV-CSL demonstrates superior performance relative to S-
Lasso under two conditions: First, when the HTE model is
correctly specified as linear, TV-CSL consistently outper-
forms S-Lasso across all sample sizes. This advantage stems
from the double machine learning framework’s ability to
reduce the impact of nuisance parameter estimation errors.
Second, for complex HTE specifications, TV-CSL’s perfor-
mance shows strong sample size dependency. While main-
taining comparable performance at smaller sample sizes,
TV-CSL outperforms S-Lasso at larger sample sizes.

Data Analysis – Stanford Heart Transplant
Dataset

We analyze data from the Stanford Heart Transplant Pro-
gram, which tracks survival times of 103 patients from pro-
gram acceptance through transplantation. The dataset in-
cludes patient age at enrollment, previous surgery status (bi-
nary), and enrollment year (measured from study initiation
in 1967). The analysis focuses on heterogeneous treatment
effects (HTE) by examining interactions between transplant
status and patient characteristics.

Time-Varying Treatment Effects
We first examine the impact of incorporating time-varying
information when evaluating transplant effects compared to



Figure 2: MSE Comparison between S-Lasso and TV-CSL
Methods by Sample Size. Panels show combinations of
baseline hazard (η0) and HTE specifications. Error bars:
±1.96 Monte Carlo SE.

Variable Ignore Treatment Time Include Treatment Time
Coef (SE) P-value Coef (SE) P-value

Trt -1.504 (0.292) 0.00 0.117 (0.340) 0.73
Age × Trt -0.259 (0.285) 0.36 0.286 (0.254) 0.26
Surgery × Trt -2.191 (0.778) 0.00 -0.557 (0.777) 0.47
Year × Trt 0.206 (0.261) 0.43 0.421 (0.260) 0.11

Table 1: Comparison of Heterogeneous Treatment Effects
Between Models With and Without Time-Varying Informa-
tion

not incorporating it. We compare two Cox proportional haz-
ards models: one treating transplant as a fixed treatment co-
variate and another incorporating the time-varying nature of
waiting time.

Table 1 shows differences between the two models. In
the model ignoring treatment time, the surgery-treatment
interaction shows a significant effect (coef = −2.191,
p-value < 0.01), suggesting a transplant benefit for pa-
tients who have had previous surgery. However, this ef-
fect disappears in the model that includes treatment time
(coef = −0.557, p-value = 0.47). This indicates bias in the
model that ignores treatment timing. The treatment variable
itself also shows this difference. Other interactions remain
non-significant in both models.

Machine Learning Effects
We next compare single-fit S-lasso with our TV-CSL method
for predicting treatment effects. We excluded the surgery
variable due to its extreme class imbalance (76% true-to-
false ratio), as this imbalance would be further exacerbated
after splitting the data into two datasets in cross-fitting. Fol-
lowing simulation insights, we use a linear model for η0
given the small sample size (n=103). The treatment model
is specified as A|X ∼ Exp(α0 + α1Y ears), reflecting that
waiting times primarily depend on enrollment year rather
than patient characteristics.

Baseline Outcome Model

Method complex linear

S-lasso 0.386 0.492
TV-CSL 1.220 1.150

Table 2: MSE by Method and Baseline Outcome Model

Results in Table 2 show that with this small sample size,
single-fit methods outperform TV-CSL across all specifica-
tions. These findings align with our simulation results re-
garding sample size sensitivity and suggest that practitioners
should prefer simpler models for smaller datasets.

Conclusion
In this paper, we propose a novel framework for estimating
causal effects of time-varying treatments on time-to-event
outcomes by extending the staggered adoption framework
from econometrics to a survival analysis setting. Our ap-
proach leverages the Cox proportional hazards model and in-
corporates double machine learning (DML) to address com-
plexities in real-world data, such as nonlinear covariate re-
lationships and high-dimensional settings. Through simula-
tions, we demonstrate that our estimator effectively reduces
bias and improves efficiency compared to traditional meth-
ods, particularly in cases with significant treatment effect
heterogeneity.

Our proposed estimator advances the capabilities of
causal inference in survival analysis, providing a robust
approach for analyzing staggered treatment adoption with
time-varying interventions in diverse applied contexts.

Limitations and Future Work
Our study has several limitations that warrant discussion. A
key limitation is our assumption of linear treatment effect
heterogeneity. Although this specification allows substantial
methodological progress and provides interpretable results
for medical decision-making, treatment effects in complex
medical interventions may exhibit non-linear patterns across
patient characteristics. Future work could extend our frame-
work to accommodate more flexible specifications of τ(x)
using non-parametric or semi-parametric approaches.

Another limitation is that in reality, there is an instan-
taneous increase in risk immediately after heart transplant.
This occurs because some patients may experience severe
rejection reactions when receiving a new heart (Lipkova
et al. 2022). After surviving this critical period, the patient’s
risk typically decreases. In future work, rather than model-
ing a single hazard function post-transplant as we did, we
should consider two distinct hazard functions: one capturing
the elevated risk immediately after transplant, and another
reflecting the lower risk level that follows successful adap-
tation.
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Derivation of the TV-CSL Estimator

The main technique involves expanding the log-likelihood
of the data around the true parameter to obtain a score that
approximates the true parameter at the fastest possible rate.
See the next section for a derivation of the likelihood expan-
sion. A key result from that section is the estimating equa-
tion resulting from the optimal score:

0 = E
[︂
(1(A ≤ t)− at(X))X

(︂
∆− Λ (U) eη

∗
0 (X)+τ1(A≤t)

)︂]︂
(12)

Use the tower property to takeE[·|A,X] inside, we obtain

0 = E

[︄
(1(A ≤ t)− at(X))X

(︂
1− eη

∗
A(X)−ηat (X)

)︂
P(∆ | A,X)

]︄ (13)

where

P(∆ | A,X) =

∫︂ A

0

(︂
1− exp(−Λ(c)eη

∗
0 (X))

)︂
fC(c | A,X)dc

+

∫︂ ∞

A

(︄
1− exp(−Λ(A)eη

∗
0 (X)−

(Λ(c)− Λ(A))eη
∗
0 (X)+τ )

)︄
fC(c | A,X)dc

=

∫︂ A

0

(︂
1− exp(−Λ(c)eη

∗
0 (X))

)︂
fC(c | A,X)dc

+

∫︂ ∞

A

(︄
1− exp([−Λ(A)(1− eτ )−

Λ(c)eτ ]eη
∗
0 (X)

)︄
fC(c | A,X)dc

Note that η∗W (X) − ηW (X) = ν∗(X) − ν(X). Taking
E[·|X] inside, we obtain

0 = E[{
∫︂ t

0

(1− at(X))P(∆ | A = s,X)f(A = s|X)ds+∫︂ ∞

t

(0− at(X))P(∆ | A = s,X)f(A = s|X)ds}

X ·
(︂
1− eν

∗(X)−ν(X)
)︂
]

(14)

Hence we need

(1− at(X))

∫︂ t

0

P(∆ = 1 | A = s,X)f(A = s|X)ds

− at(X)

∫︂ ∞

t

P(∆ = 1 | A = s,X)f(A = s|X)ds = 0

at(X)

1− at(X)
=

∫︁ t

0
P(∆ = 1 | A = s,X)f(A = s|X)ds∫︁∞

t
P(∆ = 1 | A = s,X)f(A = s|X)ds

(15)

Here,
∫︁∞
0

P(∆ = 1 | A = s,X)f(A = s|X)ds = P (∆ =
1 | X) is the marginal censoring probability.

Hence, at(X) =

∫︁ t

0
P(∆ = 1 | A = s,X)f(A = s|X)ds∫︁∞

0
P(∆ = 1 | A = s,X)f(A = s|X)ds

=∫︁ t

0
P(∆ = 1, A = s|X)ds

P(∆ = 1 | X)
=
∫︁ t

0
P(A = s|∆ = 1, X)ds =

P(A ≤ t|∆ = 1, X). When P(∆ = 1 | A = s,X) = 1
for all s, i.e., when all observations are not-censored, then
at(X) = P(A ≤ t|X) is the treated probability at time t for
a unit with covariate X .

Key Lemma for Deriving the Score Function
Here we derive the key lemma that shows how the estimator
is obtained. The key step is to calculate the expansion of the



likelihood. Let ℓ (Y ; η′) denote the log-likelihood of the ex-
ponential family. Lemma 1 of (Gao and Hastie 2021) states
that for arbitrary η′, the likelihood of Y satisfies

ℓ (Y ; η′) = ℓ(Y ; η)− 1

2
ψ′′(η) (r + η − η′)

2
+

1

2
ψ′′(η)r2

+O
(︂
∥η − η′∥32

)︂
,

where r := (Y − ψ′(η)) /ψ′′(η).
Further

ℓ (Y ; η′) = ℓ(Y ; η)− 1

2
ψ′′(η) (r + η − η′)

2
+

1

2
ψ′′(η)r2

(16)
The key insight is that we parametrize ηw(x) = ν(x) +

(w − a(x))τ , where ν(x) = a(x)τ + η0(x). Instead of
parametrizing ηw(x) using η0(x) and τ , we re-parametrize
it by adding and subtracting a(x)τ to obtain double robust-
ness.

When comparing η and η′, we keep ν(x) and a(x) fixed,
choosing η′ = ν(x) + (w − a(x))τ ′ and η = ν(x) + (w −
a(x))τ . This implies that η′ − η = (w − a(x))(τ ′ − τ). We
can then apply this to Equation 16:

ℓ (Y ; η′)− ℓ(Y ; η)

=− 1

2
ψ′′(η) (r + η − η′)

2
+

1

2
ψ′′(η)r2

=− 1

2
ψ′′(η) (r − (w − a(x))(τ ′ − τ))

2
+

1

2
ψ′′(η)r2

(17)
Move the negative sign, we have
ℓ(Y ; η)− ℓ (Y ; η′)

=
1

2
ψ′′(η) (r + (w − a(x))(τ − τ ′))

2
+

1

2
ψ′′(η)r2

(18)

We take the expectation, and maximize the LHS by differ-
entiating τ , and set the derivactive to zero (this is to find the
tangent direction)
0 =E [(w − a(x))ψ′′(η) (r + (w − a(x))(τ − τ ′))] (19)
This says
E [(w − a(x))ψ′′(η)r] =E

[︁
(w − a(x))2ψ′′(η)

]︁
(τ ′ − τ)

(τ ′ − τ) =E [(w − a(x))ψ′′(η)r]

/E
[︁
(w − a(x))2ψ′′(η)

]︁
(20)

We also want τ ′ = τ . This is because we are taking one-
dimentional efficient scores so we finally need tangency. The
condition is that the numerator is zero, i.e.

E [(w − a(x))ψ′′(η)r] for all η (21)
Plugin r := (Y − ψ′(η)) /ψ′′(η), and taking x,w as random
variables, we have
E [(W − a(X)) (Y − ψ′(η))]

=E [(W − a(X)) (Y − (ψ′(Wη1(X) + (1−W )η0(X)))]

=E

[︄
(e(X)− a(X))

(︄
Y − (e(X)ψ′(η1(X))

+ (1− e(X))ψ′(η0(X)))

)︄]︄

Proof of Proposition 1
Proof: We write γn(x) = γ(x) + αnξn(x), where
E
[︁
ξ2n(X)

]︁
= 1 is a unit directional vector, and αn is

the distance from γn(x) to γ(x). Similarly, we can write
ηn(x) = η(x) + ρnζn(x), where E

[︁
ζ2n(X)

]︁
= 1. By the

assumption of proposition 1, αn → 0, ρn → 0.
The score function for the partial likelihood of the i-th

sample is:

Si(γ, η, β) = Si(γ, ν, β) since ν = η + τ · a
:=s (γ (Xi) , ν (Xi) , β)

=
∂

∂β

[︂
ν(Xi) + (Wi − a(Xi))X

⊤
i β

− log
(︂ ∑︂

l∈Ri

exp(ν(Xl) + (Wl − â(Xl))X
⊤
l β)

)︂]︂
=Zi −

∑︁
l∈Ri

Zl exp(ν(Xl) + Z⊤
l β)∑︁

l∈Ri
exp(ν(Xl) + Z⊤

l β)

where Zi := (Wi − a(Xi))Xi.
Denote the expected score as s (γ, ν, β) = E[Si(γ, ν, β)]

and define the empirical score sn(γ, ν, β) =
1
n

∑︁n
i=1 Si(γ, ν, β). For simplicity, we write sn (γn, νn, βn)

as sn (αn, ρn, βn)
We first show βn is consistent under sn(0, 0, β). Taylor’s

expansion of sn (αn, ρn, βn) at αn = ρn = 0 is

sn (αn, ρn, βn)

=sn (0, 0, βn) +∇αsn (αε, ρε, βn)αn +∇ρsn (αε, ρε, βn) ρn

where αε ∈ [0, αn] , ρε ∈ [0, ρn].
Note that s (0, 0, β0) = 0 (See (Fleming and Harring-

ton 2005), Chapter 8 for a proof). Thus sn (0, 0, βn) =
sn (0, 0, βn)−0 = sn (0, 0, βn)−s (0, 0, β0). We now argue
sn (0, 0, βn) − s (0, 0, β0) = ∇βsn (0, 0, βε) (βn − β0) +
sn(0, 0, β0) where βε ∈ [βn, β].

We make the following decomposition:

sn (0, 0, βn)− s (0, 0, β0)

=(sn (0, 0, β0)− s (0, 0, β0)) + (s (0, 0, βn)− s (0, 0, β0))+

[(sn (0, 0, β0)− s (0, 0, β0))− (sn (0, 0, βn)− s (0, 0, βn))]

The last term in the bracket is an empirical process term.
Given that our score function s(0, 0, β) is a Donsker
class, and βn is consistent, the empirical process term is
oP (n

−1/2) (Lemma 19.24 of (Van der Vaart 2000)).
Furthermore, by mean value theorem,

s (0, 0, βn) = s(0, 0, β0) +∇βs (0, 0, βε) (βn − β0)

for some βε ∈ [βn, β].
Thus,

sn (0, 0, βn) = sn (0, 0, βn)− s (0, 0, β0)

=∇βsn (0, 0, βε) (βn − β0) + sn(0, 0, β0) (22)

Furthermore, by central limit theorem (CLT),

sn(0, 0, β0) = s(0, 0, β0) +Op

(︂
n−1/2

)︂
= Op

(︂
n−1/2

)︂



Notice that ∇αsn (αn, ρn, βn) ,∇ρsn (αn, ρn, βn) are
bounded, i.e., they are both OP (1)

0 = sn (αn, ρn, βn) = sn (αn, ρn, βn) = sn (0, 0, βn)+

∇αsn (αε, ρε, βn)αn +∇ρsn (αε, ρε, βn) ρn

=∇βsn (0, 0, βε) (βn − β0) +Op

(︂
n−1/2 + αn + ρn

)︂
Then, because the minimum eigenvalue of ∇βs (0, 0, βε)
and is lower bounded, the above turns to :

βn − β0 = (∇βsn (0, 0, βε))
−1
Op

(︂
n−1/2 + αn + ρn

)︂
= op(1)

Therefore, βn is consistent.
We now prove the rate result. To do this, we make a sec-

ond order Taylor’s expansion of sn (αn, ρn, βn) at αn =
ρn = 0:

sn (αn, ρn, βn)

=sn (0, 0, βn) +∇αsn (0, 0, βn)αn +∇ρsn (0, 0, βn) ρn

+
1

2
∇2

αsn (αε, ρε, βn)α
2
n +

1

2
∇2

ρsn (αε, ρε, βn) ρ
2
n

+∇αρsn (αε, ρε, βn)αnρn

=sn(0, 0, β0) +∇βsn (0, 0, βε) (βn − β0) +∇αsn (0, 0, βn)αn

+∇ρsn (0, 0, βn) ρn +
1

2
∇2

αsn (αε, ρε, βn)α
2
n

+
1

2
∇2

ρsn (αε, ρε, βn) ρ
2
n +∇αρsn (αε, ρε, βn)αnρn

where βε ∈ [βn, β0] , αε ∈ [0, αn], ρε ∈ [0, ρn].
The first order Taylor’s expansion of ∇αsn (0, 0, βn) at

β0 is:

∇αsn (0, 0, βn)

= ∇αsn(0, 0, β0) +∇αβsn (0, 0, βε) (βn − β0)

= ∇αs(0, 0, β0) +Op

(︂
n−1/2

)︂
+∇αβsn (0, 0, βε) (βn − β0)

= Op

(︂
n−1/2

)︂
+∇αβsn (0, 0, βε) (βn − β0)

where we apply the CLT in the second equation and use
∇αs(0, 0, β0) = 0 in the last equation due to the Neyman
orthogonality of the score function for the partial likelihood
(see Appendix in (Gao and Hastie 2021) for a proof). A sim-
ilar analysis holds for ∇ρsn (0, 0, βn).

Combining these results:

sn (αn, ρn, βn) = Op

(︂
n−1/2

)︂
+∇βsn (0, 0, βε) (βn − β0)

+Op

(︂
n−1/2 (αn + ρn)

)︂
+∇αβsn (0, 0, βε) (βn − β0)αn

+∇ρβsn (0, 0, βε) (βn − β0) ρn +
1

2
∇2

αsn (αε, ρε, βn)α
2
n

+
1

2
∇2

ρsn (αε, ρε, βn) ρ
2
n +∇αρsn (αε, ρε, βn)αnρn

=(∇βsn (0, 0, βε) +Op (αn + ρn)) (βn − β0)

+Op

(︂
α2
n + ρ2n + αnρn + n−1/2

)︂

Figure 3: Comparison of treatment and control PDFs

where we use the boundedness of the second deriva-
tives. Since the minimal eigenvalue of ∇βsn (0, 0, βε) is
uniformly lower bounded by C/2, we have:

βn − β0 = Op

(︂
n−1/2 + α2

n + ρ2n + αnρn

)︂
This completes the proof.

Parametrizing the PDF for the Piecewise Cox
Model

Given two probability density functions (PDFs) f co(t|a,Xi)
and f tx(t|a,Xi), there are two ways to parametrize the
desired piecewise PDF to show treatment effect. Both
parametrizations integrate to one and are illustrated in Fig-
ure 3.

Parametrization 1:

f(t|a,Xi) =

{︄
f co(t|a,Xi) for t < a

f tx(t|a,Xi) · 1−F co(a|a,Xi)
1−F tx(a|a,Xi)

for t ≥ a

(23)
Parametrization 2:

f(t|a,Xi) =

{︃
f co(t|a,Xi) for t < a

f tx(t− a|a,Xi) · [1− F co(a|a,Xi)] for t ≥ a
(24)

Question: Are these parametrizations equivalent? If not,
which one is preferable?

Answer: No, they are not equivalent in general. Let’s con-
vert Parametrizations 1 and 2 into hazard functions. We only
need to compare the expressions for t ≥ a. For clarity of no-
tation, we omit the conditioning on a,Xi in the derivations
below.

Parametrization 1: For t ≥ a:

h(t) =
f tx(t) · 1−F co(a)

1−F tx(a)

1−
∫︁ t

0
f(s)ds



The denominator:

1−
∫︂ t

0

f(s)ds = 1−
(︃∫︂ a

0

f co(s)ds+

∫︂ t

a

f tx(s)ds · 1− F co(a)

1− F tx(a)

)︃
= 1−

(︃
F co(a) + (F tx(t)− F tx(a)) · 1− F co(a)

1− F tx(a)

)︃
= (1− F co(a))− (F tx(t)− F tx(a)) · 1− F co(a)

1− F tx(a)

= (1− F co(a))

(︃
1− (F tx(t)− F tx(a)) · 1

1− F tx(a)

)︃
= (1− F co(a))

1− F tx(t)

1− F tx(a)

= (1− F tx(t))
1− F co(a)

1− F tx(a)

Therefore:

h(t) =
f tx(t) · 1−F co(a)

1−F tx(a)

(1− F tx(t)) 1−F co(a)
1−F tx(a)

=
f tx(t)

1− F tx(t)

= htx(t)

Parametrization 2: For t ≥ a:

h(t) =
f tx(t− a) · (1− F co(a))

1−
∫︁ t

0
f(s)ds

The denominator:

1−
∫︂ t

0

f(s)ds

= 1−
(︃∫︂ a

0

f co(s)ds+

∫︂ t

a

f tx(s− a)ds · (1− F co(a))

)︃
= 1− F co(a)−

∫︂ t−a

0

f tx(s)ds · (1− F co(a))

= (1− F co(a)) · (1− F tx(t− a))

Therefore:

h(t) =
f tx(t− a) · (1− F co(a))

(1− F co(a)) · (1− F tx(t− a))

=
f tx(t− a)

1− F tx(t− a)

= htx(t− a)

Discussion Parametrization 1 yields h(t) = htx(t), while
Parametrization 2 yields h(t) = htx(t−a). These are equiv-
alent only when htx is constant. For example, if htx(s) = s,
the parametrizations differ. Therefore, the equivalence PDF
parametrization from the paper’s hazard model corresponds
to Parametrization 1.
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