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Abstract

Current LLM alignment techniques use pairwise human preferences at a sample
level, and as such, they do not imply an alignment on the distributional level. We
propose in this paper Alignment via Optimal Transport (AOT), a novel method for
distributional preference alignment of LLMs. AOT aligns LLMs on unpaired pref-
erence data by making the reward distribution of the positive samples stochastically
dominant in the first order on the distribution of negative samples. We introduce a
convex relaxation of this first-order stochastic dominance and cast it as an optimal
transport problem with a smooth and convex cost. Thanks to the one-dimensional
nature of the resulting optimal transport problem and the convexity of the cost, it
has a closed-form solution via sorting on empirical measures. We fine-tune LLMs
with this AOT objective, which enables alignment by penalizing the violation of
the stochastic dominance of the reward distribution of the positive samples on the
reward distribution of the negative samples. We analyze the sample complexity
of AOT by considering the dual of the OT problem and show that it converges at
the parametric rate. Empirically, we show on a diverse set of alignment datasets
and LLMs that AOT leads to state-of-the-art models in the 7B family of models
when evaluated with Open LLM Benchmarks and AlpacaEval. Code for AOT is
available in the Hugging Face TRL library https://ibm.biz/AOT_TRL.

1 Introduction

Aligning Large Language Models (LLMs) with human preferences is a crucial step in making these
models safe and having them follow instructions faithfully. By ensuring that LLMs adhere to human
preferences, values, ethics, and desired behaviors we can reduce the risk of generating harmful,
biased, or inappropriate content.

Reinforcement Learning from Human Feedback, RLHF [Christiano et al., 2017, Stiennon et al., 2020,
Ouyang et al., 2022, Bai et al., 2022], achieves this by learning a reward model on human preference
data, followed by fine-tuning the LLM to maximize the reward score while staying close to the initial
reference policy to retain utility from the pre-trained model. Recently, new paradigms departed from
RLHF towards direct preference optimization methods such as DPO [Rafailov et al., 2024], SLIC
[Zhao et al., 2023], and Identity Policy optimization [Azar et al., 2024]. In these approaches, the
reward is expressed in terms of the log-likelihood ratio between the LLM policy and the reference
model. The training is done on paired preference data, i.e. as triplets of prompts, chosen and rejected
sentences, where for each prompt a chosen and a rejected sample are available. The training objective
is to maximize the margin between the log-likelihood ratio evaluated on the chosen sentence versus
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(a) Stochastic Dominance of Reward of Chosen on
Rejected: AOT achieves a larger margin between
the quantile plots of chosen and rejected rewards.
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(b) Stochastic Dominance of AOT’s optimized pol-
icy margin (between Chosen on Rejected) on the
margin of the reference policy.

Figure 1: AOT in the paired & unpaired settings enables first-order stochastic dominance of the
chosen reward distribution on the rejected distribution (a). The margin between the quantiles of chosen
and rejected rewards is larger than alternative strategies. In (b), we see that AOT’s policy chosen to
rejected log-likelihood ratio dominates that ratio for the base model and alternative strategies.

the log-likelihood ratio on rejected sentences. When paired preference data is not available, and the
preference data instead takes the form of distinct marginals of chosen prompt/response pairs and
rejected prompt/response pairs, we refer to this setup as the unpaired data setting. Ethayarajh et al.
[2024] used Kahneman & Tversky’s prospect theory in the unpaired setting and proposed the KTO
method that maximizes the margin between the chosen reward and the average reward of rejected
sentences and pushes the reward of a rejected sentence below the average reward of chosen sentences.

In this paper, we introduce a new distributional optimization method for fine-tuning LLMs from
human preference data. Previous work in the paired setting focused on improving the reward of
chosen sentences over rejected sentences on a per-sample basis. This procedure does not lead to a
preference on a distributional level of the chosen marginal on the rejected marginal. In probabilistic
terms, we would like to induce stochastic dominance of the reward of chosen sentences on the reward
of rejected ones. First order Stochastic Dominance (FSD, see e.g. Ogryczak and Ruszczynski, 2002)
of a random variable X on a random variable Y , means that all quantiles values of X are larger than
those of Y . Our main contribution is introducing AOT, Alignment via Optimal Transport, a new
method that enables distributional alignment. We do so by devising a new AOT objective function
that induces in the unpaired setting FSD dominance of chosen reward’s distribution over rejected
reward’s distribution. We call this unpaired variant uAOT. In the paired setting, we introduce pAOT
that encourages a dominance of chosen to rejected log likelihood ratio of the optimized policy on
that ratio for the reference base policy. We show that the AOT cost can be cast as a one-dimensional
optimal transport problem that can be solved via sorting and efficiently optimized for the LLM. AOT
enjoys also nice statistical proprieties and achieves the parametric rate since its objective can be seen
as a smooth one-dimensional optimal transport problem. AOT achieves state-of-the-art results on the
Alpaca leaderboard [Dubois et al., 2024] using the Merlinite 7B model [Sudalairaj et al., 2024] as
a base and scores as the highest 7B model at the time of writing this paper.

To introduce the important concepts of our work pictorially, we show in Fig. 1a the quantile plots
of the rewards of AOT and alternative alignment strategies (DPO, KTO) for chosen responses (in
green) and rejected responses in (red). The quantile plots are estimated on a paired test set. We see
that AOT leads to chosen rewards that have larger margins than those of rejected rewards across all
percentiles. More importantly, this margin is larger in AOT models than in policies coming from
alternative alignment strategies. We then show in Fig. 1b how the AOT aligned policy’s chosen-to-
rejected log-likelihood ratio dominates that same ratio evaluated on the base model’s ratio across
all percentiles. The distributional alignment induced by AOT ensures a large margin between all
quantiles so that the preference is reflected not only on average but distributionally. We formalize
distributional preference in the next section.
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2 Distributional Preference via First Order Stochastic Dominance

First Order Stochastic Dominance For a real random variable Z we denote F (−1)
Z : [0, 1]→ R

the left-continuous inverse of the Cumulative Distribution Function (CDF) FZ :

QZ(p) = F
(−1)
Z (p) = inf{η : FZ(η) ≥ p} for p ∈ [0, 1].

Given two random variables Z1 and Z2, we say that Z1 dominates Z2 in the first order if Z1 has
larger quantiles than Z2 for all percentiles p:

Z1 ≽
FSD

Z2 ⇐⇒ QZ1
(p) ≥ QZ2

(p), ∀p ∈ [0, 1]. (1)

Let X be the space of prompts X and Y be the space of responses Y from an LLM conditioned
on a prompt X ∈ X . The reference LLM is represented as policy πref(Y |X), i.e., as a conditional
probability on Y given a prompt X ∈ X . We note the LLM policy we are optimizing by πθ where θ
is a parameter belonging to a bounded parameter space Θ ⊂ Rdθ . For a measure µ ∈ P(X × Y) and
a mapping r : X × Y → R, we note as r♯µ the pushforward map of µ through r. In particular, for
empirical measures µ = 1

n

∑n
i=1 δ(xi,yi), we have that r♯µ = 1

n

∑n
i=1 δr(xi,yi).

DPO as a Pointwise Preference Approach In Direct Preference Optimization (DPO, Rafailov et al.,
2024), the reward being optimized by the LLM has the following form :

rθ(x, y) = β log
πθ(y|x)
πref(y|x)

+ β log(Z(x)),

where Z(x) is a normalization constant. DPO assumes access to a paired preference dataset
(X,Y+, Y−) ∼ µ where Y+ denotes a positive (chosen) response to which we would like to as-
sign a high reward, and Y− a negative (rejected) response to which we would like to assign a low
reward. This can be formalized as minimizing the logarithmic sigmoid loss :

min
θ∈Θ
−E(x,y+,y−)∼µ log(σ(β(rθ(x, y+)− rθ(x, y−)))),

and since the difference is taken for the same x, the normalization Z(x) disappears resulting in:

min
θ
−E(x,y+,y−)∼µ log

(
σ

(
β log

(
πθ(y+|x)
πref(y+|x)

)
− β log

(
πθ(y−|x)
πref(y−|x)

)))
.

We can interpret this as a pointwise constraint inducing preference for positive over negative reward
outcomes as follows:

log

(
πθ(y+|x)
πref(y+|x)

)
≥ log

(
πθ(y−|x)
πref(y−|x)

)
, ∀(x, y+, y−) ∼ µ. (2)

DPO can then be interpreted as a relaxation of this constraint through the logistic loss, which also
suggests other preference optimization algorithms through relaxations using, for example, the hinge
loss as proposed in SLIC [Zhao et al., 2023].

2.1 Distributional Preference via Stochastic Dominance

Our main insight from looking at the pointwise constraint in Eq. (2) is that we can recast it as a distri-
butional constraint in terms of stochastic dominance of the random variable Z+

θ = log( πθ(Y+|X)
πref (Y+|X) )

of positive outcomes on the random variable Z−
θ = log( πθ(Y−|X)

πref (Y−|X) ) of negative outcomes. This is
especially valuable in the unpaired setting without access to triplets of prompts and positive and nega-
tive responses as required by DPO. This is indeed the same setting considered by KTO [Ethayarajh
et al., 2024]. The following paragraph formalizes this unpaired distributional preference.

Distributional Unpaired Preference We assume here that we don’t have access to triplets of
prompts and positive/negative responses (x, y+, y−). Instead, we assume separate access to µ+ ∈
P(X × Y), a distribution of positive prompt/response pairs (X+, Y+) we would like to be highly
rewarded and reinforce in the policy, and µ− ∈ P(X × Y) the distribution of the negative samples
(X−, Y−) to be associated with low reward. We define the distributional preference as follows:
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Definition 1 (Distributional Preference in the Unpaired Setting). A policy π prefers distributionally
µ+ on µ− with respect to a reference policy πref if:

log
πθ(Y+|X+)

πref(Y+|X+)
≽

FSD
log

πθ(Y−|X−)

πref(Y−|X−)
.

In other words, noting ru ◦ πθ(x, y) = log πθ(y|x)
πref (y|x) , the distributional preference in the unpaired

setting means that we have the following constraint:

(ru ◦ πθ)♯µ+ ≽
FSD

(ru ◦ πθ)♯µ−. (3)

Distributional Paired Preference Note that we can rewrite Eq. (2) in the equivalent form:

log
πθ(y+|x)
πθ(y−|x)

≥ log
πref(y+|x)
πref(y−|x)

, ∀(x, y+, y−) ∼ µ. (4)

In order to turn this into a distributional constraint we need access to a paired preference dataset as in
DPO (X,Y+, Y−) ∼ µ, and impose stochastic dominance of the random variable Zθ = log πθ(Y+|X)

πθ(Y−|X)

indexed by the policy we are optimizing on the random variable Zref = log πref (Y+|X)
πref (Y−|X) indexed by the

reference policy. Zθ and Zref represent here the log likelihood ratio of positive to negative outcome
under the policies πθ and πref , respectively. Hence, it is desirable to constrain the policy πθ to have a
larger excess log probability between positive and negative outcomes than that resulting from the
reference policy πref .

We define below more formally the paired distributional preference via stochastic dominance:
Definition 2 (Distributional Preference in the Paired Setting). We say that the policy πθ distribution-
ally dominates πref in terms of log probability ratio of positive and negative responses if:

log
πθ(Y+|X)

πθ(Y−|X)
≽

FSD
log

πref(Y+|X)

πref(Y−|X)
.

Noting rp ◦ πθ(x, y+, y−) = log πθ(y+|x)
πθ(y−|x) this can be written as follows:

(rp ◦ πθ)♯µ ≽
FSD

(rp ◦ πref)♯µ. (5)

3 AOT: Alignment via Optimal Transport a Convex Relaxation Approach

Note that the paired and unpaired distributional preference constraints in Definitions 1 and 2 can be
used in LLM alignment as follows:

Find πθ ∈ H such that (ru ◦ πθ)♯µ+ ≽
FSD

(ru ◦ πθ)♯µ− (FSD unpaired)
and

Find πθ ∈ H such that (rp ◦ πθ)♯µ ≽
FSD

(rp ◦ πref)♯µ (FSD paired)

where ru are rp are given in Definitions 1 and 2 respectively, and H is a hypothesis class. Those
two problems are instances of learning with stochastic orders introduced in [Domingo-Enrich et al.,
2022], but in a simpler setting since the constraints are on one-dimensional distributions and the order
considered is the first order rather than the convex order as considered in [Domingo-Enrich et al.,
2022]. Note that both problems are special cases of the following generic optimization problem:

Find θ ∈ Θ such that : Uθ ≽
FSD

Vθ (6)

where Uθ and Vθ are real-valued random variables whose distributions depend on a parameter vector
θ ∈ Θ. Note that for our FSD paired setting, Vθ = V (independent of θ). Let µUθ

and µVθ
be the

probability measures of Uθ and Vθ resp.

By the definition of FSD in Equation (1) we have:

Uθ ≽
FSD

Vθ ⇐⇒ QUθ
(t) ≥ QVθ

(t),∀t ∈ [0, 1].
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We can relax this problem to the following minimization problem:

min
θ∈Θ

ε(θ) :=

∫ 1

0

h(QUθ
(t)−QVθ

(t))dt, (7)

where h is a function penalizing each quantile’s violation of FSD. The objective function (7) seeks to
measure the violation of FSD, so that it can be minimized or eliminated. For instance, with h the 0/1
loss (here 1 is the indicator function):

min
θ∈Θ

∫ 1

0

1QUθ
(t)<QVθ

(t)dt, (8)

This loss reminds us the misclassification 0/1 loss. Following classical convex relaxation of 0/1
losses in binary classification [Bartlett et al., 2006], we consider surrogates h of the indicator function.
Our choices for h are motivated by the “almost-FSD” notions in the literature (See Appendix F for
a discussion). In practice, we use smooth convex approximations of the 0/1 loss (1x<0) [Bartlett
et al., 2006], for example for a margin β > 0 h(x) = (β − x)2+ the β− squared hinge loss or
h(x) = log(1 + exp(−βx)) the β-logistic loss. Although not a convex relaxation of the 0/1 loss,
the least squares loss has been used in classification [Rosasco et al., 2004], and in the context of
alignment, it was used in IPO [Azar et al., 2024] hence we use also h(x) = (β − x)2, and refer to it
as β-Least Squares. Further discussion of tradeoffs and benefits of different losses is in Appendix F,
and formal assumptions on h needed for the statistical theory are given in Assumption 1.

The cost function in (7) is still computationally challenging, if we were to solve the problem via
gradient descent on θ this would require us to differentiate through the quantile operation. The
following theorem from Santambrogio [2015] will be instrumental for us to cast the loss in (7) as an
optimal transport problem with a convex cost h:

Theorem 1 (Theorem 2.9 and Proposition 2.17 in Santambrogio [2015]). Let h : R → R+ be a
convex function we have for two real random variables U, V , with measures µU , µV :∫ 1

0

h(QU (t)−QV (t))dt = min
γ∈Π(µU ,µV )

∫
h(u− v)dγ(u, v) = OTh(µU , µV )

and γ∗ = (QU , QV )♯L1([0, 1]) is a minimizer (where L1 is the Lebesgue measure on [0, 1] ). If
furthermore h is strictly convex γ∗ is the unique minimizer.

Thanks to Theorem 1 we can write the problem (7), in the following equivalent form that we call
Alignment via Optimal Transport (AOT) :

min
θ∈Θ

∫ 1

0

h(QUθ
(t)−QVθ

(t))dt = min
θ∈Θ

OTh(µUθ
, µVθ

) = min
θ∈Θ

min
γ∈Π(µUθ

,µVθ
)

∫
h(u− v)dγ(u, v).

(9)

This formulation reveals that we have turned the stochastic dominance constraint to an inner one-
dimensional optimal transport problem with a convex cost h. OTh(µUθ

, µVθ
) can be thought as a

soft measure of the violation of the stochastic dominance of Uθ on Vθ, hence by minimizing it as
function of θ we are ensuring the optimal θ∗ results in Uθ∗ dominating Vθ∗ . Such OT problems with
a smooth cost have been subject to theoretical and statistical study in one dimension as well as in
high dimensions. For instance, [Manole and Niles-Weed, 2024] considered smooth convex costs,
and [Hundrieser et al., 2022] considered more general smooth costs. [Groppe and Hundrieser, 2023]
considered entropic regularization of optimal transport with general smooth costs.

Computational Algorithm via Sorting We consider here empirical measures and turn to solve
the inner problem for a fixed θ. We omit θ in what follows to simplify notation. We are interested
in OTh(µ̂U , µ̂V ) where µ̂U = 1

n

∑n
i=1 δui

µ̂V = 1
n

∑n
i=1 δvi . Given the convexity of h and thanks

to Theorem (1), the optimal coupling of OTh(µ̂Uθ
, µ̂Vθ

) is given by the north-west corner solution
[Peyré and Cuturi, 2019] (Chapter 3, Section 3.4.2) that informally matches the i−th smallest element
of U with the i−th smallest element from V . More formally, if we sort the variables ui and get the
order statistics (from min to max) u(1) ≤ ... ≤ u(n) and same for vi: v(1) ≤ ... ≤ v(n). We have:
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OTh(µ̂U , µ̂V ) =
1

n

n∑
i=1

h(u(i) − v(i)). (10)

Back to (9), given empirical samples µ̂Uθ
= 1

n

∑n
i=1 δui

θ
and µ̂Vθ

= 1
n

∑n
i=1 δvi

θ
, let u(i)θ , v

(i)
θ be the

order statistics as function of θ. We have therefore:

min
θ∈Θ

OTh(µ̂Uθ
, µ̂Vθ

) = min
θ∈Θ

1

n

n∑
i=1

h(u
(i)
θ − v

(i)
θ ) (AOT) (11)

In Appendix G, we show that the gradients of the objective (11) are asymptotically unbiased for
bounded distributions (see the statement for all conditions). Note that the sorting operation in (11) is
a 1-Lipschitz function with discontinuous Jacobian.2 Like the ReLU activation function, it can be
easily optimized by gradient descent [Anil et al., 2019] (compare also sliced Wasserstein GANs). In
practice, computing the gradient at any given step is done by first running the sorting algorithm and
taking the gradient with respect to θ with the current assignment held fixed.

AOT for Unpaired Preference Let µ̂n
+ = 1

n

∑n
i=1 δ(xi,+,yi,+) and µ̂n

− = 1
n

∑n
i=1 δ(xi,−,yi,−). Our

convex relaxation approach for unpaired FSD alignment given in (FSD unpaired) can therefore be
cast as an AOT problem (given in Equation (11)) for

uiθ = log
πθ(yi,+|xi,+)
πref(yi,+|xi,+)

, viθ = log
πθ(yi,−|xi,−)
πref(yi,−|xi,−)

, i = 1, . . . , n.

AOT for Paired Preference Let µ̂n = 1
n

∑n
i=1 δ(xi,yi,+,yi,−) be a paired preference empirical

measure. Our convex relaxation approach for paired FSD alignment given in (FSD paired) can be
there cast as an AOT problem (given in Equation (11)) for:

uiθ = log
πθ(yi,+|xi)
πθ(yi,−|xi)

, viθ = log
πref(yi,+|xi)
πref(yi,−|xi)

, i = 1, . . . , n.

AOT with Soft Sorting One caveat of the alternating optimization for AOT between θ and solving
the inner optimal transport problem with hard sorting is that the gradient with respect to the parameter
θ for fixed permutations has dependency in θ on the order statistics level only and not through the
sorting routine. To alleviate that, we propose to use SoftSorting [Blondel et al., 2020, Cuturi et al.,
2019] that uses an entropic regularization to find a smoothed permutations via a Sinkhorn algorithm,
which in turn allows the back-propagation on θ to depend not only via the order statistics but also via
the computational graph of SoftSorting.

Algorithms 1 and 2 in Appendix B summarize our AOT approach for distributional preference
alignment in the unpaired and paired setting.

4 Statistical Analysis

In this section, we focus on the statistical analysis of unpaired-AOT and defer paired-AOT to
Appendix E since it has a similar analysis. We make the following assumptions on the OT cost h, the
reward r, and the policy hypothesis classH.

Assumption 1 (OT cost). Let M,R > 0 be finite positive constants. We assume that the loss
h : [−M,M ]→ [0, R], is convex L-Lipchitz and bounded. h is a convex function (E.g. a relaxation
of the 0/1 loss such that h(t) > h(t′), for t < 0 and t′ > 0).

Assumption 2 (Reward). We assume that r is bounded so that r ◦ πθ(x, y) ∈ [−M,M ].

Assumption 3 (Assumption on the hypothesis class of the policy). We assume πref , πθ ∈ H = {πθ :
such that r ◦ πθ differentiable in θ and supx∈X ,y∈Y ∥∇θr ◦ πθ(y|x)∥ ≤ L′, θ ∈ Θ ⊂ B2(r0, dθ)},

for L′, r0 > 0. .
2Its Jacobian is a permutation matrix at every point except a measure-zero set where it is not differentiable.
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Assumption 4. There exists πθ ∈ H such that (r ◦ πθ)♯µ+ ≽
FSD

(r ◦ πθ)♯µ−.

Assumption 1 is satisfied for example by the hinge squared loss h(t) = (−t)2+ by the logistic loss
h(t) = log(1 + e−βt), for t ∈ [−M,M ]. Assumption 2 on the boundedness of the rewards can be
imposed by clamping the values of the logits of the policies to [−M,M ], which is common practice
in practical implementations of LLM alignment. Assumption 3 is a technical assumption needed to
control the covering number of the r ◦ H. Assumption 4 ensures the existence of the minimizer in
H. We overload notations in what follows and refer to ru and rp as r to simplify the presentation.
By our relaxation approach described in Section 3 we can relax the unpaired stochastic dominance
constraint problem given in (FSD unpaired) to:

min
πθ∈H

∫ 1

0

h
(
Q(r◦πθ)♯µ+

(t)−Q(r◦πθ)♯µ−(t)
)
dt = min

πθ∈H
OTh ((r ◦ πθ)♯µ+, (r ◦ πθ)♯µ−)

(uAOTh)

Define the OT cost c : [−M,M ] × [−M,M ] → [0, R] such that c(z, z′) = h(z − z′), for z, z ∈
[−M,M ]. Define the c-transform of a function φ : [−M,M ]→ R:

φc(z) = inf
z′∈[−M,M ]

h(z − z′)− φ(z).

In our setting, a function is called c-concave if there exists ψ : [−M,M ] → R such that φ = ψc.
Define:

Fc = {φ : [−M,M ]→ [−R,R], φ is c-concave, with ||φc||∞ ≤ R}
By duality (Theorem 5.10 in [Villani, 2009]) we have:

OTh ((r ◦ πθ)♯µ+, (r ◦ πθ)♯µ−) = sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc(r ◦ πθ)dµ−.

Replacing the dual expression of OTh in (uAOTh), we see that (uAOTh) can be cast as a min-max
problem:

min
πθ∈H

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc(r ◦ πθ)dµ−. (12)

Given samples µ̂n
+ = 1

n

∑n
i=1 δ(xi,+,yi,+) and µ̂n

− = 1
n

∑n
i=1 δ(xi,−,yi,−), the empirical problem is:

min
πθ∈H

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ̂n

+ −
∫
φc(r ◦ πθ)dµ̂n

−. (13)

Recall that OTh is a measure of the violation of stochastic dominance of (r ◦ πθ)♯µ+ on (r ◦ πθ)♯µ−.
We have the following result on the sample complexity of the violation of stochastic dominance:
Theorem 2 (Sample Complexity of Dominance Violation for AOT Unpaired). Let πθ∗ be the
population minimizer of (uAOTh) and πθ̂n be the solution of the empirical problem (13). We have
the following sample complexity bound for the violation of stochastic dominance in AOT unpaired:

E OTh

(
(r ◦ πθ̂n)♯µ+, (r ◦ πθ̂n)♯µ−

)
≤ OTh ((r ◦ πθ∗)♯µ+, (r ◦ πθ∗)♯µ−)︸ ︷︷ ︸

Optimal Almost FSD Violation

+ 2Rn(Fc; (r ◦ πθ∗)♯µ+) + 2Rn(Fc
c ; (r ◦ πθ∗)♯µ−)︸ ︷︷ ︸

One dimensional OT sample complexity with optimal θ∗

+2Rn(Fc ◦ r ◦ H;µ+) + 2Rn(Fc
c ◦ r ◦ H;µ−)︸ ︷︷ ︸

Complexity of learning in H via the 1D OT problem

,

whereRn(F ; ν) = E supφ∈F
∣∣ 1
n

∑n
i=1 σiφ(Zi)

∣∣ is the Rademacher Complexity and for i = 1 . . . n,
σi are independent Rademacher random variables and Zi ∼ ν iid.

By considering our assumptions on the cost, the reward, and the hypothesis class, we obtain the
parametric rate in n:
Corollary 1. (Informal) Under Assumptions 1, 2 and 3 we have:

1. EOTh

(
(r ◦ πθ̂n)♯µ+, (r ◦ πθ̂n)♯µ−

)
−OTh ((r ◦ πθ∗)♯µ+, (r ◦ πθ∗)♯µ−) ≲ n−

1
2 , where

≲ refers to inequality up to constants that depend only on constants in the assumptions.
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2. If in addition Assumption 4 holds and h(t) = (−t)2+, we have:

E OTh

(
(r ◦ πθ̂n)♯µ+, (r ◦ πθ̂n)♯µ−

)
≲ n−

1
2 .

We see that under our assumptions and for the hinge loss squared, the expected violation of the
desired dominance in AOT unpaired converges to zero as n→∞.
Remark 1. While in Section 3, we used the primal formulation to compute OTh due to its computa-
tional appeal thanks to the sorting algorithm we used for analyzing the sample complexity the dual of
OTh. The dual reveals the game theoretic aspect of AOT as a min-max game between the policy πθ
and the dual potential φc that imposes FSD on the preference we want to infuse to the policy.

5 Experiments

In this section, we evaluate the performance of the proposed AOT method on a diverse set of base
LLMs and datasets, comparing with currently available alternative alignment algorithms.

LLM Alignment Alternatives We compared AOT with current state-of-the-art alignment ap-
proaches, specifically Direct Preference Optimization (DPO) [Rafailov et al., 2024], Kahneman-
Tversky Optimization (KTO) [Ethayarajh et al., 2024] and Identity Policy Optimization (IPO) [Azar
et al., 2024]. DPO and IPO operate on paired preference data, while KTO can handle both paired and
unpaired prompt/response samples.

AlpacaEval
(GPT4) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 29.9 82.5 66.1 62.9 50.8 74.4 53.1
AOT unpaired 31.3 82.5 66.2 62.8 51.1 74.4 51.8
DPO 27.4 82.8 65.8 63.1 50.6 74.3 52.0
KTO 24.9 82.7 65.4 63.0 48.7 74.9 53.9
IPO 27.7 82.4 65.1 63.0 46.5 74.0 52.3
Merlinite-7B 17.1 81.6 63.2 62.6 42.0 73.9 45.2

Table 1: Merlinite-7B trained on UltraFeedback Binarized. AOT results in the best performing
LLM as compared to the alternative alignment algorithms on AlpacaEval, and is competitive across
the other benchmarks that are evaluated in the zero shot regime.

Reference Models Traditionally, model alignment is the third and final step applied to the LLM that
already has gone through original pretraining and supervised fine-tuning. For our experiments, we
selected a range of models at various stages and with different levels of performance, all in the family
of 7B-parameter models. Specifically, we used Merlinite-7B [Sudalairaj et al., 2024], which is a
variant of Mistral-7B-v0.1 that has been instruction-tuned (SFT) on data from a synthetic data
generator using a taxonomy-driven data curation process. In Appendix H we also cover other popular
LLMs, such as Mistral-7B [Jiang et al., 2023], OpenHermes-2.5-Mistral-7B [Teknium, 2024],
Starling [Zhu et al., 2023], Mistral-7B Jiang et al. [2023], and Llama3-8B [AI@Meta, 2024].
Datasets For our experiments, we used both paired and unpaired datasets. For the paired dataset,
we used the UltraFeedback binarized dataset from [Tunstall et al., 2023b], containing over 60K
training samples, where for each prompt, there is a pair of chosen (preferred) and rejected (not
preferred) responses. This alignment dataset is widely used, and all compared alignment techniques
are well-suited for it. For unpaired datasets, we used PKU BeaverTails [Ji et al., 2023] with over 300K
samples and HelpSteer [Wang et al., 2023] with around 35K samples. Here, for each prompt, there is
only a single response with a score defined by some attributes (e.g., safety, faithfulness, helpfulness,
etc.). We used the sum of attribute values and thresholded by the median to binarize the responses
into chosen and rejected. For this unpaired dataset, only KTO and our AOT are applicable.

Metrics To measure the performance of different alignment methods, we used popular evaluation
metrics, AlpacaEval [Dubois et al., 2024] and Open LLM benchmark [Beeching et al., 2023]. We note
that Alpaca uses GPT4 model as a judge to compare candidate responses to GPT4-based references
on a set of 805 challenging questions. The GPT4-based evaluations are expensive, so to limit our
expenses, we also employed a very strong and capable Llama3-70B-Instruct [AI@Meta, 2024]
as a judge. As we show in Appendix H in Table 2, the order determined by Llama3-70B-Instruct
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Figure 2: Impact of batch size and loss type on AOT performance. The batch size is the effective
number of samples in the mini-batch per GPU. We found the logistic loss to be performing better
than least squared or hinge squared losses (all using β = 0.01). As we increase batch size, we also
observed improvement in AOT performance, which is expected as more samples per minibatch results
in a better effect of stochastic dominance (conforming Corollary 1).
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Figure 3: Impact of (β) param-
eter on performance of different
alignment algorithms. β controls
the divergence of the policy model
from the initial reference model (low
beta - more divergence, high beta
- less divergence). We see a gen-
eral trend that with higher betas,
LLMs alignment decreases the per-
formance. Hence, for all experi-
ments, we selected β = 0.01 as a
default value.

and GPT4 is the same (the absolute score values are different), providing a better free alternative
LLM-judge for local Alpaca evaluations. For intermediate results, we also employed Tiny Bench-
marks [Maia Polo et al., 2024] to approximate original metrics and provide fast feedback during the
initial development. We also evaluated the aligned models on six key benchmarks from the Open
LLM Leaderboard: AI2 Reasoning Challenge - ARC (grade-school science questions), HellaSwag
(commonsense inference), MMLU (multi-task accuracy), TruthfulQA (tendency to reproduce false-
hoods), Winogrande (commonsense reasoning) and GSM8K (grade school math word problems).
Note that in all the above benchmarks we use 0-shot prompts, a more challenging setting as opposed
to commonly used few-shot prompting.

Experimental Setup Our implementation is based on the HuggingFace Alignment Handbook Tunstall
et al. [2023a]. As we show in Appendix in Section B, the changes needed to adapt HF TRL trainer
[von Werra et al., 2020] for AOT are minimal and therefore can easily be adapted by the community.
For each run our compute setup consisted of 8 H100 GPUs. We used LoRA [Hu et al., 2021] for
parameter-efficient fine-tuning during alignment and the FSDP (Fully-Sharded Data-Parallel) setup
to train the model over multiple GPUs. Under this setup, the training of each 7B-parameter model on
the UltraFeedback dataset took approximately one hour. The evaluation on AlpacaEval and Open
LLM benchmarks took one additional hour to get the final results.

Results In Table 1, we present the main results of comparing AOT to other baselines (KTO, DPO, and
IPO) on paired UltraFeedback binarized dataset. On AlpacaEval (GPT4), our AOT unpaired approach
scores 31.3%, which is a significant gain from the base Merlinite-7B model. As of time of this writing
(May 22nd, 2024), this result places our AOT aligned LLM on AlpacaEval LeaderBoard ahead of
such strong competitors as KTO-Mistral-PAIR [Ethayarajh et al., 2023] and other 7B-parameter
models, reaching the level of Mixtral-8x22B-v0.1 (see Figure 4 in Appendix for an illustration).
On other LLM benchmarks AOT performs competitively to other baselines. As mentioned earlier,
these evaluations are done using 0-shot prompts, leading to a more challenging setting and resulting
in overall lower performance across metrics and baselines. For other base LLMs we show their
performance in Appendix H (see Tables 3, 4, 5, and 6).
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We also examined the effect of batch size and the choice of loss function on AOT performance,
results shown in Fig. 2. As the batch size increases, AlpacaEval (based on Llama3-70B-instruct)
also increases in line with our theory in Corollary 1. Note that our current setup (FSDP over 8 H100
GPUs) limits our batch size to 35 samples per GPU. We have also examined the impact of beta
(controlling divergence of policy from reference) on AOT performance in Fig. 3. We noticed a trend
that with higher betas the performance of LLMs alignment decreases, thus we set β = 0.01. Ablation
results comparing hard and soft sorting as well as the variance of AlpacaEval scores across multiple
runs in Appendix H (Tables 7 and 10) show the overall robustness of AOT .

6 Conclusion
We present in this paper Distributional Alignment via Optimal Transport (AOT) for large language
models. The AOT cost can be cast as a one-dimensional optimal transport problem with a smooth
and convex cost that penalizes violations of the dominance of the chosen on rejected marginals. AOT
enjoys parametric statistical rates. We showed with extensive experimentation on various paired and
unpaired datasets, base models, and different loss functions, that AOT alignment robustly leads to
aligned models that outperform alternative alignment strategies such as DPO, KTO and IPO on the
Alpaca Benchmark, leading to the best 7B model to date on that benchmark as of the time of writing.
On other benchmarks such as the open LLM leaderboard AOT leads to competitive results.
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A Broader Impact and Limitations

In this paper, we introduced an alignment method for LLMs that can capture rewards at the dis-
tributional level without the requirement of paired preference data. Our algorithm was derived by
imposing the stochastic dominance of positive reward distribution over negative distributions through
an Optimal Transport formulation. It enjoys a very simple algorithmic implementation in terms of a
closed-form expression via sorting on empirical measures. Empirically, our algorithm demonstrates
excellent results by allowing us to train 7B parameter models that achieve state-of-the-art evaluation
results on Open LLM Benchmarks and AlpacaEval.

In terms of broader societal impact, we would like to highlight the benefits that our AOT algorithm
will bring to RLHF by enabling a more robust distributional alignment of LLMs, improving their
ability to follow instructions accurately, and aligning their responses with human values.

Our work shares the same limitations and possible negative broader societal impacts as the majority
of RLHF work. The algorithm is fundamentally limited by the training dataset used for alignment
and might, therefore, contribute to amplifying various types of bias present in the data. In addition,
alignment through AOT is not enough to address aspects related to the security and safety of LLM
deployment. In general, better performance on a given set of benchmarks following alignment does
not imply better performance across the board in other tasks, and ad-hoc evaluation specific to each
task of interest is warranted.
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B Algorithms and Pytorch Code In Hugging Face TRL

Algorithm 1 AOT Unpaired
1: Input: πθ, πref , β > 0, ε > 0,
2: Unpaired Preference Data: “Chosen”
µ̂n
+ = 1

n

∑n
i=1 δ(xi,+,yi,+) and “Rejected”

3: µ̂n
− = 1

n

∑n
i=1 δ(xi,−,yi,−).

4: for iter← 1, niter do
5: Get a Positive/Negative mini-batch
6: {(xi,+, yi,+) ∼ µ̂n

+, i = 1 . . . b}
7: {(xi,−, yi,−) ∼ µ̂n

−, i = 1 . . . b}
8: Compute Rewards for i = 1 . . . b

9: uiθ = log
πθ(yi,+|xi,+)
πref (yi,+|xi,+)

10: viθ = log
πθ(yi,−|xi,−)
πref (yi,−|xi,−)

11: Sort Rewards
12: if hard sort then
13: (u(1) . . . u(b)) = Sort(uiθ)

14: (v(1) . . . v(b)) = Sort(viθ)
15: else if soft sort then
16: (u(1) . . . u(b)) = SoftSort(uiθ, ε)

17: (v(1) . . . v(b)) = SoftSort(viθ, ε)
18: end if
19: Compute AOT logistic loss
20: ℓθ = − 1

b

∑b
i=1 log σ(β(u

(i)
θ − v

(i)
θ ))

21: Update θ
22: θ ← PagedAdamw32bit(∇θℓ(θ))
23: end for
24: Return πθ

Algorithm 2 AOT Paired
1: Input: πθ, πref , β > 0, ε > 0,
2: Paired Preference Data: µ̂n =

1
n

∑n
i=1 δ(xi,yi,+,yi,−)

3: for iter← 1, niter do
4: Get a Positive/Negative mini-batch
5: {(xi, yi,+, yi,−) ∼ µ̂n, i = 1 . . . b}
6: Compute Margins for i = 1 . . . b

7: uiθ = log
πθ(yi,+|xi)
πθ(yi,−|xi)

8: viθ = log
πref (yi,+|xi)
πref (yi,−|xi)

9: Sort Margins
10: if hard sort then
11: (u(1) . . . u(b)) = Sort(uiθ)

12: (v(1) . . . v(b)) = Sort(viθ)
13: else if soft sort then
14: (u(1) . . . u(b)) = SoftSort(uiθ, ε)

15: (v(1) . . . v(b)) = SoftSort(viθ, ε)
16: end if
17: Compute AOT logistic loss
18: ℓθ = − 1

b

∑b
i=1 log σ(β(u

(i)
θ − v

(i)
θ ))

19: Update θ
20: θ ← PagedAdamw32bit(∇θℓ(θ))
21: end for
22: Return πθ

1 i m p o r t t o r c h
2 i m p o r t t o r c h s o r t

1 d e f d p o _ l o s s ( . . .
2 . . .
3 e l i f s e l f . l o s s _ t y p e == " AOT_unpair " :
4 c h o s e n _ l o g r a t i o s = p o l i c y _ c h o s e n _ l o g p s − r e f e r e n c e _ c h o s e n _ l o g p s
5 r e j e c t e d _ l o g r a t i o s = p o l i c y _ r e j e c t e d _ l o g p s − r e f e r e n c e _ r e j e c t e d _ l o g p s
6 i f s e l f . s o r t _ t y p e == " h a r d _ s o r t " :
7 c h o s e n _ l o g r a t i o s _ s o r t e d , _ = t o r c h . s o r t ( c h o s e n _ l o g r a t i o s , dim =0)
8 r e j e c t e d _ l o g r a t i o s _ s o r t e d , _ = t o r c h . s o r t ( r e j e c t e d _ l o g r a t i o s , dim =0)
9 e l i f s e l f . s o r t _ t y p e == " s o f t _ s o r t " :

10 c h o s e n _ l o g r a t i o s _ s o r t e d = t o r c h s o r t . s o f t _ s o r t ( c h o s e n _ l o g r a t i o s , r e g u l a r i z a t i o n _ s t r e n g t h = 0 . 1 )
11 r e j e c t e d _ l o g r a t i o s _ s o r t e d = t o r c h s o r t . s o f t _ s o r t ( r e j e c t e d _ l o g r a t i o s , r e g u l a r i z a t i o n _ s t r e n g t h

= 0 . 1 )
12 d e l t a _ s o r t e d = c h o s e n _ l o g r a t i o s _ s o r t e d − r e j e c t e d _ l o g r a t i o s _ s o r t e d
13 i f s e l f . AOT_loss == " h i n g e " :
14 l o s s e s = t o r c h . r e l u ( s e l f . b e t a − d e l t a _ s o r t e d ) **2
15 e l i f s e l f . AOT_loss == " l o g i s t i c " :
16 l o s s e s = (
17 −F . l o g s i g m o i d ( s e l f . b e t a * d e l t a _ s o r t e d ) * (1 − s e l f . l a b e l _ s m o o t h i n g )
18 − F . l o g s i g m o i d ( − s e l f . b e t a * d e l t a _ s o r t e d ) * s e l f . l a b e l _ s m o o t h i n g
19 )

1 e l i f s e l f . l o s s _ t y p e == " AOT_pair " :
2 p i _ l o g r a t i o s = p o l i c y _ c h o s e n _ l o g p s − p o l i c y _ r e j e c t e d _ l o g p s
3 r e f _ l o g r a t i o s = r e f e r e n c e _ c h o s e n _ l o g p s − r e f e r e n c e _ r e j e c t e d _ l o g p s
4 i f s e l f . s o r t _ t y p e == " h a r d _ s o r t " :
5 p i _ l o g r a t i o s _ s o r t e d , _ = t o r c h . s o r t ( p i _ l o g r a t i o s , dim =0)
6 r e f _ l o g r a t i o s _ s o r t e d , _ = t o r c h . s o r t ( r e f _ l o g r a t i o s , dim =0)
7 e l i f s e l f . s o r t _ t y p e == " s o f t _ s o r t " :
8 p i _ l o g r a t i o s _ s o r t e d = t o r c h s o r t . s o f t _ s o r t ( p i _ l o g r a t i o s , r e g u l a r i z a t i o n _ s t r e n g t h = 0 . 1 )
9 r e f _ l o g r a t i o s _ s o r t e d = t o r c h s o r t . s o f t _ s o r t ( r e f _ l o g r a t i o s , r e g u l a r i z a t i o n _ s t r e n g t h = 0 . 1 )

10 d e l t a _ s o r t e d = p i _ l o g r a t i o s _ s o r t e d − r e f _ l o g r a t i o s _ s o r t e d
11 i f s e l f . AOT_loss == " h i n g e " :
12 l o s s e s = t o r c h . r e l u ( s e l f . b e t a − d e l t a _ s o r t e d ) **2
13 e l i f s e l f . AOT_loss == " l o g i s t i c " :
14 l o s s e s = (
15 −F . l o g s i g m o i d ( s e l f . b e t a * d e l t a _ s o r t e d ) * (1 − s e l f . l a b e l _ s m o o t h i n g )
16 − F . l o g s i g m o i d ( − s e l f . b e t a * d e l t a _ s o r t e d ) * s e l f . l a b e l _ s m o o t h i n g
17 )
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C Proofs

Proof of Theorem 2. Let

ε(θ, µ+, µ−) = sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc(r ◦ πθ)dµ−

where for z, z′ ∈ R :
φc(z) = inf

z′∈[−M,M ]
h(z − z′)− φ(z)

and (a function f is c− concave if there exits g such that f = gc).

The population problem :
min
πθ∈H

ε(θ, µ+, µ−) (14)

Given samples µ̂n
+ = 1

n

∑n
i=1 δ(xi

+,yi
+) and µ̂m

− = 1
m

∑m
i=1 δ(xi

−,yi
−), the empirical problem is :

ε(θ, µ̂n
+, µ̂

m
− ) = sup

φ∈Fc

∫
φ(r ◦ πθ)dµ̂n

+ −
∫
φc(r ◦ πθ)dµ̂m

−

and the ERM problem is :
min
πθ∈H

ε(θ, µ̂n
+, µ̂

m
− )

Let θ̂m,n be the minimizer of the ERM we have for any θ, by the definition of the minimizer:

ε(θ̂m,n, µ̂
n
+, µ̂

m
− ) ≤ sup

φ∈Fc

∫
φ(r ◦ πθ)dµ̂n

+ −
∫
φc(r ◦ πθ)dµ̂m

−

≤ sup
φ∈Fc

∫
φ(r ◦ πθ)dµ+ −

∫
φc(r ◦ πθ)dµ−

+ sup
φ∈Fc

∫
φ(r ◦ πθ)d(µ̂n

+ − µ+)

+ sup
φ∈Fc

∫
φc(r ◦ πθ)d(µ− − µ̂m

− )

Let θ∗ be the minimizer of (14) for θ = θ∗ in the above inequality, and taking expectations on the
randomness of the samples we obtain

Eε(θ̂m,n, µ̂
n
+, µ̂

m
− ) ≤ Eε(θ∗, µ+.µ−) + E sup

φ∈Fc

∫
φ(r ◦ πθ∗)d(µ̂n

+ − µ+)

+ E sup
φ∈Fc

∫
φc(r ◦ πθ∗)d(µ− − µ̂m

− )

On the other hand by symmetrization we have:

E sup
φ∈Fc

∫
φ(r ◦ πθ∗)d(µ̂n

+ − µ+) ≤ 2Rn(Fc), (15)

whereRn(F) = E supφ∈F

∣∣∣ 1N ∑N
i=1 σiφ(Xi)

∣∣∣ , σi are independent rademacher random variables
and Xi ∼ (r ◦ πθ∗)♯µ+ iid (Xi ∈ R). and similarly we have:

E sup
φ∈Fc

∫
φc(r ◦ πθ∗)d(µ− − µ̂m

− ) ≤ E sup
φc∈Fc

c

∫
φc(r ◦ πθ∗)d(µ− − µ̂m

− ) ≤ 2Rm(Fc
c )

We have finally:

Eε(θ̂m,n, µ̂
n
+, µ̂

m
− ) ≤ ε(θ∗, µ+.µ−) + 2Rn(Fc) + 2Rm(Fc

c ) (16)
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Turning now to :

ε(θ̂m,n, µ+, µ−) = sup
φ∈Fc

∫
φ(r ◦ πθ̂m,n

)dµ+ −
∫
φc(r ◦ πθ̂m,n

)dµ−

≤ ε(θ̂m,n, µ̂
n
+, µ̂

m
− ) + sup

φ∈Fc

∫
φ(r ◦ πθ̂m,n

)d(µ+ − µn
+)

+ sup
φ∈Fc

∫
φc(r ◦ πθ̂m,n

)d(µm
− − µ−)

≤ ε(θ̂m,n, µ̂
n
+, µ̂

m
− ) + sup

πθ∈H
sup
φ∈Fc

∫
φ(r ◦ πθ)d(µ+ − µn

+)

+ sup
πθ∈H

sup
φ∈Fc

∫
φc(r ◦ πθ)d(µm

− − µ−)

Taking expectations we obtain:

Eε(θ̂m,n, µ+, µ−) ≤ Eε(θ̂m,n, µ̂
n
+, µ̂

m
− ) + E sup

πθ∈H
sup
φ∈Fc

∫
φ(r ◦ πθ)d(µ+ − µn

+)

+ E sup
πθ∈H

sup
φc∈(Fc)c

∫
φc(r ◦ πθ)d(µm

− − µ−)

≤ ε(θ∗, µ+.µ−)︸ ︷︷ ︸
Optimal FSD Violation

+ 2Rn(Fc) + 2Rm(Fc
c )︸ ︷︷ ︸

One dimensional OT complexity with optimal θ∗

+ 2Rn(Fc ◦ r ◦ H) + 2Rm(Fc
c ◦ r ◦ H)︸ ︷︷ ︸

Complexity of learning in H via the 1D OT problem

,

where

Rn(Fc ◦ r ◦ H) =
1

n
E sup

πθ∈H
sup
φ∈Fc

∣∣∣∣∣
n∑

i=1

σiφ(r ◦ πθ(x+i , y+i ))
∣∣∣∣∣ (17)

D Bounding Rademacher Complexities

Proof of Corollary 1. Define the uniform metric entropy of a class of real valued functions F on a
set X as the logarithm of the covering number with respect to the uniform norm ∥.∥∞, for ε > 0, this
is defined as follows:

N (ε,F , ∥.∥∞) := inf
{
n ∈ N

∣∣∣ there exists f1 . . . fn : X → R with sup
f∈F

min
1≤i≤n

∥f − fi∥∞ ≤ ε
}

As observed in [Hundrieser et al., 2022] the c-transformation with bounded cost is a lipchitz operation
under the uniform norm and since f cc = f we have by Lemma 2.1 in Munk :

N (ε,Fc
c , ∥.∥∞) = N (ε,Fc, ∥.∥∞) (18)

Now turning to the Rademacher complexity of a class F , it is dominated by Dudley’s entropy integral
(Theorem 16 in Luxburg and Bousquet ):

Rn(F) ≤ inf
δ∈[0,R]

(
2δ +

√
32

1√
n

∫ R

δ/4

√
logN (ε,F , ∥.∥∞)dε

)
(19)

Note that the cost we are using is c(z, z′) = h(z − z′), for z, z ∈ [−M,M ]. The domain on which
the cost being a closed interval is convex and compact. By lipchitzity of h (Assumption 1) and
denoting L its lipchitz constant, c(, z′) is lipchitz for all z′ ∈ [−M,M ]. Equivalently c(, z′) is (α,Λ)
Hölder smooth , for α = 1 and Λ = L, and hence our setup falls under the Assumptions of Theorem
3.11 in [Hundrieser et al., 2022] for Holder smooth costs defined on convex and compact sets and we
have:

logN (ε,Fc, ∥.∥∞) ≲ ε−
d
α .
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Hence in our case α = 1 and d = 1 this leads to
logN (ε,Fc, ∥.∥∞) ≲ ε−1

Replacing this in Equation (19) we obtain: Rn(Fc) ≲ n−
1
2 and by Equation (18) it follows that:

Rm(Fc
c ) ≲ m− 1

2 .

Turning now to the Rademacher Complexity of the composition of the c-concave potentials Fc with
r ◦ H (the composition of a fixed reward function with the hypothesis classH ). Note since the cost
c(., z′) is L Lipchitiz for all z′ ∈ [−M,M ] we have Fc is included in the set of L lipchitz function
that are bounded by R (See [Hundrieser et al., 2022] Lemma A.2 ). For φ ∈ Fc and πθ ∈ H , let us
note hφ,πθ

= φ(r ◦ πθ) we have:∥∥hφ,πθ
− hφ′,πθ′

∥∥
∞ = sup

x∈X ,y∈Y
|φ(r ◦ πθ(y|x))− φ′(r ◦ πθ′(y|x))|

We have:
|φ(r ◦ πθ(x))− φ′(r ◦ πθ′)| = |φ(r ◦ πθ(x))− φ(r ◦ πθ′) + φ(r ◦ πθ′)− φ′(r ◦ πθ′)|

≤ L ∥r ◦ πθ − r ◦ πθ′∥∞ + ∥φ− φ′∥∞ .

where we used lipchitzity of φ ∈ Fc and hence we have:∥∥hφ,πθ
− hφ′,πθ′

∥∥
∞ ≤ L ∥r ◦ πθ − r ◦ πθ′∥∞ + ∥φ− φ′∥∞ .

We have therefore the following bound on the covering number of the composition:

N (ε,Fc ◦ r ◦ H, ∥.∥∞) ≤ N
(ε
2
,Fc, ∥.∥∞

)
N
( ε

2L
, r ◦ H, ∥.∥∞

)
,

Plugging this in Equation (19) we obtain:

Rn(Fc ◦ r ◦ H) ≤ inf
δ∈[0,R]

(
2δ +

√
32

1√
n

∫ R

δ/4

√
logN (ε/2,Fc, ∥.∥∞) + logN

( ε

2L
, r ◦ H, ∥.∥∞

)
dε

)
Note that for a, b > 0 we have

√
a+ b ≤ √a+

√
b, hence we have:

Rn(Fc ◦ r ◦ H) ≤ inf
δ∈[0,R]

(
2δ +

√
32

1√
n

∫ R

δ/4

√
logN (ε/2,Fc, ∥.∥∞) +

√
logN

( ε

2L
, r ◦ H, ∥.∥∞

)
dε

)
We know by lipchitizty of the cost and being in one dimension that :

logN (ε,Fc, ∥.∥∞) ≲ ε−1

By lipchitizity of r ◦ πθ and using Assumption 3 we have therefore:

logN
( ε

2L
, r ◦ H, ∥.∥∞

)
≤ logN

( ε

2LL′ , B2(r0, dθ), ∥.∥∞
)
≤ dθ log

2r0L
′L

ε

We have therefore:

inf
δ∈[0,R]

2δ + 4

√
2√
n

∫ R

δ/4

K1

(ε
2

)−1/2

dε+ 4

√
2√
n

∫ R

δ/4

√
dθ log

2r0LL′

ε
dε ≲ n−

1
2 .

(For δ = 0, the upper bound is obtained.)

For 2) By assumption 4, there exists πθ∗ , such that we have for h = (−x)2+ :
OTh ((r ◦ πθ∗)♯µ+, (r ◦ πθ∗)♯µ−) = 0.

E AOT paired

Similarly following the relaxation approach described in Section 3 and using the dual representation
of the OT problem we can relax the paired stochastic dominance constraint problem given in
(FSD paired) to:

min
πθ∈H

sup
φ∈Fc

∫
φ(r ◦ πθ)dµ−

∫
φc(r ◦ πref)dµ, (20)

where µ is the paired measure representing (X,Y+, Y−). let πθ∗ be the minimizer of (20). Consider-
ing Problem (20), with empirical samples µ̂n = 1

n

∑n
i=1 δ(xi,yi,+,yi,−) , denote πθ̂n its minimizer we

have :
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Theorem 3 (Sample Complexity of Dominance Violation for AOT Paired). The following sample
complexity bound for the violation of stochastic dominance in AOT paired holds:

E OTh

(
(r ◦ πθ̂n)♯µ, (r ◦ πref)♯µ

)
≤ OTh ((r ◦ πθ∗)♯µ, (r ◦ πref)♯µ)︸ ︷︷ ︸

Optimal Almost FSD Violation

+ 2Rn(Fc; (r ◦ πθ∗)♯µ+) + 4Rn(Fc
c ; (r ◦ πref)♯µ)︸ ︷︷ ︸

One dimensional OT sample complexity with optimal θ∗

+ 2Rn(Fc ◦ r ◦ H;µ))︸ ︷︷ ︸
Complexity of learning in H via the 1D OT problem

,

whereRn(F ; ν) = E supφ∈F
∣∣ 1
n

∑n
i=1 σiφ(Zi)

∣∣ is the Rademacher Complexity and for i = 1 . . . n,
σi are independent rademacher random variables and Zi ∼ ν iid.

Similarly under Assumptions 1, 2 and 3 we have:

E OTh

(
(r ◦ πθ̂n)♯µ, (r ◦ πref)♯µ

)
− OTh ((r ◦ πθ∗)♯µ, (r ◦ πref)♯µ) ≲ n−

1
2 .

Proof of Theorem 3. The proof can be simply obtained by inspecting the proof of Theorem 1, and
we omit it.

Remark 2. Although OTh is one dimensional, an entropic regularization of OTh has computational
advantages as discussed in Section 3. Results from [Groppe and Hundrieser, 2023] can be leveraged
to obtain sample complexity bounds and we obtain under our assumptions also a parametric rate
of n−

1
2 . The main insight in [Groppe and Hundrieser, 2023] is in introducing for an entropic

regularization parameter ε > 0, the smoothed (c, ε, µ) transform and replacing the spaces Fc by
Fc,ε. In the 1D case, up to constants, these spaces have the same covering numbers.

F Choice of violation penalty function h

Recall we proposed the following three classes of loss functions h in the main text:

1. Area of violation (“classification”) Setting h(x) to be the 0-1 loss (1x<0) measures the
fraction of the interval [0, 1] where a violation occurs, paralleling classification losses which
count the number of misclassification.

2. Wasserstein-1 violation Setting h(x) to be the hinge loss (−x)+ reduces to measuring the
Wasserstein-1 distance from Uθ to the nearest distribution that has FSD over Vθ.

3. Wasserstein-2 violation Setting h(x) to be the squared hinge loss (−x)2+ reduces to
measuring the Wasserstein-2 distance from Uθ to the nearest distribution that has FSD over
Vθ.

Besides measuring different quantities, the optimization-theoretic properties of each are different:

1. The 0-1 loss This loss does not penalize the size of the violations, making gradient-based
optimization difficult as large violations have no gradient. Additionally, if FSD were not
achievable (e.g. a strong teacher policy), not penalizing the size of the violations could
result in risky policies.

2. The hinge loss, i.e. the Wasserstein-1 violation measure. By its nature, the gradient of
small violations is just as large as the gradient of large violations, which may be beneficial
for convergence to an FSD result. When FSD is impossible to achieve, this loss will
also have the effect of encouraging sparse violations while still penalizing the size of the
violations, similar to the L1 norm in the classic Lasso algorithm. Smooth relaxations
Smooth relaxations of the hinge, e.g., the logistic loss described in the main text, have a
nonzero gradient at zero and continue to have a gradient for small positive values. This has
the benefit of encouraging quantiles to continue improving after surpassing those of the
reference.
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3. The squared hinge loss, i.e. the Wasserstein-2 violation measure. As a quadratic loss, it no
longer prefers sparse violations (c.f. L2 norm regularization). Indeed, the gradient signal
vanishes as the violation becomes small, meaning that dense violations are likely and slow
to be removed. A potential failure mode would be that the new policy has a small violation,
but none of the quantiles outperform the baseline. Relaxation Introducing a bias β as in the
main text addresses this issue, ensuring the gradient at 0 is nonzero.

G Gradients of the sorting-based objective (11)

We here repeat the sorting-based objective (11) that we propose, adding n as a superscript for clarity.

min
θ∈Θ

OTh(µ̂
(n)
Uθ
, µ̂

(n)
Vθ

) = min
θ∈Θ

1

n

n∑
i=1

h(u
(i)
θ − v

(i)
θ ). (21)

We use gradient-based optimization approaches in practice to find a minimizing θ. We have the
following theorem showing the gradients are asymptotically unbiased (and thus friendly to stochastic
gradient methods).

Theorem 4. Let h′ = dh/dt be L-lipschitz and the gradients of uθ and vθ with respect to θ have
1-norm bounded by M , i.e. ∥∇θuθ∥1 ≤M, ∥∇θvθ∥1 ≤M for all θ ∈ Θ. Suppose further that the
support of Uθ, Vθ are bounded and their distributions have densities (i.e. are atomless).3 Then the
gradient of the objective in (21) is asymptotically unbiased as n→∞.

Proof. Observe that the gradients take the form

∇θOTh(µ̂
(n)
Uθ
, µ̂

(n)
Vθ

) = ∇θ
1

n

n∑
i=1

h(u
(i)
θ − v

(i)
θ ) (22)

=
1

n

n∑
i=1

h′(u
(i)
θ − v

(i)
θ )∇θ(u

(i)
θ − v

(i)
θ ). (23)

Note that as described in the main text, here, the current gradient is determined by the current state of
the sorting of the samples, but it is not necessary to differentiate through the sorting algorithm itself
as it changes only discretely.

We wish to understand the convergence of the bias of these gradients as n→∞.

We can write (noting that the n atoms of the empirical Fn,Vθ
are distinct with probability 1)

1

n

n∑
i=1

h′(u
(i)
θ − v

(i)
θ )∇θ(u

(i)
θ − v

(i)
θ ) =

1

n

n∑
i=1

h′(u
(i)
θ − F−1

n,Vθ
(Fn,Uθ

(u
(i)
θ )))∇θ(u

(i)
θ )︸ ︷︷ ︸

I

− 1

n

n∑
i=1

h′(F−1
n,Uθ

(Fn,Vθ
(v

(i)
θ ))− v(i)θ )∇θ(v

(i)
θ )︸ ︷︷ ︸

II

.

Let’s consider the first term, the analysis for the second term is the same. Note that since h′ is
L-Lipschitz∣∣∣h′ (u− F−1

n,Vθ
(Fn,Uθ

(u))
)
− h′

(
u− F−1

Vθ
(FUθ

(u))
)∣∣∣ ≤ L ∣∣∣F−1

n,Vθ
(Fn,Uθ

(u))− F−1
Vθ

(FUθ
(u))

∣∣∣ .
(24)

Let

I ′ =
1

n

n∑
i=1

h′(u
(i)
θ − F−1

Vθ
(FUθ

(u
(i)
θ )))∇θ(u

(i)
θ ).

3In our alignment setting, this is should not be an issue as our scores are real-valued.
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Note I ′ is a simple empirical average and hence unbiased in the sense that E[I ′] is constant with n.
Now by (24) we can write

∥I − I ′∥1 ≤
L

n

n∑
i=1

∣∣∣F−1
n,Vθ

(Fn,Uθ
(u

(i)
θ ))− F−1

Vθ
(FUθ

(u
(i)
θ ))

∣∣∣ ∥∇θ(u
(i)
θ )∥1 (25)

We seek to bound this quantity as n→∞. By Cauchy-Schwarz,

∥I − I ′∥21 ≤ L2

(
1

n

n∑
i=1

(
F−1
n,Vθ

(Fn,Uθ
(u

(i)
θ ))− F−1

Vθ
(FUθ

(u
(i)
θ ))

)2)( 1

n

n∑
i=1

∥∇θ(u
(i)
θ )∥21

)

≤ L2M2

n

n∑
i=1

(
F−1
n,Vθ

(Fn,Uθ
(u

(i)
θ ))− F−1

Vθ
(FUθ

(u
(i)
θ ))

)2
=
L2M2

n

n∑
i=1

(
v
(i)
θ − F−1

Vθ
(FUθ

(u
(i)
θ ))

)2

where we’ve assumed that
(

1
n

∑n
i=1 ∥∇θ(u

(i)
θ )∥21

)
≤M2. Observe that F−1

Vθ
(FUθ

(·)) is the optimal

transport plan from Uθ to Vθ and is monotonic nondecreasing, hence F−1
Vθ

(FUθ
(u

(i)
θ )) are simply a

new set of independently drawn order statistics of vθ, i.e. v(i,2)θ .

We thus have

∥I − I ′∥21 ∼
L2M2

n

n∑
i=1

(
v
(i)
θ − v

(i,2)
θ

)2
(26)

= L2M2

∫ (
[F

(1)
n,Vθ

]−1(t)− [F
(2)
n,Vθ

]−1(t)
)2
dt (27)

where F (i)
n,Vθ

are independently realized empirical quantile functions.

Theorem 3.1 of Del Barrio et al. [2018] with the subsequent Remark 3.2.1 therein applies directly to
this regime, with the following restated result:

Theorem 5 (Special case of Theorem 3.1 in light of Remark 3.2.1 in Del Barrio et al. [2018]). If
F and G are CDFs of 1-dimensional distributions with bounded support and G−1 is continuous on
(0, 1), then ∫ 1

0

(
F−1
n −G−1

m

)2 − ∫ 1

0

(
F−1 −G−1

)2 →p 0

as n,m→∞.

Applying Theorem 5 to our setting and noting that for us the second integral is zero, we have that if
Vθ has bounded support,

L2M2

∫ (
[F

(1)
n,Vθ

]−1(t)− [F
(2)
n,Vθ

]−1(t)
)2
dt→p 0

where→p indicates convergence in probability as n→∞. This implies that I − I ′ converges to 0 in
probability. The proof for II is identical. Since the gradient (23) is then a sum of two unbiased terms
and two terms that converge in probability to zero, the gradient is asymptotically unbiased.

H Additional Experiments

Tables 2, 3, 4, 5 and 6 are ablations on the reference base model used (Merlinite-7B,
OpenHermes-2.5-Mistral-7B, Sarling-LM-7B-alpha, Meta-LLama-3-8B-Instruct,
Mistral-7B-Instruct-v0.2). In these tables, we report only the AlpacaEval using Llama3-70B
as a judge to reduce the costs of evaluations. Note that we observed that while the absolute scoring of
Llama3-70B is different than GPT4, as it can be seen in Table 2, it preserves the rankings of the
models. We see across all these models a better performance of the distributional alignment AOT on
AlpacaEval and a competitive performance on other benchmarks.

20



AlpacaEval
(Llama3-70B)

AlpacaEval
(GPT4) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 44.3 29.9 82.5 66.1 62.9 50.8 74.4 53.1
AOT unpaired 48.4 31.3 82.5 66.2 62.8 51.1 74.4 51.8
DPO 36.8 27.4 82.8 65.8 63.1 50.6 74.3 52.0
KTO 35.7 24.9 82.7 65.4 63.0 48.7 74.9 53.9
IPO 43.1 27.7 82.4 65.1 63.0 46.5 74.0 52.3
Merlinite-7B 28.8 17.1 81.6 63.2 62.6 42.0 73.9 45.2

Table 2: Merlinite-7B trained on UltraFeedback Binarized. Here we present full version of the results,
including AlpacaEval using Llama3-70B-instruct as a judge and GPT4 as a judge. The comparison
reveals that although Llama3 inflates the scores, the relative order between the two judges remains
the same, suggesting the use of a cheaper AlpacaEval alternative for local development.

AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 24.4 84.1 66.1 61.0 50.6 74.9 66.6
AOT unpaired 22.5 84.2 66.0 61.0 50.5 74.8 65.7
DPO 17.9 84.1 66.0 61.0 50.4 74.4 66.7
KTO 12.6 83.5 64.3 61.1 47.2 74.4 66.3
IPO 15.5 83.9 65.4 61.1 49.2 74.2 66.3
OpenHermes-7B 5.6 83.4 63.1 60.6 44.5 74.4 63.8

Table 3: OpenHermes-2.5-Mistral-7B trained on UltraFeedback Binarized

AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 30.4 84.3 66.9 61.4 45.5 72.6 69.0
AOT unpaired 34.4 85.1 67.4 61.5 47.0 72.3 68.5
DPO 28.6 84.5 66.7 61.4 45.3 72.5 69.8
KTO 27.2 84.8 67.0 61.4 46.2 74.2 70.2
IPO 28.6 84.5 66.7 61.4 44.4 72.9 69.8
Starling-7B 14.3 83.4 64.4 60.9 39.4 72.5 66.6

Table 4: Starling-LM-7B-alpha trained on UltraFeedback Binarized
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AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 33.6 81.7 59.4 64.1 47.7 72.6 78.0
AOT unpaired 35.8 81.8 59.4 64.0 47.8 72.8 77.5
DPO 33.1 82.1 59.5 64.0 47.3 73.1 77.9
KTO 28.5 81.9 59.0 63.9 46.5 73.4 77.7
IPO 33.2 81.9 59.1 63.9 46.7 72.9 77.7
Llama3-8B 25.4 81.6 57.7 63.8 43.9 72.5 75.9

Table 5: Meta-Llama-3-8B-Instruct trained on UltraFeedback Binarized

AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired 32.8 81.6 67.6 58.9 62.7 74.3 41.9
AOT unpaired 34.3 81.7 67.6 59.1 63.0 74.4 41.9
DPO 28.8 81.7 67.6 58.8 62.3 74.2 42.0
KTO 27.4 81.9 67.7 58.8 62.5 74.3 41.7
IPO 28.4 81.9 67.1 58.8 60.5 74.0 41.9
Mistral-7B 25.6 81.3 66.0 58.8 59.7 74.1 41.7

Table 6: Mistral-7B-Instruct-v0.2 trained on UltraFeedback Binarized

Table 7 is an ablation on the sorting that is used in AOT with Merlinite-7B as a reference model.
We see that hard and soft sorting are on par in terms of overall performance.

Sort
Type

AlpacaEval
(Llama3-70B) ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT paired Soft 44.3 82.5 66.1 62.9 50.8 74.4 53.1
Hard 43.8 82.7 66.2 62.9 50.7 74.5 53.9

AOT unpaired Soft 48.4 82.5 66.2 62.8 51.1 74.4 51.8
Hard 49.2 82.5 65.9 62.8 51.0 74.4 51.0

Table 7: The effect of sort type on performance in AOT alignment

Tables 8 and 9 give a comparison between AOT and KTO on unpaired datasets (HelpSteer and PKU
binarized) we see that overall AOT leads to a better performance than KTO.

ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT unpaired 82.0 63.5 62.9 45.6 74.9 48.0
KTO 81.9 63.5 62.7 45.0 74.2 48.5
Merlinite-7B 81.6 63.2 62.6 42.0 73.9 45.2

Table 8: Merlinite-7B trained on unpaired HelpSteer (binarized)

ARC Hellaswag MMLU Truthful Winogrande GSM8K

AOT unpaired 82.0 64.1 63.0 56.3 74.6 49.7
KTO 82.1 63.5 62.9 43.5 74.5 50.4
Merlinite-7B 81.6 63.2 62.6 42.0 73.9 45.2

Table 9: Merlinite-7B trained on unpaired PKU (binarized)

Finally Figure 4 puts in context our best model Merlinite-7B-uAOT as the best 7B-family model
on AlpacaEval leaderboard at the time of writing this paper. Finally, we give in Table 10 the variance
of the evaluation across 4 different random seeds for training and evaluation each alignment strategy,
we see very small variance in AOT, especially the unpaired variant.
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Figure 4: Our AOT algorithm gives a strong boost to Merlinite-7B model on AlpacaEval leaderboard
(as of May 22nd, 2024). The original Merlinite-7B score is 17.1, and after the alignment, the model
gained 83%.
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AlpacaEval
(Llama3-70B)

AOT paired 46.8± 1.48
AOT unpaired 48.1± 0.35
DPO 39.2± 2.35
KTO 33.8± 1.23
IPO 45.7± 1.56
Merlinite-7B 28.8

Table 10: Merlinite-7B trained on UltraFeedback Binarized. We evaluated the stability (variance)
of the model evaluation on AlpacaEval by running 4 separate training and evaluation cycles, then
computing the mean and standard deviations. The results are stable, especially for AOT unpaired,
showing a low deviation from the mean.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims in the abstract and introduction summarize our methodological
contributions and results, which are properly expanded upon in the rest of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The first section in the appendix of the paper identifies the main limitations of
our work.
Guidelines:

• The answer NA means that the paper has no limitations, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when the image
resolution is low, or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed not to penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The Appendix includes proofs of all stated Theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information needed to reproduce our results are clearly stated in the paper.
We will also release code to reproduce the main results upon acceptance of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We will release the code to reproduce our main experimental results under
open source upon acceptance. During the review process the code is shared in supplementary
material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details necessary details to reproduce our experimental results are provided
in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars for the main results on AlpacaEval using LLaMA3-70B as
a judge (GPT4-based evaluations would incur significant cost for this type of experiments).
As indicated, error bars are computed as a variance across 4 runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mentioned the hardware resources utilized for our experiments in the
relevant sections of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research was conducted in full conformity of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss societal impacts of our work in the context of improving on current
RLHF techniques.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Creators of original work are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Documented code for our proposed alignment algorithm will be provided upon
acceptance of the paper.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

30

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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