
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POWER AND LIMITATIONS OF AGGREGATION IN
COMPOUND AI SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

When designing AI systems for complex tasks, it is becoming increasingly com-
mon to query a model in different ways and aggregate the outputs to create a com-
pound AI system. In this work, we mathematically study the power and limita-
tions of aggregation within a stylized principal-agent framework. This framework
models how the system designer can partially steer each agent’s output through re-
ward specification, but still faces limitations due to prompt engineering ability and
model capabilities. Our analysis uncovers three natural mechanisms—feasibility
expansion, support expansion, and binding set contraction—through which ag-
gregation provides benefit to the system designer. Our analysis identifies three
mechanisms—feasibility expansion, support expansion, and binding set contrac-
tion—through which aggregation can expand the set of elicitable outputs. We
prove that any aggregation operation must implement one of these mechanisms to
provide benefit, though none are sufficient alone. To sharpen this picture, we es-
tablish necessary and sufficient conditions for when aggregation expands elicitable
outputs.Altogether, our results take a step towards characterizing when compound
AI systems can overcome limitations in model capabilities and in prompt engi-
neering.

1 INTRODUCTION

Compound AI systems—which leverage multiple AI components, rather than a single model in
isolation—present a powerful paradigm to tackle complex tasks (BAIR Research Blog, 2024). In
the context of large language models (LLMs), one common approach is to create many copies of
the same model, give these models different prompts or access to different tools, and aggregate
the outputs of these models at test-time. This approach has proven fruitful in multi-agent research
systems (Anthropic Engineering, 2024) where a lead LLM agent delegates subtasks to different
specialized agents and aggregates their outputs, in multi-agent debate protocols where different LLM
agents seek consensus (Du et al., 2024) or argue for different answers (Khan et al., 2024), and in
prompt ensembling approaches where the outputs from different prompts are combined (Arora et al.,
2023).

Given the empirical success of these compound LLM systems, this raises the question of when
aggregating across multiple copies of the same model unlocks greater performance than querying
a single model. At first glance, aggregation may seem redundant when the model copies are ho-
mogeneous. However, one source of improved performance is at the prompt level: a model with
a complex prompt engineering approach may be replaceable by a set of models with simple but
diverse prompting strategies (Arora et al., 2023), illustrating how aggregation across models can
overcome limitations in prompt engineering ability. Another source of improved performance is at
the output level: aggregating multiple LLM agents over repeated interactions can help correct errors
such as hallucinations (Du et al., 2024), illustrating how aggregation can overcome limitations in
model capabilities as well. This suggests that the extent to which aggregation overcomes these limi-
tations in prompt engineering and model capabilities fundamentally impacts the power of compound
AI systems.

In this work, we study the power and limitations of aggregation from a theoretical perspective, build-
ing on a classical principal-agent framework (Kleinberg et al., 2019). Our focus is on compound AI
systems where a system designer passes reward specifications (e.g., via prompts) to many copies of
the same model and then aggregates their outputs. In this stylized principal-agent framework (Sec-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

tion 2), the system designer (i.e., the principal) designs reward specifications to elicit N -dimensional
outputs from each agent, and aggregates these outputs to produce a synthesized output. Each agent
generates the outputs in its feasible set that maximizes the reward, and the system-designer strategi-
cally co-designs the rewards across models to try to produce a specific output. We capture prompt
engineering limitations as the rewards operating over a coarser M -dimensional feature space, and
model capability limitations as conic constraints on each agent’s feasible set of outputs.

Using this framework, we characterize when aggregating across multiple agents enables the system
designer to elicit to a greater set of outputs than relying on a single model. To build intuition, we
formalize three natural mechanisms by which aggregation can expand the set of elicitable outputs
(Section 3). The first mechanism is feasibility expansion, where aggregation produces outputs out-
side of any agent’s feasibility set. The second is support expansion, where aggregation combines
outputs with smaller supports into an output with a larger support. The third is binding set contrac-
tion, where aggregation combines outputs that are binding with respect to constraints into an output
that falls within the interior.

We formally connect these mechanisms to elicitability-expansion. Specifically, we find that the
power of aggregation fundamentally relies on at least one of these mechanisms being implemented:
if none are implemented, then aggregation does not expand elicitability on any problem instance
(Theorem 3.7). However, these mechanisms are not sufficient to expand elicitability in general,
although we show that each mechanism results in elicitability-expansion under stronger conditions.

To more completely capture the power and limitations of aggregation, we provide a more general
characterization of elicitability-expansion (Section 4). We first characterize when an aggregation op-
eration is elicitability-expanding in a given problem instance (Theorem 4.1), linking this to whether
feasible directions for agent outputs intersect with feature-improving directions. To analyze the lim-
itations of aggregation, we derive general conditions (Definition 4.2) under which an aggregation
operation never expands the set of elicitable outputs, regardless of the level of coarseness of the fea-
ture space (Theorem 4.3), and we show that these conditions are tight (Theorem 4.4). The conditions
in Definition 4.2 test whether feasible directions under which an agent can change the aggregated
output can sufficiently violate the binding constraints of individual outputs.

Altogether, our results uncover key mechanisms that underpin the power and limitations of an aggre-
gation in compound AI systems. Our results suggest conditions for aggregation to add no power to
a system, regardless of the level of prompt engineering limitations. Moreover, our results illustrate
how the power of an aggregation depends on the interplay between prompt engineering ability and
model capabilities. More broadly, our results take a step towards understanding when aggregation
of multiple copies of the same model provides benefits to system designers.

1.1 RELATED WORK

Aggregation across multiple models. Aggregating outputs from multiple LLMs is a common
strategy for complex tasks (BAIR Research Blog, 2024). Approaches include resampling the same
model or reasoning trace and selecting outputs via reward models (Christiano et al., 2017), self-
consistency (Wang et al., 2023), or synthesis (Zhang et al., 2025); routing queries across different
LLMs (Chen et al., 2024); adversarially combining models to expose safety risks (Jones et al., 2025);
and consensus games between generators and discriminators (Jacob & Andreas, 2024). Closest to
our setting are systems with multiple copies of the same model under different reward specifica-
tions, as in LLM debate (Du et al., 2024), prompt ensembling (Arora et al., 2023), and multi-agent
research frameworks (Anthropic Engineering, 2024). We provide a theoretical perspective on when
such aggregation elicits strictly more outputs than a single model. Classical work has analyzed
aggregation in settings such as ensembling (Dietterich, 2000), voting (Ladha, 1992), distributed
algorithms (Lynch, 1996), and multi-agent reinforcement learning (Tan, 1993).

Principal-Agent Models and Reward Design. Our model is inspired by the principal-agent
model by Kleinberg et al. (2019). We extend their technical result to incorporate agent limitations
in the form of conic constraints and derive new results that characterize elicitability via aggregation.
This falls under the broader principal-agent framework (Holmström, 1979; Grossman & Hart, 1983;
Laffont & Martimort, 2002; Bolton & Dewatripont, 2005), which captures the challenge of design-
ing rewards based on imperfect proxies. (Zhuang & Hadfield-Menell, 2020) use this framework to
study misalignment of AI, which is similar to our motivation. Work in this framework also incorpo-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

rates agent’s limitations in the form of costs for actions. Particularly related are multitask settings
that study the effects of costs being dependent between tasks, including cases of substitutability and
complementarity, which is similar to our conic constraints that capture dependence among multiple
output dimensions (Holmström & Milgrom, 1991; Slade, 1996; Bond & Gomes, 2009; Demougin
et al., 2022).

Principal–agent theory has also considered multiple agents (Holmström, 1982; Lazear & Rosen,
1981; Dasaratha et al., 2024), focusing mainly on the joint design of rewards. Our work differs
in allowing aggregation to synthesize new outputs. Our focus also differs and is on characteriz-
ing the powers and limitations of aggregation. when aggregation provides provable benefits rather
than addressing algorithmic design. Complementary work studies benefits of heterogeneity across
agents (Gentzkow & Kamenica, 2017; Collina et al., 2025), though they don’t study heterogeneity
through differently designed rewards.

2 MODEL

We extend the principal-agent framework in Kleinberg et al. (2019) to model a compound AI system
with K agents (who represent LLMs) and a single principal (the system designer). The system
designer designs reward specifications to elicit outputs from the agents, and aggregates the outputs
to synthesize a new output. The system designer faces limitations on the complexity of rewards they
can design, and the agents face limitations in terms of the space of outputs that they can generate.
We defer a discussion of model limitations to section 5.

2.1 OUTPUT SPACE

We embed outputs of agents into M -dimensional vectors with non-negative coordinates. We view
each output dimension as capturing a different characteristic of the output. The vector representation
x quantifies the degree to which the output captures each characteristic. We note that some dimen-
sions may capture undesirable characteristics (e.g., hallunications). The system designer seeks a
specific output x(A) ∈ RM

≥0, which we assume to be unit ℓ1-norm ∥x(A)∥1 = 1.

Our model captures how the agents have restrictions on the set of output vectors that it can produce,
for example due to capability limitations. The first restriction is that the ℓ1 norm of the output
vectors is bounded, which captures budget limitations. The second restriction is conic constraints
on the output, which each take the form cTx ≤ 0 where c ∈ RM contains at least strictly positive
entry and at least strictly negative entry. These conic constraints capture restrictions on the types of
outputs that the agent can produce: for example, some agents may not be able to avoid producing
hallucinations without facing capability degradation along other characteristics.

We let L denote the number of conic constraints, and we let C ∈ RL×M denote the conic constraints
themselves. Let Ci ∈ RM denote the ith row of C for i ∈ [L], and let CV ∈ R∣V ∣×M denote the set
of rows corresponding to indices V ⊆ [M]. Given a budget level E > 0, we let B(E) denote the
feasible set at budget level E, defined to be:

B(E) ∶= {x ∈ R≥0 ∣ Cx ≥ 0, ∥x∥1 ≤ E} .

We denote by C∅ the zero-vector, to capture how {d ∶ C∅ ≤ 0} = RM
≥0.

2.2 REWARD SPECIFICATION

The system designer designs a reward specification R(k) and a budget level E(k) for each agent
k ∈ [K]. The reward specification represents the reward implicit in the prompt that they give to the
agent, and the budget level represents the level of test-time compute that the agent is allowed to use.

To capture prompt engineering limitations, we model the reward specification as operating
over a coarser N -dimensional feature space than the outputs. Here, the features F (x) =
[F1(x), . . . , FN(x)] take the form

Fj(x) = fj (
M

∑
i=1

αijxi) ,

where fi(⋅) is nonnegative, smooth, weakly concave (i.e., diminishing returns from increasing qual-
ity on this dimension), and strictly increasing, and where the values αij ≥ 0 are nonnegative feature

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

weights. We will denote by α ∈ RM×N
>0 the matrix with entries αij and call this the feature weights

matrix.

We consider reward specifications R(1), . . . ,R(K) ∶ RN → R which operate on these features.
Following prior work (Kleinberg et al., 2019), we restrict to monotone reward functions R which do
not decrease if all features are weakly increased, and where there exists j ∈ [N] such that R strictly
increases whenever the feature Fj strictly increases.

Given a monotone reward specification R(k) and a positive budget level E(k) > 0, each agent k
produces an output that maximizes its reward over the feasible set B(E(k)): that is,

x ∈X∗(R(k),E(k)) ∶= argmaxx∈B(E(k))R
(k)
(F (x)).

This captures how even though agents are homogeneous and solve the same optimization program,
they can be given different reward specifications and thus produce different outputs.

2.3 ELICITABILITY

We say that a reward specification R and budget level E elicits an output x if x ∈ X∗(R,E). This
captures whether an agent can produce the output x: that is, if x ∈ argmaxx∈B(E)R(F (x)). As
shown in prior work (Kleinberg et al., 2019) and illustrated in Section 3.1, some output vectors
x ∈ B where x are not elicitable by any reward specification R and budget level E.

We say that an output x is elicitable if there exists a monotone reward specification R and a positive
budget level E that elicits x. The condition for whether x is elicitable only depends on x through
the following sufficient statistic (S(x),V(x)). The first component S(x) = {j ∶ xj > 0} denotes
the support of x. The second component V(x) = {l ∈ [L] ∶ Clx = 0} denotes the set of indices of
conic constraints that are binding at x.

Aggregation. When the system designer can aggregate the outputs of different agents, this may
expand the set of elicitable outputs. The following definition captures when this occurs.

Definition 2.1. We call x(1) . . . ,x(K) → x(A) is an elicitability-expanding operation if

• There exist monotone reward specifications R(1), . . . ,R(K) and positive budget levels
E(1), . . . ,E(K) such that x(k) ∈X∗(R(K),E(K)) for all k ∈ [K].

• There does not exist a monotone reward specification R and budget level E > 0 such that x(A) ∈
X∗(R,E).

Intuitively, if an aggregation operation is elicitability-expanding, then allowing the system-designer
to aggregate outputs according to this operation produces an output that is not elicitable with a single
reward, but can be obtained by combining outputs elicited from multiple reward specifications.

3 NATURAL MECHANISMS FOR ELICITABILITY-EXPANSION

In this section, we formalize natural mechanisms by which aggregation expands elicitability. First,
we show how mechanisms expand elicitability via examples (Section 3.1). Then, we show that
these mechanisms are necessary for elicitability-expansion (Section 3.2). The results in this section
leverage the technical tools that we develop in Section 4. Note that our goal in this section is to link
the mechanisms to elicitability expansion, rather than characterize it; we defer a full characterization
to Section 4.

3.1 FORMALIZING THE MECHANISMS AND MOTIVATING EXAMPLES

We formalize three natural mechanisms through which aggregation can provide benefits in our
framework. For each mechanism, we illustrate through an example how the mechanism can en-
able an aggregation operations to expand the set of elicitable outputs.

In our examples, the aggregation operations in this section will be based on the following two ag-
gregation rules. The first is intersection aggregation, which is defined to be the coordinate-wise
minimum of the vectors:

Aintersect(x
(1), . . . ,x(K)) = x(1) ∧ . . . ∧x(K). (1)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This aggregation rule combines outputs based on commonality among different output vectors,
which is conceptually similar to debate protocols (Du et al., 2024) that aim to create agreement
or inference scaling methods that aim to filter out incorrect information (Zhang et al., 2025). The
second is addition aggregation, which takes a weighted sum of the vectors. For a weight vector
w ∈ RK

≥0, the rule is given by

Aadd(x
(1), . . . ,x(K);w) =

K

∑
i=1

wix
(i). (2)

Addition aggregation interpolates among different output directions. This rule conceptually captures
system designers synthesize multiple outputs to delegate specialized subtasks to each agent and
synthesize the outputs of these subtasks (BAIR Research Blog, 2024; Anthropic Engineering, 2024).
At the end of this subsection, we consider investigate the extent to which they can implement the
mechanisms that we formalize below.

Our examples also focus on a 3-dimensional output space (M = 3) with 2-dimensional features

(N = 2). We focus on feature weights matrices α of the form αq ∶= [
1 0 q
0 1 q

]. Each of the

output dimensions x1, x2 specialize to features F1, F2, respectively. That is, increasing the first
output dimension x1 only increases the first feature F1, and increasing the second output dimension
x2 only increases the second feature F2. Increasing the third output dimension x3 increases both
features, though the contribution is weighted by a factor of q. The parameter q captures the extent
to which it is possible to simultaneously maximize both features.

Mechanism 1: Feasibility Expansion. Aggregation can help overcome the output limitations
(i.e., the feasibility constraints faced by each agent), producing outputs that are outside of the feasible
set. We formalize this through the following mechanism.
Definition 3.1 (Feasibility Expansion). Given a constraint matrix C, an aggregation operation
x(1), . . . ,x(K) → x(A) implements feasibility expansion relative to C if x(A) is infeasible i.e.,
Cx(A) /≤ 0 but all x(i) for i ∈ [K] are feasible i.e., Cx(i) ≤ 0.

The following example illustrates how aggregation operations which implement feasibility expan-
sion can in turn expand elicitability.
Example 3.2. Let the feature map be α = α2, so that increasing the third output dimension con-
tributes significantly to both features. We view the first two output dimensions as corresponding to
two types of “bad” behavior, while dimension 3 corresponds to “good” behavior. Let C be a single
constraint of the form x3 ≤ x1 + x2. The constraint captures how the model cannot produce the
desirable dimension without also producing some of the undesirable dimension(s).

The output [0,0,1] is outside the feasibility set since it has only desirable dimensions and
hence is not elicitable with any reward specification β. The system designer can still
produce this output through intersection aggregation x(1) = [1,0,1],x(2) = [0,1,1] →

Aintersect(x
(1), . . . ,x(K))(x(1),x(2)) = [0,0,1] (Proposition C.1 in Appendix C.1).

Mechanism 2: Overcoming Reward Specification Limitations. Even when an output is in the
feasible set, the limitations of reward specification still restrict which outputs are elicitable. Aggre-
gation can overcome the reward specification limitations faced by the system designer, as the next
two mechanisms formalize.

Mechanism 2a: Support Expansion. One challenge due to reward specification limitations is the
impossibility of eliciting outputs with a large support.1 Aggregation can produce combine outputs
with smaller supports into an output with a larger support, as the following mechanism formalizes.

Definition 3.3 (Support expansion). An aggregation operation x(1), . . . ,x(K) → x(A) implements
support-expansion relative to i if S(x(A)) /⊆ S(x(i)).

Aggregation operations which implement support-expansion can in turn expand elicitability, by pro-
ducing outputs with larger supports than that are elicitable by a single agent, as the following exam-
ple illustrates.

1Kleinberg et al. (2019) studied this in single-agent environments without constraints.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Example 3.4. Let the feature map be α = α0.6. Suppose that there are no constraints C = ∅, so
elicitability challenges entirely stem from reward specification limitations. We will think of the first
two dimensions as two aspects we would like our output to simultaneously capture.

An output vector supported on both dimensions 1 and 2 cannot be elicited directly through reward
design based on F1 and F2 (Prop C.2 in Appendix C.2). An output supported on just one of these
two dimensions can be elicited through the reward function this dimension specializes in. However,
any reward focusing on both features makes dimension 3 strictly preferred over the combination of
dimensions 1 and 2.

The system designer can still produce vector [1/2,1/2,0] supported on both dimen-
sions 1 and 2 through addition aggregation x(1) = [1,0,0],x(2) = [0,1,0] →

Aadd(x
(1), . . . ,x(K);w)(x(1),x(2); [1/2,1/2]) = [1/2,1/2,0] (Prop C.2 in Appendix C.2).

Mechanism 2b: Binding Set Contraction. The next mechanism overcomes reward specification
limitations by taking advantage of the output limitations of the agent. Perhaps counterintuitively, the
constraints on the output space can make it easier to elicit an output through a single reward. When
a constraint is binding for an output vector, some reward-increasing directions become inaccessible
to the agent, as these directions will lead to violation of the binding constraint. Aggregation can
combine outputs with binding constraints into an output with fewer binding constraints.

Definition 3.5 (Binding set contraction). An aggregation operation x(1), . . . ,x(K) → x(A) imple-
ments binding set contraction relative to i if V(x(A)) /⊇ V(x(i)) or V(x(A)) = V(x(i)).

Aggregation operations which implement binding set contraction can expand elicitability, as follow-
ing example illustrates.
Example 3.6. Let the feature map be α = α0.2. As in the first example, we will think of x3 to be
a “good” dimension and x1, x2 to be “bad” dimensions. Let C be a single constraint of the form
x1 + x2 ≤ x3. This constraint captures how the model cannot produce the bad dimension(s) without
also producing some of the good dimension.

The value of q = 0.2 is small leading to dimension 3 being inelicitable without the constraint (Propo-
sition C.3 in Appendix C.3). The constraint allows us to elicit a vector with some amount of x3, but
not a vector that has only x3. The intersection aggregation operation x(1) = [1/2,0,1/2],x(1) =

[0,1/2,1/2] → Aintersect(x
(1), . . . ,x(K))(x(1),x(2)) = [0,0,1/2].

Implementable Mechanisms by Intersection and Addition Aggregation. Our examples con-
structed problem instances that intersection aggregation can implement feasibility-expansion and
binding-set contraction, while addition aggregation can implement support expansion. We turn to
more general problem instances, and investigate whether each aggregation rule can implement these
mechanism on any problem instance. We summarize our findings in Table 1, which shows funda-
mental limitations of each aggregation rule.

3.2 CONNECTIONS BETWEEN ELICITABILITY-EXPANSION AND MECHANISMS

Moving beyond the examples in Section 3.1, we more generally study the powers and limitations
that these mechanisms provide for elicitability-expansion.

Necessity of these mechanisms. First, we show that if an aggregation operation expands elic-
itability for some feature weights matrix, it must implement at least one of the three mechanisms.
Specifically, Theorem 3.7 shows that either the operation must implement feasibility-expansion or it
must implement at least one of support-expansion or binding-set contraction for every output x(i).

Theorem 3.7. Fix conic constraints C, and any aggregration operation x(1), . . . ,x(K) → x(A). If
x(1), . . . ,x(K) → x(A) is elicitability-expanding for some feature weights matrix α, then at least
one of the following conditions holds:

• x(1), . . . ,x(K) → x(A) is feasibility-expanding relative to C (Definition 3.1).

• For each i ∈ [K], x(1), . . . ,x(K) → x(A) is either support-expanding relative to i (Definition 3.3)
or binding set-contracting relative to i (Definition 3.5).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The proof of Theorem 3.7 builds on the technical tools we develop in Section 4 (i.e., Theorem 4.3).

Theorem 3.7 reveals a strong form of limitation for aggregation operations who do not implement
at least one of the mechanisms (Definition 3.1, 3.5, and 3.3). Specifically, the result illustrates that
if an operation does not implement the mechanisms according to the conditions in Theorem 3.7,
then aggregation is not elicitability-expanding, regardless of the feature weights matrix. This result
illustrates conditions under which aggregation adds no power to compound AI systems regardless
of the level of prompt engineering limitations.

Partial sufficiency of these mechanisms in concrete instances. We now turn to analyzing when
mechanisms are sufficient for guaranteeing the power of aggregation. We focus on a weak form
of power that only requires that aggregation expands elicitability for some feature weights matrix,
taking a negation of of the limitation show in Theorem 4.3. (We defer an analysis of the role of the
feature weights matrix to Section 4.1.)

We first show that feasibility expansion guarantees this form of power, providing a partial converse
of Theorem 3.7.

Proposition 3.8. Fix conic constraints C. If an aggregation operation x(1), . . . ,x(K) → x(A)

implements feasibility-expansion, then there exists a feature map α such that x(1), . . . ,x(K) → x(A)

is elicitability-expanding.

We now turn to support expansion and binding-set contraction. Interestingly, even if an aggre-
gation operation implements support-expansion for every i ∈ [K], the aggregation still may not
elicitability-expanding for any feature weights matrix (Proposition B.6). Similarly, binding-set con-
traction also does not guarantee that aggregation has power (Proposition B.5).

Nonetheless, we show stronger conditions under which support expansion and binding-set contrac-
tion do guarantee that aggregation expands elicitability for some feature map. For support expan-
sion, the main requirement is a global form of support expansion across outputs i, requiring that the
“witnesses” don’t span all of the output dimensions.2

Proposition 3.9. Fix conic constraints C, and any x(1), . . . ,x(K) → x(A). Suppose that there exist
witnesses j(i) ∈ S(x(A)) ∖ S(x(i)) for each i ∈ [K] such that {j(i) ∣ i ∈ [K]} ≠ [M]. Suppose
that V(x(A)) = ∅. Then, x(1), . . . ,x(K) → x(A) is elicitability-expanding for some α.

Turning to binding-set contraction, the main requirement is again a global form of binding-set con-
traction across outputs i which links witnesses (i.e., a constraint in V(x(i)) ∖ V(x(A)) for each
i ∈ [K]) together (Proposition B.7). A global variant of support expansion and binding-set contrac-
tion also emerges in our characterizations in Section 4.

Summary. While these three natural mechanisms are necessary for aggregation to have power,
these mechanisms do not fully characterize it. In Section 4, we provide a general, necessary-and-
sufficient condition that more precisely captures the power and limitations of aggregation.

4 CHARACTERIZING ELICITABILITY-EXPANSION IN GENERAL

In this section, we provide general characterizations of when an aggregation operation
x(1), . . . ,x(K) → x(A) is elicitability-expanding. We begin by analyzing, for a fixed feature weights
matrix and feasibility constraints, whether a given aggregation operation expands elicitability (Sec-
tion 4.1). We then turn to a more structural question: given only the feasibility constraints, what
necessary and sufficient conditions ensure that aggregation operation is not elicitability-expanding
for any feature weights matrix (Section 4.2)? These characterizations provide the technical founda-
tion for our earlier results in Sections 3.1 and 3.2 which connected the mechanisms implemented by
aggregation with elicitability-expansion.

2The fact the witnesses cannot span all of the output dimensions condition also turns to be a necessary
condition for aggregation to not be powerless (Proposition B.4).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1 CHARACTERIZING WHEN ELICITABILITY-EXPANSION SUCCEEDS

To analyze the power of aggregation, we characterize whether an aggregation operation is
elicitability-expanding in a given problem-instance (i.e., given a feasibility set and feature weights).
Our analysis generalizes the single-agent characterization from prior work (Kleinberg et al., 2019)
to allow for output limitations (i.e., nontrivial constraints C). We then leverage this characterization
to analyze aggregation operations.

Given a statistic (S,V ) = (S(x),V(x)), elicitability is determined by the structure of the set

BS,V = {d ∈ RM
∶ CV d ≤ 0}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(1)

∩{d ∈ RM
∶ dj ≥ 0∀j ∈ S

c
}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(2)

∩{1td < 0}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(3)

.

The set BS,V captures the set of directions along which the agent can move x while maintaining the
constraints C (term (1)), maintaining nonnegativity constraints (term (2)), reducing ℓ1 norm (term
(3)). Specifically, elicitability expansion can be characterized by whether the sets BS,V intersect
with the set of feature-improving directions {d ∈ RM

≥0 ∣ αd ≥ 0}.
Theorem 4.1. Fix conic constraints C, feature weights matrix α, and aggregation operation
x(1), . . . ,x(K) → x(A). The aggregation operation x(1), . . . ,x(K) → x(A) is elicitability-
expanding if and only if both of the following conditions hold:

• BS(x(i)),V(x(i)) ∩ {d ∈ RM ∣ αd ≥ 0} = ∅ for i ∈ [K]

• BS(x(A)),V(x(A)) ∩ {d ∈ RM ∣ αd ≥ 0} ≠ ∅.

This characterizing condition depends on both the reward specification limitation (which reflect
prompt engineering limitations) via α and the output limitation (which reflect model capability lim-
itations) via the conic constraints C. This dependence highlights the role of both forms of limitations
and their interplay in determining the power of aggregation.

Proof ideas. The main idea is that elicitability of a vector x is determined by whether the set
of feasible perturbation directions BS(x),V(x) intersects the set of feature-improving directions
d ∈ RM ∶ αd ≥ 0 (Lemmas E.3 and E.4). This lemma allows us to characterize when each out-
put x(i) (for i ∈ [K]) is elicitable, while the aggregate x(A) is not —precisely the condition for
elicitability expansion.

To prove the lemma, one direction is straightforward: if the intersection is nonempty, then there
exists a feasible direction d that weakly improves every monotone reward over the features, having
lower ℓ1 norm. Scaling the vector obtained by moving in this direction to have ℓ1 norm equal to one
strictly improves any monotone reward function, providing a certificate that x cannot be elicitable.

The other direction of the characterization is more involved and shows that whenever the intersection
is empty, there is a reward function that elicits x. Similar to ?, we show any such elicitable x can be
elicited by a reward function that is linear in the features.

4.2 CHARACTERIZING WHEN ELICITABILITY-EXPANSION FAILS

To analyze the limitations of aggregation, we characterize conditions under which aggregation oper-
ations are not elicitablity-expanding for any feature map. This represents a particularly strong form
of limitation, as it rules out elicitability-expansion for all forms of reward specification limitations.
The characterizing condition is stated below.
Definition 4.2. [Limitation-characterizing condition] Fix constraints C and aggregation opera-
tion x(1), . . . ,x(K) → x(A). We say that the limitation-characterizing condition is satisfied for
x(1), . . . ,x(K) → x(A) if and only if (1) x(1), . . . ,x(K) → x(A) does not implement feasibility-
expansion for C and (2) there does not exist d ∈ RM satisfying both conditions:

• d ∈ BS(x(A)),V(x(A))

• For every i ∈ [K], there exists γ(i) ∈ R∣V(x
(i))∣

≥0 such that

(γ(i))TCV(x(i)d − ∣1
td∣ ⋅ ∣min

j∈[M]
(min(0, ((γ(i))TCV(x(i)))j))∣ > 0,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

or there exists j ∈ S(x(i))c such that −dj − ∣1td∣ > 0.

The condition is a combination of two sub-conditions. The first requires that the aggregation opera-
tion does not implement feasibility-expansion. The second sub-condition further requires one of two
things to fail. The first is related to binding set contraction. In particular contraction via violation
of a weighted sum of binding constraints and by a minimum margin that depends on the magnitude
of the most negative coordinate in the weighted constraint. The second is related to failure of sup-
port expansion occuring by expanding in a dimension outside of the support again by a minumum
amount.

The following theorem shows that the limitation-characterizing condition is necessary for an aggre-
gation operation to not expand elicitability under any feature map.

Theorem 4.3 (Necessary). Fix constraints C. If the limitation-characterizing condition is satis-
fied, then there does not exist a feature weights matrix α under which x(1), . . . ,x(K) → x(A) is
elicitability-expanding.

The main idea of this theorem is showing that without a strengthened version of support-expansion or
binding-set contraction, an aggregation operation is bound to have no power under all feature maps.
Turning to the other direction, the next theorem shows that whenever the limitation-characterizing
condition is violated, the aggregation operation is not limited in the strong sense. That is, the opera-
tion expands elicitablity under some feature weights matrix.

Theorem 4.4 (Sufficient). Fix constraints C, and aggregation operation x(1), . . . ,x(K) → x(A). If
the limitation-characterizing condition is not satisfied for x(1), . . . ,x(K) → x(A), then there exist
feature weights α such that x(1), . . . ,x(K) → x(A) is elicitability-expanding.

Proof idea. We prove this constructively by designing a feature weights vector that makes aggre-
gation elicitability-expanding. The idea is to find a direction d(A) feasible for x(A) but violating
constraints for every x(i). We then define a feature map where improvement is possible only along
d(A), which is infeasible for any x(i). The existence of such a direction relates to a versions support-
expansion and binding-set contraction. An additional condition allows such a feature map to be
constructed.

5 DISCUSSION

In this work, we study how aggregating multiple copies of the same model gives access to a greater
set of outputs than using only a single model. Building on a principal-agent framework, our results
show how aggregation must implement one of three natural mechanisms—feasibility-expansion,
support expansion, and binding-set contraction—in order to expand the set of elicitable outputs.
Since these mechanisms are not sufficient to ensure that aggregation adds power, we also precisely
characterize when aggregation expands the set of elicitable outputs in general problem instances.

Our results offer a theoretical insights into the power and limitations of aggregation in compound AI
systems. First, our results illustrate how aggregation not only overcomes model capability limita-
tions (feasibility expansion), but also overcomes prompt engineering limitations through combining
multiple output characteristics (support expansion) and through taking advantage of output-level
limitations (binding set-contraction). These latter two mechanisms enable aggregation to add power
even as model capabilities continue to improve. On the flip side, our results illustrate how aggrega-
tion operations that do not take advantage of these mechanisms offer no power, regardless of whether
the system designer employs sophisticated or unsophisticated prompt engineering practices.

Limitations and Future Work. Our stylized model, which builds on a classical principal-agent
framework (Kleinberg et al., 2019), makes simplifying assumptions for tractability. While rewards
R can be nonlinear, we restrict output and reward-specification limitations to linear forms, leaving
nonlinear extensions,requiring more complex optimization, open for future work. We also assume
each agent’s reward depends only on its own outputs, though richer interdependencies may arise in
repeated, multi-turn interactions (Du et al., 2024). Finally, future work could extend beyond reward
design to other system-level choices, such as tool use and fine-tuning, that shape specialized models
in compound AI systems (BAIR Research Blog, 2024).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 REPRODUCIBILITY STATEMENT

We provide full proofs of all of the results in the Appendix.

REFERENCES

Anthropic Engineering. How we built our multi-agent research system. https://www.
anthropic.com/engineering/multi-agent-research-system, 2024. Engi-
neering blog. 1, 1.1, 3.1

Simran Arora, Avanika Narayan, Mayee F. Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami,
Frederic Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language
models. In International Conference on Learning Representations (ICLR), 2023. URL https:
//openreview.net/forum?id=bhUPJnS2g0X. 1, 1.1

BAIR Research Blog. Compound ai systems. https://bair.berkeley.edu/blog/2024/
02/18/compound-ai-systems/, 2024. Blog post. 1, 1.1, 3.1, 5

Patrick Bolton and Mathias Dewatripont. Contract Theory. MIT Press, Cambridge, MA, 2005. 1.1

Philip Bond and Armando Gomes. Multitask principal-agent problems: Optimal contracts, fragility,
and effort misallocation. Journal of Economic Theory, 144(1):175–211, 2009. 1.1

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. Transactions on Machine Learning Research (TMLR),
2024. URL https://lingjiaochen.com/papers/2024_FrugalGPT_TMLR.pdf.
1.1

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems 30 (NeurIPS), 2017. URL https://arxiv.org/abs/1706.03741. 1.1

Natalie Collina, Surbhi Goel, Aaron Roth, Emily Ryu, and Mirah Shi. Emergent alignment via
competition. arXiv preprint, 2025. 1.1

Krishna Dasaratha, Benjamin Golub, and Anant Shah. Contracts for teams under imperfect observ-
ability. Working Paper / Preprint, 2024. Characterizes optimal pay allocation in team output
settings using network centrality ideas. 1.1

Dominique Demougin, David Encaoua, and Bernard Sinclair-Desgagné. A multi-tasking principal-
agent perspective. CESifo Working Paper Series, (9753), 2022. 1.1

Thomas G. Dietterich. Ensemble methods in machine learning. In Multiple Classifier Systems
(MCS 2000), volume 1857 of Lecture Notes in Computer Science, pp. 1–15. Springer, 2000. doi:
10.1007/3-540-45014-9 1. URL https://link.springer.com/chapter/10.1007/
3-540-45014-9_1. 1.1

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Proceedings of the 41st
International Conference on Machine Learning (ICML), volume 235 of Proceedings of Machine
Learning Research, pp. 11733–11763. PMLR, 2024. URL https://proceedings.mlr.
press/v235/du24e.html. 1, 1.1, 3.1, 5

Matthew Gentzkow and Emir Kamenica. Bayesian persuasion with multiple senders and rich signal
spaces. Games and Economic Behavior, 104:411–429, 2017. 1.1

Sanford J. Grossman and Oliver D. Hart. An analysis of the principal-agent problem. Econometrica,
51(1):7–45, 1983. 1.1

Bengt Holmström. Moral hazard in teams. The Bell Journal of Economics, 13(2):324–340, 1982.
1.1

Bengt Holmström. Moral hazard and observability. The Bell Journal of Economics, 10(1):74–91,
1979. 1.1

10

https://www.anthropic.com/engineering/multi-agent-research-system
https://www.anthropic.com/engineering/multi-agent-research-system
https://openreview.net/forum?id=bhUPJnS2g0X
https://openreview.net/forum?id=bhUPJnS2g0X
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/
https://lingjiaochen.com/papers/2024_FrugalGPT_TMLR.pdf
https://arxiv.org/abs/1706.03741
https://link.springer.com/chapter/10.1007/3-540-45014-9_1
https://link.springer.com/chapter/10.1007/3-540-45014-9_1
https://proceedings.mlr.press/v235/du24e.html
https://proceedings.mlr.press/v235/du24e.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bengt Holmström and Paul Milgrom. Multitask principal-agent analyses: Incentive contracts, asset
ownership, and job design. Journal of Law, Economics, & Organization, 7:24–52, 1991. 1.1

Athul Paul Jacob and Jacob Andreas. The consensus game: Language model generation via con-
sensus seeking. In International Conference on Learning Representations (ICLR), 2024. URL
https://openreview.net/forum?id=zEwWZk7c0Z. 1.1

Erik Jones, Anca Dragan, and Jacob Steinhardt. Adversaries can misuse combinations of safe mod-
els. In International Conference on Machine Learning (ICML), 2025. 1.1

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Ed-
ward Grefenstette, Samuel R. Bowman, Tim Rocktäschel, and Ethan Perez. Debating with
more persuasive llms leads to more truthful answers. In Proceedings of the 41st International
Conference on Machine Learning (ICML), volume 235 of Proceedings of Machine Learning
Research, pp. 23662–23733. PMLR, 2024. URL https://proceedings.mlr.press/
v235/khan24a.html. 1

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. How do classifiers induce agents
to invest effort strategically? In Proceedings of the 2019 ACM Conference on Economics and
Computation (EC), pp. 825–844. ACM, 2019. doi: 10.1145/3328526.3329584. 1, 1.1, 2, 2.2, 2.3,
1, 4.1, 5, E.1

Krishna K. Ladha. The condorcet jury theorem, free speech, and correlated votes. American Journal
of Political Science, 36(3):617–634, 1992. doi: 10.2307/2111584. 1.1

Jean-Jacques Laffont and David Martimort. The Theory of Incentives: The Principal-Agent Model.
Princeton University Press, Princeton, NJ, 2002. 1.1

Edward P. Lazear and Sherwin Rosen. Rank-order tournaments as optimum labor contracts. Journal
of Political Economy, 89(5):841–864, 1981. 1.1

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, CA, 1996. ISBN
1558603484. 1.1

Margaret E. Slade. Multitask agency and contract choice. International Economic Review, 37(2):
465–486, 1996. 1.1

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceed-
ings of the Tenth International Conference on Machine Learning (ICML), pp. 330–337. Morgan
Kaufmann, 1993. 1.1

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In International Conference on Learning Representations (ICLR), 2023. 1.1

Bohan Zhang, Xiaokang Zhang, Jing Zhang, Jifan Yu, Xiaokun Zhang, Tejas Srinivasan, Yifan Mai,
Juntao Li, Yoon Kim, and Minjoon Seo. Cot-based synthesizer: Enhancing llm performance
through answer synthesis, 2025. URL https://arxiv.org/abs/2501.01668. 1.1, 3.1

Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned ai. Advances in Neural
Information Processing Systems, 33:15763–15773, 2020. 1.1

A LLM USAGE STATEMENT

We used GPT-5 and Claude Opus 4.1 to gather related work, get ideas for proofs, and to edit prose.
All of the work done by LLMs was verified by the (human) authors on this paper.

11

https://openreview.net/forum?id=zEwWZk7c0Z
https://proceedings.mlr.press/v235/khan24a.html
https://proceedings.mlr.press/v235/khan24a.html
https://arxiv.org/abs/2501.01668


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

B ADDITIONAL DETAILS FOR SECTION 3

B.1 ADDITIONAL DETAILS OF SECTION 3.1

Intersection aggregation does not implement support expansion for any problem instance, as the
following result formalizes.
Proposition B.1 (Intersection does not expand support). Consider any aggregation operation of the
form x(1), . . . ,x(K) → x(A) = Aintersect(x

(1), . . . ,x(K))(x(1), . . . ,x(K)). For any i ∈ [K], this
aggregation operation does not implement support-expansion relative to i.

Proposition B.1 follows from the fact that the support ofAintersect(x
(1), . . . ,x(K)) is always a subset

of the support of each x(i).

Intersection aggregation can implement feasibility-expansion as shown in Example 3.2 and binding
set-contraction as shown in Example 3.6. In fact, these examples go one step further and demonstrate
that elicitability expansion is achievable via these mechanisms.

Addition aggregation does not implement feasibility expansion for any problem instance, as the
following result formalizes.
Proposition B.2 (Addition cannot expand feasibility). Consider constraints C. Any aggregation
operation of the form x(1), . . . ,x(K) → x(A) = Aadd(x

(1), . . . ,x(K);w)(x(1), . . . ,x(K)) does not
implement feasibility expansion relative to C.

Proposition B.2 directly follows from the fact that the constraint set C is conic.

On the other hand, addition aggregation operations can implement the other two mechanisms. Ex-
ample 3.4 already constructed a problem instance where addition aggregation implements support
expansion. The next example constructs a problem instance where addition aggregation can imple-
ment binding set contraction (Definition 3.5) and achieve elicitability-expansion for some feature
mapping.
Example B.3 (Addition can result in binding set contraction). Consider the constraint matrix

C = (
1 −1 0
1 − 1

4
−1
) ,

and consider vectors x(1) = (1,1,2) and x(2) = (2,4,1). Note that they are both fea-
sible and x(1) is binding in the first constraint and x(2) in the second. Their sum is
Aadd(x

(1), . . . ,x(K);w)(x(1),x(2); [1,1]) → x(A) = (3,5,3), which is also feasible but does
not have any binding constraints.

B.2 ADDITIONAL DETAILS OF SECTION 3.2

Feasibility
Expansion

Support
Expansion

Binding Set
Contraction

Intersection aggregation ✓

(Example 3.2)
×

(Proposition B.1)
✓

(Example 3.6)

Addition aggregation ×

(Proposition B.2)
✓

(Example 3.4)
✓

(Example B.3)

Table 1: Implementability of mechanisms in Section 3.1 for the intersection aggregation rule equa-
tion 1 and additional aggregation rule equation 2. The symbol✓ denotes that there exists a problem
instance where the aggregation rule implements that mechanism. The symbol × denotes that the
aggregation rule does not implement the mechanism for any problem instance.

Proposition B.4. Fix conic constraints C, and any x(1), . . . ,x(K) → x(A). Suppose that
V(x(A)) = V(x(1)) = . . . = V(x(K)) = ∅, and suppose that x(1), . . . , x(K) → x(A) is not feasibility-
expanding. Suppose also that there do not exist witnesses j(i) ∈ S(x(A))∖S(x(i)) for each i ∈ [K]

such that {j(i) ∣ i ∈ [K]} ≠ [M]. Then, x(1), . . . ,x(K) → x(A) is not elicitability-expanding for
any α.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Proposition B.5. There exists an aggregation operation x(1),x(2) → x(A) and a set of conic con-
straints C such that x(1), . . . ,x(K) → x(A) implements binding-set contraction relative to i for
every i ∈ [K]. However, x(1),x(2) → x(A) is not elicitability-expanding for any feature map α.

Proposition B.6. Fix C = ∅. There exists an aggregation operation x(1),x(2) → x(A) such
that x(1),x(2) → x(A) implements support-expansion relative to i for every i ∈ [K]. However,
x(1),x(2) → x(A) is not elicitability-expanding for any feature map α.

Proposition B.7. Fix conic constraints C and x(1), . . . ,x(K) → x(A). Suppose that M ≥ 2, and
S(x(A)) = [M]. Suppose that there exist witnesses ℓ(i) ∈ V(xi) ∖ V(x(A)) such that there exists d
such that Cℓ(i)d + (∣minj∈[M]Cℓ(i),j ∣) ⋅ 1

td > 0 for all i ∈ [K], 1td < 0, and CV(x(A))d ≤ 0. Then,
x(1), . . . ,x(K) → x(A) is elicitability-expanding for some feature weights matrix α.

C PROOFS FOR SECTION 3

Recall that the examples in this section use the feature weights matrix αq ∶= [
1 0 q
0 1 q

].

C.1 ANALYSIS OF EXAMPLE 3.2

Proposition C.1. For the feature weights matrix α2 and constraint matrix with the row x3 ≤ x1+x2

in Example 3.2, x(1) = [1,0,1],x(2) = [0,1,1] → x(A) = [0,0,1] is elicitability-expanding.

Proof. From the construction, it is easy to see that x(1) can be elicited with a linear reward function
[1,0,0] equal to the F1 and budget level E = 2 and x(1) can be elicited with a linear reward function
[0,1,0] equal to the F1 and budget level E = 2.

Let us use our characterization Theorem 4.1 to formally elicitability-expansion.

For x(i), the support set S(x(i)) is {i}. The constraint is binding on both x(i). The set
BS(x(1)),V(x(1)) is {d ∶ d3 ≤ d1 + d2,d2 ≥ 0,d1 + d2 + d3 < 0}. For any d in this set, d3 < 0

and d1 +d2 < −d3. The set BS(x(2)),V(x(2)) is {d ∶ d3 ≤ d1 +d2,d1 ≥ 0,d1 +d2 +d3 < 0}. For any
d in this set, d3 < 0 and d1 + d2 < −d3.

Now consider the set of feature-improving direction {d ∶ d1 + 2d3 ≥ 0,d2 + 2d3 ≥ 0}. For any d in
this set, d1 + d2 ≥ −4d3.

All three conditions d3 < 0, d1 +d2 < −d3, and d1 +d2 ≥ −4d3 cannot be satisfied since for d3 < 0,
−d3 > −4d3. Hence there is no intersection between feasibility improving directions and features
improving directions and x(1) is elicitable. Similarly, x(2) is also elicitable.

x(3) is not feasible and hence not elicitable. This shows that x(1),x(2) → x(3) is elicitability-
expanding by implementing feasibility-expansion.

C.2 ANALYSIS OF EXAMPLE 3.4

Proposition C.2. For the feature weights matrix α0.6 and null constraint matrix Example 3.4,
x(1) = [1,0,0],x(2) = [0,1,0] → x(A) = [1/2,1/2,0] is elicitability-expanding.

Proof. The set of directions BS(x(1)),V(x(1) = {d ∶ d2 ≥ 0,d3 ≥ 0,d1 + d2 + d3 < 0}. And the set of
feature-improving directions is A = {d ∶ d1 + 0.6d3 ≥ 0,d2 + 0.6d3 ≥ 0}.

d ∈ BS(x(1)),V(x(1)) means that d1 < −(d2 + d3) < −d3 and d3 ≥ 0. d ∈ A1 means that d1 ≥

−0.6d3. These three conditions cannot be simultaneously showing that x(1) is elicitable due to
empty intersection of A and B1. Symmetrically, we can also show that x(2) is also elicitable.

Now let us argue that x(A) = [1/2,1/2,0] is not elicitable. The feasibility improving directions set
is BS(x(A)),V(x(A)) = {d ∶ d3 ≥ 0,d1 + d2 + d3 < 0}. Consider d = [−0.6,0.6,1]. d ∈ A ∩ BA. This
shows that x(A) is not elicitable.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.3 ANALYSIS OF EXAMPLE 3.6

Proposition C.3. For the feature weights matrix α0.2 and conic constraint matrix with one con-
straint x1 + x2 ≤ x3 from Example 3.6, x(1) = [1,0,1],x(2) = [0,1,1] → x(A) = [0,0,1] is
elicitability-expanding.

Proof of Proposition C.3. The feature-improving directions are the setA = {d ∶ d1+0.2d3 ≥ 0,d2+

0.2d3 ≥ 0}.

The constraint is binding at both x(1) and x(2). The feasibility improving directions are
B(S(x(1)),V(x(1)) = {d ∶ d1 + d2 ≤ d3,d2 ≥ 0,d1 + d2 + d3 < 0}.

If d ∈ B(S(x(1)),V(x(1)), then d1 + d2 + d3 < 0 and d1 + d2 + d3 ≤ 2d3. This implies that d3 < 0. If
d ∈ A, then d1 ≥ −0.2d3 and d2 ≥ −0.2d3. If all the conditions are satisfied simultaneously, then
d1 > 0 and d2 > 0. This contradicts d1 + d2 ≤ d3 < 0.

The conic constraint is not binding at x(A). Now consider the feasibility improving directions of
d(A): B(S(x(A)),V(x(A)) = {d ∶ d1 ≥ 0,d2 ≥ 0,d1 + d2 + d3 < 0}. The vector d = (0.2,0.2,−1) ∈
A ∩ BA demonstrating that x(A) is not elicitable.

D PROOFS IN SECTION 3.2

D.1 PROOF OF THEOREM 3.7

Proof of Theorem 3.7. We show this as a corollary of Theorem 4.3. We will prove this by showing
that when both of the conditions in the theorem are violated, the limitation-characterizing condition
is satisfied and hence x(1), . . . ,x(K) → x(A) cannot be elicitability-expanding.

One of the condition of the limitation-characterizing condition is the lack of feasibility-expansion
which is implied by the violation of the theorem’s condition. We will show that the other condition
of the limitation-characterizing condition also holds.

When the second condition of the theorem is violated, there exists i ∈ [K] with respect to which
x(1), . . . ,x(K) → x(A) is neither support-expandin nor binding-set contracting. That is, there is an
i such that V(x(i)) ⊆ V(x(A)) and S(x(i)) ⊇ S(x(A)).

For every d ∈ {CV(x(A))d ≤ 0,dS(x(A))c ≥ 0,1
⊺d = −1}, CV(x(i))(d) ≤ 0 and dS(x(i))c ≥ 0 , since

the rows of CV(x(i)) are a subset of the rows in CV(x(A)) and similarly, the rows in dS(x(i))c ≥ 0 are

a subset of the rows in dS(x(A))c . Hence for any γ(i) ∈ R∣Vi∣
≥0 , (γi)⊺CVid − ∥(γ

⊺
i CVi)−∥∞ ≤ 0.

D.2 PROOF OF PROPOSITION 3.8

Proof of Proposition 3.8. This follows from Theorem 4.4.

D.3 PROOF OF PROPOSITION B.6

Proof of Proposition B.6. This follows from Proposition B.4.

D.4 PROOF OF PROPOSITION B.5

Proof of Proposition B.5. Consider a problem with two output dimensions having the following two
constraints: 1) c1 ∶ x1 − x2 ≤ 0, 2) c2 ∶ −2x1 + x2 ≤ 0. Consider an aggregation operation x(1) =
(1/2,1/2),x(2) = (1/2,2/3) → x(A) = (5/12,7/12), where the binding constraints sets are Vx(i) =
{ci} for i ∈ {1,2} and Vx(A) = ∅.

In this example, we will show how the limitations-characterization condition holds, meaning that
the operation cannot be elicitability-expanding for any feature map α.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

For any γi ≥ 0 and d, γicid − γi∥(ci)−∥∞ > 0 if and only if cid − ∥(ci)∞∥ > 0. In this example,
the existence of γi for this inequality to be satisfied for each i corresponds to the conditions that 1)
d1 − d2 > 1 and −2d1 + d2 > 2. Since there are no elements outside the support of the vectors, there
are no additional conditions to check for the limitations-characterization condition.

These two conditions imply that 1+d2 < d1 < (d2−2)/2. Hence the conditions can only be satisfied
when 1 + d2 < (d2 − 2)/2. This is only satisfied when d2 < −4 and this implies d1 < −3. Hence
the two conditions being satisfied means 1d<−7. So the set of d such that 1⊺d = −1 cannot intersect
with the set of d satisfying the two conditions.

D.5 PROOF OF PROPOSITION B.4

Proof of Proposition B.4. Suppose that M ≥ 2, and S(x(A)) = [M].

We apply Theorem 4.3. It suffices to show that the limiting-characterization condition (Definition
4.2 is satisfied. By assumption, we know that the aggregation operation is not feasibility expanding.
It suffices to show that that there does not exist d such that for every i ∈ [K] there exists j(i) ∈

S(x(i))c such that −dj(i) − ∣1⊺d∣ > 0.

Let’s show the contrapositive: assume that there exists d such that for every i ∈ [K] there exists
j(i) ∈ S(x(i))c such that −dj(i) − ∣1⊺d∣ > 0. Since d ∈ BS(x(A)),V(x(A)), we know that dj′ ≥ 0 for
j′ /∈ S(x(A)) and we know that 1⊺d < 0. If j /∈ S(x(A)), then note that −dj < 0, so this means that
j(i) ∈ S(x(A)). Putting this together, we see that j(i) ∈ S(x(A)) ∖ S(x(i)).

It suffices to show that {j(i) ∣ i ∈ [K]} ≠ [M]. Assume for sake of contradiction that
{j(i) ∣ i ∈ [K]} = [M]. Then since we know that 0 < −dj(i) − ∣1⊺d∣ = 1⊺d − dj(i), if we add
up all of these equations in the set {j(i) ∣ i ∈ [K]}, we would obtain that 0 < M ⋅ 1⊺d − ∑j dj =
(M − 1) ⋅ 1⊺d −∑j dj , which means that 1⊺d > 0 which is a contradiction.

D.6 PROOF OF PROPOSITION 3.9

Proof of Proposition 3.9. We apply Theorem 4.4. It suffices to show that the limiting-
characterization condition (Definition 4.2 is violated. Let d be the vector such that dj(i) = −1
for all i ∈ [K], dj = ∣ {j(i) ∣ i ∈ [K]} ∣ − 0.5 for some j /∈ {j(i) ∣ i ∈ [K]}, and 0 elsewhere. It
follows from definition that d ∈ BS(x(A)),V(x(A)). It suffices to show that for all i ∈ [K], it holds
that:

−dℓ(i) − ∣1
⊺d∣ > 0.

Using that 1⊺d < 0, this can be rewritten as:
−dℓ(i) − ∣1

⊺d∣ = ∑
j≠ℓ(i)

dj = ∣ {j(i) ∣ i ∈ [K]} ∣ − 0.5 − ∣ {j(i) ∣ i ∈ [K]} ∣ + 1 = 0.5 > 0,

as desired.

D.7 PROOF OF PROPOSITION B.7

Proof of Proposition B.7. We apply Theorem 4.4. It suffices to show that the limiting-
characterization condition (Definition 4.2 is violated). For each i ∈ [K], we take γ(i) to be the
1-hot vector with the 1 on the ℓ(i)th condition. Let d be the vector given by the condition in the
theorem statement. It follows immediately that d ∈ BS(x(A)),V(x(A)). It suffices to show that for all
i ∈ [K], it holds that:

Cℓ(i)d − ∣1
⊺d∣ ∣min

j∈[M]
min(0,Cℓ(i),j)∣ .

Using that 1⊺d < 0 and using that Cℓ(i) has at least one negative coordinate, this can be written as:

Cℓ(i)d + 1
⊺d ∣min

j∈[M]
Cℓ(i),j∣ > 0,

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

which we know holds.

E PROOFS FOR SECTION 4

E.1 KEY LEMMAS FOR SECTION 4

The following lemmas provides the characterization for the elicitability of a vector x under a feature
weights matrix α in terms of the intersection of feasible perturbation directions BS(x),V(x) = {d ∶
CV(x)d ≤ 0}∩{d ∶ dS(x)c ≥ 0}∩{1

td < 0} and feature-improving directions d ∈ RM : {d ∶ αd ≥ 0}.
These results generalize the characterization results in Kleinberg et al. (2019) to allow for conic
constraints C.

Lemma E.1. If a vector x is elicitable with budget E, then ∥x∥1 = E.

Proof. This is because, for any feasible vector x with ∥x∥1 < E, scaling x to obtain x′ = Ex/∥x∥1
results in a feasible vector that has strictly larger reward for any reward function.

x′ clearly maintains nonnegativity constraints and bounded ℓ1 norm constraint. Additionally since
the only other constraints are conic, scaling the feasible x non-negatively also maintains the addi-
tional conic constraint.

By the monotonicity of the reward functions we consider, for all reward functions, x′ has reward at
least as high as x.

By the strict monontonicity of our feature mapping functions and for the notion of monotonicity of
reward functions we consider, x′ achieves a strictly higher reward than x.

The following lemma shows that elicitability of a vector only depends on the direction of the vector
and not of the norm. It allows us to study elicitability of the normalized vector using budget 1 i.e.,
ℓ1 norm bound of one. Hence our elicitability characterizations will be expressed with budget 1.

Lemma E.2. A vector x is elicitable with some budget E, under a reward function R if and only
x/∥x∥1 is elicitable with budget 1 for the same reward function.

Proof. If x is elicitable, it is elicitable with a budget of ∥x∥1 by Lemma E.1. It is elicitable if and
only there is no feasible y with ∥y∥1 ≤ ∥x∥1 with higher reward tham x. If such a y exists, then
x/∥x∥1 is not elicitable with budget 1 since y/∥x∥1 also has budget 1, is feasible and has higher
reward than x. Similarly, if an improving y existed for x/∥x∥1 under budget 1, then y∥x∥1 is
improving for x under budget ∥x∥1.

Lemma E.3 (Single output elicitation necessary). An output vector x is elicitable only if
BS(x),V(x) ∩ {αd ≥ 0} is non-empty.

Proof of Lemma E.3. Let d ∈ BS(x),V(x) ∩ {αd ≥ 0}. It suffices to construct a feasible output
vector y that has strictly higher reward than x for every x with ℓ1 norm equal to one and for every
monotone reward function of the features. This is sufficient to prove the lemma since by lemma E.1,
any elicitable vector has ℓ1 norm equal to one.

This vector y we construct is y = (x + λd)/∥x + λd∥1 where λ > 0 is chosen to be small enough so
that y ≥ 0.

First consider the vector y′ = x + λd for an appropriate choice of λ > 0 that we will describe in a
bit. First note that y′ is feasible on all conic and non-negativity constraints that are binding at x(x)
due to d’s membership in {d ∶ CV(x)d ≤ 0} ∩ {d ∶ dS(x)c ≥ 0}.

We can choose λ to be small enough so that y′ continues to meet all non-binding constraints. That is
choose λ <minj∈V(x)c,Cjd>0 −Cjx/Cjd and mini∈(x),di<0 −xi/di. This establishes that we have a
positive choice of λ making y′ satisfy the nonnegativity and conic constraints. Additionally, we have
that 1ty′ = ∥y′∥1 = ∥x∥1 − λ1td < ∥x∥1 = 1. That is, y′ satisfies the bounded ℓ1 norm constraint in
a non-binding manner. This shows that y′ is feasible.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We also have that αty′ = αt(x + d) ≥ αtx since αtd ≥ 0. Hence y′ satisfies feasibility constraints
and has at least as high values on all features. By the monotonicity of the reward functions we
consider, for all reward functions, y′ has reward at least as high as x. Lemma E.1 shows that scaling
y′ to have ℓ1 norm equal to one results in strictly higher reward for all reward functions. Hence
y′/∥y′∥1 is feasible and has strictly higher reward than x for all monotone reward functions.

Lemma E.4 (Single output elicitation sufficient). An output vector x is elicitable if BS(x),V(x) ∩
{αd ≥ 0} is non-empty.

Proof. Write S ∶= S(x) and V ∶= V (x).

Existence of multipliers. By positive scaling of directions, the assumption BS,V ∩ Dα = ∅ is
equivalent to infeasibility of the system :

CV d ≤ 0, dSc ≥ 0, α⊺d ≥ 0, 1⊺d < 0. (3)

Let ISc ∈ R∣S
c∣×M be the coordinate-selector matrix whose rows are the vectors e⊺j for j ∈ Sc, so

that IScd = dSc .

By Motzkin’s transposition theorem of the alternative, infeasibility of equation 3 implies the exis-
tence of multipliers (i.e., dual variables)

γ ∈R
∣V ∣
≥0 , λ ∈R

∣Sc∣
≥0 , ν ∈RN

≥0, τ > 0

such that
C⊺V γ − I⊺Scλ + τ − α⊺ ν = 0 (4)

holds. (The strict right-hand side 1⊺d < 0 yields τ > 0.)

Reward function construction. Define a reward function that is linear in the features

R(z) =
N

∑
i=1

βizi with βi ∶=
νi

f ′i((α
⊺x)i)

(> 0),

which is well-defined since each fi is strictly increasing, hence f ′i((α
⊺x)i) > 0. Let r(u) ∶=

R(F (u)) = ∑
N
i=1 βifi((α

⊺u)i). Because each fi is concave and increasing, r is concave. Its gradi-
ent at x is

∇r(x) =
N

∑
i=1

βif
′
i((α

⊺x)i)α⋅,i = αν,

where α⋅,i is the i-th column of α.

Elicitability. Consider the reward maximization program

max
u∈RM

r(u) s.t. Cu ≤ 0, u ≥ 0, 1⊺u ≤ 1.

This is a concave program, and its Lagrangian is

L(u,λ0, µ, γ̃) = r(u) + λ0 (1 − 1
⊺u) + µ⊺u − γ̃⊺(Cu),

with multipliers λ0 ≥ 0, µ ≥ 0, γ̃ ≥ 0. Evaluate the KKT conditions at u = x with the choice

λ0 ∶= τ, µS ∶= 0, µSc ∶= λ, γ̃V ∶= γ, γ̃V c ∶= 0.

Primal feasibility holds by definition of S,V . Complementary slackness holds since xj = 0 for
j ∈ Sc and (Cx)ℓ = 0 for ℓ ∈ V , while µS = 0. For stationarity,

∇r(x) − λ01 + µ − C⊺γ̃ = αg − τ1 + I⊺Scλ − C⊺V γ = 0

by equation 4. Finally, λ0 = τ > 0 certifies that the ℓ1-budget binds (1⊺x = 1, consistent with
Lemma C.2).

Since r is concave and the constraints are linear, the KKT conditions are sufficient; hence x maxi-
mizes r over the feasible region and is therefore elicitable.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.2 PROOF OF THEOREM 4.1

Theorem 4.1 follows directly from the single-agent results in the previous subsection.

Proof of Theorem 4.1. We apply Lemma E.3 and Lemma E.4 to obtain necessary and sufficient
conditions on when x is elicitable. We apply this to the outputs x(1), . . . ,x(K) as well as x(A).

E.3 KEY INTERMEDIATE RESULTS FOR THE PROOF OF THEOREM 4.3 AND THEOREM 4.4

To prove Theorem 4.3 and Theorem 4.4, we will use an alternate but equivalent way of expressing
the limitations-characterizing condition (Definition 4.2). This equivalent condition is defined below.

Definition E.5. Fix constraints C and aggregation operation x(1), . . . ,x(K) → x(A). We say
that the alternate limitations-characterizing condition is satisfied for x(1), . . . ,x(K) → x(A) if 1)
x(1), . . . ,x(K) → x(A) does not implement feasibility-expansion, and 2) there does not exist d(A) ∈
BS(x(A)),V(x(A)) such that:

{u + λd(A) ∣ u ∈ RM
≥0, λ ≥ 0}⋂

⎛

⎝
⋃
i∈[k]
BS(x(i)),V(x(i))

⎞

⎠
= ∅.

The following proposition shows that the limitation-characterizing condition is equivalent to the new
condition we defined above.

Proposition E.6. The conditions defined in Definition 4.2 and Definition E.5 are equivalent.

Proof. For ease of notation, let Vi =∶ V(x
(i)) for i ∈ [K] and let VA ∶= V(x

(A)). It suffices to show
that {u + λd ∶ u,λ ≥ 0} for a d ∈ B[M],Vx(0)) has empty intersection with B[M],Vx(i)), for each

i ∈ [K] if and only if for every γ(i) ∈ R∣Vi∣
≥0 , γT

i CVid − ∥(γ
T
i CVi)−∥∞ > 0 or ISc

A
d < 1dd. Without

loss of generality, it suffices to prove this for all γ(i) ∈ R∣Vi∣
≥0 with bounded norm, say ∥γ(i)∥1 ≤ 1.

For any d ∈ B[M],Vx(0 , the intersection of {u + λd ∶ u,λ ≥ 0} and B[M],Vx(i is non-empty if and
only if there exists a u,λ ≥ 0 such that CVi(u + λd) ≤ 0 and 1t(u + λd) < 0.

d ∈ B[M],Vx(0 means that 1td < 0, CVA
d ≤ 0, and −ISc

A
d ≤ 0. We can always normalize d so that

1td = −1. We can also scale the inequalities for non-empty intersection by dividing by λ. (Note that
λ ≠ 0, since 1tu ≥ 0.) Hence, we can equivalently write the condition for non-empty intersection
as the existence of v ≥ 0 such that CVi(d + v) ≤ 0, −ISc

i
(d + v) ≤ 0 and 1tv < −1dd = 1.These

inequalities for the non-empty intersection condition hold if and only if all weighted sums (with
non-negative weights) of the inequalities also hold true. That is, for every γ(i) ≥ 0, λ(i) ≥ 0, weight
vectors, γ(i)tCVi(d + v) − λ

(i)⊺ISc
i
(d + v) ≤ 0 and 1tv < 1.

A v satisfying (γ(i)tCVi − λ
(i)⊺ISc

i
))(d + v) ≤ 0 and 1tv < 0 to simultaneously exists if and only if

inf
v≥0∶1tv≤1

sup
γ(i)≥0,∥γ(i)∥1≤1

(γ(i)tCVi − λ
(i)⊺ISc

i
)(d + v) ≤ 0.

Since (γ(i)tCVi − −λ
(i)⊺ISc

i
)(d + v) is an affine function in γ(i), λ(i) and v, and since the sets we

optimize over {γ(i) ≥ 0, ∥γ(i)∥1 ≤ 1} and {v ≥ 0,1tv ≤ 1} are convex and compact, we can apply,
we can apply minimax theorem to get

inf
v≥0∶1v<1

sup
γ(i),λ(i)≥0,∥γ(i)∥1≤1,∥λ(i)∥1≤1

(γ(i)tCVi − λ
(i)⊺ISc

i
)(d + v)

= sup
γ(i),λ(i)≥0,∥γ(i)∥1≤1,∥λ(i)∥1≤1

inf
v≥0∶1v<1

(γ(i)tCVi − λ
(i)⊺ISc

i
)(d + v).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Note that for a given γ(i), λ(i), we can construct an optimal v as follows. If γ(i)tCVi − λ
(i)⊺ISc

i

has a negative coordinate, then v places a weight of 1 on the most negative coordinate of γ(i)tCVi −

λ(i)⊺ISc
i
. Otherwise, then v = 0. Using this construction, we know that:

inf
v≥0∶1v≤1

(γ(i)tCVi − λ
(i)⊺ISc

i
)(d + v) = (γ(i)tCVi − λ

(i)⊺ISc
i
)d − ∥(γ(i)tCVi − λ

(i)⊺ISc
i
)−∥∞.

Thus, the condition of non-empty intersection becomes the condition that (γ(i)tCVi − λ
(i)⊺ISc

i
)d −

∥(γ(i)tCVi − λ
(i)⊺ISc

i
)−∥∞ ≤ 0 for all γ(i), λ(i) ≥ 0, ∥γ∥1, ∥λ∥1 ≤ 1.

Note that γ(i)tCVi − λ
(i)⊺ISc

i
subtracts λj from some coefficient of the jth row of γ(i)tCVi . As a

result, we can write ∥(γ(i)tCVi−λ
(i)⊺ISc

i
)−∥∞ as ∥γ(i)tCVi−∥∞+∥λ

(i)⊺ISc
i −∥∞ = ∥γ(i)tCVi−∥∞+1.

So the condition (γ(i)tCVi − λ
(i)⊺ISc

i
)d − (∥γ(i)tCVi−∥∞ + 1) ≤ 0 is equivalent to the condition

that γ(i)tCVi − ∥γ
(i)tCVi−∥∞ ≤ 0 and −λ(i)⊺d − 1 ≤ 0 (since both terms being ≤ 0 implies the sum

is ≤ 0 and conversely, if the sum is not ≤ 0, one must be > 0). This is exactly the condition in the
limitation-characterizing condition.

E.4 PROOF OF THEOREM 4.3

Using this equivalence, we will show the necessity of the alternative condition to establish the ne-
cessity of the limitations-characterizing condition

Proof of Theorem 4.3. We will prove the contrapositive: If x(1), . . . ,x(K) → x(A) is elicitability-
expanding for some feature map α and for conic constraints C, then the limitations-characterizing
condition (Definition 4.2) is violated.

One case is that x(1), . . . ,x(K) → x(A) is elicitability-expanding through feasibility-expansion.
This automatically violates the limitations-characterizing condition.

The other case is that x(1), . . . ,x(K) → x(A) is not feasibility-expanding. Then x(1), . . . ,x(K) →
x(A) is feasible. We will show that if the limitations-characterizing condition

If the violation occurs through existence of x(1), . . . ,x(K) is not elicitable.

Suppose that x(A) is not elicitable under a feature mapping α and constraints C. We will show
that a violation of the limitations-characterizing condition implies that one of x(1), . . . ,x(k) is not
elicitable, which contradicts x(1), . . . ,x(K) → x(A) being elictability-expanding.

Since x(A) is not elicitable under a feature weights matrix α, by Lemma E.4, there is a d(A) ∈
KS0,V0 such that αd(A) ≥ 0. Since the limitation-characterizing condition is violated, the alternate
limitation-characterizing condition is also violated (Proposition E.6). This means that there exists
x(i) with KSi,Vi having non-empty intersection with {u + λd(0)}.

It suffices to show that x(i) is not elicitable under feature mapping α. To see this, let di denote
an element of the intersection KSi,Vi ∩ {u + λd

(0)}. We can then write di = u + λd
(A). Note that

αdi = αu+λαd(A). We know that αu ≥ 0 since u ≥ 0 and α has non-negative entries. Additionally,
αd(A) ≥ 0 as shown above. Hence αdi ≥ 0. By Lemma E.3, this means that xi is not elicitable.

E.5 PROOF OF THEOREM 4.4

Proof of Theorem 4.4. Suppose the limitation-characterizing condition is satisfied. By Proposition
E.6, this means that the alternate limitation-characterizing condition is satisfied. Then we know that
we are in one of two cases.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Case 1: x(1), . . . ,x(K) → x(A) implements feasibility expansion. Consider a feature mapping
with a single feature and all dimensions contribute equal weights of one to this feature. All output
vectors with the same ℓ1 norm result in the same reward for all reward functions, and thus all feasible
outcomes are elicitable. That is any output vector is elicitable if and only if it is feasible. Under
this construction, feasibility-expansion implies elicitability-expansion.

Case 2: there exists d(A) ∈ KS(x(A),V(x(A)) such that for all u ≥ 0, λ ≥ 0, u + λd(A) /∈ KSi,Vi for
i ≠ 0. We will construct a feature mapping α based on d(A) such that the set of directions weakly
increasing feature values i.e., the set Dα = {d ∶ αd ≥ 0} is a subset of {u + λd(A) ∶ u ≥ 0, λ ≥ 0}.
This implies that for all other outputs xi, Dα ∩KS(x(i),V(x(i)) is empty and hence x(i) is elicitable
under α.

To complete this argument, we will explicitly construct such an α based on d(A). Let P0 = {i ∈

[m] ∶ d
(A)
i > 0} denote the positive coordinates of d(A) and let N0 = {i ∈ [m] ∶ d

(A)
i ≤ 0} denote

the negative or zero coordinates. We construct two sets of features:

• For every p ∈ P0, there is a corresponding feature Fp whose row in A is the vector ep which is
the vector with 1 at coordinate p and zero everywhere else. That is, the action xp has weight 1 on
feature Fp and all other actions have zero weight.

• The next set of features are defined for every pair p ∈ P0, q ∈ N0. This feature Fp,q has a
corresponding row in A0 that is the vector d(A)p eq −d

(A)
q ep. That is, the only actions with possible

non-zero weights to Fp,q are actions xp, xq . The weight from xp is ∣d(A)q ∣ and the weight from xq

is ∣d(A)p ∣.

Now let us show that the set Dα = {d ∶ αd ≥ 0} is a subset of B0 = {u + λd
(A)}. Take any d ∈Dα.

For every p ∈ P0, since d weakly improves value of Fp, it holds that dp ≥ 0. By ensuring that
λ ≤ dp/d

(A)
p for all p ∈ P0, we can ensure that dp − λd

(A)
p ≥ 0.

For every p ∈ P0, q ∈ N0, since d weakly improves value of Fp,q , it holds that −dpd
(A)
q +dqd

(A)
p ≥ 0.

In other words, dq ≥ dpd
(A)
q /d

(A)
p .

We will show that it is possible to choose a λ ≥ 0 such that d − λd(A) ≥ 0, and hence d can be
expressed as u + λd(A) for u ≥ 0. If there is a p ∈ P0 with dp = 0, then dq ≥ 0 while d

(A)
q ≤ 0. So for

all λ > 0, dq − λd
(A)
q ≥ 0. Otherwise, we can choose λ less than dp/d

(A)
p and we get dq − λd

(A)
q ≥ 0.

20


	Introduction
	Related Work

	Model
	Output space
	Reward Specification
	Elicitability

	Natural Mechanisms for Elicitability-Expansion
	Formalizing the Mechanisms and Motivating Examples
	Connections between Elicitability-Expansion and Mechanisms

	Characterizing Elicitability-Expansion in General
	Characterizing when Elicitability-Expansion Succeeds
	Characterizing When Elicitability-Expansion Fails 

	Discussion
	Reproducibility Statement
	LLM Usage Statement
	Additional details for Section 3
	Additional details of Section 3.1
	Additional Details of Section 3.2

	Proofs for Section 3
	Analysis of Example 3.2
	Analysis of Example 3.4
	Analysis of Example 3.6

	Proofs in sec:specialcases
	Proof of thm:weakernecessary
	Proof of Proposition 3.8
	Proof of Proposition B.6
	Proof of Proposition B.5
	Proof of Proposition B.4
	Proof of prop:sufficientsupport
	Proof of Proposition B.7

	Proofs for Section 4 
	Key Lemmas for Section 4 
	Proof of Theorem 4.1
	Key Intermediate Results for the Proof of Theorem 4.3 and Theorem 4.4
	Proof of Theorem 4.3
	Proof of Theorem 4.4


