

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POWER AND LIMITATIONS OF AGGREGATION IN COMPOUND AI SYSTEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

When designing AI systems for complex tasks, it is becoming increasingly common to query a model in different ways and aggregate the outputs to create a compound AI system. In this work, we mathematically study the power and limitations of aggregation within a stylized principal-agent framework. This framework models how the system designer can partially steer each agent’s output through reward specification, but still faces limitations due to prompt engineering ability and model capabilities. Our analysis identifies three mechanisms—feasibility expansion, support expansion, and binding set contraction—through which aggregation can expand the set of elicitable outputs. We prove that any aggregation operation must implement one of these mechanisms to provide benefit, though none are sufficient alone. To sharpen this picture, we establish necessary and sufficient conditions for when aggregation expands elicitable outputs. Altogether, our results take a step towards characterizing when compound AI systems can overcome limitations in model capabilities and in prompt engineering.

1 INTRODUCTION

Compound AI systems—which leverage multiple AI components, rather than a single model in isolation—present a powerful paradigm to tackle complex tasks (BAIR Research Blog, 2024). In the context of large language models (LLMs), one common approach is to create many copies of the same model, give these models different prompts or access to different tools, and aggregate the outputs of these models at test-time. This approach has proven fruitful in multi-agent research systems (Anthropic Engineering, 2024) where a lead LLM agent delegates subtasks to different specialized agents and aggregates their outputs, in multi-agent debate protocols where different LLM agents seek consensus (Du et al., 2024) or argue for different answers (Khan et al., 2024), and in prompt ensembling approaches where the outputs from different prompts are combined (Arora et al., 2023).

Given the empirical success of these compound LLM systems, this raises the question of when aggregating across multiple copies of the same model unlocks greater performance than querying a single model. At first glance, aggregation may seem redundant when the model copies are homogeneous. However, one source of improved performance is at the prompt level: a model with a complex prompt engineering approach may be replaceable by a set of models with simple but diverse prompting strategies (Arora et al., 2023), illustrating how aggregation across models can overcome limitations in prompt engineering ability. Another source of improved performance is at the output level: aggregating multiple LLM agents over repeated interactions can help correct errors such as hallucinations (Du et al., 2024), illustrating how aggregation can overcome limitations in model capabilities as well. This suggests that the extent to which aggregation overcomes these limitations in prompt engineering and model capabilities impacts the power of compound AI systems.

In this work, we study the power and limitations of aggregation from a theoretical perspective, building on a classical principal-agent framework (Kleinberg et al., 2019). Our focus is on compound AI systems where a system designer passes reward specifications (e.g., via prompts) to many copies of the same model and then aggregates their outputs. In this stylized principal-agent framework (Section 2), the system designer (i.e., the principal) designs reward specifications to elicit N -dimensional outputs from each agent, and aggregates these outputs to produce a synthesized output. Each agent generates the outputs in its feasible set that maximizes the reward, and the system-designer strategically co-designs the rewards across models to try to produce a specific output. We capture prompt

054 engineering limitations as the rewards operating over a coarser M -dimensional feature space, and
 055 model capability limitations as conic constraints on each agent’s feasible set of outputs.
 056

057 Using this framework, we characterize when aggregating across multiple agents enables the system
 058 designer to elicit to a greater set of outputs than relying on a single model. To build intuition, we
 059 formalize three natural mechanisms by which aggregation can expand the set of elicitable outputs
 060 (Section 3). The first mechanism is *feasibility expansion*, where aggregation produces outputs out-
 061 side of any agent’s feasibility set. The second is *support expansion*, where aggregation combines
 062 outputs with smaller supports into an output with a larger support. The third is *binding set contrac-
 063 tion*, where aggregation combines outputs that are binding with respect to constraints into an output
 that falls within the interior.

064 We formally connect these mechanisms to elicibility-expansion. Specifically, we find that the
 065 power of aggregation fundamentally relies on at least one of these mechanisms being implemented:
 066 if none are implemented, then aggregation does not expand elicibility on any problem instance
 067 (Theorem 3.7). However, these mechanisms are not sufficient to expand elicibility in general,
 068 although we show that each mechanism results in elicibility-expansion under stronger conditions.
 069

070 To more completely capture the power and limitations of aggregation, we provide a more general
 071 characterization of elicibility-expansion (Section 4). We first characterize when an aggregation op-
 072 eration is elicibility-expanding in a given problem instance (Theorem 4.1), linking this to whether
 073 feasible directions for agent outputs intersect with feature-improving directions. To analyze the lim-
 074 itations of aggregation, we derive general conditions (Definition 4.2) under which an aggregation
 075 operation never expands the set of elicitable outputs, regardless of the level of coarseness of the
 076 feature space (Theorem 4.3), and we show that these conditions are tight (Theorem 4.4). These
 077 tight conditions in Definition 4.2 are strengthenings of feasibility expansion, support expansion,
 078 and binding-set contraction. At a high-level, these conditions test whether feasible directions under
 which an agent can change the aggregated output violate the constraints by a sufficient margin.

079 Altogether, our results uncover key mechanisms that underpin the power and limitations of an aggre-
 080 gation in compound AI systems. Our results suggest conditions for aggregation to add no power to
 081 a system, regardless of the level of prompt engineering limitations. Moreover, our results illustrate
 082 how the power of an aggregation depends on the interplay between prompt engineering ability and
 083 model capabilities. More broadly, our results take a step towards understanding when aggregation
 084 of multiple copies of the same model provides benefits to system designers.

086 1.1 RELATED WORK

088 **Aggregation across multiple models.** Aggregating outputs from multiple LLMs is a common
 089 strategy for complex tasks (BAIR Research Blog, 2024). One common approach is resampling
 090 the same model or reasoning trace and then selecting outputs via reward models (Christiano et al.,
 091 2017), self-consistency (Wang et al., 2023b), or synthesis (Zhang et al., 2025); coverage is an im-
 092 portant property for inference-time computations (Huang et al., 2025). Other approaches are routing
 093 queries across different LLMs (Chen et al., 2024), adversarially combining models to expose safety
 094 risks (Jones et al., 2025a), and consensus games between generators and discriminators (Jacob &
 095 Andreas, 2024). Closest to our setting are systems with multiple copies of the same model under
 096 different reward specifications, as in LLM debate (Du et al., 2024), prompt ensembling (Arora et al.,
 097 2023), and multi-agent research frameworks (Anthropic Engineering, 2024). We provide a theoreti-
 098 cal perspective on when such aggregation elicits strictly more outputs than a single model. Classical
 099 work has analyzed aggregation in settings such as ensembling (Dietterich, 2000), voting (Ladha,
 100 1992), distributed algorithms (Lynch, 1996), and multi-agent reinforcement learning (Tan, 1993).

101 **Principal-Agent Models and Reward Design.** Our model is inspired by the principal-agent model
 102 by Kleinberg et al. (2019). We extend their technical result to incorporate agent limitations in the
 103 form of conic constraints and derive new results that characterize elicibility via aggregation. This
 104 falls under the broader principal-agent framework (Holmström, 1979; Grossman & Hart, 1983; Laf-
 105 font & Martimort, 2002; Bolton & Dewatripont, 2005), which captures the challenge of designing
 106 rewards based on imperfect proxies. (Zhuang & Hadfield-Menell, 2020) use this framework to study
 107 misalignment of AI, which is similar to our motivation. Work in this framework also incorporates
 108 agent’s limitations in the form of costs for actions. Particularly related are multitask settings (Holm-
 109 ström & Milgrom, 1991; Slade, 1996; Bond & Gomes, 2009; Demougin et al., 2022) that study

108 the effects of costs being dependent between tasks, including cases of substitutability and comple-
 109 mentarity, which is similar to our conic constraints that capture dependence among multiple output
 110 dimensions. Principal–agent theory has also considered multiple agents (Holmström, 1982; Lazear
 111 & Rosen, 1981; Dasaratha et al., 2024), focusing mainly on the joint design of rewards. Our work
 112 differs in allowing aggregation to synthesize new outputs, and in characterizing when aggregation
 113 provides provable benefits rather than addressing algorithmic design. Complementary work studies
 114 benefits of heterogeneity across agents (Gentzkow & Kamenica, 2017; Collina et al., 2025), though
 115 they don’t study heterogeneity through differently designed rewards.

116 2 MODEL

118 We extend the principal–agent framework in Kleinberg et al. (2019) to model a compound AI system
 119 with K agents (who represent LLMs) and a single principal (the system designer). The system
 120 designer designs reward specifications to elicit outputs from the agents, and aggregates the outputs
 121 to synthesize a new output. The system designer faces limitations on the complexity of rewards they
 122 can design, and the agents face limitations in terms of the space of outputs that they can generate.
 123 We defer a discussion of model limitations to section 5.

125 2.1 OUTPUT SPACE

127 We embed outputs of agents into M -dimensional vectors with non-negative coordinates. We view
 128 each output dimension as capturing a different characteristic of the output. The vector representation
 129 \mathbf{x} quantifies the degree to which the output captures each characteristic. We note that some dimen-
 130 sions may capture undesirable characteristics (e.g., hallucinations). The system designer seeks a
 131 specific output $\mathbf{x}^{(A)} \in \mathbb{R}_{\geq 0}^M$, which we assume to be unit ℓ_1 -norm $\|\mathbf{x}^{(A)}\|_1 = 1$.

132 Our model captures how the agents have restrictions on the set of output vectors that it can produce,
 133 for example due to capability limitations. The first restriction is that the ℓ_1 norm of the output
 134 vectors is bounded, which captures budget limitations. The second restriction is conic constraints
 135 on the output, which each take the form $\mathbf{c}^T \mathbf{x} \leq 0$ where $\mathbf{c} \in \mathbb{R}^M$ contains at least strictly positive
 136 entry and at least strictly negative entry. These conic constraints capture restrictions on the types of
 137 outputs that the agent can produce: for example, some agents may not be able to avoid producing
 138 hallucinations without facing capability degradation along other characteristics.

139 We let L denote the number of conic constraints, and we let $\mathbf{C} \in \mathbb{R}^{L \times M}$ denote the conic constraints
 140 themselves. Let $\mathbf{C}_i \in \mathbb{R}^M$ denote the i th row of \mathbf{C} for $i \in [L]$, and let $\mathbf{C}_V \in \mathbb{R}^{|V| \times M}$ denote the
 141 set of rows corresponding to indices $V \subseteq [M]$. We denote by \mathbf{C}_\emptyset the zero-vector, to capture how
 142 $\{\mathbf{d} : \mathbf{C}_\emptyset \leq 0\} = \mathbb{R}_{\geq 0}^M$. Given a budget level $E > 0$, we let $\mathcal{B}(E)$ denote the feasible set at budget level
 143 E , defined to be:

$$\mathcal{B}(E) := \{\mathbf{x} \in \mathbb{R}_{\geq 0}^M \mid \mathbf{C}\mathbf{x} \geq \mathbf{0}, \|\mathbf{x}\|_1 \leq E\}.$$

145 2.2 REWARD SPECIFICATION

147 The system designer designs a reward specification $R^{(k)}$ and a budget level $E^{(k)}$ for each agent
 148 $k \in [K]$. The reward specification represents the reward implicit in the prompt that they give to the
 149 agent, and the budget level represents the level of test-time compute that the agent is allowed to use.

150 To capture prompt engineering limitations, we model the reward specification as operating
 151 over a coarser N -dimensional feature space than the outputs. Here, the features $\mathbf{F}(\mathbf{x}) =$
 152 $[F_1(\mathbf{x}), \dots, F_N(\mathbf{x})]$ take the form

$$F_j(\mathbf{x}) = f_j \left(\sum_{i=1}^M \alpha_{ij} \mathbf{x}_i \right),$$

153 where $f_j(\cdot)$ is nonnegative, smooth, weakly concave (i.e., diminishing returns from increasing qual-
 154 ity on this dimension), and strictly increasing, and where the values $\alpha_{ij} \geq 0$ are nonnegative *feature*
 155 *weights*. We will denote by $\boldsymbol{\alpha} \in \mathbb{R}_{>0}^{M \times N}$ the matrix with entries α_{ij} and call this the *feature weights*
 156 *matrix*.

157 We consider reward specifications $R^{(1)}, \dots, R^{(K)} : \mathbb{R}^N \rightarrow \mathbb{R}$ which operate on these features.
 158 Following prior work (Kleinberg et al., 2019), we restrict to *monotone* reward functions R which do
 159 not decrease if all features are weakly increased, and where there exists $j \in [N]$ such that R strictly
 160 increases whenever the feature F_j strictly increases.

Given a monotone reward specification $R^{(k)}$ and a positive budget level $E^{(k)} > 0$, each agent k produces an output that maximizes its reward over the feasible set $\mathcal{B}(E^{(k)})$: that is,

$$\mathbf{x} \in \mathbf{X}^*(R^{(k)}, E^{(k)}) := \operatorname{argmax}_{\mathbf{x} \in \mathcal{B}(E^{(k)})} R^{(k)}(F(\mathbf{x})).$$

This captures how even though agents are homogeneous and solve the same optimization program, they can be given different reward specifications and thus produce different outputs.

2.3 ELICITABILITY

We say that a reward specification R and budget level E elicits an output \mathbf{x} if $\mathbf{x} \in \mathbf{X}^*(R, E)$. This captures whether an agent can produce the output \mathbf{x} : that is, if $\mathbf{x} \in \operatorname{argmax}_{\mathbf{x} \in \mathcal{B}(E)} R(F(\mathbf{x}))$. As shown in prior work (Kleinberg et al., 2019) and illustrated in Section 3.1, some output vectors $\mathbf{x} \in \mathcal{B}$ where \mathbf{x} are not elicitable by any reward specification R and budget level E .

We say that an output \mathbf{x} is elicitable if there exists a monotone reward specification R and a positive budget level E that elicits \mathbf{x} . The condition for whether \mathbf{x} is elicitable only depends on \mathbf{x} through the following sufficient statistic $(\mathcal{S}(\mathbf{x}), \mathcal{V}(\mathbf{x}))$. The first component $\mathcal{S}(\mathbf{x}) = \{j : x_j > 0\}$ denotes the support of \mathbf{x} . The second component $\mathcal{V}(\mathbf{x}) = \{l \in [L] : C_l \mathbf{x} = 0\}$ denotes the set of indices of conic constraints that are binding at \mathbf{x} .

Aggregation. When the system designer can aggregate the outputs of different agents, this may expand the set of elicitable outputs. The following definition captures when this occurs.

Definition 2.1. We call $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is an **elicitability-expanding operation** if

- There exist monotone reward specifications $R^{(1)}, \dots, R^{(K)}$ and positive budget levels $E^{(1)}, \dots, E^{(K)}$ such that $\mathbf{x}^{(k)} \in \mathbf{X}^*(R^{(k)}, E^{(k)})$ for all $k \in [K]$.
- There does not exist a monotone reward specification R and budget level $E > 0$ such that $\mathbf{x}^{(A)} \in \mathbf{X}^*(R, E)$.

Intuitively, if an aggregation operation is elicitability-expanding, then allowing the system-designer to aggregate outputs according to this operation produces an output that is not elicitable with a single reward, but can be obtained by combining outputs elicited from multiple reward specifications.

Aggregation rules. An aggregation rule is a mapping from a list of output vectors $(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)})$ to an aggregated output vector $\mathbf{x}^{(A)}$. There are two natural aggregation rules we will often consider in our work. Although our results apply to more general aggregation rules, we will often use these natural aggregation rules to provide examples.

The first is *intersection aggregation*, which is defined to be the coordinate-wise minimum of the vectors:

$$\mathcal{A}_{\text{intersect}}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)}) = \mathbf{x}^{(1)} \wedge \dots \wedge \mathbf{x}^{(K)}. \quad (1)$$

This aggregation rule combines outputs based on commonality among different output vectors, which is conceptually similar to debate protocols (Du et al., 2024) that aim to create agreement or inference scaling methods that aim to filter out incorrect information (Zhang et al., 2025). The second is *addition aggregation*, which takes a weighted sum of the vectors. For a weight vector $\mathbf{w} \in \mathbb{R}_{\geq 0}^K$, the rule is given by

$$\mathcal{A}_{\text{add}}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)}; \mathbf{w}) = \sum_{i=1}^K \mathbf{w}_i \mathbf{x}^{(i)}. \quad (2)$$

Addition aggregation interpolates among different output directions. This rule conceptually captures system designers synthesize multiple outputs to delegate specialized subtasks to each agent and synthesize the outputs of these subtasks (BAIR Research Blog, 2024; Anthropic Engineering, 2024).

2.4 ILLUSTRATIVE EXAMPLE: CITATIONS TASK

To ground our framework in a concrete setting, we consider a natural aggregation task—generating a list of papers on a given topic (Wang et al., 2023a; Press et al., 2024). We describe the task and then show how instantiations of our framework capture different aggregation behaviors for it.

Task and Setup. We study a citation task where the system designer seeks a list of 10 influential LLM papers spanning five perspectives: (1) ML theory, (2) NLP/CL, (3) cognitive science, (4) AI alignment and human–AI interaction, and (5) multi-agent systems.

Figure 1: **Visualization of output vectors for the citation generation task (Section 2.4).** Output vectors are computed using the 768-dimensional embeddings from all-mpnet-base-v2, shifted to be in the nonnegative orthant. Embeddings are shown for GPT-4o-mini outputs from five different prompts, and as well as two different aggregated outputs based on additional-style and intersection-style aggregation rules. The ℓ_2 -distances (left) and projections onto the top 3 highest-variance (middle) and top 2 highest-variance dimensions (right), are shown. The plots show that the five prompts produce semantically different outputs, and each aggregation operation results in a combination of the five outputs that does not resemble any output in isolation.

The system designer issues five prompts, each targeting one perspective, to gpt-4o-mini-2024-07-18 and then aggregates the resulting lists. We prompt another LLM (also gpt-4o-mini-2024-07-18) to aggregate these five lists, instantiating aggregation rules that are inspired by intersection aggregation $\mathcal{A}_{\text{intersect}}$ and union aggregation \mathcal{A}_{add} . Specifically, the model is prompted with *aggregation instructions* along with the five different lists of 10 references, and produces an aggregated list of 10 references. The *intersection-style aggregation instructions* ask for references which are central and broadly relevant across all five perspectives, thus approximating intersection even when the literal overlap of references is empty. The *addition-style* aggregation instructions ask for references that jointly cover and reflect the combined topical space of all five perspectives. We defer the specific prompts and other details of the empirical setup to Appendix G.

Output vectors. We specify two different instantiation of output vectors in our framework, depending on the level of specificity of the output which the system designer aims to elicit.

1. Suppose that the system designer aims to elicit an output that balances multiple high-level criterion in a specific manner (e.g., covering papers in different subareas, covering up to the state of the art in each subarea, quality of the papers selected, etc.). To capture this, let each dimension of the output capture a different criterion that the system designer cares about. We can think of the value of the output vector along each dimension as the extent to which the output captures the criterion corresponding to that dimension.
2. Suppose that the system designer aims to elicit a specific output (e.g., a specific list of references). To capture this, we represent each model output as a high-dimensional embedding coming from a text embedding model. For the citation task, we use all-mpnet-base-v2 (Reimers & Gurevych, 2019), a sentence-transformers model that produces 768-dimensional vectors.¹ Figure 1 shows embeddings for outputs to the five prompts, as well as the outputs produced by the intersection-style and addition-style aggregation rules. The five prompt outputs vary substantially, and the aggregated outputs differ markedly from both the originals and from each other, demonstrating how different prompts and aggregation rules can reshape the embedding-space representation.

Reward specification limitations. Our framework captures two different types of reward specification limitations. First, the system designer may struggle to precisely express what they truly want in the prompt, leading to underspecified prompts omitting some of the system designer’s requirements (Yang et al., 2025). For example, the system designer may prompt the model to include a “breadth

¹As detailed in Appendix G, we apply an additive shift to ensure nonnegativity, computed from the minimum value in each dimension across 805 gpt-4o-mini-2024-07-18 outputs from the helpful-base AlpacaEval dataset (Li et al., 2023).

270 of citation coverage” when in reality they would like to restrict citations to a handful of academic
 271 venues. Second, the model may not correctly interpret the system designer’s prompt by mapping
 272 two dissimilar words in the prompt to the same word (Jones et al., 2025b). In the citation task, this
 273 could surface as the model interpreting “papers with high attribute ‘X’” similarly for many different
 274 attributes “X”. We capture both of these forms of limitations as the reward specification operating
 275 over coarsenings of the output dimensions (as captured by the features) rather than directly on the
 276 output dimensions.

277

278 3 NATURAL MECHANISMS FOR ELICITABILITY-EXPANSION

279

280 In this section, we formalize natural mechanisms by which aggregation expands elicibility. First,
 281 we show how mechanisms expand elicibility via examples (Section 3.1). Then, we show that
 282 these mechanisms are necessary for elicibility-expansion (Section 3.2). The results in this section
 283 leverage the technical tools that we develop in Section 4. Note that our goal in this section is to link
 284 the mechanisms to elicibility expansion, rather than characterize it; we defer a full characterization
 285 to Section 4.

286

287 3.1 FORMALIZING THE MECHANISMS AND MOTIVATING EXAMPLES

288

289 We formalize three natural mechanisms through which aggregation can provide benefits in our
 290 framework. For each mechanism, we illustrate through an example how the mechanism can enable
 291 an aggregation operations to expand the set of elicitable outputs. Our examples use the intersection
 292 and addition aggregation rule that we previously introduced. At the end of this subsection, we investi-
 293 giate the extent to which these aggregation rules can implement the mechanisms that we formalize
 294 below.

295

296 Our examples also focus on a 3-dimensional output space ($M = 3$) with 2-dimensional features
 297 ($N = 2$). We focus on feature weights matrices α of the form $\alpha_q := \begin{bmatrix} 1 & 0 & q \\ 0 & 1 & q \end{bmatrix}$. Each of the
 298 output dimensions x_1, x_2 specialize to features F_1, F_2 , respectively. That is, increasing the first
 299 output dimension x_1 only increases the first feature F_1 , and increasing the second output dimension
 300 x_2 only increases the second feature F_2 . Increasing the third output dimension x_3 increases both
 301 features, though the contribution is weighted by a factor of q . The parameter q captures the extent
 302 to which it is possible to simultaneously maximize both features.

303

304 **Mechanism 1: Feasibility Expansion.** Aggregation can help overcome the output limitations (i.e.,
 305 the feasibility constraints faced by each agent), producing outputs that are outside of the feasible set.
 306 We formalize this through the following mechanism.

307

308 **Definition 3.1** (Feasibility Expansion). *Given a constraint matrix C , an aggregation operation
 309 $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ implements **feasibility expansion relative to C** if $\mathbf{x}^{(A)}$ is infeasible i.e.,
 310 $C\mathbf{x}^{(A)} \notin 0$ but all $\mathbf{x}^{(i)}$ for $i \in [K]$ are feasible i.e., $C\mathbf{x}^{(i)} \leq 0$.*

311

312 The following example illustrates how aggregation operations which implement feasibility expansion
 313 can in turn expand elicibility.

314

315 **Example 3.2.** Let the feature map be $\alpha = \alpha_2$, so that increasing the third output dimension con-
 316 tributes significantly to both features. We view the first two output dimensions as corresponding to
 317 two types of “bad” behavior, while dimension 3 corresponds to “good” behavior. Let C be a single
 318 constraint of the form $x_3 \leq x_1 + x_2$. The constraint captures how the model cannot produce the
 319 desirable dimension without also producing some of the undesirable dimension(s).

320

321 The output $[0, 0, 1]$ is outside the feasibility set since it has only desirable dimensions and hence
 322 is not elicitable with any reward specification β . The system designer can still produce this output
 323 through intersection aggregation $\mathbf{x}^{(1)} = [1, 0, 1], \mathbf{x}^{(2)} = [0, 1, 1] \rightarrow \mathcal{A}_{\text{intersect}}(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = [0, 0, 1]$
 324 (Proposition C.1 in Appendix C.1).

325

326

327 **Mechanism 2: Overcoming Reward Specification Limitations.** Even when an output is in the
 328 feasible set, the limitations of reward specification still restrict which outputs are elicitable. Aggre-
 329 gation can overcome the reward specification limitations faced by the system designer, as the next
 330 two mechanisms formalize.

324 **Mechanism 2a: Support Expansion.** One challenge due to reward specification limitations is the
 325 impossibility of eliciting outputs with a large support.² Aggregation can produce combine outputs
 326 with smaller supports into an output with a larger support, as the following mechanism formalizes.
 327

328 **Definition 3.3** (Support expansion). *An aggregation operation $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ implements
 329 support-expansion relative to i if $\mathcal{S}(\mathbf{x}^{(A)}) \not\subseteq \mathcal{S}(\mathbf{x}^{(i)})$.*

330 Aggregation operations which implement support-expansion can in turn expand elicitability, by pro-
 331 ducing outputs with larger supports than that are elicitable by a single agent, as the following exam-
 332 ple illustrates.

333 **Example 3.4.** *Let the feature map be $\alpha = \alpha_{0.6}$. Suppose that there are no constraints $C = \emptyset$, so
 334 elicitability challenges entirely stem from reward specification limitations. We will think of the first
 335 two dimensions as two aspects we would like our output to simultaneously capture.*

336 *An output vector supported on both dimensions 1 and 2 cannot be elicited directly through reward
 337 design based on F_1 and F_2 (Prop C.2 in Appendix C.2). An output supported on just one of these
 338 two dimensions can be elicited through the reward function this dimension specializes in. However,
 339 any reward focusing on both features makes dimension 3 strictly preferred over the combination of
 340 dimensions 1 and 2.*

341 *The system designer can still produce vector $[1/2, 1/2, 0]$ supported on both dimensions 1 and 2
 342 through addition aggregation $\mathbf{x}^{(1)} = [1, 0, 0], \mathbf{x}^{(2)} = [0, 1, 0] \rightarrow \mathcal{A}_{\text{add}}(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}; [1/2, 1/2]) =$
 343 $[1/2, 1/2, 0]$ (Prop C.2 in Appendix C.2).*

345 **Mechanism 2b: Binding Set Contraction.** The next mechanism overcomes reward specification
 346 limitations by taking advantage of the output limitations of the agent. Perhaps counterintuitively, the
 347 constraints on the output space can make it easier to elicit an output through a single reward. When
 348 a constraint is binding for an output vector, some reward-increasing directions become inaccessible
 349 to the agent, as these directions will lead to violation of the binding constraint. Aggregation can
 350 combine outputs with binding constraints into an output with fewer binding constraints.

351 **Definition 3.5** (Binding set contraction). *An aggregation operation $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ imple-
 352 ments binding set contraction relative to i if $\mathcal{V}(\mathbf{x}^{(A)}) \not\subseteq \mathcal{V}(\mathbf{x}^{(i)})$.*

353 Aggregation operations which implement binding set contraction can expand elicitability, as follow-
 354 ing example illustrates.

356 **Example 3.6.** *Let the feature map be $\alpha = \alpha_{0.2}$. As in the first example, we will think of x_3 to be
 357 a “good” dimension and x_1, x_2 to be “bad” dimensions. Let C be a single constraint of the form
 358 $x_1 + x_2 \leq x_3$. This constraint captures how the model cannot produce the bad dimension(s) without
 359 also producing some of the good dimension.*

360 *The value of $q = 0.2$ is small leading to dimension 3 being inelicitable without the constraint (Propo-
 361 sition C.3 in Appendix C.3). The constraint allows us to elicit a vector with some amount of x_3 , but
 362 not a vector that has only x_3 . The intersection aggregation operation $\mathbf{x}^{(1)} = [1/2, 0, 1/2], \mathbf{x}^{(2)} =$
 363 $[0, 1/2, 1/2] \rightarrow \mathcal{A}_{\text{intersect}}(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = [0, 0, 1/2]$.*

365 **Implementable Mechanisms by Intersection and Addition Aggregation.** Our examples con-
 366 structed problem instances that intersection aggregation can implement feasibility-expansion and
 367 binding-set contraction, while addition aggregation can implement support expansion. We turn to
 368 more general problem instances, and investigate whether each aggregation rule can implement these
 369 mechanism on any problem instance. We summarize our findings in Table 1, which shows funda-
 370 mental limitations of each aggregation rule.

371 3.2 CONNECTIONS BETWEEN ELICITABILITY-EXPANSION AND MECHANISMS

373 Moving beyond the examples in Section 3.1, we more generally study the powers and limitations
 374 that these mechanisms provide for elicitability-expansion.

375 **Necessity of these mechanisms.** First, we show that if an aggregation operation expands elicitability
 376 for some feature weights matrix, it must implement at least one of the three mechanisms. Specifi-

377 ²Kleinberg et al. (2019) studied this in single-agent environments without constraints.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
cally, Theorem 3.7 shows that either the operation must implement feasibility-expansion or it must implement at least one of support-expansion or binding-set contraction for every output $x^{(i)}$.

Theorem 3.7. *Fix conic constraints C , and any aggregation operation $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$. If $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$ is elicibility-expanding for some feature weights matrix α , then at least one of the following conditions holds:*

- $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$ is feasibility-expanding relative to C (Definition 3.1).
- For each $i \in [K]$, $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$ is either support-expanding relative to i (Definition 3.3) or binding set-contracting relative to i (Definition 3.5).

The proof of Theorem 3.7 builds on the technical tools we develop in Section 4 (i.e., Theorem 4.3).

Theorem 3.7 reveals a strong form of limitation for aggregation operations who do not implement at least one of the mechanisms (Definition 3.1, 3.5, and 3.3). Specifically, the result illustrates that if an operation does not implement the mechanisms according to the conditions in Theorem 3.7, then aggregation is not elicibility-expanding, regardless of the feature weights matrix. This result illustrates conditions under which aggregation adds no power to compound AI systems regardless of the level of prompt engineering limitations.

While these three natural mechanisms are necessary for aggregation to have power, these mechanisms are not sufficient in general. We demonstrate this and discuss some special cases where they are sufficient in Appendix B.3. In Section 4, we provide a general, necessary-and-sufficient condition that more precisely captures the power and limitations of aggregation.

4 CHARACTERIZING ELICITABILITY-EXPANSION IN GENERAL

In this section, we provide general characterizations of when an aggregation operation $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$ is elicibility-expanding. We begin by analyzing, for a fixed feature weights matrix and feasibility constraints, whether a given aggregation operation expands elicibility (Section 4.1). We then turn to a more structural question: given only the feasibility constraints, what necessary and sufficient conditions ensure that aggregation operation is not elicibility-expanding for any feature weights matrix (Section 4.2)? These characterizations provide the technical foundation for our earlier results in Sections 3.1 and 3.2 which connected the mechanisms implemented by aggregation with elicibility-expansion.

4.1 CHARACTERIZING WHEN ELICITABILITY-EXPANSION SUCCEEDS

To analyze the power of aggregation, we characterize whether an aggregation operation is elicibility-expanding in a given problem-instance (i.e., given a feasibility set and feature weights). Our analysis generalizes the single-agent characterization from prior work (Kleinberg et al., 2019) to allow for output limitations (i.e., nontrivial constraints C). We then leverage this characterization to analyze aggregation operations.

Given a statistic $(S, V) = (\mathcal{S}(\mathbf{x}), \mathcal{V}(\mathbf{x}))$, elicibility is determined by the structure of the set

$$\mathcal{B}_{S,V} = \underbrace{\{d \in \mathbb{R}^M : C_V d \leq 0\}}_{(1)} \cap \underbrace{\{d \in \mathbb{R}^M : d_j \geq 0 \forall j \in S^c\}}_{(2)} \cap \underbrace{\{1^t d < 0\}}_{(3)}.$$

The set $\mathcal{B}_{S,V}$ captures the set of directions along which the agent can move \mathbf{x} while maintaining the constraints C (term (1)), maintaining nonnegativity constraints (term (2)), reducing ℓ_1 norm (term (3)). Specifically, elicibility expansion can be characterized by whether the sets $\mathcal{B}_{S,V}$ intersect with the set of feature-improving directions $\{d \in \mathbb{R}_{\geq 0}^M \mid \alpha d \geq 0\}$.

Theorem 4.1. *Fix conic constraints C , feature weights matrix α , and aggregation operation $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$. The aggregation operation $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$ is elicibility-expanding if and only if both of the following conditions hold:*

- $\mathcal{B}_{S(x^{(i)}), V(x^{(i)})} \cap \{d \in \mathbb{R}^M \mid \alpha d \geq 0\} = \emptyset$ for $i \in [K]$
- $\mathcal{B}_{S(x^{(A)}), V(x^{(A)})} \cap \{d \in \mathbb{R}^M \mid \alpha d \geq 0\} \neq \emptyset$.

This characterizing condition depends on both the reward specification limitation (which reflect prompt engineering limitations) via α and the output limitation (which reflect model capability lim-

432 iterations) via the conic constraints \mathbf{C} . This dependence highlights the role of both forms of limitations
 433 and their interplay in determining the power of aggregation.
 434

435 *Proof ideas.* The core idea is that elicability of a vector \mathbf{x} hinges on whether the feasible-
 436 perturbation set $\mathcal{B}_{S(\mathbf{x}), \mathcal{V}(\mathbf{x})}$ intersects the feature-improving cone $\mathbf{d} : \boldsymbol{\alpha}\mathbf{d} \geq 0$ (Lemmas F.3–F.4).
 437 This lets us identify when each individual $\mathbf{x}^{(i)}$ is elicitable while the aggregate $\mathbf{x}^{(A)}$ is not—the
 438 condition for elicability expansion.
 439

440 One direction is immediate: a nonempty intersection yields a feasible direction that strictly improves
 441 every monotone reward, certifying that \mathbf{x} cannot be elicited. The converse is subtler: if the sets are
 442 disjoint, then some reward function elicits \mathbf{x} , and—as in Kleinberg et al. (2019)—it can be chosen
 443 to be linear in the features.
 444 \square

445 4.2 CHARACTERIZING WHEN ELICITABILITY-EXPANSION FAILS

446 To analyze the limitations of aggregation, we characterize conditions under which aggregation
 447 operations are not elicability-expanding for *any* feature map. This represents a particularly strong
 448 form of limitation, as it rules out elicability-expansion for all forms of reward specification limi-
 449 tations. The characterizing condition is stated below. We can interpret the condition as a failure of
 450 *strengthened* versions of the mechanisms. We discuss this connection to the mechanisms more in
 451 Appendix E.1.
 452

453 **Definition 4.2.** [Limitation-characterizing condition] Fix constraints \mathbf{C} and aggregation opera-
 454 tion $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$. We say that the **limitation-characterizing condition** is satisfied for
 455 $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ if and only if both of the following conditions are satisfied:
 456

- 457 1. No feasibility expansion: $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ doesn't implement feasibility-expansion for \mathbf{C}
 458 2. For all $\mathbf{d} \in \mathcal{B}_{S(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})}$ with $\mathbf{d} \neq 0$, there exists $k \in [K]$ such that both of the following two
 459 conditions holds:
 - (a) No “strengthened support expansion” for k : For all $j \in \mathcal{S}(\mathbf{x}^{(k)})^c$, $-d_j - |\mathbf{1}^t \mathbf{d}| \leq 0$.
 - (b) No “strengthened binding-set contraction” for k : For all $\gamma^{(k)} \in \mathbb{R}_{\geq 0}^{|\mathcal{V}(\mathbf{x}^{(k)})|}$,

$$460 \quad (\gamma^{(k)})^T C_{\mathcal{V}(\mathbf{x}^{(k)})} \mathbf{d} - |\mathbf{1}^t \mathbf{d}| \cdot \left| \min_{j \in [M]} (\min(0, ((\gamma^{(k)})^T C_{\mathcal{V}(\mathbf{x}^{(k)})}))_j) \right| \leq 0,$$

461 The following theorem shows that the limitation-characterizing condition is *necessary* for an aggre-
 462 gation operation to not expand elicability under any feature map.
 463

464 **Theorem 4.3** (Necessary). Fix constraints \mathbf{C} . If the limitation-characterizing condition is satis-
 465 fied, then there does not exist a feature weights matrix $\boldsymbol{\alpha}$ under which $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is
 466 elicability-expanding.
 467

468 The main idea of this theorem is showing that without a strengthened version of support-expansion or
 469 binding-set contraction, an aggregation operation is bound to have no power under all feature maps.
 470 Turning to the other direction, the next theorem shows that whenever the limitation-characterizing
 471 condition is violated, the aggregation operation is not limited in the strong sense. That is, the
 472 operation expands elicability under *some* feature weights matrix. We prove this by constructing
 473 a feature weights matrix that makes aggregation elicability-expanding whenever the limitation-
 474 characterizing condition does not hold.
 475

476 **Theorem 4.4** (Sufficient). Fix constraints \mathbf{C} , and aggregation operation $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$. If
 477 the limitation-characterizing condition is not satisfied for $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$, then there exist
 478 feature weights $\boldsymbol{\alpha}$ such that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is elicability-expanding.
 479

480 5 DISCUSSION

481 In this work, we theoretically study how aggregating multiple copies of the same model gives access
 482 to a greater set of outputs than using only a single model. Building on a principal-agent framework,
 483 our results show how aggregation must implement one of three mechanisms—feasibility-expansion,
 484

486 support expansion, and binding-set contraction—in order to expand the set of elicitable outputs.
 487 Although these mechanisms are not sufficient to ensure that aggregation adds power, we show a
 488 more precise condition formed from strengthening the mechanisms is sufficient.
 489

490 **Conceptual insights for system designers.** Our results offer conceptual insights into when sys-
 491 tem designers benefit from specific aggregation operations in compound AI systems. Our results
 492 characterize how the interplay between prompt engineering limitations and model capability limi-
 493 tations affects which types of aggregation operations are useful. Specifically, aggregation not only
 494 overcomes model capability limitations (feasibility expansion), but also overcomes prompt engineer-
 495 ing limitations through combining multiple output characteristics (support expansion) and through
 496 taking advantage of output-level limitations (binding set-contraction). Notably, even as model capa-
 497 bilities continue to improve, the latter two mechanisms mean that aggregation can still be useful to
 498 system designers. On the flip side, our results illustrate how aggregation operations that do not take
 499 advantage of these mechanisms offer no power, regardless of whether the system designer employs
 500 sophisticated or unsophisticated prompt engineering practices.

501 **Connecting our mechanisms to empirical phenomena.** We now discuss how the mechanisms that
 502 we identify in our work—feasibility expansion, support expansion, and binding set-contraction—
 503 connect to existing empirical phenomena observed for LLMs, and could inspire directions for future
 504 empirical work. Since aggregation is only powerful when individual models are limited on their own,
 505 we begin by outlining the single-model limitations underlying each mechanism and the empirical
 506 evidence supporting them.

- 507 • The power of feasibility expansion traces back to limitations in the types of outputs that individ-
 508 ual models can generate: specifically, when models can't exhibit certain (desirable) dimensions
 509 without exhibiting other (undesirable) dimensions as a side effect. This side effect has been empir-
 510 ically observed for safety versus overrefusal, where models which refuse a larger fraction of toxic
 511 outputs tend to refuse a larger fraction of safe outputs as a side effect (Cui et al., 2025). Similar
 512 side effects have been observed for alignment and hedging (Ouyang et al., 2022), and theoretically
 513 studied for creativity and factuality (Sinha et al., 2023).
- 514 • The power of support expansion traces back to challenges with eliciting outputs that perform
 515 along multiple dimensions at once in single-agent settings. This limitation has been empirically
 516 observed in cases where each dimension corresponds to a distinct user requirement. For example,
 517 prompts are often underspecified, since users may not include all of the requirements that they care
 518 about in the prompt (Yang et al., 2025). Moreover, even when users specify all their requirements,
 519 LLMs struggle to satisfy many requirements simultaneously (Wen et al., 2024; Guo et al., 2025).

520 We leave empirical validation of binding-set contraction—whose emergence depends on the inter-
 521 action between prompt-engineering and model limitations—to future work. More broadly, since our
 522 results identify when aggregation enables these mechanisms, an important direction is to connect
 523 them to practice by testing whether real aggregation methods (e.g., debate (Du et al., 2024), prompt
 524 ensembling (Arora et al., 2023)) exhibit them. The single-model limitations discussed above suggest
 525 promising empirical settings where aggregation should add power.

526 **Model limitations and extensions.** Our stylized model, which builds on a classical principal-agent
 527 framework (Kleinberg et al., 2019), makes simplifying assumptions for tractability. First, while our
 528 analysis allows for nonlinear rewards R , we restrict the output constraints (i.e., model limitations)
 529 and the feature map (i.e., reward-specification limitations) to linear functional forms. Extending
 530 our model to allow for nonlinear limitations, which would complicate the structure of the agent's
 531 optimization program, is an interesting direction for future work. Moreover, we also assume each
 532 agent's reward depends only on its own outputs, though richer interdependencies may arise in re-
 533 peated, multi-turn interactions (Du et al., 2024). Finally, while our analysis focuses on steering
 534 agents through reward design, it would be interesting to incorporate other choices, such as tool use
 535 and fine-tuning, that enable specialization in compound AI systems (BAIR Research Blog, 2024).

536 6 REPRODUCIBILITY STATEMENT

537 We provide full proofs of all of the results in the Appendix.
 538

540 REFERENCES
541

542 Anthropic Engineering. How we built our multi-agent research system. <https://www.anthropic.com/engineering/multi-agent-research-system>, 2024. Engineering blog. 1, 1.1, 2.3

543

544

545 Simran Arora, Avanika Narayan, Mayee F. Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines Chami, Frederic Sala, and Christopher Ré. Ask me anything: A simple strategy for prompting language models. In *International Conference on Learning Representations (ICLR)*, 2023. URL <https://openreview.net/forum?id=bhUPJnS2g0X>. 1, 1.1, 5

546

547

548

549

550 BAIR Research Blog. Compound ai systems. <https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/>, 2024. Blog post. 1, 1.1, 2.3, 5

551

552

553

554 Patrick Bolton and Mathias Dewatripont. *Contract Theory*. MIT Press, Cambridge, MA, 2005. 1.1

555

556 Philip Bond and Armando Gomes. Multitask principal-agent problems: Optimal contracts, fragility, and effort misallocation. *Journal of Economic Theory*, 144(1):175–211, 2009. 1.1

557

558

559

560 Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while reducing cost and improving performance. *Transactions on Machine Learning Research (TMLR)*, 2024. URL https://lingjiaochen.com/papers/2024_FrugalGPT_TMLR.pdf. 1.1

561

562

563

564 Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. In *Advances in Neural Information Processing Systems 30 (NeurIPS)*, 2017. URL <https://arxiv.org/abs/1706.03741>. 1.1

565

566 Natalie Collina, Surbhi Goel, Aaron Roth, Emily Ryu, and Mirah Shi. Emergent alignment via competition. *arXiv preprint*, 2025. 1.1

567

568

569 Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui Hsieh. Or-bench: An over-refusal benchmark for large language models. *arXiv preprint arXiv:2405.20947*, 2025. URL <https://arxiv.org/abs/2405.20947>. 5

570

571

572 Krishna Dasaratha, Benjamin Golub, and Anant Shah. Contracts for teams under imperfect observability. *Working Paper / Preprint*, 2024. Characterizes optimal pay allocation in team output settings using network centrality ideas. 1.1

573

574

575 Dominique Demougin, David Encaoua, and Bernard Sinclair-Desgagné. A multi-tasking principal-agent perspective. *CESifo Working Paper Series*, (9753), 2022. 1.1

576

577

578 Thomas G. Dietterich. Ensemble methods in machine learning. In *Multiple Classifier Systems (MCS 2000)*, volume 1857 of *Lecture Notes in Computer Science*, pp. 1–15. Springer, 2000. doi: 10.1007/3-540-45014-9_1. URL https://link.springer.com/chapter/10.1007/3-540-45014-9_1. 1.1

579

580 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving factuality and reasoning in language models through multiagent debate. In *Proceedings of the 41st International Conference on Machine Learning (ICML)*, volume 235 of *Proceedings of Machine Learning Research*, pp. 11733–11763. PMLR, 2024. URL <https://proceedings.mlr.press/v235/du24e.html>. 1, 1.1, 2.3, 5

581

582

583

584

585 Matthew Gentzkow and Emir Kamenica. Bayesian persuasion with multiple senders and rich signal spaces. *Games and Economic Behavior*, 104:411–429, 2017. 1.1

586

587

588 Sanford J. Grossman and Oliver D. Hart. An analysis of the principal-agent problem. *Econometrica*, 51(1):7–45, 1983. 1.1

589

590 Zhengkang Guo, Wenhao Liu, Mingchen Xie, Jingwen Xu, Zisu Huang, Muzhao Tian, Jianhan Xu, Yuanzhe Shen, Qi Qian, Muling Wu, Xiaohua Wang, Changze Lv, He-Da Wang, Hu Yao, Xiaoqing Zheng, and Xuanjing Huang. RECAST: Expanding the boundaries of LLMs’ complex instruction following with multi-constraint data. *arXiv preprint arXiv:2505.19030*, 2025. URL <https://arxiv.org/abs/2505.19030>. 5

591

592

593

594 Bengt Holmström. Moral hazard in teams. *The Bell Journal of Economics*, 13(2):324–340, 1982.
 595 1.1

596

597 Bengt Holmström. Moral hazard and observability. *The Bell Journal of Economics*, 10(1):74–91,
 598 1979. 1.1

599 Bengt Holmström and Paul Milgrom. Multitask principal-agent analyses: Incentive contracts, asset
 600 ownership, and job design. *Journal of Law, Economics, & Organization*, 7:24–52, 1991. 1.1

601

602 Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.
 603 Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. *arXiv*
 604 preprint [arXiv:2503.21878](https://arxiv.org/abs/2503.21878), 2025. 1.1

605 Athul Paul Jacob and Jacob Andreas. The consensus game: Language model generation via con-
 606 sensus seeking. In *International Conference on Learning Representations (ICLR)*, 2024. URL
 607 <https://openreview.net/forum?id=zEwWZk7c0Z>. 1.1

608 Erik Jones, Anca Dragan, and Jacob Steinhardt. Adversaries can misuse combinations of safe mod-
 609 els. In *International Conference on Machine Learning (ICML)*, 2025a. 1.1

610

611 Erik Jones, Arjun Patrawala, and Jacob Steinhardt. Uncovering gaps in how humans and llms
 612 interpret subjective language. *arXiv preprint arXiv:2503.04113*, 2025b. 2.4

613 Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Ed-
 614 ward Grefenstette, Samuel R. Bowman, Tim Rocktäschel, and Ethan Perez. Debating with
 615 more persuasive llms leads to more truthful answers. In *Proceedings of the 41st International*
 616 *Conference on Machine Learning (ICML)*, volume 235 of *Proceedings of Machine Learning*
 617 *Research*, pp. 23662–23733. PMLR, 2024. URL <https://proceedings.mlr.press/v235/khan24a.html>. 1

618

619 Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. How do classifiers induce agents
 620 to invest effort strategically? In *Proceedings of the 2019 ACM Conference on Economics and*
 621 *Computation (EC)*, pp. 825–844. ACM, 2019. doi: 10.1145/3328526.3329584. 1, 1.1, 2, 2.2, 2.3,
 622 2, 4.1, 4.1, 5, F.1

623

624 Krishna K. Ladha. The condorcet jury theorem, free speech, and correlated votes. *American Journal*
 625 *of Political Science*, 36(3):617–634, 1992. doi: 10.2307/2111584. 1.1

626

627 Jean-Jacques Laffont and David Martimort. *The Theory of Incentives: The Principal-Agent Model*.
 Princeton University Press, Princeton, NJ, 2002. 1.1

628

629 Edward P. Lazear and Sherwin Rosen. Rank-order tournaments as optimum labor contracts. *Journal*
 630 *of Political Economy*, 89(5):841–864, 1981. 1.1

631

632 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 633 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 634 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023. 1, G

635

Nancy A. Lynch. *Distributed Algorithms*. Morgan Kaufmann, San Francisco, CA, 1996. ISBN
 1558603484. 1.1

636

637 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 638 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 639 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 640 27730–27744, 2022. 5

641

Ori Press, Andreas Hochlehnert, Ameya Prabhu, Vishaal Udandarao, Ofir Press, and Matthias
 642 Bethge. Citeme: Can language models accurately cite scientific claims? *Advances in Neural*
 643 *Information Processing Systems*, 37:7847–7877, 2024. 2.4

644

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 645 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 646 *Processing: System Demonstrations*. Association for Computational Linguistics, 2019. URL
 647 <https://arxiv.org/abs/1908.10084>. We use the all-mnlpnet-base-v2 model
 from the Sentence-Transformers library. 2, G

648 Ritwik Sinha, Zhao Song, and Tianyi Zhou. A mathematical abstraction for balancing the trade-off
 649 between creativity and reality in large language models. *arXiv preprint arXiv:2306.02295*, 2023.
 650 URL <https://arxiv.org/abs/2306.02295>. 5

651
 652 Margaret E. Slade. Multitask agency and contract choice. *International Economic Review*, 37(2):
 653 465–486, 1996. 1.1

654 Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In *Proceed-
 655 ings of the Tenth International Conference on Machine Learning (ICML)*, pp. 330–337. Morgan
 656 Kaufmann, 1993. 1.1

657
 658 Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramanian, Arjun R
 659 Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level sci-
 660 entific problem-solving abilities of large language models. *arXiv preprint arXiv:2307.10635*, 2023a.
 661 2.4

662 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 663 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 664 In *International Conference on Learning Representations (ICLR)*, 2023b. 1.1

665 Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin
 666 Hu, Wendy Gao, Jiaxin Xu, Yiming Liu, Jie Tang, Hongning Wang, and Minlie Huang. Bench-
 667 marking complex instruction-following with multiple constraints composition. *arXiv preprint
 668 arXiv:2407.03978*, 2024. URL <https://arxiv.org/abs/2407.03978>. 5

669
 670 Chenyang Yang, Yike Shi, Qianou Ma, Michael Xieyang Liu, Christian Kästner, and Tongshuang
 671 Wu. What prompts don't say: Understanding and managing underspecification in LLM prompts.
 672 *arXiv preprint arXiv:2505.13360*, 2025. URL <https://arxiv.org/abs/2505.13360>.
 673 2.4, 5

674 Bohan Zhang, Xiaokang Zhang, Jing Zhang, Jifan Yu, Xiaokun Zhang, Tejas Srinivasan, Yifan Mai,
 675 Juntao Li, Yoon Kim, and Minjoon Seo. Cot-based synthesizer: Enhancing llm performance
 676 through answer synthesis, 2025. URL <https://arxiv.org/abs/2501.01668>. 1.1, 2.3

677 Simon Zhuang and Dylan Hadfield-Menell. Consequences of misaligned ai. *Advances in Neural
 678 Information Processing Systems*, 33:15763–15773, 2020. 1.1

679
 680 **A LLM USAGE STATEMENT**

681 We used GPT-5 and Claude Opus 4.1 to gather related work, get ideas for proofs, and to edit prose.
 682 All of the work done by LLMs was verified by the (human) authors on this paper.

683
 684 **B ADDITIONAL DETAILS FOR SECTION 3**

685 **B.1 ADDITIONAL DETAILS OF SECTION 3.1**

686 Intersection aggregation does not implement support expansion for any problem instance, as the
 687 following result formalizes.

688 **Proposition B.1** (Intersection does not expand support). *Consider any aggregation operation of the
 689 form $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)} = \mathcal{A}_{\text{intersect}}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)})(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)})$. For any $i \in [K]$, this
 690 aggregation operation does not implement support-expansion relative to i .*

691
 692 Proposition B.1 follows from the fact that the support of $\mathcal{A}_{\text{intersect}}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)})$ is always a subset
 693 of the support of each $\mathbf{x}^{(i)}$.

694
 695 Intersection aggregation can implement feasibility-expansion as shown in **Example 3.2** and binding
 696 set-contraction as shown in **Example 3.6**. In fact, these examples go one step further and demonstrate
 697 that elicitability expansion is achievable via these mechanisms.

698
 699 **700 Addition aggregation does not implement feasibility expansion for any problem instance, as the
 701 following result formalizes.**

702 **Proposition B.2** (Addition cannot expand feasibility). *Consider constraints C . Any aggregation*
 703 *operation of the form $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)} = \mathcal{A}_{add}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)}; \mathbf{w})(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)})$ does not*
 704 *implement feasibility expansion relative to C .*

705 Proposition B.2 directly follows from the fact that the constraint set C is conic.

706 On the other hand, addition aggregation operations can implement the other two mechanisms. **Ex-**
 707 **ample 3.4** already constructed a problem instance where addition aggregation implements support
 708 expansion. The next example constructs a problem instance where addition aggregation can imple-
 709 ment binding set contraction (**Definition 3.5**) and achieve elicitability-expansion for some feature
 710 mapping.

711 **Example B.3** (Addition can result in binding set contraction). *Consider the constraint matrix*

$$714 \quad C = \begin{pmatrix} 1 & -1 & 0 \\ 1 & -\frac{1}{4} & -1 \end{pmatrix},$$

715 and consider vectors $\mathbf{x}^{(1)} = (1, 1, 2)$ and $\mathbf{x}^{(2)} = (2, 4, 1)$. Note that they are both fea-
 716 sible and $\mathbf{x}^{(1)}$ is binding in the first constraint and $\mathbf{x}^{(2)}$ in the second. Their sum is
 717 $\mathcal{A}_{add}(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)}; \mathbf{w})(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}; [1, 1]) \rightarrow \mathbf{x}^{(A)} = (3, 5, 3)$, which is also feasible but does
 718 not have any binding constraints.

719 B.2 ADDITIONAL DETAILS OF SECTION 3.2

	Feasibility Expansion	Support Expansion	Binding Set Contraction
Intersection aggregation	✓ (Example 3.2)	✗ (Proposition B.1)	✓ (Example 3.6)
Addition aggregation	✗ (Proposition B.2)	✓ (Example 3.4)	✓ (Example B.3)

720 Table 1: Implementability of mechanisms in Section 3.1 for the intersection aggregation rule equa-
 721 tion 1 and additional aggregation rule equation 2. The symbol ✓ denotes that there exists a problem
 722 instance where the aggregation rule implements that mechanism. The symbol ✗ denotes that the
 723 aggregation rule does not implement the mechanism for any problem instance.

724 **Proposition B.4.** Fix conic constraints C , and any $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$. Suppose that
 725 $\mathcal{V}(\mathbf{x}^{(A)}) = \mathcal{V}(\mathbf{x}^{(1)}) = \dots = \mathcal{V}(\mathbf{x}^{(K)}) = \emptyset$, and suppose that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is not feasibility-
 726 expanding. Suppose also that there do not exist witnesses $j(i) \in \mathcal{S}(\mathbf{x}^{(A)}) \setminus \mathcal{S}(\mathbf{x}^{(i)})$ for each $i \in [K]$
 727 such that $\{j(i) \mid i \in [K]\} \neq [M]$. Then, $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is not elicitability-expanding for
 728 any α .

729 **Proposition B.5.** There exists an aggregation operation $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rightarrow \mathbf{x}^{(A)}$ and a set of conic con-
 730 straints C such that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ implements binding-set contraction relative to i for
 731 every $i \in [K]$. However, $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rightarrow \mathbf{x}^{(A)}$ is not elicitability-expanding for any feature map α .

732 **Proposition B.6.** Fix $C = \emptyset$. There exists an aggregation operation $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rightarrow \mathbf{x}^{(A)}$ such
 733 that $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rightarrow \mathbf{x}^{(A)}$ implements support-expansion relative to i for every $i \in [K]$. However,
 734 $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rightarrow \mathbf{x}^{(A)}$ is not elicitability-expanding for any feature map α .

735 **Proposition B.7.** Fix conic constraints C and $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$. Suppose that $M \geq 2$, and
 736 $\mathcal{S}(\mathbf{x}^{(A)}) = [M]$. Suppose that there exist witnesses $\ell(i) \in \mathcal{V}(\mathbf{x}^i) \setminus \mathcal{V}(\mathbf{x}^{(A)})$ such that there exists \mathbf{d}
 737 such that $C_{\ell(i)} \mathbf{d} + (|\min_{j \in [M]} C_{\ell(i), j}|) \cdot \mathbf{1}^t \mathbf{d} > 0$ for all $i \in [K]$, $\mathbf{1}^t \mathbf{d} < 0$, and $C_{\mathcal{V}(\mathbf{x}^{(A)})} \mathbf{d} \leq 0$. Then,
 738 $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is elicitability-expanding for some feature weights matrix α .

739 B.3 PARTIAL SUFFICIENCY OF MECHANISMS IN CONCRETE INSTANCES

740 In [Theorem 3.7](#), we showed how the mechanisms are necessary for an aggregation operation to
 741 have power. We now turn to analyzing when mechanisms are sufficient for guaranteeing the power
 742 of aggregation. We focus on a weak form of power that only requires that aggregation expands

756 elicitability for some feature weights matrix, taking a negation of of the limitation show in Theorem
 757 [4.3](#). (We defer an analysis of the role of the feature weights matrix to Section [4.1](#).)

759 We first show that feasibility expansion guarantees this form of power, providing a partial converse
 760 of Theorem [3.7](#).

761 **Proposition B.8.** *Fix conic constraints C . If an aggregation operation $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ implements feasibility-expansion, then there exists a feature map α such that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is elicitability-expanding.*

764 We now turn to support expansion and binding-set contraction. Interestingly, even if an aggregation
 765 operation implements support-expansion for every $i \in [K]$, the aggregation still may not
 766 elicitability-expanding for any feature weights matrix (Proposition [B.6](#)). Similarly, binding-set con-
 767 traction also does not guarantee that aggregation has power (Proposition [B.5](#)).

768 Nonetheless, we show stronger conditions under which support expansion and binding-set contrac-
 769 tion do guarantee that aggregation expands elicitability for some feature map. For support expan-
 770 sion, the main requirement is a global form of support expansion across outputs i , requiring that the
 771 “witnesses” don’t span all of the output dimensions.³

772 **Proposition B.9.** *Fix conic constraints C , and any $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$. Suppose that there exist
 773 witnesses $j(i) \in \mathcal{S}(\mathbf{x}^{(A)}) \setminus \mathcal{S}(\mathbf{x}^{(i)})$ for each $i \in [K]$ such that $\{j(i) \mid i \in [K]\} \neq [M]$. Suppose
 774 that $\mathcal{V}(\mathbf{x}^{(A)}) = \emptyset$. Then, $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is elicitability-expanding for some α .*

775 Turning to binding-set contraction, the main requirement is again a global form of binding-set con-
 776 traction across outputs i which links witnesses (i.e., a constraint in $\mathcal{V}(\mathbf{x}^{(i)}) \setminus \mathcal{V}(\mathbf{x}^{(A)})$ for each
 777 $i \in [K]$) together (Proposition [B.7](#)). A global variant of support expansion and binding-set contrac-
 778 tion also emerges in our characterizations in Section [4](#).

779 C PROOFS FOR SECTION 3

780 Recall that the examples in this section use the feature weights matrix $\alpha_q := \begin{bmatrix} 1 & 0 & q \\ 0 & 1 & q \end{bmatrix}$.

781 C.1 ANALYSIS OF EXAMPLE 3.2

782 **Proposition C.1.** *For the feature weights matrix α_2 and constraint matrix with the row $x_3 \leq x_1 + x_2$
 783 in [Example 3.2](#), $\mathbf{x}^{(1)} = [1, 0, 1], \mathbf{x}^{(2)} = [0, 1, 1] \rightarrow \mathbf{x}^{(A)} = [0, 0, 1]$ is elicitability-expanding.*

784 *Proof.* From the construction, it is easy to see that $x^{(1)}$ can be elicited with a linear reward function
 785 $[1, 0, 0]$ equal to the F_1 and budget level $E = 2$ and $x^{(1)}$ can be elicited with a linear reward function
 786 $[0, 1, 0]$ equal to the F_1 and budget level $E = 2$.

787 Let us use our characterization [Theorem 4.1](#) to formally elicitability-expansion.

788 For $\mathbf{x}^{(i)}$, the support set $\mathcal{S}(\mathbf{x}^{(i)})$ is $\{i\}$. The constraint is binding on both $x^{(i)}$. The set
 789 $\mathcal{B}_{\mathcal{S}(\mathbf{x}^{(1)}) \setminus \mathcal{V}(\mathbf{x}^{(1)})}$ is $\{d : d_3 \leq d_1 + d_2, d_2 \geq 0, d_1 + d_2 + d_3 < 0\}$. For any d in this set, $d_3 < 0$
 790 and $d_1 + d_2 < -d_3$. The set $\mathcal{B}_{\mathcal{S}(\mathbf{x}^{(2)}) \setminus \mathcal{V}(\mathbf{x}^{(2)})}$ is $\{d : d_3 \leq d_1 + d_2, d_1 \geq 0, d_1 + d_2 + d_3 < 0\}$. For any
 791 d in this set, $d_3 < 0$ and $d_1 + d_2 < -d_3$.

792 Now consider the set of feature-improving direction $\{d : d_1 + 2d_3 \geq 0, d_2 + 2d_3 \geq 0\}$. For any d in
 793 this set, $d_1 + d_2 \geq -4d_3$.

794 All three conditions $d_3 < 0$, $d_1 + d_2 < -d_3$, and $d_1 + d_2 \geq -4d_3$ cannot be satisfied since for $d_3 < 0$,
 795 $-d_3 > -4d_3$. Hence there is no intersection between feasibility improving directions and features
 796 improving directions and $x^{(1)}$ is elicitable. Similarly, $x^{(2)}$ is also elicitable.

797 $x^{(3)}$ is not feasible and hence not elicitable. This shows that $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \rightarrow \mathbf{x}^{(3)}$ is elicitability-
 798 expanding by implementing feasibility-expansion. \square

800 ³The fact the witnesses cannot span all of the output dimensions condition also turns to be a necessary
 801 condition for aggregation to not be powerless (Proposition [E.2](#)).

810 C.2 ANALYSIS OF EXAMPLE 3.4
811812 **Proposition C.2.** For the feature weights matrix $\alpha_{0.6}$ and null constraint matrix [Example 3.4](#),
813 $\mathbf{x}^{(1)} = [1, 0, 0], \mathbf{x}^{(2)} = [0, 1, 0] \rightarrow \mathbf{x}^{(A)} = [1/2, 1/2, 0]$ is elicibility-expanding.
814815 *Proof.* The set of directions $\mathcal{B}_{\mathcal{S}(\mathbf{x}^{(1)}), \mathcal{V}(\mathbf{x}^{(1)})} = \{\mathbf{d} : \mathbf{d}_2 \geq 0, \mathbf{d}_3 \geq 0, \mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3 < 0\}$. And the set of
816 feature-improving directions is $\mathcal{A} = \{\mathbf{d} : \mathbf{d}_1 + 0.6\mathbf{d}_3 \geq 0, \mathbf{d}_2 + 0.6\mathbf{d}_3 \geq 0\}$.
817818 $\mathbf{d} \in \mathcal{B}_{\mathcal{S}(\mathbf{x}^{(1)}), \mathcal{V}(\mathbf{x}^{(1)})}$ means that $\mathbf{d}_1 < -(\mathbf{d}_2 + \mathbf{d}_3) < -\mathbf{d}_3$ and $\mathbf{d}_3 \geq 0$. $\mathbf{d} \in \mathcal{A}_1$ means that $\mathbf{d}_1 \geq -0.6\mathbf{d}_3$. These three conditions cannot be simultaneously showing that $\mathbf{x}^{(1)}$ is elicitable due to
819 empty intersection of \mathcal{A} and \mathcal{B}_1 . Symmetrically, we can also show that $\mathbf{x}^{(2)}$ is also elicitable.
820821 Now let us argue that $\mathbf{x}^{(A)} = [1/2, 1/2, 0]$ is not elicitable. The feasibility improving directions set
822 is $\mathcal{B}_{\mathcal{S}(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})} = \{\mathbf{d} : \mathbf{d}_3 \geq 0, \mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3 < 0\}$. Consider $\mathbf{d} = [-0.6, 0.6, 1]$. $\mathbf{d} \in \mathcal{A} \cap \mathcal{B}_A$. This
823 shows that $\mathbf{x}^{(A)}$ is not elicitable.
824825 \square
826827 C.3 ANALYSIS OF EXAMPLE 3.6
828829 **Proposition C.3.** For the feature weights matrix $\alpha_{0.2}$ and conic constraint matrix with one con-
830 straint $x_1 + x_2 \leq x_3$ from [Example 3.6](#), $\mathbf{x}^{(1)} = [1, 0, 1], \mathbf{x}^{(2)} = [0, 1, 1] \rightarrow \mathbf{x}^{(A)} = [0, 0, 1]$ is
831 elicibility-expanding.
832833 *Proof of Proposition C.3.* The feature-improving directions are the set $\mathcal{A} = \{\mathbf{d} : \mathbf{d}_1 + 0.2\mathbf{d}_3 \geq 0, \mathbf{d}_2 + 0.2\mathbf{d}_3 \geq 0\}$.
834835 The constraint is binding at both $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$. The feasibility improving directions are
836 $\mathcal{B}_{\mathcal{S}(\mathbf{x}^{(1)}), \mathcal{V}(\mathbf{x}^{(1)})} = \{\mathbf{d} : \mathbf{d}_1 + \mathbf{d}_2 \leq \mathbf{d}_3, \mathbf{d}_2 \geq 0, \mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3 < 0\}$.
837838 If $\mathbf{d} \in \mathcal{B}_{\mathcal{S}(\mathbf{x}^{(1)}), \mathcal{V}(\mathbf{x}^{(1)})}$, then $\mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3 < 0$ and $\mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3 \leq 2\mathbf{d}_3$. This implies that $\mathbf{d}_3 < 0$. If
839 $\mathbf{d} \in \mathcal{A}$, then $\mathbf{d}_1 \geq -0.2\mathbf{d}_3$ and $\mathbf{d}_2 \geq -0.2\mathbf{d}_3$. If all the conditions are satisfied simultaneously, then
840 $\mathbf{d}_1 > 0$ and $\mathbf{d}_2 > 0$. This contradicts $\mathbf{d}_1 + \mathbf{d}_2 \leq \mathbf{d}_3 < 0$.
841842 The conic constraint is not binding at $\mathbf{x}^{(A)}$. Now consider the feasibility improving directions of
843 $\mathbf{d}^{(A)}$: $\mathcal{B}_{\mathcal{S}(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})} = \{\mathbf{d} : \mathbf{d}_1 \geq 0, \mathbf{d}_2 \geq 0, \mathbf{d}_1 + \mathbf{d}_2 + \mathbf{d}_3 < 0\}$. The vector $\mathbf{d} = (0.2, 0.2, -1) \in$
844 $\mathcal{A} \cap \mathcal{B}_A$ demonstrating that $\mathbf{x}^{(A)}$ is not elicitable.
845 \square 846 D PROOFS IN [SECTION 3.2](#)
847848 D.1 PROOF OF [THEOREM 3.7](#)
849850 *Proof of Theorem 3.7.* We show this as a corollary of Theorem 4.3. We will prove this by showing
851 that when both of the conditions in the theorem are violated, the limitation-characterizing condition
852 is satisfied and hence $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ cannot be elicibility-expanding.
853854 One of the condition of the limitation-characterizing condition is the lack of feasibility-expansion
855 which is implied by the violation of the theorem's condition. We will show that the other condition
856 of the limitation-characterizing condition also holds.
857858 When the second condition of the theorem is violated, there exists $i \in [K]$ with respect to which
859 $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is neither support-expanding nor binding-set contracting. That is, there is an
860 i such that $\mathcal{V}(\mathbf{x}^{(i)}) \subseteq \mathcal{V}(\mathbf{x}^{(A)})$ and $\mathcal{S}(\mathbf{x}^{(i)}) \supseteq \mathcal{S}(\mathbf{x}^{(A)})$.
861862 For every $\mathbf{d} \in \{C_{\mathcal{V}(\mathbf{x}^{(A)})}\mathbf{d} \leq 0, \mathbf{d}_{\mathcal{S}(\mathbf{x}^{(A)})^c} \geq 0, \mathbf{1}^\top \mathbf{d} = -1\}$, $C_{\mathcal{V}(\mathbf{x}^{(i)})}(\mathbf{d}) \leq 0$ and $\mathbf{d}_{\mathcal{S}(\mathbf{x}^{(i)})^c} \geq 0$, since
863 the rows of $C_{\mathcal{V}(\mathbf{x}^{(i)})}$ are a subset of the rows in $C_{\mathcal{V}(\mathbf{x}^{(A)})}$ and similarly, the rows in $\mathbf{d}_{\mathcal{S}(\mathbf{x}^{(i)})^c} \geq 0$ are
a subset of the rows in $\mathbf{d}_{\mathcal{S}(\mathbf{x}^{(A)})^c}$. Hence for any $\gamma^{(i)} \in \mathbb{R}_{\geq 0}^{|V_i|}$, $(\gamma_i)^\top C_{V_i} \mathbf{d} - \|(\gamma_i)^\top C_{V_i} \mathbf{d}\|_\infty \leq 0$.
864 \square

864 D.2 PROOF OF PROPOSITION B.8
865866 *Proof of Proposition B.8.* This follows from Theorem 4.4. \square
867868 D.3 PROOF OF PROPOSITION B.6
869870 *Proof of Proposition B.6.* This follows from Proposition E.2. \square
871872 D.4 PROOF OF PROPOSITION B.5
873874 *Proof of Proposition B.5.* Consider a problem with two output dimensions having the following two
875 constraints: 1) $c_1 : x_1 - x_2 \leq 0$, 2) $c_2 : -2x_1 + x_2 \leq 0$. Consider an aggregation operation $\mathbf{x}^{(1)} =$
876 $(1/2, 1/2)$, $\mathbf{x}^{(2)} = (1/2, 2/3) \rightarrow \mathbf{x}^{(A)} = (5/12, 7/12)$, where the binding constraints sets are $\mathcal{V}_{\mathbf{x}^{(i)}} =$
877 $\{c_i\}$ for $i \in \{1, 2\}$ and $\mathcal{V}_{\mathbf{x}^{(A)}} = \emptyset$.878 In this example, we will show how the limitations-characterization condition holds, meaning that
879 the operation cannot be elicibility-expanding for any feature map α .880 For any $\gamma_i \geq 0$ and \mathbf{d} , $\gamma_i c_i \mathbf{d} - \gamma_i \|(\mathbf{c}_i)_-\|_\infty > 0$ if and only if $c_i \mathbf{d} - \|(\mathbf{c}_i)_\infty\| > 0$. In this example,
881 the existence of γ_i for this inequality to be satisfied for each i corresponds to the conditions that 1)
882 $d_1 - d_2 > 1$ and $-2d_1 + d_2 > 2$. Since there are no elements outside the support of the vectors, there
883 are no additional conditions to check for the limitations-characterization condition.884 These two conditions imply that $1 + d_2 < d_1 < (d_2 - 2)/2$. Hence the conditions can only be satisfied
885 when $1 + d_2 < (d_2 - 2)/2$. This is only satisfied when $d_2 < -4$ and this implies $d_1 < -3$. Hence
886 the two conditions being satisfied means $1^\top \mathbf{d} < -7$. So the set of \mathbf{d} such that $1^\top \mathbf{d} = -1$ cannot intersect
887 with the set of \mathbf{d} satisfying the two conditions. \square
888889 D.5 PROOF OF PROPOSITION E.2
890891 *Proof of Proposition E.2.* Suppose that $M \geq 2$, and $\mathcal{S}(\mathbf{x}^{(A)}) = [M]$.
892893 We apply Theorem 4.3. It suffices to show that the limiting-characterization condition (Definition
894 4.2) is satisfied. By assumption, we know that the aggregation operation is not feasibility expanding.
895 It suffices to show that there does not exist \mathbf{d} such that for every $i \in [K]$ there exists $j(i) \in$
896 $\mathcal{S}(\mathbf{x}^{(i)})^c$ such that $-d_{j(i)} - |1^\top \mathbf{d}| > 0$.
897Let's show the contrapositive: assume that there exists \mathbf{d} such that for every $i \in [K]$ there exists
998 $j(i) \in \mathcal{S}(\mathbf{x}^{(i)})^c$ such that $-d_{j(i)} - |1^\top \mathbf{d}| > 0$. Since $\mathbf{d} \in \mathcal{B}_{\mathcal{S}(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})}$, we know that $d_{j'} \geq 0$ for
999 $j' \notin \mathcal{S}(\mathbf{x}^{(A)})$ and we know that $1^\top \mathbf{d} < 0$. If $j \notin \mathcal{S}(\mathbf{x}^{(A)})$, then note that $-d_j < 0$, so this means that
900 $j(i) \in \mathcal{S}(\mathbf{x}^{(A)})$. Putting this together, we see that $j(i) \in \mathcal{S}(\mathbf{x}^{(A)}) \setminus \mathcal{S}(\mathbf{x}^{(i)})$.
901902 It suffices to show that $\{j(i) \mid i \in [K]\} \neq [M]$. Assume for sake of contradiction that
903 $\{j(i) \mid i \in [K]\} = [M]$. Then since we know that $0 < -d_{j(i)} - |1^\top \mathbf{d}| = 1^\top \mathbf{d} - d_{j(i)}$, if we add
904 up all of these equations in the set $\{j(i) \mid i \in [K]\}$, we would obtain that $0 < M \cdot 1^\top \mathbf{d} - \sum_j d_j =$
905 $(M - 1) \cdot 1^\top \mathbf{d} - \sum_j d_j$, which means that $1^\top \mathbf{d} > 0$ which is a contradiction.
906 \square
907908 D.6 PROOF OF PROPOSITION B.9
909910 *Proof of Proposition B.9.* We apply Theorem 4.4. It suffices to show that the limiting-
911 characterization condition (Definition 4.2) is violated. Let \mathbf{d} be the vector such that $d_{j(i)} = -1$
912 for all $i \in [K]$, $d_j = |\{j(i) \mid i \in [K]\}| - 0.5$ for some $j \notin \{j(i) \mid i \in [K]\}$, and 0 elsewhere. It
913 follows from definition that $\mathbf{d} \in \mathcal{B}_{\mathcal{S}(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})}$. It suffices to show that for all $i \in [K]$, it holds
914 that:
915

$$-d_{\ell(i)} - |1^\top \mathbf{d}| > 0.$$

916 Using that $1^\top \mathbf{d} < 0$, this can be rewritten as:
917

$$-d_{\ell(i)} - |1^\top \mathbf{d}| = \sum_{j \neq \ell(i)} d_j = |\{j(i) \mid i \in [K]\}| - 0.5 - |\{j(i) \mid i \in [K]\}| + 1 = 0.5 > 0,$$

918 as desired.
 919

□

920
 921
 922 **D.7 PROOF OF PROPOSITION B.7**
 923

924 *Proof of Proposition B.7.* We apply Theorem 4.4. It suffices to show that the limiting-
 925 characterization condition (Definition 4.2 is violated). For each $i \in [K]$, we take $\gamma^{(i)}$ to be the
 926 1-hot vector with the 1 on the $\ell(i)$ th condition. Let \mathbf{d} be the vector given by the condition in the
 927 theorem statement. It follows immediately that $\mathbf{d} \in \mathcal{B}_{\mathcal{S}(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})}$. It suffices to show that for all
 928 $i \in [K]$, it holds that:

$$929 \quad C_{\ell(i)} \mathbf{d} - |\mathbf{1}^\top \mathbf{d}| \left| \min_{j \in [M]} \min(0, C_{\ell(i), j}) \right|.$$

931 Using that $\mathbf{1}^\top \mathbf{d} < 0$ and using that $C_{\ell(i)}$ has at least one negative coordinate, this can be written as:
 932

$$933 \quad C_{\ell(i)} \mathbf{d} + \mathbf{1}^\top \mathbf{d} \left| \min_{j \in [M]} C_{\ell(i), j} \right| > 0,$$

936 which we know holds. □
 937

938 **E ADDITIONAL DETAILS FOR SECTION 4**
 939

940 **E.1 CONNECTING THE LIMITATION-CHARACTERIZING CONDITION TO MECHANISMS**
 941

942 The limitation-characterizing condition requires two sub-conditions to hold. The first is lack of
 943 implementation of feasibility expansion. We can interpret the second sub-condition as not imple-
 944 menting either a strengthening of support-expansion or a strengthening of binding-set contraction.

945 To demonstrate the connection between the limitation-characterizing condition and the mechanisms,
 946 we will first show that when none of the mechanisms are implemented, the limitation characterizing
 947 condition is satisfied. We will later discuss the ways in which the limitation-characterizing is related
 948 to strengthened versions of the mechanisms.

949 The following result shows that none of the mechanisms being implemented implies that the
 950 limitation-characterizing condition is satisfied. This result immediately implies Theorem 3.7 (i.e.,
 951 that implementing at least one of these mechanisms is necessary for elicability-expansion).
 952

953 **Proposition E.1.** Fix conic constraints \mathbf{C} , and any aggregation operation $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$
 954 where each $\mathbf{x}^{(k)}$ is feasible i.e., $\mathbf{C}\mathbf{x}^{(k)} \leq 0$, for every $k \in [K]$. If $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ satisfies
 955 both of the following conditions, then $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ satisfies the limitation-characterizing
 956 condition (Definition 4.2).

957

- 958 • $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is not feasibility-expanding relative to \mathbf{C} (Definition 3.1).
- 959 • There exists $k \in [K]$ such that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is neither support-expanding relative to i
 960 (Definition 3.3) nor binding set-contracting relative to i (Definition 3.5).

 961

962 *Proof.* If none of the mechanisms are implemented, then the first condition of the limitation-
 963 characterization condition, which is lack of implementation of feasibility expansion automatically
 964 holds. We will now show the second condition of the limitation condition also holds. The sec-
 965 ond condition requires two sub-conditions Condition 2a and Condition 2b in in Definition 4.2 to
 966 hold for some $k \in [K]$. We will show that each of these conditions are implemented by lack of
 967 support-expansion and lack of binding-set contraction respectively.

968 *No support-expansion relative to k implies Condition 2a in Definition 4.2 relative to k .* When
 969 support-expansion is not implemented relative to k , all $j^{(k)} \in \mathcal{S}(\mathbf{x}^{(A)})$ also belongs to $\mathcal{S}(\mathbf{x}^{(k)})$. For
 970 all $\mathbf{d} \in \mathcal{B}_{\mathcal{S}(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})}$ and all $j^{(k)} \in \mathcal{S}(\mathbf{x}^{(k)})^c \subseteq \mathcal{S}(\mathbf{x}^{(A)})^c$, $\mathbf{d}_{j^{(k)}} \geq 0$. Hence $\mathbf{d}_{j^{(k)}} + |\mathbf{1}^\top \mathbf{d}|$ which
 971 is even larger than $\mathbf{d}_{j^{(k)}}$ is ≥ 0 for every $j^{(k)} \in \mathcal{S}(\mathbf{x}^{(k)})^c$. This is the Condition 2a relative to k .

972 *No binding-set contraction relative to k implies Condition 2b in Definition 4.2 relative to k .* No
 973 binding set contraction means that all constraints in $\mathcal{V}(\mathbf{x}^{(A)})$ are also in $\mathcal{V}(\mathbf{x}^{(k)})$. Hence every
 974 $\mathbf{d} \in \mathcal{B}_{\mathcal{S}(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})}$ satisfies all conic constraints $\ell \in \mathcal{V}(\mathbf{x}^{(k)})$. \mathbf{d} also satisfies all non-negatively
 975 weighted sums of conic constraints in $\ell \in \mathcal{V}(\mathbf{x}^{(k)})$. Condition 2b relative to k in Definition 4.2
 976 only requires approximately satisfying the weighted sums of constraints and hence is implied by no
 977 binding-set contraction relative to k . \square
 978

979 **How the limitation-characterizing condition strengthens mechanisms the mechanisms.** Next,
 980 we will describe how the limitation-characterizing condition, specifically Conditions 2a,2b in Defi-
 981 nition 4.2 are failures of strictly strengthened versions of the mechanisms. This makes the limitation-
 982 characterizing condition a strictly weaker condition to be satisfied compared to failure of all mech-
 983 anisms. The conditions 2a,2b of the limitation-characterizing condition are strengthenings in two
 984 ways. The first is due to requiring violations by minimum margins. Note that from the proof of
 985 **Proposition E.1**, just violation without any minimum margin requirement suffices for the mech-
 986 anisms. Another way that these conditions are stronger is the *joint* requirement across all $k \in [K]$.
 987 We require that the same $\mathbf{d} \in \mathcal{B}_{\mathcal{S}(\mathbf{x}^{(A)}), \mathcal{V}(\mathbf{x}^{(A)})}$ witnesses the violation by a margin for every $k \in [K]$.
 988

989 In some special cases, the limitation-characterizing conditions correspond exactly to not implement-
 990 ing any of the mechanisms, instead of not implementing strengthenings. One special case is when
 991 no vector in the aggregation operation has any binding conic constraints. This holds when there
 992 are no conic constraints. In this special case, even the regular, non-strengthened form of binding-
 993 set contraction cannot kick in. We can show that in this special case, the limitation-characterizing
 994 condition is either not feasibility-expansion or not the usual, non-strengthened support-expansion as
 long as a particular edge case does not occur.

995 **Corollary E.2.** *Fix conic constraints \mathbf{C} , and any $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$. Suppose that $\mathcal{V}(\mathbf{x}^{(A)}) =$
 996 $\mathcal{V}(\mathbf{x}^{(1)}) = \dots = \mathcal{V}(\mathbf{x}^{(K)}) = \emptyset$, and suppose that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is not feasibility-expanding.*
 997 *Then $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is elicibility-expanding for some α if and only if (1) if $\mathbf{x}^{(A)}$ is full-
 998 support i.e., $\mathcal{S}(\mathbf{x}^{(A)}) = [M]$, then there exists $j \in [M]$ such that so $\mathbf{x}^{(k)}$ has support $[M] \setminus \{j\}$ and
 999 (2) $\mathbf{x}^{(A)}$ is support-expanding relative to every $k \in [K]$ i.e., $\mathcal{S}(\mathbf{x}^{(A)}) \not\subseteq \mathcal{S}(\mathbf{x}^{(k)})$ for every $k \in [K]$.*
 1000

1001 It is harder to remove the strengthening for the binding set constraints. This is due to the joint
 1002 geometry of the constraints that appears in the limitation-characterizing condition.
 1003

1004 F PROOFS FOR SECTION 4

1006 F.1 KEY LEMMAS FOR SECTION 4

1008 The following lemmas provides the characterization for the elicibility of a vector \mathbf{x} under a feature
 1009 weights matrix α in terms of the intersection of feasible perturbation directions $\mathcal{B}_{\mathcal{S}(\mathbf{x}), \mathcal{V}(\mathbf{x})} = \{\mathbf{d} :
 1010 \mathbf{C}_{\mathcal{V}(\mathbf{x})}\mathbf{d} \leq 0\} \cap \{\mathbf{d} : \mathbf{d}_{\mathcal{S}(\mathbf{x})^c} \geq 0\} \cap \{1^t \mathbf{d} < 0\}$ and feature-improving directions $\mathbf{d} \in \mathbb{R}^M : \{\mathbf{d} : \alpha \mathbf{d} \geq 0\}$.
 1011 These results generalize the characterization results in Kleinberg et al. (2019) to allow for conic
 1012 constraints \mathbf{C} .
 1013

Lemma F.1. *If a vector \mathbf{x} is elicitable with budget E , then $\|\mathbf{x}\|_1 = E$.*

1015 *Proof.* This is because, for any feasible vector \mathbf{x} with $\|\mathbf{x}\|_1 < E$, scaling \mathbf{x} to obtain $\mathbf{x}' = E\mathbf{x}/\|\mathbf{x}\|_1$
 1016 results in a feasible vector that has strictly larger reward for any reward function.
 1017

1018 \mathbf{x}' clearly maintains nonnegativity constraints and bounded ℓ_1 norm constraint. Additionally since
 1019 the only other constraints are conic, scaling the feasible \mathbf{x} non-negatively also maintains the addi-
 1020 tional conic constraint.
 1021

1022 By the monotonicity of the reward functions we consider, for all reward functions, \mathbf{x}' has reward at
 1023 least as high as \mathbf{x} .
 1024

1025 By the strict monontonicity of our feature mapping functions and for the notion of monotonicity of
 1026 reward functions we consider, \mathbf{x}' achieves a strictly higher reward than \mathbf{x} .
 1027 \square

1026 The following lemma shows that elicability of a vector only depends on the direction of the vector
 1027 and not of the norm. It allows us to study elicability of the normalized vector using budget 1 i.e.,
 1028 ℓ_1 norm bound of one. Hence our elicability characterizations will be expressed with budget 1.
 1029

1030 **Lemma F.2.** *A vector \mathbf{x} is elicitable with some budget E , under a reward function R if and only*
 1031 $\mathbf{x}/\|\mathbf{x}\|_1$ *is elicitable with budget 1 for the same reward function.*

1032 *Proof.* If \mathbf{x} is elicitable, it is elicitable with a budget of $\|\mathbf{x}\|_1$ by [Lemma F.1](#). It is elicitable if and
 1033 only there is no feasible \mathbf{y} with $\|\mathbf{y}\|_1 \leq \|\mathbf{x}\|_1$ with higher reward than \mathbf{x} . If such a \mathbf{y} exists, then
 1034 $\mathbf{x}/\|\mathbf{x}\|_1$ is not elicitable with budget 1 since $\mathbf{y}/\|\mathbf{x}\|_1$ also has budget 1, is feasible and has higher
 1035 reward than \mathbf{x} . Similarly, if an improving \mathbf{y} existed for $\mathbf{x}/\|\mathbf{x}\|_1$ under budget 1, then $\mathbf{y}/\|\mathbf{x}\|_1$ is
 1036 improving for \mathbf{x} under budget $\|\mathbf{x}\|_1$. \square

1037 **Lemma F.3** (Single output elicitation necessary). *An output vector \mathbf{x} is elicitable only if*
 1038 $\mathcal{B}_{S(\mathbf{x}), V(\mathbf{x})} \cap \{\alpha \mathbf{d} \geq 0\}$ *is non-empty.*

1039 *Proof of Lemma F.3.* Let $\mathbf{d} \in \mathcal{B}_{S(\mathbf{x}), V(\mathbf{x})} \cap \{\alpha \mathbf{d} \geq 0\}$. It suffices to construct a feasible output
 1040 vector \mathbf{y} that has strictly higher reward than \mathbf{x} for every \mathbf{x} with ℓ_1 norm equal to one and for every
 1041 monotone reward function of the features. This is sufficient to prove the lemma since by [lemma F.1](#),
 1042 any elicitable vector has ℓ_1 norm equal to one.
 1043

1044 This vector \mathbf{y} we construct is $\mathbf{y} = (\mathbf{x} + \lambda \mathbf{d})/\|\mathbf{x} + \lambda \mathbf{d}\|_1$ where $\lambda > 0$ is chosen to be small enough so
 1045 that $\mathbf{y} \geq 0$.
 1046

1047 First consider the vector $\mathbf{y}' = \mathbf{x} + \lambda \mathbf{d}$ for an appropriate choice of $\lambda > 0$ that we will describe in a
 1048 bit. First note that \mathbf{y}' is feasible on all conic and non-negativity constraints that are binding at $\mathbf{x}(x)$
 1049 due to \mathbf{d} 's membership in $\{\mathbf{d} : C_{V(\mathbf{x})} \mathbf{d} \leq 0\} \cap \{\mathbf{d} : \mathbf{d}_{S(\mathbf{x})^c} \geq 0\}$.
 1050

1051 We can choose λ to be small enough so that \mathbf{y}' continues to meet all non-binding constraints. That is
 1052 choose $\lambda < \min_{j \in V(\mathbf{x})^c, C_j \mathbf{d} > 0} -\mathbf{C}_j \mathbf{x} / \mathbf{C}_j \mathbf{d}$ and $\min_{i \in (\mathbf{x}), d_i < 0} -\mathbf{x}_i / d_i$. This establishes that we have a
 1053 positive choice of λ making \mathbf{y}' satisfy the nonnegativity and conic constraints. Additionally, we have
 1054 that $\mathbf{1}^T \mathbf{y}' = \|\mathbf{y}'\|_1 = \|\mathbf{x}\|_1 - \lambda \mathbf{1}^T \mathbf{d} < \|\mathbf{x}\|_1 = 1$. That is, \mathbf{y}' satisfies the bounded ℓ_1 norm constraint in
 1055 a non-binding manner. This shows that \mathbf{y}' is feasible.
 1056

1057 We also have that $\alpha^T \mathbf{y}' = \alpha^T (\mathbf{x} + \lambda \mathbf{d}) \geq \alpha^T \mathbf{x}$ since $\alpha^T \mathbf{d} \geq 0$. Hence \mathbf{y}' satisfies feasibility constraints
 1058 and has at least as high values on all features. By the monotonicity of the reward functions we
 1059 consider, for all reward functions, \mathbf{y}' has reward at least as high as \mathbf{x} . [Lemma F.1](#) shows that scaling
 1060 \mathbf{y}' to have ℓ_1 norm equal to one results in strictly higher reward for all reward functions. Hence
 1061 $\mathbf{y}'/\|\mathbf{y}'\|_1$ is feasible and has strictly higher reward than \mathbf{x} for all monotone reward functions.
 1062 \square

1063 **Lemma F.4** (Single output elicitation sufficient). *An output vector \mathbf{x} is elicitable if $\mathcal{B}_{S(\mathbf{x}), V(\mathbf{x})} \cap$
 1064 $\{\alpha \mathbf{d} \geq 0\}$ is non-empty.*

1065 *Proof.* Write $S := S(x)$ and $V := V(x)$.
 1066

1067 **Existence of multipliers.** By positive scaling of directions, the assumption $B_{S, V} \cap D_\alpha = \emptyset$ is
 1068 equivalent to infeasibility of the system :

$$C_V \mathbf{d} \leq 0, \quad d_{S^c} \geq 0, \quad \alpha^T \mathbf{d} \geq 0, \quad \mathbf{1}^T \mathbf{d} < 0. \quad (3)$$

1069 Let $I_{S^c} \in \mathbb{R}^{|S^c| \times M}$ be the coordinate-selector matrix whose rows are the vectors e_j^T for $j \in S^c$, so
 1070 that $I_{S^c} \mathbf{d} = d_{S^c}$.
 1071

1072 By Motzkin's transposition theorem of the alternative, infeasibility of equation 3 implies the exis-
 1073 tence of multipliers (i.e., dual variables)
 1074

$$\gamma \in \mathbb{R}_{\geq 0}^{|V|}, \quad \lambda \in \mathbb{R}_{\geq 0}^{|S^c|}, \quad \nu \in \mathbb{R}_{\geq 0}^N, \quad \tau > 0$$

1075 such that
 1076

$$C_V^T \gamma - I_{S^c}^T \lambda + \tau - \alpha^T \nu = 0 \quad (4)$$

1077 holds. (The strict right-hand side $\mathbf{1}^T \mathbf{d} < 0$ yields $\tau > 0$.)
 1078

1080

Reward function construction. Define a reward function that is linear in the features

1081

1082

1083

1084

$$R(z) = \sum_{i=1}^N \beta_i z_i \quad \text{with} \quad \beta_i := \frac{\nu_i}{f'_i((\alpha^\top x)_i)} \quad (> 0),$$

1085

1086

1087

which is well-defined since each f_i is strictly increasing, hence $f'_i((\alpha^\top x)_i) > 0$. Let $r(u) := R(F(u)) = \sum_{i=1}^N \beta_i f_i((\alpha^\top u)_i)$. Because each f_i is concave and increasing, r is concave. Its gradient at x is

1088

1089

$$\nabla r(x) = \sum_{i=1}^N \beta_i f'_i((\alpha^\top x)_i) \alpha_{\cdot, i} = \alpha \nu,$$

1090

where $\alpha_{\cdot, i}$ is the i -th column of α .

1091

1092

Elicitability. Consider the reward maximization program

1093

1094

1095

$$\max_{u \in \mathbb{R}^M} r(u) \quad \text{s.t.} \quad Cu \leq 0, \quad u \geq 0, \quad \mathbf{1}^\top u \leq 1.$$

1096

This is a concave program, and its Lagrangian is

1097

1098

1099

$$\mathcal{L}(u, \lambda_0, \mu, \tilde{\gamma}) = r(u) + \lambda_0 (1 - \mathbf{1}^\top u) + \mu^\top u - \tilde{\gamma}^\top (Cu),$$

with multipliers $\lambda_0 \geq 0, \mu \geq 0, \tilde{\gamma} \geq 0$. Evaluate the KKT conditions at $u = x$ with the choice

1100

1101

$$\lambda_0 := \tau, \quad \mu_S := 0, \quad \mu_{S^c} := \lambda, \quad \tilde{\gamma}_V := \gamma, \quad \tilde{\gamma}_{V^c} := 0.$$

1102

1103

Primal feasibility holds by definition of S, V . Complementary slackness holds since $x_j = 0$ for $j \in S^c$ and $(Cx)_\ell = 0$ for $\ell \in V$, while $\mu_S = 0$. For stationarity,

1104

1105

$$\nabla r(x) - \lambda_0 \mathbf{1} + \mu - C^\top \tilde{\gamma} = \alpha g - \tau \mathbf{1} + I_{S^c}^\top \lambda - C_V^\top \gamma = 0$$

1106

1107

by equation 4. Finally, $\lambda_0 = \tau > 0$ certifies that the ℓ_1 -budget binds ($\mathbf{1}^\top x = 1$, consistent with Lemma C.2).

1108

1109

Since r is concave and the constraints are linear, the KKT conditions are sufficient; hence x maximizes r over the feasible region and is therefore elicitable. \square

1110

1111

F.2 PROOF OF THEOREM 4.1

1112

Theorem 4.1 follows directly from the single-agent results in the previous subsection.

1113

1114

1115

1116

Proof of Theorem 4.1. We apply Lemma F.3 and Lemma F.4 to obtain necessary and sufficient conditions on when x is elicitable. We apply this to the outputs $x^{(1)}, \dots, x^{(K)}$ as well as $x^{(A)}$. \square

1117

1118

1119

F.3 KEY INTERMEDIATE RESULTS FOR THE PROOF OF THEOREM 4.3 AND THEOREM 4.4

1120

1121

1122

To prove Theorem 4.3 and Theorem 4.4, we will use an alternate but equivalent way of expressing the limitations-characterizing condition (Definition 4.2). This equivalent condition is defined below.

1123

1124

1125

1126

Definition F.5. Fix constraints C and aggregation operation $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$. We say that the alternate limitations-characterizing condition is satisfied for $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$ if 1) $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$ does not implement feasibility-expansion, and 2) there does not exist $d^{(A)} \in \mathcal{B}_{S(x^{(A)}), V(x^{(A)})}$ such that:

1127

1128

1129

1130

1131

1132

1133

$$\{u + \lambda d^{(A)} \mid u \in \mathbb{R}_{\geq 0}^M, \lambda \geq 0\} \cap \left(\bigcup_{i \in [k]} \mathcal{B}_{S(x^{(i)}), V(x^{(i)})} \right) = \emptyset.$$

The following proposition shows that the limitation-characterizing condition is equivalent to the new condition we defined above.

Proposition F.6. The conditions defined in Definition 4.2 and Definition F.5 are equivalent.

1134 *Proof.* For ease of notation, let $V_i := \mathcal{V}(x^{(i)})$ for $i \in [K]$ and let $V_A := \mathcal{V}(x^{(A)})$. It suffices to show
 1135 that $\{u + \lambda d : u, \lambda \geq 0\}$ for a $d \in \mathcal{B}_{[M], \mathcal{V}x^{(0)}}$ has empty intersection with $\mathcal{B}_{[M], \mathcal{V}x^{(i)}}$, for each
 1136 $i \in [K]$ if and only if for every $\gamma^{(i)} \in \mathbb{R}_{\geq 0}^{|V_i|}$, $\gamma_i^T C_{V_i} d - \|(\gamma_i^T C_{V_i})_-\|_\infty > 0$ or $I_{S_A^c} d < \mathbf{1}^d d$. Without
 1137 loss of generality, it suffices to prove this for all $\gamma^{(i)} \in \mathbb{R}_{\geq 0}^{|V_i|}$ with bounded norm, say $\|\gamma^{(i)}\|_1 \leq 1$.
 1138

1139 For any $d \in \mathcal{B}_{[M], \mathcal{V}x^{(0)}}$, the intersection of $\{u + \lambda d : u, \lambda \geq 0\}$ and $\mathcal{B}_{[M], \mathcal{V}x^{(i)}}$ is non-empty if and
 1140 only if there exists a $u, \lambda \geq 0$ such that $C_{V_i}(u + \lambda d) \leq 0$ and $\mathbf{1}^t(u + \lambda d) < 0$.
 1141

1142 $d \in \mathcal{B}_{[M], \mathcal{V}x^{(0)}}$ means that $\mathbf{1}^t d < 0$, $C_{V_A} d \leq 0$, and $-I_{S_A^c} d \leq 0$. We can always normalize d so that
 1143 $\mathbf{1}^t d = -1$. We can also scale the inequalities for non-empty intersection by dividing by λ . (Note that
 1144 $\lambda \neq 0$, since $\mathbf{1}^t u \geq 0$.) Hence, we can equivalently write the condition for non-empty intersection
 1145 as the existence of $v \geq 0$ such that $C_{V_i}(d + v) \leq 0$, $-I_{S_i^c}(d + v) \leq 0$ and $\mathbf{1}^t v < -\mathbf{1}^t d = 1$. These
 1146 inequalities for the non-empty intersection condition hold if and only if all weighted sums (with
 1147 non-negative weights) of the inequalities also hold true. That is, for every $\gamma^{(i)} \geq 0$, $\lambda^{(i)} \geq 0$, weight
 1148 vectors, $\gamma^{(i)T} C_{V_i}(d + v) - \lambda^{(i)T} I_{S_i^c}(d + v) \leq 0$ and $\mathbf{1}^t v < 1$.
 1149

1150 A v satisfying $(\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})(d + v) \leq 0$ and $\mathbf{1}^t v < 0$ to simultaneously exists if and only if
 1151

$$\inf_{v \geq 0: \mathbf{1}^t v \leq 1} \sup_{\gamma^{(i)} \geq 0, \|\gamma^{(i)}\|_1 \leq 1} (\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})(d + v) \leq 0.$$

1152 Since $(\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})(d + v)$ is an affine function in $\gamma^{(i)}$, $\lambda^{(i)}$ and v , and since the sets we
 1153 optimize over $\{\gamma^{(i)} \geq 0, \|\gamma^{(i)}\|_1 \leq 1\}$ and $\{v \geq 0, \mathbf{1}^t v \leq 1\}$ are convex and compact, we can apply,
 1154 we can apply minimax theorem to get
 1155

$$\begin{aligned} & \inf_{v \geq 0: \mathbf{1}^t v < 1} \sup_{\gamma^{(i)}, \lambda^{(i)} \geq 0, \|\gamma^{(i)}\|_1 \leq 1, \|\lambda^{(i)}\|_1 \leq 1} (\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})(d + v) \\ &= \sup_{\gamma^{(i)}, \lambda^{(i)} \geq 0, \|\gamma^{(i)}\|_1 \leq 1, \|\lambda^{(i)}\|_1 \leq 1} \inf_{v \geq 0: \mathbf{1}^t v < 1} (\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})(d + v). \end{aligned}$$

1156 Note that for a given $\gamma^{(i)}, \lambda^{(i)}$, we can construct an optimal v as follows. If $\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c}$
 1157 has a negative coordinate, then v places a weight of 1 on the most negative coordinate of $\gamma^{(i)T} C_{V_i} -$
 1158 $\lambda^{(i)T} I_{S_i^c}$. Otherwise, then $v = \mathbf{0}$. Using this construction, we know that:
 1159

$$\inf_{v \geq 0: \mathbf{1}^t v \leq 1} (\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})(d + v) = (\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})d - \|(\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})_-\|_\infty.$$

1160 Thus, the condition of non-empty intersection becomes the condition that $(\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})d -$
 1161 $\|(\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})_-\|_\infty \leq 0$ for all $\gamma^{(i)}, \lambda^{(i)} \geq \mathbf{0}$, $\|\gamma\|_1, \|\lambda\|_1 \leq 1$.
 1162

1163 Note that $\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c}$ subtracts λ_j from some coefficient of the j th row of $\gamma^{(i)T} C_{V_i}$. As a
 1164 result, we can write $\|(\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})_-\|_\infty$ as $\|\gamma^{(i)T} C_{V_i} - \|\lambda^{(i)T} I_{S_i^c}\|_\infty = \|\gamma^{(i)T} C_{V_i}\|_\infty + 1$.
 1165

1166 So the condition $(\gamma^{(i)T} C_{V_i} - \lambda^{(i)T} I_{S_i^c})d - (\|\gamma^{(i)T} C_{V_i}\|_\infty + 1) \leq 0$ is equivalent to the condition
 1167 that $\gamma^{(i)T} C_{V_i} - \|\gamma^{(i)T} C_{V_i}\|_\infty \leq 0$ and $-\lambda^{(i)T} d - 1 \leq 0$ (since both terms being ≤ 0 implies the sum
 1168 is ≤ 0 and conversely, if the sum is not ≤ 0 , one must be > 0). This is exactly the condition in the
 1169 limitation-characterizing condition.
 1170

□

1171 F.4 PROOF OF THEOREM 4.3

1172 Using this equivalence, we will show the necessity of the alternative condition to establish the ne-
 1173 cessity of the limitations-characterizing condition
 1174

1175 *Proof of Theorem 4.3.* We will prove the contrapositive: If $x^{(1)}, \dots, x^{(K)} \rightarrow x^{(A)}$ is elicibility-
 1176 expanding for some feature map α and for conic constraints C , then the limitations-characterizing
 1177 condition (Definition 4.2) is violated.
 1178

1188 One case is that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is elicibility-expanding through feasibility-expansion.
 1189 This automatically violates the limitations-characterizing condition.
 1190

1191 The other case is that $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ is not feasibility-expanding. Then $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow$
 1192 $\mathbf{x}^{(A)}$ is feasible. We will show that if the limitations-characterizing condition

1193 If the violation occurs through existence of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)}$ is not elicitable.
 1194

1195 Suppose that $\mathbf{x}^{(A)}$ is not elicitable under a feature mapping α and constraints C . We will show
 1196 that a violation of the limitations-characterizing condition implies that one of $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ is not
 1197 elicitable, which contradicts $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ being elicibility-expanding.
 1198

1199 Since $\mathbf{x}^{(A)}$ is not elicitable under a feature weights matrix α , by Lemma F4, there is a $\mathbf{d}^{(A)} \in$
 1200 \mathcal{K}_{S_0, V_0} such that $\alpha \mathbf{d}^{(A)} \geq 0$. Since the limitation-characterizing condition is violated, the alternate
 1201 limitation-characterizing condition is also violated (Proposition F6). This means that there exists
 1202 $\mathbf{x}^{(i)}$ with \mathcal{K}_{S_i, V_i} having non-empty intersection with $\{u + \lambda \mathbf{d}^{(0)}\}$.
 1203

1204 It suffices to show that $\mathbf{x}^{(i)}$ is not elicitable under feature mapping α . To see this, let d_i denote
 1205 an element of the intersection $\mathcal{K}_{S_i, V_i} \cap \{u + \lambda \mathbf{d}^{(0)}\}$. We can then write $d_i = u + \lambda d^{(A)}$. Note that
 1206 $\alpha d_i = \alpha u + \lambda \alpha d^{(A)}$. We know that $\alpha u \geq 0$ since $u \geq 0$ and α has non-negative entries. Additionally,
 1207 $\alpha d^{(A)} \geq 0$ as shown above. Hence $\alpha d_i \geq 0$. By Lemma F3, this means that x_i is not elicitable.
 1208

□

1209 F.5 PROOF OF THEOREM 4.4

1210 *Proof of Theorem 4.4.* Suppose the limitation-characterizing condition is satisfied. By Proposition
 1211 F6, this means that the alternate limitation-characterizing condition is satisfied. Then we know that
 1212 we are in one of two cases.
 1213

1214 **Case 1: $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)} \rightarrow \mathbf{x}^{(A)}$ implements feasibility expansion.** Consider a feature mapping
 1215 with a single feature and all dimensions contribute equal weights of one to this feature. All output
 1216 vectors with the same ℓ_1 norm result in the same reward for all reward functions, and thus all feasible
 1217 outcomes are elicitable. That is any output vector is elicitable if and only if it is feasible. Under
 1218 this construction, feasibility-expansion implies elicibility-expansion.
 1219

1220 **Case 2: there exists $\mathbf{d}^{(A)} \in \mathcal{K}_{S(\mathbf{x}^{(A)}, \mathcal{V}(\mathbf{x}^{(A)}))}$ such that for all $u \geq 0, \lambda \geq 0, u + \lambda \mathbf{d}^{(A)} \notin \mathcal{K}_{S_i, V_i}$ for**
 1221 $i \neq 0$. We will construct a feature mapping α based on $\mathbf{d}^{(A)}$ such that the set of directions weakly
 1222 increasing feature values i.e., the set $D_\alpha = \{d : \alpha d \geq 0\}$ is a subset of $\{u + \lambda \mathbf{d}^{(A)} : u \geq 0, \lambda \geq 0\}$.
 1223 This implies that for all other outputs x_i , $D_\alpha \cap \mathcal{K}_{S(\mathbf{x}^{(i)}, \mathcal{V}(\mathbf{x}^{(i)}))}$ is empty and hence $x^{(i)}$ is elicitable
 1224 under α .
 1225

1226 To complete this argument, we will explicitly construct such an α based on $\mathbf{d}^{(A)}$. Let $P_0 = \{i \in$
 1227 $[m] : d_i^{(A)} > 0\}$ denote the positive coordinates of $\mathbf{d}^{(A)}$ and let $N_0 = \{i \in [m] : d_i^{(A)} \leq 0\}$ denote
 1228 the negative or zero coordinates. We construct two sets of features:
 1229

- 1230 • For every $p \in P_0$, there is a corresponding feature F_p whose row in A is the vector e_p which is
 1231 the vector with 1 at coordinate p and zero everywhere else. That is, the action x_p has weight 1 on
 1232 feature F_p and all other actions have zero weight.
- 1233 • The next set of features are defined for every pair $p \in P_0, q \in N_0$. This feature $F_{p,q}$ has a
 1234 corresponding row in A_0 that is the vector $d_p^{(A)} e_q - d_q^{(A)} e_p$. That is, the only actions with possible
 1235 non-zero weights to $F_{p,q}$ are actions x_p, x_q . The weight from x_p is $|d_q^{(A)}|$ and the weight from x_q
 1236 is $|d_p^{(A)}|$.
 1237

1238 Now let us show that the set $D_\alpha = \{d : \alpha d \geq 0\}$ is a subset of $B_0 = \{u + \lambda \mathbf{d}^{(A)}\}$. Take any $d \in D_\alpha$.
 1239 For every $p \in P_0$, since d weakly improves value of F_p , it holds that $d_p \geq 0$. By ensuring that
 1240 $\lambda \leq d_p/d_p^{(A)}$ for all $p \in P_0$, we can ensure that $d_p - \lambda d_p^{(A)} \geq 0$.
 1241

1242 For every $p \in P_0, q \in N_0$, since d weakly improves value of $F_{p,q}$, it holds that $-d_p d_q^{(A)} + d_q d_p^{(A)} \geq 0$.
 1243 In other words, $d_q \geq d_p d_q^{(A)} / d_p^{(A)}$.
 1244

1245 We will show that it is possible to choose a $\lambda \geq 0$ such that $d - \lambda d^{(A)} \geq 0$, and hence d can be
 1246 expressed as $u + \lambda d^{(A)}$ for $u \geq 0$. If there is a $p \in P_0$ with $d_p = 0$, then $d_q \geq 0$ while $d_q^{(A)} \leq 0$. So for
 1247 all $\lambda > 0$, $d_q - \lambda d_q^{(A)} \geq 0$. Otherwise, we can choose λ less than $d_p / d_p^{(A)}$ and we get $d_q - \lambda d_q^{(A)} \geq 0$.
 1248

□

1249

1250

1251 G EMPIRICAL SETUP FOR SECTION 2.4

1253 **Model output generation.** The outputs are generated using gpt-4o-mini-2024-07-18 with the tem-
 1254 perature set to 1.0. These are the five prompts that are used to produce model outputs:
 1255

- 1256 1. “From a machine learning theory perspective, list 10 influential papers that have shaped our
 1257 current understanding of large language models.”
- 1258 2. “From the perspective of natural language processing and computational linguistics, list 10 key
 1259 research papers that have been most influential in the development of modern large language
 1260 models.”
- 1261 3. “From a cognitive science and psycholinguistics standpoint, list 10 important papers that inform
 1262 our understanding of how large language models represent, process, or acquire linguistic and
 1263 conceptual structure.”
- 1264 4. “From the standpoint of AI alignment and human–AI interaction, list 10 important papers that
 1265 have shaped how large language models are aligned, instructed, or trained with feedback.”
- 1266 5. “From a multi-agent and game-theoretic perspective, list 10 influential papers that contribute to
 1267 the development or understanding of large language models”

1269 These prompts produce five outputs X_1, \dots, X_5 , each a list of 10 papers tailored to its respective
 1270 perspective. Next, we pass the concatenated outputs (X_1, \dots, X_5) to gpt-4o-mini-2024-07-18 by
 1271 prompting the model with *aggregation instructions* followed by the concatenation of the 5 lists
 1272 of papers, where each list is preceded by followed by “List of papers: [insert output number]”.
 1273 The intersection-style and addition-style aggregation operations are performed using the following
 1274 *aggregation instructions*.

1275

- 1276 • *Addition-style aggregation:* “Each of the following lists contains influential papers on large lan-
 1277 guage models in specializaing in different areas: machine learning theory, natural language pro-
 1278 cessing, computational linguistics, AI alignment, human–AI interaction, and multi-agent systems.
 1279 Based on these lists, generate a new list of 10 papers that reflects the union of their themes and
 1280 coverage. Your list should be freshly generated (not a literal set union), but it should include pa-
 1281 pers that plausibly come from any of the provided lists, covering as much of the combined topical
 1282 space as possible.”
- 1283 • *Intersection-style aggregation:* “Each of the following lists contains influential papers on large
 1284 language models in specializaing in different areas: machine learning theory, natural language pro-
 1285 cessing, computational linguistics, AI alignment, human–AI interaction, and multi-agent systems.
 1286 Based on these lists, generate a new list of 10 papers that reflects their intersection. That is,
 1287 papers belonging to many of these areas of specialization. Your list should be freshly generated
 1288 (not a literal intersection), selecting papers that could plausibly appear in all of the lists. If the
 1289 literal intersection is empty, still generate the best possible list of papers that are central, broadly
 1290 relevant, and thematically compatible with all lists.”

1290

1291

These aggregation prompts produce outputs $X_{\text{addition}}, X_{\text{intersection}}$.

1292

1293

1294

1295

Output vector computation. We now describe in more detail how we compute the embeddings
 shown in Figure 1. We embed and visualize the set $\{X_1, \dots, X_5, X_{\text{addition}}, X_{\text{intersection}}\}$. We calculate
 the 768-dimensional embeddings using all-mpnet-base-v2 (Reimers & Gurevych, 2019), which is
 built into the sentence-transformers package in pytorch. To make these embeddings fit into our
 framework, we translate them to the nonnegative orthant by applying an additive shift $s \in \mathbb{R}_{\geq 0}^{768}$. To

1296 do this, we compute the embeddings of the 805 gpt-4o-mini-2024-07-18 outputs from the helpful-
1297 base dataset in AlpacaEval (Li et al., 2023). The additive shift s is taken to be negative of the
1298 minimum coordinate along each dimension in this set of 805 embeddings. We translate all 5 outputs
1299 and the aggregated outputs by adding s . We compute the variance across the 5 translated outputs
1300 vectors along each of the 768 dimensions, and select the top 2 and top 3 dimensions according to
1301 variance. We also compute the ℓ_2 -distance between outputs, which is invariant to the additive shift.
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349