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Abstract

Domain Adaptation of Black-box Predictors (DABP) transfers knowledge from a
labeled source domain to an unlabeled target domain, without requiring access to
either source data or source model. Common practices of DABP leverage reliable
samples to suppress negative information about unreliable samples. However, there
are still some problems: i) Excessive attention to reliable sample aggregation leads
to premature overfitting; ii) Valuable information in unreliable samples is often
overlooked. To address them, we propose a novel spatial learning approach, called
Controlled Visual Hallucination via Thalamus-driven Decoupling Network (CVH-
TDN). Specifically, CVH-TDN is the first work that introduces the thalamus-driven
decoupling network in the visual task, relying on its connection with hallucina-
tion to control the direction of sample generation in feature space. CVH-TDN
is composed of Hallucination Generation (HG), Hallucination Alignment (HA),
and Hallucination Calibration (HC), aiming to explore the spatial relationship
information between samples and hallucinations. Extensive experiments confirm
that CVH-TDN achieves SOTA performance on four standard benchmarks.

1 Introduction

Traditional unsupervised domain adaptation (UDA) adapts models trained on a fully labeled source
domain to an unlabeled target domain, aiming to alleviate the constraints of data collection and
annotation in training deep neural networks [1–5]. However, the application of UDA techniques is
limited in some scenarios like personal medical records, where access to source data is restricted due
to privacy-preserving policies. To solve this problem, source-free domain adaptation (SFDA) methods
[6–8] were introduced recently, which assume the availability of only unlabeled target domain data
and a pre-trained source model during adaptation. Although SFDA methods reduce the possibility
of privacy leaks by using the pre-trained source model instead of source data, certain generation
techniques like [9, 10] can potentially reconstruct the source data by learning from the source model.
Compared to UDA and SFDA settings, domain adaptation of black-box predictors (DABP) provides
better data privacy protection with more flexible portability, which adapts a model using only the
unlabeled target data and a black-box predictor trained on the source domain, e.g., an API service in
the cloud [11]. As demonstrated in Appendix A, we present a detailed exposition of the respective
processes and the differences among UDA, SFDA, and DABP.
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Figure 1: The feature visualizations on the Office-Home
(A→P) using t-SNE [12]. The points represent target samples
and the different colors correspond to their ground-truth
classes. Previous DABP methods struggle with handling
a few low-reliability samples effectively. Even if the fine-
tuning (FT) process is used to force the aggregation of low-
reliability samples, the model still struggles to judge, leading
to confusion between similar classes and a risk of degraded
or stagnant performance. CVH-TDN solves this problem and
improves model generalization without the FT process.

Recently, some researchers have paid
attention to DABP, and the proposed
methods [8, 11, 13–15] have made
modest contributions. Early works
[16–18] employ self-training learning
with the pseudo-labelling techniques
to subdivide target noisy labels and se-
lect reliable samples for model train-
ing. These self-training methods ini-
tially absorb useful target data and
adapt well, but eventually forget tar-
get knowledge due to the accumula-
tion of pseudo-label noise, leading to
model collapse [13]. Recent proposed
methods [11, 14, 15] distill the source
knowledge and then fine-tune the dis-
tilled model to further fit the target
domain through a two-step (distilla-
tion & fine-tuning) process. The core
of the two-step process is to use high-
reliability samples or the most reliable
estimates to suppress negative infor-
mation about low-reliability samples
during training. However, this sup-
pression leads to some problems: i)
Excessive focus on aggregating reli-
able samples or estimates leads to premature overfitting, thereby limiting the model’s ability to
generalize effectively to the target data; ii) For low-reliability samples or estimates, only simple
processing is applied, without any effective methods specifically to extract their useful information.
Figure 1 illustrates the decline in model generalization due to overfitting in the previous methods. In
addition, the fine-tuning process involves additional computational costs compared to pseudo-labeling
methods.
In the fields of pathology, Thalamus-driven Decoupling Network (TDN) [19] observes that abnormal
synchronous activity between the thalamus and cortex, when combined with memory confusion,
causes functional thalamic hallucinations and cognitive impairments. Therefore, TDN analyzes
human responses from lesion studies and summarizes an explanatory framework for synchronous
hallucinatory attention. In neuroscience, [20] further interprets this hallucination framework from
the perspective of human attention, dividing the process of TDN into three parts: hallucination
manifestations, human responses, and lesion treatment. In DABP, the black-box predictor resembles
a cognitively impaired “person” who possesses only partial knowledge and is prone to errors. As
a result, the target model’s learning process is inevitably influenced by this noisy guidance from
the black-box predictor. To address this issue, we draw inspiration from neuroscience, where such
conditions are categorized as hallucination disorders: situations in which useful and interfering
information are blended, preventing the brain to make reliable decisions.

Inspired by TDN, we propose a novel spatial learning method, named Controlled Visual Hallucination
via Thalamus-driven Decoupling Network (CVH-TDN), to address the existing DABP problems.
CVH-TDN builds on TDN’s exploration of cognition-hallucination relationships to drive the explo-
ration of the relationship between samples and hallucinations in the feature space. As shown in Figure
2, drawing on the connection between hallucination and brain cognition revealed by TDN, we divide
CVH-TDN into three main modules: Hallucination Generation (HG), Hallucination Alignment (HA),
and Hallucination Calibration (HC). In HG, considering that the generation of hallucinations is a
random process that deepens with cognition, we design a progressive feature masking mechanism
to control the direction of the generation process in feature space. HG generates some controlled
masking in the areas specified by our strategy. With the increase of the prediction reliability, the
masking degree increases in the specific areas of images that the model focuses on. In HA, based on
the connections between real cognition and hallucination, we use contrast learning to explore the
spatial relationship between the target sample and the corresponding generated image. In HC, we
design a hierarchical calibration method that aggregates low-reliability samples with similar features
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Figure 2: Conceptual figure of CVH-TDN. The black-box
predictors resemble agents with prior knowledge but lack the
ability to perform targeted discrimination. HG controls mask
formation by modeling the location where hallucinations are
pathologically generated, driven by the key cognitive impair-
ments observed in TDN. HA improves feature discrimination
by simulating how humans deal with cognitive impairments.
HC draws on neurotherapeutic principles to guide unreliable
data through reasoning using reliable feature representations.

toward the nearest high-reliability
samples and performs hierarchical ex-
tension based on the feature spatial
similarity among samples. The cali-
bration corresponds to the cognition-
driven hallucination understanding,
where random but controllable halluci-
nations are guided by cognitively sig-
nificant objects for calibration. Exper-
imental results demonstrate that our
approach significantly outperforms
the previous state-of-the-art methods
on four benchmark datasets.

Our contributions can be summarized
as follows: (1) We observe the weak-
nesses of existing DABP methods and
address them by proposing a novel
method, called CVH-TDN, that sig-
nificantly enhances the reasoning abil-
ity of model and discrimination capac-
ity of classes. (2) Based on the re-
lationship between hallucination and
cognition, CVH-TDN contains three
parts: Hallucination Generation, Hal-
lucination Alignment, and Hallucina-
tion Calibration, aiming to explore the
spatial relationships between samples and hallucinations. (3) We perform extensive experiments to
verify the effectiveness of CVH-TDN, and the results show that it achieves SOTA performance on
four benchmarks. Moreover, we demonstrate the effectiveness of each component of our model and
discuss the relationship between them through a large number of ablation experiments.

2 Related Works

Domain Adaptation of Black-box Predictors. With the development of generative adversarial
networks (GAN), GAN-based white-box attacks are becoming more and more mature recently,
requiring source models from which original source data can be recovered [13]. In early work, [18]
proposed the DABP, which has almost no risk of privacy leakage. Recent method DINE [11] has
found that a two-step (distillation & fine-tuning) process can encourage source-target class alignment,
which distills knowledge and then fine-tunes the distilled model to adapt to the target distribution.
DINE implicitly leverages the confirmed reliable knowledge from the distillation stage to cluster
unreliable samples towards reliable ones during the fine-tuning process. Based on the two-step
process, [14] establishes a threshold to explicitly divide the high- and low-reliability subdomains
and further aligns the distribution discrepancy between the two subdomains. Based on [11, 14],
[15] introduces neighborhood clustering to prevent the model from forgetting minority classes.
Another line of work [13] mimics human memory to mitigate the “forgetting" problem. This work
distinguishes useful information and irrelevant information, primarily focusing on learning useful
samples while handling irrelevant ones on the fly. Although these methods have contributed, they use
high-reliability samples to suppress the negative information from low-reliability samples, which
leads to the effective information of low-reliability samples being ignored. Different from the above
methods, CVH-TDN employs the sample spatial similarity to replace the targeted sample information
suppression. More recent DA works and the advantages of CVH-TDN are presented in Appendix A.

Visual Hallucination and Thalamus-Driven Decoupling Network. In computer vision, some
works [21–23] have found that deep features correspondence information can be discovered by
jointly learning the input data and hallucinatory data with signature features. However, they are all
unidirectional exploration techniques in which hallucinations are only used to reconstruct the original
samples. In the absence of hallucinatory data, revealing connections for deep feature correspondences
among samples is unexplored. In the field of neuroscience, Thalamus-driven Decoupling Network
(TDN) [19] reveals the process and principle of human hallucinations, and mimics the effects of
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Figure 3: Overview of the completed training period of CVH-TDN. The processing flow of each
module is indicated by arrows of the same color. Before training, we upload target data and obtain
hard predictions from the cloud API. Feature extractor controls masking direction by evaluating
knowledge from sharpened images, and the difference between the hallucination generation and other
methods is shown in (c). In the hallucination alignment, we reduce the difference between samples
and corresponding hallucinations by bidirectional alignment, as shown in (a). As shown in (b), we
adopt hierarchical learning with the dynamic division for different types of samples based on spatial
information in the hallucination calibration.

hallucinations when losing consciousness by interrupting information flow. Based on TDN, we fill
the gap in uncovering the correspondence deep features between hallucination and reality without
hallucinated images. Unlike generation- or augmentation-based methods [24–26], our method
generates controlled hallucination masking in the model interest area of the image without additional
networks, which avoids model degradation by controlling the moving direction of the cluster center
on the feature space.

3 Proposed Method

The whole overview and the entire process of our method are illustrated in Figure 3. First, we assume
that a target dataset Dt = {(xi)}Nt

i=1 containing Nt unlabeled samples, where xi ∈ X and X is the
image set. According to the DABP setting, we upload the target dataset Dt to black-box predictors
(i.e., cloud API services) and obtain the hard predictions Ps of target samples from a source model
stored in the predictors, where the source model trained by source dataset Ds = {(xs

i , y
s
i )}

Ns

i=1
consisting of Ns labeled samples. After obtaining the hard predictions, we introduce target data x
and initialize them into controlled generation version data xg . With the increase of model training, xg

are transformed from the unmasked or slightly masked version images to the masked version images
in specific areas that the model focuses on. Our model Mθ is parameterized by θ and composed of
two components, namely, a feature extractor F and a prediction classifier C. The feature extractor
is denoted by F : X → Z ∈ RK , where K is the dimension of the feature space, and Z is the
K-dimensional transitional output from the bottleneck layer. The prediction classifier is denoted by
C : Z → Y ∈ RN , where N is the number of predicted classes and Y is the classification prediction
output.

3.1 Hallucination Generation

As revealed by TDN, the process of hallucination generation is jointly determined by controllable
factors (e.g., context, emotion, memory, etc.) and uncontrollable factors (random connections). To
generate exploitable hallucinations, we utilize the local areas and their adjacent context information
to generate some specific masking blocks by evaluating the global image and comparing it with
each local area. The strategy introduces a semi-automatic generation way that combines targeted
generation and random masking. Specifically, we first set the masking block to a square of patch size

4



p and the class location weights αn
k to connect the k-th dimensional feature with the n-th class. The

class location weights αn
k can be defined as follows:

αn
k =

1

h× w

∑h

i=1

∑w

j=1

∂Y n

∂zk
i,j

, (1)

where h is the number obtained through dividing the image height H by the masking height p,
i ∈ [1, ..., h = H

p ]; W is the image width and divided by the masking width p to obtain the number
w, j ∈ [1, ..., w = W

p ]; the patch size p of masking block is set to max (min (H,W ) /32, 8); k is
the index of the feature space dimension K, zk is the k-th dimensional feature of the transitional
outputs Z, k ∈ [1, ...,K]; n is the class index and Y n represents the classification prediction for the
n-th class, n ∈ [1, ..., N ]. And ∂Y n

∂zk
i,j

is the gradient information obtained by backpropagation of n-th

class on the k-th dimensional feature.

Then, we perform a weighted combination of forward activation maps. The attention computing
process is defined as follows:

Atti,j = max

(
Tanh

(∑
n

∑
k

ankz
k
i,j/

∑
h

∑
w

∑
k

zk
h,w

)
, 0

)
, (2)

where ankz
k
i,j

is the linear combination of maps; max (Tanh(·)) is used to suppress negative pixels
from other categories that the model is not interested in. Z is the K-dimensional transitional
output from the bottleneck layer, which stores zkh,w as a matrix, where each zkh,w is a scalar at the
corresponding position in Z. If there is no max (Tanh(·)), attention values sometimes highlight not
only the desired class but also other elements, and thus perform worse in feature localization. We
only randomly generate masking where the model is of interest, and the masking generated formula
is as follows:

Mask ip+1:(i+1)p,
jp+1:(j+1)p

= [Atti,j > r & ui,j > r2], (3)

where r is a hyperparameter that controls the arousal ratio between regions of model interest and
non-interest; ui,j is a random number, ui,j ∼ U (0, 1); r2 is the uncontrollable masking ratio and is
set to 0.5. Subsequently, we simply sharpen the features of data x and combine the sharpened data x̃
with the generated masks, as follows:

xg = Mask ⊙ x̃, (4)
where ⊙ is the element-wise multiplication symbol.

In the initial training, due to the lack of prior model training, the model attention for the entire image
is distributed and unreliable. At this stage, according to Eq. (3), xg represent the unmasked or slightly
masked hallucination version of the image. With increased model discrimination, the generation of
xg controlled by the model attention generates controllable masking in the area of model interest.

3.2 Hallucination Alignment

In the hallucination state model, predictions of sensory-level data assume crucial roles. These predic-
tions reflect prior information about what could occur in the upcoming hallucination environment:
i.e., what is expected to be seen in that context. The focus of this work is how to efficiently explore
sensory level data (i.e., the model’s immediate predictions and importance assessment of the original
samples). For this, we first introduce a permanent memory storage M , which stores the global
predicted probabilities and mimics a memory structure that stores and processes sensory-level data.
With each iteration, M overwrites the probabilities for the current batch samples. The storage M is
the key container of our method, which controls the movement direction of the samples on the feature
space by acquiring the sample state immediately and can be expressed as follows:

M = {(Hier(xi), norm(Zi), Softmax(Yi))}Nt
i=1 = {(M (1)

i ,M
(2)
i ,M

(3)
i )}Nt

i=1, (5)

where M (k) corresponds to the k-th subset in M ; norm(·) denotes the normalization function;
norm(Zi) represents the spatial features of the samples, which is used to calculate the similarity
between the samples; Hier(·) is the hierarchical strategy to judge the current sample is reliable R or
unreliable UR. The judgment process can be expressed as:

Dif(Yi) = TopK(Yi, 1)− TopK(Yi, 2), (6)
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τ1 =
λ

Nt

Nt∑
i=1

Dif (Yi) , τ2 =
λ

Nt

Nt∑
i=1

TopK
(
M

(3)
i , 1

)
, (7)

where TopK(·, j) defines the j-th largest value in the corresponding tensor; the threshold of τ1 is to
filter samples that are at the boundary of similar classes in the feature space, and the threshold of τ2
is to filter samples that are judged unreliable in the current batch. Therefore,

Hier(xi)=

{
Ri, if Dif (Yi) > τ1 &TopK

(
M

(3)
i , 1

)
> τ2

URi, otherwise
, (8)

where λ is a hyperparameter that controls the ratio between reliable and unreliable samples in a
mini-batch. The combination of τ1 and τ2 constitutes our hierarchical strategy.

Then, we design a bidirectional weight module w to assign different weights by pairing features with
different similarities between the original image and the corresponding generated image. The module
can be defined as follows:

w = exp(log(sim(M (2), norm(Zg)))), (9)

where Zg is denoted the transitional output of the generated image xg; sim(·) is the operation of
calculating cosine similarity. The hallucination alignment deploys contrastive learning to explore the
spatial relationship, its process of calculating the loss is as follows:

Lforward
HA = −w × log(sim(M (3), σ(Y g))), (10)

Lback
HA = − log(1− sim(M (3), σ(Y g))), (11)

LHA = Lforward
HA + Lback

HA , (12)
where Y g is the prediction of the generated data xg and σ(·) is the Softmax. LHA is composed of
bidirectional losses: Lforward

HA encourages samples whose features are similar to be aligned with the
generated version in the feature space; Lback

HA calibrates Lforward
HA and reduces the noise caused by

common features to prevent overfitting of the model.

3.3 Hallucination Calibration

Previous DABP methods [13–15] maintained a fixed momentum parameter when updating the
adaptive label smoothing [11], which is considered to perform better than the original model output
Y and can be expressed as follows:

S(xi) =

{ 1

N

∑N

j=1
AdaLS(P i,(n)

s ), beginning

µS(xi) + (1− µ)Yi, otherwise
, (13)

where AdaLS(·) is the calculation of the adaptive label smoothing; P i,(n)
s is the hard prediction for

(n)-th class of the i-th sample used as input from the black-box predictors before the training; µ is the
momentum hyperparameter that holds a fixed value in these methods. In this study, we found that this
operation has some problems: i) The initial hard predictions from the black-box predictors are more
robust than the training model, but this operation pays more attention to the early training model,
resulting in the accumulated noise in the early training and affecting the subsequent training; ii) During
the mid-to-end training stages, the model discriminant ability and the output reliability are enhanced,
but the update variable is fixed, which limits the efficiency of extracting feature knowledge. Different

from them, we replace µ with dynamic variable µ̃ =

{
µ̃s, begining

µ̃− Iter × (µ̃− µ) /Iter_total, other
to

update S(xi) that is similar to the brain cognitive process, where Iter is the number of iterations and
µ̃s is to initialize information extraction. The process details are described in Appendix F.

Then, the hallucination calibration is divided into two parts: i) Hierarchical sample calibration (Hsc)
and ii) Common feature exclusion (Cfe). The former is to calibrate samples with similar signature
features, and the latter is to separate ambiguous samples with similar common features. In Hsc,
the high-reliability samples are distinguished by the previous hierarchical strategy to cluster the
low-reliability samples that are close in spatial distance. The computation can be expressed as:

LHsc
HC=

1

Nt

Nt∑
i=1

DKL(M
(3)
i ||{(M

(3)

sim2(M
(2)
i ,M

(2)
j ,ϕ)

)}
M

(1)
j

=R

), j ∈ [1, 2, ..., ϕ], (14)
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Table 1: Accuracies (%) on the Office-Home using the ResNet-50 backbone. denotes the hard task
whose source-only accuracy is below 65%. H.Mean denotes the average accuracy of hard tasks.
The top-performing DABP methods are highlighted in bold.

Method DABP A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean H.Mean

Source-only − 44.1 66.9 74.2 54.5 63.3 66.1 52.8 41.2 73.2 66.1 46.7 77.5 60.6 50.4

CDAN × 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3 58.1
CST × 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 73.0 65.3
HMA × 60.6 79.1 82.9 68.9 77.5 79.3 69.1 55.9 83.5 74.6 62.3 84.4 73.2 65.7

LNL-KL ✓ 49.0 71.5 77.1 59.0 68.7 72.9 56.4 46.9 76.6 66.2 52.3 79.1 64.6 55.4
HD-SHOT ✓ 48.6 72.8 77.0 60.7 70.0 73.2 56.6 47.0 76.7 67.5 52.6 80.2 65.3 55.9
SD-SHOT ✓ 50.1 75.0 78.8 63.2 72.9 76.4 60.0 48.0 79.4 69.2 54.2 81.6 67.4 58.1
DivideMix ✓ 51.7 74.7 78.5 61.8 72.4 73.3 59.8 48.0 82.9 68.0 56.4 81.6 67.4 58.4

DINE ✓ 52.2 78.4 81.3 65.3 76.6 78.7 62.7 49.6 82.2 69.8 55.8 84.2 69.7 60.4
BiMem ✓ 54.5 78.8 81.4 66.7 78.7 79.6 65.9 53.6 82.3 73.6 57.8 84.9 71.5 62.9
BETA ✓ 57.2 78.5 82.1 68.0 78.6 79.7 67.5 56.0 83.0 71.9 58.9 84.2 72.1 64.4
RFC ✓ 57.4 80.0 82.8 67.0 80.6 80.2 68.3 57.8 82.8 72.8 59.3 85.9 72.9 65.1

SEAL ✓ 58.5 81.4 84.7 71.7 80.4 82.1 72.2 54.3 86.0 76.2 60.6 86.3 74.5 66.3
CVH-TDN ✓ 71.7 88.7 83.3 69.7 86.1 83.3 70.2 68.9 83.7 73.8 72.6 91.3 78.6 73.2

where DKL(·) is the Kullback-Leibler divergence; sim2(·, ϕ) is the index set of the first-ϕ similar
samples by calculating cosine similarity.

In Cfe, we introduce a regularization loss to enhance the difference in the representation of different
samples in the feature space, and the generated hallucination image is forcibly aligned with the
original image to guide the separation of different classes of samples. The regularization loss can be
expressed as:

LCfe
HC =

1

NR

NR∑
i=1

(Yi log σ(Y
g
i ) +M

(3)
i

T

×
NR∑

j=1,i̸=i

M
(3)
j ), (15)

where Yi = argmaxYi is a hard label predicted by the training model, NR is the number of high-
reliability samples, and T is the transpose operation. This process requires the gradient to be updated
separately, so that the class differences can be improved through common feature information without
being affected by the information of individual samples. The LHC is denoted by:

LHC = LHsc
HC + LCfe

HC . (16)

According to [11], the training model is affected by negative information from low-reliability samples
in early training, which leads to the decline of model discrimination ability. In the hallucination
calibration, we make low-reliability samples unaffected by LCfe

HC initially, and use LHsc
HC to explore

the spatial similarity among samples. In the middle of training, driven by the hallucination alignment,
all type-UR samples will become samples of type R, where NR = Nt. LHC discovers the spatial
information with deep feature correspondence by jointly learning hallucinations and similar samples
with signature features.

3.4 Overall Objective Function

Following previous methods [11, 13, 14], the conditional self-regularization is adopted as the task-
specific loss to complete the DABP task. The task-specific loss can be expressed as:

Ltask = Ex∈XDKL(Y ||S(x)). (17)

Therefore, the overall objective loss of CVH-TDN can be expressed as:

Ltotal = LHA + LHC + Ltask. (18)

To explain why CVH-TDN works effectively and why it contributes to DABP, we derive an error bound
through theoretical analysis in Appendix B. The whole training process is shown in Appendix C.

4 Experiments

Implementation Details. We evaluated our method on four standard benchmark datasets, including
Office-31 [27], Office-Home [28], VisDA-17 [29], and DomainNet [30]. Our method is implemented
based on the PyTorch and train the model on a machine with an NVIDIA GeForce RTX4090 GPU.
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Table 2: Accuracies (%) on the VisDA-17 using the ResNet-101 backbone.

Method DABP plane bike bus car horse knife mcycle person plant sktbrd train truck Mean H.Mean

Source-only − 64.3 24.6 47.9 75.3 69.6 8.5 79.0 31.6 64.4 31.0 81.4 9.2 48.9 35.2

MCC × 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8 76.8
HMA × 97.6 88.4 84.3 76.0 98.4 97.1 91.3 81.4 97.0 96.7 88.8 60.7 88.1 87.9
COT × 98.2 89.4 87.6 82.3 98.0 97.2 96.4 86.2 98.3 92.6 92.2 58.1 89.7 88.5

LNL-KL ✓ 82.7 83.4 76.7 44.9 90.9 38.5 78.4 71.6 82.4 80.3 82.9 50.4 71.9 70.8
HD-SHOT ✓ 75.8 85.8 78.0 43.1 92.0 41.0 79.9 78.1 84.2 86.4 81.0 65.5 74.2 74.4
SD-SHOT ✓ 79.1 85.8 77.2 43.4 91.6 41.0 80.0 78.3 84.7 86.8 81.1 65.1 74.5 74.8

DINE ✓ 81.4 86.7 77.9 55.1 92.2 34.6 80.8 79.9 87.3 87.9 84.3 58.7 75.6 74.3
BETA ✓ 94.9 90.2 85.4 61.1 95.5 93.1 85.0 83.8 92.9 91.9 91.1 55.0 85.1 85.9
RFC ✓ 95.6 89.7 87.8 75.8 96.5 96.5 90.4 82.8 96.0 70.0 85.7 55.1 85.2 84.2

SEAL ✓ 97.9 92.2 88.0 73.5 97.1 96.1 92.4 85.7 93.9 95.6 91.2 66.4 89.2 89.5
CVH-TDN ✓ 96.9 91.6 87.3 83.6 97.0 95.8 92.7 90.6 95.9 95.5 92.6 67.2 90.6 90.1

Table 3: Accuracies (%) on the Office-31 using the ResNet-
50 backbone.

Method DABP A→D A→W D→A D→W W→A W→D Mean H.Mean

Source-only − 79.9 76.6 56.4 92.8 60.9 98.5 77.5 58.7

MCC × 95.6 95.4 72.6 98.6 73.9 100 89.4 73.3
HMA × 95.8 95.1 79.3 99.3 77.6 100 91.2 78.5

LNL-KL ✓ 89.4 86.8 65.1 94.8 67.1 98.7 83.6 66.1
HD-SHOT ✓ 86.5 83.1 66.1 95.1 68.9 98.1 83.0 67.5
SD-SHOT ✓ 89.2 83.7 67.9 95.3 71.1 97.1 84.1 69.5

DINE ✓ 91.6 86.8 72.2 96.2 73.3 98.6 86.4 72.8
BiMem ✓ 92.8 88.2 73.9 96.8 75.3 99.4 87.7 74.6
BETA ✓ 93.6 88.3 76.1 95.5 76.5 99.0 88.2 76.3
RFC ✓ 94.4 93.0 76.7 95.6 77.5 98.1 89.2 77.1

SEAL ✓ 95.1 88.3 77.6 96.0 76.7 99.3 88.8 77.2
CVH-TDN ✓ 96.4 92.8 75.6 98.9 81.0 99.6 90.7 78.3

Table 4: Results with different values of hyperparameter λ
on Office-31 with ResNet-50 backbone.

λ A→D A→W D→A D→W W→A W→D Mean

0 92.8 91.3 73.2 98.5 76.8 99.6 88.7
10% 96.4 92.8 75.6 98.9 81.0 99.6 90.7
20% 95.8 93.2 73.8 98.9 77.8 99.6 89.8
30% 95.4 93.0 72.4 99.0 74.4 99.8 89.0

Table 5: Results of ablation study on the Office-31 and
VisDA-17 datasets.

Loss Office VisDA
LHA LHC HG A→D A→W D→A D→W W→A W→D Mean Mean

Source only 79.9 76.6 56.4 92.8 60.9 98.5 77.5 48.9

✓ 89.3 86.4 73.6 96.5 74.4 99.0 86.5 75.7
✓ 89.8 86.8 74.5 98.5 75.2 99.6 87.4 78.1

✓ ✓ 94.4 90.4 74.7 98.9 80.1 99.8 89.7 85.1
✓ ✓ 93.8 92.1 74.5 98.6 77.1 99.9 89.3 83.5

✓ ✓ 92.9 90.2 73.9 98.6 78.9 99.4 89.0 82.5
✓ ✓ ✓ 96.4 92.8 75.6 98.9 81.0 99.6 90.7 90.6

LHA LHsc
HC LCfe

HC

✓ ✓ 94.5 91.9 75.8 98.7 79.7 99.6 90.0 88.7
✓ ✓ 94.7 92.3 76.1 98.7 80.1 99.6 90.3 87.1

To make fair comparisons, we follow
[11, 31] to select the ResNet [1] pre-
trained on ImageNet [32] as the back-
bone in all experiments, where ResNet-
50 is used for Office-31, Office-Home,
and DomainNet, while ResNet-101 is
used for VisDA-17. In our experi-
ments, we adopt SGD optimizer with
the weight decay 1e-3, the momentum
0.9, the feature extractor learning rate
1e-4, and the classifier learning rate 1e-
3. The bottleneck size is set to 256
and the batch size is set to 64. Fol-
lowing previous SOTA [14], the num-
ber of warm-ups is set to 3, and both
overall-average accuracy (Mean) and
on-hard task (whose source-only ac-
curacies are below 65%) average ac-
curacy (H.Mean) are reported. Spe-
cific dataset details are presented in
Appendix D.
Comparison Methods. To evaluate
our method, we choose several related
UDA and DABP works for compari-
son. For UDA, we compare to CDAN
[33], MCC [34], HMA [35], and CST
[36]. Meanwhile, we compare our
CVH-TDN with previous SOTA DABP
methods, including LNL-KL [16], HD-
SHOT [8], SD-SHOT [8], DivideMix
[37], DINE [11], BiMem [13], BETA
[14], RFC [15], and SEAL [31]. To
ensure fair comparisons, we follow the
training protocol, learning strategy, and
network architecture for the source do-
main as specified in DINE. The results
of all comparison methods are obtained
from the original papers, their associated codebases, or follow-up work.

Results. In Tables 1, 2, 3, and Appendix E, the results show that CVH-TDN significantly outperforms
the previous SOTA methods on all four benchmarks. For average accuracy, CVH-TDN outperforms
the previous best results by 4.1%, 1.6%, 1.5%, and 1.4% on Office-Home, DomainNet, Office-31,
and VisDA-17, respectively. For these hard tasks with lower than 65% source-only accuracy, CVH-
TDN outperforms the baseline BETA by 8.8%, 1.6%, 2.0%, and 4.2% on Office-Home, DomainNet,
Office-31, and VisDA-17. These results demonstrate that the exploration of sample spatial relationships
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Figure 4: The visualization results of the heat map on the VisDA-17. Each result is reported when the
best accuracy is achieved.

0 10 20 30 40 50 60
epoch

50
55
60
65
70
75
80
85
90

Ac
cu

ra
cy

r = 0
r = 0.3
r = 0.5
r = 0.8

(a)

3 4 5 6 7 8
Value of 

88.5

89.0

89.5

90.0

90.5

Ac
cu

ra
cy

88.23

89.5

90.07

90.58
90.46 90.4

(b)

Figure 5: The accuracy trends of predictions on the VisDA-
17 dataset. (a) shows the accuracy evolution of CVH-TDN
under different arousal values of r. (b) shows the accuracy
with different values of hyperparameter ϕ.

by controlled hallucination is more ef-
fective than the suppression of spe-
cific sample information in increasing
class discriminability.

Parameter Analysis and Compari-
son. As shown in Figure 5(a), we plot
the trends of prediction accuracy un-
der different arousal ratios r with all
60 epochs on the VisDA-17 dataset.
When r is equal to 0.5, we observe
that the best performance can be ob-
tained. And when r is equal to 0, the
hallucination generation fails and all
generated images are uncontrollable.
These highlight that controllable hal-
lucination generation is essential for improving the model reasoning ability, while uncontrollable
generation can cause CVH-TDN to fail. Figure 5(b) plots the accuracy under different ϕ values, where
ϕ determines the calibration influence of each high-reliability sample. As the value of ϕ increases,
high-reliability samples tend to cluster low-reliability samples with similar signature features more
capably. However, if ϕ is too large, common features may also be considered, leading to premature
model overfitting. Table 4 analyzes the effect of hierarchical strategy under different λ values on the
Office-31. When λ is equal to 0, the hierarchical strategy fails, which leads to the negative influence
of the information from unreliable samples on the early learning of the model. A higher value of λ
reduces the proportion of reliable samples, leading to decreased efficiency in exploring sample spatial
relationships. More parameter analysis and comparison are shown in Appendix F.

Ablation Study. We report the ablation study on the Office-31 and VisDA-17 in Table 5 and present
the Grad-CAM [38] visualizations for the VisDA-17 dataset in Figure 4.

As shown in Table 5, experimental results demonstrate that every part of our algorithm is necessary
and indispensable. LHA is designed to prevent overfitting of the model by controlling the original and
hallucination images for bidirectional alignment, and it can effectively improve model generalization
only when combined with Hallucination Generation (HG). LHC is an efficient clustering loss, but
since the effect of task-specific loss is also sample clustering, only the combined effect of the two
leads to model overfitting. For this, LHA helps LHC to alleviate the conflict with task-specific
loss. When LHC and HG are combined, the class discrimination ability and model reasoning ability
are further improved. As shown in Figure 4, both Hsc and Cfe components of LHC contribute to
improving the reasoning ability of the model by highlighting the areas that the model focuses on for a
given category. When Hsc is removed, the values of the regions of interest in the model are averaged,
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resulting in a lot of non-main features being captured. Both modules of LHA and Cfe are designed to
eliminate overfitting: LHA is to eliminate overall sample overfitting, and Cfe is to eliminate reliable
sample overfitting. When Cfe is removed, the ability to grasp key features is weakened, resulting in
some key features not being captured. Combining the two, the model can extract the features in the
image accurately and efficiently. In summary, LHA and HG jointly determine the approximate region
of feature extraction from the model, and LHC optimizes features for the region of interest of the
model. The results show that their combination significantly improves the model reasoning ability.
More visual studies are shown in the Appendix G.

5 Conclusion

In this work, we observe some weaknesses in existing DABP methods and solve them by proposing
a novel algorithm, CVH-TDN. Inspired by the Thalamus-driven Decoupling Network, CVH-TDN
contains the Hallucination Generation (HG), Hallucination Alignment (HA), and Hallucination
Calibration (HC) to achieve sample clustering and hallucination control by exploring the spatial
relationships. HG utilizes the attention of the training model to generate exploitable hallucinations.
HA explores the spatial relationship between the samples and the hallucinations generated by HG
through bidirectional alignment to encourage clustering of samples with similar features. HC uses a
hierarchical way to aggregate samples with similar signature features and separates ambiguous sam-
ples with common features. Experimental results demonstrate the effectiveness of spatial similarity
exploration in enhancing the model reasoning and class discriminability. CVH-TDN significantly
outperforms previous SOTA methods on all comparison datasets.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide the theoretical analysis of the proposed method in Appendix B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all necessary information for reproducibility. The
implementation details is shown in the Experiments section. The algorithm details in
Appendix C. The dataset details in Appendix D. The experimental code and the main code
are available in the Supplementary Materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The experimental code and the main code are available in the Supplementary
Materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the details are described, including hyperparameters, experiments, and
datasets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments in the Experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computational cost comparison in Table 7.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the broader impact in Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: In the Related Works and Introduction sections, we have explained that our
aim is to provide better data privacy protection with more flexible portability to prevent the
leakage of source data or the trained source model.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the code and dataset utilized in this work are publicly available and are
only intended to compare the performances of different algorithms on classification tasks.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This submission poses no such risks.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This submission poses no such risks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This submission poses no such risks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This submission poses no such risks.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A. More Related Works
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Figure 6: Illustration of the differences among UDA,
SFDA, and DABP. The dotted lines in the figure indi-
cate the operations performed by the cloud API with
the source model under different settings. SFDA re-
quires the entire source model to be obtained from the
cloud API before training. DABP outperforms SFDA in
data privacy protection and portability, simply requiring
uploading target data to the cloud API and then down-
loading predictions before training.
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Figure 7: Comparison between existing DABP methods
and CVH-TDN. Top: Existing DABP methods focus
on learning high-reliability knowledge and force low-
reliability sample aggregation. Bottom: CVH-TDN
proposes hallucination alignment to investigate the spa-
tial connection between samples and hallucinations and
introduces hallucination calibration to explore relation-
ships among spatially similar samples. Our algorithm
enhances the capabilities of model generalization and
class discrimination.

Unsupervised Domain Adaptation. UDA
aims to tackle the challenge of generaliz-
ing a model trained on a large number of
labeled samples from the source domain
to the target domain. UDA has been ex-
tensively explored for many practical ap-
plications, including image classification
[39–41], semantic segmentation [42–44],
object detection [45–47], and time series
forecasting [48–50]. However, UDA meth-
ods assume that both the labeled source
domain and the unlabeled target domain
are available at the same time, which is
not available in some scenarios where the
source domain data cannot be accessed dur-
ing training due to privacy-preserving poli-
cies.

Source-free Domain Adaptation (White-
box Predictors). Compared to the UDA
setting, SFDA has higher privacy protec-
tion because it does not need to touch any
source data. Many SFDA methods have
been proposed recently [6–8, 51], which
only require access to unlabeled target
data and a trained source domain model
during training. Most existing research
on SFDA tasks is mainly based on self-
training [6, 8, 51], class prototypes [8, 52],
contrastive learning [7, 53], and generative
models [54, 25]. Although the SFDA task
has contributed to the mitigation of privacy
protection issues to some extent, recent re-
search [13] has found that exposing the
details of the white-box predictive model
training is quite dangerous due to certain
reverse generation techniques like [9, 10].

Setting Comparison and Method Im-
provement. As shown in Figure 6, the
respective processes and the differences
among UDA, SFDA, and DABP are pre-
sented. Compared with SFDA, DABP pro-
vides better data privacy protection with
more flexible portability, which only needs
to upload target data to the cloud API and
then download predictions before training.
Figure 7 illustrates the advantages of CVH-
TDN and the differences from previous
DABP methods. Different from the previ-
ous DABP methods [11, 13–15, 31], CVH-
TDN leverages sample spatial similarity
instead of suppressing targeted sample in-
formation, thereby improving model generalization and class discrimination.
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B. Theoretical Analysis

We provide theoretical justifications grounded in the generalization bound of reasoning to clarify the
working mechanism of our algorithm.

Since our algorithm is trained in an unlabeled target domain and generates the controlled samples
based on our hallucination generation, we denote x ∼ DT as the real sample distribution of the target
domain. Based on the existing theories [55], the error of CVH-TDN can be formulated as a convex
combination of the errors of the reliable subdomain xR ∼ DR, the unreliable subdomain xUR ∼
DUR, and the generated subdomain xG ∼ DG that represents the generated sample distribution of
the reliable subdomain. And denote yR, yUR and ŷR, ŷUR as the true labels and the predicted labels
of xR and xUR, respectively. Denote yG as the true label and ŷG as the predicted label of xG. yT
and ŷT are the true labels and the predicted labels of target domain, yG = yR, yT = yR + yUR, and
ŷT = ŷR + ŷUR. Let H denote a hypothesis, which can be expressed as:

ϵR (H, ŷR) ≤ ϵG (H, ŷG) + dn∆n(DR, DG) + εG, (19)

ϵT̂ (H, ŷT ) = αϵR (H, ŷR) + (1− α)ϵUR (H, ŷUR) , (20)

ϵT (H, yT ) = αϵR (H, yR) + (1− α)ϵUR (H, yUR) , (21)

where dn∆n(DR, DG) = 2 supH,H′∈n |ExR∼DR

[
H(xR) ̸= H ′(xR)

]
− ExG∼DG

[
H(xG) ̸=

H ′(xG)
]
|; ϵG (H, ŷG) is the expected error of the generated sample distribution; εG =

min(ϵR (H, ŷR) + ϵG (H, ŷG)) ; ϵR (H, ŷR) is the expected error of the reliable subdomain; α
is the trade-off parameter that is controlled by λ in Eq. (7); ϵUR (H, ŷUR) is the expected error of
the unreliable subdomain; ϵR (H, yR) and ϵUR (H, yUR) denote the oracle errors of reliable and
unreliable samples, respectively.

For ϵR (H, ŷR) ≤ ϵG (H, ŷG) + dn∆n(DR, DG) + εG, we analyze each component in detail in this
paragraph:

(1) ϵG (H, ŷG) is the expected error of the generated sample distribution, which can be minimized
with a cross-entropy loss in the former term of Eq. (15). With the guidance of the black-box predictors,
in the initial stage of training, the distribution of the reliable samples selected by the target model
in the feature space is relatively close to that of the samples in the source domain. We can obtain
good training results for these samples with similar features through the black-box predictors. As the
training progresses, the model gradually adapts to the distribution of the target domain. the target
model continuously selects more reliable samples. Thus, DG can better learn the knowledge of these
reliable samples through Eq. (15), and align the distribution of the target features through Eq. (12), so
as to continuously adapt to the target domain. Therefore, ϵG (H, ŷG) is small in the whole training.

(2) εG is the shared error of the ideal joint hypothesis which is considered to be a sufficiently small
constant to represent the complexity of the generated sample hypothesis space.

(3) dn∆n(DR, DG) depends on the expected error of the disagreement between two hypothesis on
the reliable subdomain and the generated sample distribution of the reliable subdomain. In the early
stages of training, it is easy to find two hypotheses that both H and H ′ correctly predict the reliable
samples. As the training progresses, hallucination alignment explores the spatial relationship between
the samples and the hallucinations generated by hallucination generation through bidirectional
alignment to encourage clustering of samples with similar features. Hallucination alignment helps to
maintain the discrimination and generalization ability of the model in the target domain. Therefore,
ExG∼DG

[
H(xG) ̸= H ′(xG)

]
is always small during adaptation phase. Hallucination calibration

uses a hierarchical way to aggregate samples with similar signature features and separates ambiguous
samples with common features. Hallucination calibration helps to improve model reasoning ability
and prevent reliable sample overfitting. The joint learning of hallucination alignment and hallucination
calibration is conducted on reliable samples. As a result, ExR∼DR

[
H(xR) ̸= H ′(xR)

]
always

maintaining a small value during adaptation phase.

Then, during the transition from the early stage to the middle stage of adaptation, we derive an upper
bound of how the error ϵT̂ (H, ŷR) is close to ϵT (H, yT ) though hallucination calibration, which is
the oracle error with the truth label yt of the target domain.

Theorem 1. Let H be a hypothesis in class n, we have:
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∣∣ϵT̂ (H, ŷT )− ϵT (H, yT )
∣∣ = ∣∣∣α ϵR(H, ŷR) + (1− α) ϵUR(H, ŷUR)

− α ϵR(H, yR)− (1− α) ϵUR(H, yUR)
∣∣∣

≤ α (|ϵR(H, yR)− ϵUR(H, yUR)|+ |ϵR(H, ŷR)− ϵUR(H, ŷUR)|)
+ |ϵUR(H, ŷUR)− ϵUR(H, yUR)|

≤ α (dn∆n(DR, DUR) + ε+ ε̂) + ρUR, (22)
where the ideal risk in this hypothesis H is the combinatorial error of the ideal joint hy-
pothesis ε = ϵR (H∗, yR) + ϵUR (H∗, yUR) with H∗ = argmin

H
(ϵR (H, yR) + ϵUR (H, yUR));

ε̂ = ϵR (H∗, ŷR)+ϵUR (H∗, ŷUR) is the predicted risk; the distribution discrepancy between reliable
and unreliable subdomains is dn∆n(DR, DUR) = 2 supH,H′∈n

∣∣ExR∼DR

[
H(xR) ̸= H ′(xR)

]
−

ExUR∼DUR

[
H(xUR) ̸= H ′(xUR)

]∣∣ ; and ρUR is the predicted label rate of ŷUR,
ρUR = ϵUR (ŷUR, yUR) . Then, we set ϵ1 = |ϵR (H, yR)− ϵUR (H, yUR)|,
ϵ2 = |ϵR (H, ŷR)− ϵUR (H, ŷUR)|, and ϵ3 = |ϵUR (H, ŷUR)− ϵUR (H, yUR)|, making∣∣ϵT̂ (H, ŷT )− ϵT (H, yT )

∣∣ ≤ α(ϵ1 + ϵ2) + ϵ3. By applying the triangle inequality for classification
errors [56] as presented in Lemma 1, we can prove the upper bound of ϵ1, ϵ2, and ϵ3.

Lemma 1. For any hypotheses H1, H2, and H3 in class n,
ϵ (H1, H2) ≤ ϵ (H1, H3) + ϵ (H2, H3) . (23)

Therefore, for ϵ1 , we can prove that:
ϵ1 = |ϵR(H, yR)− ϵUR(H, yUR)|

≤ |ϵR(H, yR)− ϵR(H,H∗)|+ |ϵUR(H,H∗)− ϵUR(H, yUR)|+ |ϵR(H,H∗)− ϵUR(H,H∗)|
≤ ϵR(H

∗, yUR) + ϵUR(H
∗, yUR) + |ϵR(H,H∗)− ϵUR(H,H∗)|

≤ 1

2
dn∆n(DR, DUR) + ε (24)

Similarly, for ϵ2,
ϵ2 = |ϵR(H, ŷR)− ϵUR(H, ŷUR)|

≤ |ϵR(H, ŷR)− ϵR(H,H∗)|+ |ϵUR(H,H∗)− ϵUR(H, ŷUR)|+ |ϵR(H,H∗)− ϵUR(H,H∗)|
≤ ϵR(H

∗, ŷR) + ϵUR(H
∗, ŷUR) + |ϵR(H,H∗)− ϵUR(H,H∗)|

≤ 1

2
dn∆n(DR, DUR) + ϵR(H

∗, ŷR) + ϵUR(H
∗, ŷUR)

≤ 1

2
dn∆n(DR, DUR) + ε̂. (25)

For ϵ3,
ϵ3 = |ϵUR(H, ŷUR)− ϵUR(H, yUR)| ≤ ϵUR(ŷUR, yUR) = ρUR. (26)

By proving ϵ1, ϵ2, and ϵ3, we can derive Theorem 1,∣∣ϵT̂ (H, ŷT )− ϵT (H, yT )
∣∣ ≤ α(ϵ1 + ϵ2) + ϵ3

≤ α

(
1

2
dn∆n(DR, DUR) + ε

)
+ α

(
1

2
dn∆n(DR, DUR) + ε̂

)
+ ρUR

= α (dn∆n(DR, DUR) + ε+ ε̂) + ρUR, (27)
when the reliable subdomain is mostly correct, yR and ŷR are extremely similar with the ideal risk
ε that is negligibly small [57], in which case ρR ≈ 0, ε̂ is bounded by the predicted label rate of
unreliable subdomain ρUR. Empirical results demonstrate that dn∆n(DR, DUR) is usually small
across the two subdomains, which plays a significant role in tightening the upper bound though
hallucination calibration. Therefore, our method can theoretically reduce the expected error of the
model on the target domain.

C. Algorithm Details

The whole training process is shown in Algorithm 1. In addition, the experimental code and the main
code are available in the Supplementary Materials.
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Algorithm 1 CVH-TDN for DABP task.
Input: Target samples Dt = {(xi)}Nt

i=1 , black-box hard predictions Ps, and training model Mθ ∈ {F,C};
Parameter: The model parameter θ and the hyperparameters λ, µ, µ̃s, ϕ, and r;
1: Initialize: Mθ simple tests on Dt to initialize θ and memory storage M ; initialize smooth adaptive storage

S with Ps and µ̃ (determined by µ̃s and µ);
2: while Adaptation do
3: Get sample batch B using Mθ from Dt;
4: Hallucination Generation:
5: Control hallucination image xg

i generated by F evaluating xi in B using Eqs. (1)-(4).
6: Hallucination Alignment:
7: Dynamic divide the samples according to their reliability using Eqs. (6)-(8);
8: Update M using Eq. (5) to extract the latest information;
9: Calculate bidirectional alignment weights w using Eq. (9).

10: Hallucination Calibration:
11: Update S and µ̃ using Eq. (13) to mimic the brain cognitive processes;
12: Retrieve M to explore the relationship between features and space and calculate the spatial similarity.
13: Model Training:
14: Optimize target model Mθ by minimizing Eq. (18).
15: end while

Table 6: Accuracies (%) on the DomainNet using the ResNet-50 backbone. The rows represent the
source domain and the columns represent the adapted target domain.

ResNet clp inf pnt qdr rel skt Mean DINE clp inf pnt qdr rel skt Mean

clp − 16.5 36.0 10.1 52.8 41.8 31.4 clp − 12.1 29.6 11.1 60.4 37.3 29.4
inf 32.1 − 32.0 2.7 47.4 26.4 28.1 inf 29.5 − 37.6 3.4 53.8 26.5 30.1
pnt 29.6 23.2 − 4.9 36.7 27.8 24.4 pnt 37.3 12.9 − 4.2 60.5 34.7 29.9
qdr 11.2 1.1 1.9 − 4.3 7.7 5.3 qdr 9.4 0.7 3 − 8.3 6.6 5.6
rel 48.2 19.6 47.9 4.3 − 35.6 31.1 rel 45.1 14.4 49.7 5.5 − 35.0 29.9
skt 49.1 13.5 35.5 11.5 47.1 − 31.3 skt 43.3 10.0 39.3 11.6 57.2 − 32.2

Mean 34.0 14.8 30.7 6.7 37.7 27.9 25.3 Mean 32.9 10.0 31.8 7.2 48.0 28.0 26.2

BETA clp inf pnt qdr rel skt Mean CVH-TDN clp inf pnt qdr rel skt Mean

clp − 13.4 41.2 13.0 61.8 41.1 34.1 clp − 19.0 41.8 11.3 57.2 42.7 34.4
inf 34.9 − 41.6 3.7 56.8 30.7 33.6 inf 37.8 − 39.9 2.9 53.5 32.1 33.2
pnt 47.3 18.4 − 3.2 62.5 41.9 34.7 pnt 45.2 18.9 − 4.0 60.3 37.9 33.3
qdr 11.7 0.9 2.1 − 9.1 8.1 6.4 qdr 15.0 0.9 2.9 − 6.0 11.1 7.2
rel 46.5 15.8 50.9 5.6 − 37.7 31.3 rel 52.7 21.7 52.5 5.7 − 39.2 34.4
skt 47.3 12.3 42.3 14.8 59.9 − 35.3 skt 54.1 17.3 44.3 12.4 54.3 − 36.5

Mean 37.5 12.2 35.6 8.1 50.0 31.9 28.2 Mean 41.0 15.6 36.3 7.3 46.3 32.6 29.8

D. Specific Dataset Details

Four standard benchmark datasets are used for evaluating our method and comparison, including
Office-31 [27], Office-Home [28], VisDA-17 [29], and DomainNet [30]. Office-31 is a small-scale
benchmark dataset, which contains 4,110 images with 31 categories from 3 domains, Amazon (A),
Dslr (D), and Webcam (W). Office-Home is a widely used medium-scale benchmark that contains a
total of 15.5K images with 65 categories from 4 distinct domains, Real World (R), Clipart (C), Art
(A), and Product (P). VisDA-17 is a challenging large-scale benchmark with 12 categories that include
152k synthetic source domain images and 55k target images of real objects, presenting a greater
challenge due to a large synthetic-to-real domain gap. DomainNet is the largest domain adaptation
benchmark dataset, which consists of about 600K with 345 categories across 6 domains: Clipart (clp),
Infograph (inf), Painting (pnt), Quickdraw (qdr), Real (rel), and Sketch (skt).

E. Additional Dataset DomainNet

For the DomainNet dataset, we compare our algorithm with previous SOTA methods [11, 14] under
the ResNet-50 backbone. As shown in Table 6, compared with other algorithms, CVH-TDN achieves
the highest average accuracy of 29.8% on the DomainNet, which is full of on-hard tasks (whose
source-only accuracies are below 65%). These results demonstrate that, in the on-hard tasks, our
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Figure 8: The effect display of different µ and µ̃s in the A→C subtask of the Office-Home. Each
result is reported when the best accuracy is achieved.

spatial exploration method based on hallucination control is more effective than methods that rely on
suppressing specific sample information.

F. More Parameter Analysis and Motivation Demonstration

As shown in Figure 8, we report the performance of different methods [11, 14, 31] under various
conditions of µ and µ̃s on the Office-Home. In the brain cognitive processes [58], when humans
encounter something they have never seen before, their brain cognition is primarily influenced by
external information, with a small portion derived from their own understanding. And as their under-
standing deepens, they can balance the weight of external information and their own understanding,
increasingly trusting their own understanding of the matter. In this work, we mimic the brain cognitive
process to improve the learning and updating process of Eq. (13), where µ̃s simulates the initial
external information and µ simulates human understanding. Additionally, when µ = µ̃s = 0.6, it
indicates the use of the previously common adaptive label smoothing update [11] instead of our
update strategy. Experimental results show that this improvement significantly enhances the compared
DABP methods.

Moreover, we conducted further analytical experiments to demonstrate the advantage of our method
for more effectively leveraging both reliable and unreliable samples compared to existing approaches.
First, we elaborate on some concepts: the higher the model prediction accuracy of a class, the higher
the proportion of reliable samples in that class. Meanwhile, the samples exhibiting features that
clearly distinguish their class tend to have a higher probability of being reliable. Because different
methods have different strategies for discriminating reliability, we have selected sample instances
with consistent initial reliability judgments between BETA [14] and SEAL [31]. Specifically, in
Figure 9, the classes corresponding to high-reliability samples are: Bus, Skateboard, and Person; and
the classes corresponding to low-reliability samples are: Car, Motorcycle, and Truck.

As shown in Figure 9, the samples corresponding to the classes of Bus and Skateboard were consis-
tently regarded as reliable samples during the training of BETA and SEAL. They focus on learning
from these reliability samples, and Figure 9 demonstrates that they effectively concentrate and lock
the feature regions of interest on the salient features. Meanwhile, some low-reliability samples
(corresponding to the class Car) have also been correctly rectified from the wrong judgments of the
black-box predictors through high sample knowledge. However, for some low-reliability samples
(corresponding to the class Motorcycle and Truck), the previous methods all failed: BETA didn’t lock
onto the effective features, and SEAL mistakenly locked onto the features of other classes. In addition,
SEAL even misjudged some samples that were judged as high-reliability samples (corresponding
to the class Person) as belonging to other classes. These observations are sufficient to show the
limitations of using high-reliability samples to constrain the attention-locked area. Moreover, the
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Figure 9: The visualization results of the heat map on the VisDA-17. The redder the area, the higher
the model’s level of attention.
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Figure 10: The ablation visualizations of the feature distribution in the W→A subtask of the Office-31
using t-SNE [12]. Herein, the points represent target samples and the different colors correspond to
their true classifications.

feature visualization of Figure 1 can also serve as evidence for the inadequacy of their clustering
ability.

In our method, driven by the hallucination alignment, all type-UR samples will become samples of
type R in the middle of training. We conceptually blurred the distinction between high-reliability and
low-reliability samples during the learning process: samples are no longer constrained by high- or
low-reliability ones. As shown in Figures 4 and 9, CVH-TDN enhances the model’s reasoning ability
by expanding the coverage area of the model’s region of interest through hallucination generation
and hallucination alignment, resulting in more effective use of all samples.

G. More Ablation Visualization and Experimental Comparison

In Figure 10, we present the t-SNE visualizations [12] of the ablation study on the Office-31.
Experimental results show that each component of our method improves the discrimination capacity
of classes. It is worth noting that, in the small-scale dataset Office-31, the impact of removing HG
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Figure 11: Classification visualization with Confusion Matrix to compare different methods on the
VisDA-17. (Zooming in for a clear view)

Table 7: Results of cost comparison on the VisDA-17 with the ResNet-101 backbone.
Method Time (s/epoch) Space (MiB) Accuracy (%)

DINE 124s 9881MiB 75.6
BETA 1101s 20247MiB 85.1
SEAL - Over 24G 89.2

CVH-TDN 205s 10589MiB 90.6

or LHA is not as significant as shown in the heatmap visualizations [38] of the large-scale dataset
VisDA-17 in Figure 4. This indicates that in datasets with small domain gaps, an efficient clustering
algorithm is more important than an algorithm designed to prevent model overfitting, while the
opposite holds for datasets with large domain gaps. Furthermore, LHA focuses on enhancing the
model reasoning ability, while LHC emphasizes improving the class discrimination ability.

For a fair comparison, we set the same running conditions (e.g., batch size = 64, num workers =
4, etc.) in the compared works on a machine with an NVIDIA GeForce RTX4090 GPU. Figure
11 shows the Confusion Matrix visualization, in which our method consistently outperforms in
discriminating target samples of each class on the VisDA-17. This demonstrates that exploring the
spatial relationships among samples by controlling hallucinations is more effective in improving class
discrimination ability than suppressing specific sample information.

In Table 7, we record the average runtime cost, the maximum GPU space usage, and the best accuracy
of each comparison method. When adapting VisDA-17, it is worth noting that BETA [14] is divided
into two stages that are highly computationally intensive: the first stage is the initialization, which
requires initialization of the two models due to their mutually-distilled network structures; the second
stage is the two-step process, which requires distillation and fine-tuning for each epoch. SEAL [31] is
highly resource-intensive, and its official code cannot complete the adaptation task on VisDA-17 under
the same conditions with 24GB GPU memory. Compared to other methods, CVH-TDN calculates the
model area of interest and generates attention-specific masking blocks with minimal cost, which does
not require fine-tuning or a computationally expensive generation network. Moreover, our memory
structure M uses 57.05 MiB of GPU space usage and our smooth adaptive storage S uses 2.54 MiB
of GPU space usage. Since they do not require gradient storage or updates during training, their GPU
space usage is nearly negligible.

To ensure robustness, we report the performances across multiple runs with different random seed
initializations. As shown in Table 8, we maintained a small average accuracy gap (0.4%) among
different seeds, reflecting the stability and superiority of our method.

Table 8: Results under different random seeds on the Office-Home with the ResNet-50 backbone.
Seed A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Mean

2022 71.7 88.4 83.6 70.1 86.7 82.8 70.8 69.2 83.3 74.7 74.2 91.6 78.9
2023 72.2 89.3 83.7 69.9 87.7 82.9 69.6 68.7 83.3 74.9 73.8 91.6 79.0
2024 71.7 88.7 83.3 69.7 86.1 83.3 70.2 68.9 83.7 73.8 72.6 91.3 78.6
2025 72.1 88.6 83.5 70.0 87.9 82.4 70.1 67.2 83.7 75.4 72.1 91.4 78.7
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H. Broader Impacts and Limitations

Our work CVH-TDN focuses on the problem of Domain Adaptation of Black-Box Predictors (DABP),
which provides better data privacy protection with more flexible portability compared with other DA
settings. Inspired by research in pathology and neuroscience, CVH-TDN is specifically designed
for the DABP classification task. While its effectiveness has been demonstrated through extensive
experiments and its theoretical soundness established, its applicability to other tasks remains an open
question. Therefore, we plan to further explore the practical utility of this algorithm in a broader
range of task scenarios.
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