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ABSTRACT

Continual learning on a sequence of tasks without forgetting previously acquired
knowledge is one of the main challenges faced by modern deep neural networks.
In the class-incremental scenario, one of the most difficult continual learning prob-
lems, new classes are presented to a classifier over time. The model needs to be
able to learn and recognize these new classes while also retaining its knowledge
of previously witnessed ones. To achieve this, the model has to revisit previous
classes in some form, either by analysing stored exemplars or by using artificially
generated samples. The latter approach, Generative Replay, usually relies on a
separate generator trained alongside the main classifier. Since the generator also
needs to learn continually, it is retrained on every task, using its own generated
samples as training data representing older classes. This can lead to error propa-
gation and accumulating features unimportant or confusing for the classifier, re-
ducing the overall performance for larger numbers of tasks. We propose a simple
filtering mechanism for mitigating this issue – whenever pseudodata is generated
for a new task, the classifier can reject samples it is not able to classify with suf-
ficient confidence, thus preventing itself from retraining on poor-quality data. We
tested this mechanism using combinations of Bayesian neural classifiers and two
different generators: a Variational Autoencoder and Real-value Non-Volume Pre-
serving Normalizing Flow. We show that the improvement in the classification
accuracy grows with the number of tasks, suggesting this approach is particularly
useful for the most challenging continual learning scenarios, where very many
tasks are learned in a sequence.

1 INTRODUCTION

Catastrophic forgetting of previously learned knowledge after being trained on a new task is one of
the main drawbacks of modern deep neural networks (French (1999); Jedlicka et al. (2022)). The
ability to mitigate this issue, and learn continually, is crucial in many realistic machine learning
applications, including autonomous machines navigating in changing environments and real-time
decision makers having to adapt and react to shifting incoming data distributions (Shaheen et al.
(2022)). In classification problems, such continual learning scenarios are often labeled as Task-,
Domain- or Class-Incremental Learning (IL) (Van de Ven & Tolias (2019)). These scenarios differ
mostly in terms of the availability of the task identity: In a Task-IL scenario, the model is aware of
which task it’s solving both in the training and the prediction phase, a Domain-IL model knows the
task identity only during training, while a Class-IL model lacks such knowledge altogether. These
scenarios are further explained in figure 1.

While challenging for artificial neural networks, catastrophic forgetting does not affect biological
learning agents, such as humans and other mammals. The way we interact with our environment
is inherently time-dependent – we learn new patterns and skills sequentially, building upon and
expanding the previously acquired knowledge instead of completely overwriting it. Several classes
of mechanisms are responsible for this evolutionary success, but the one most relevant in the context
of this work, is experience replay (Abraham (2008); Yger & Gilson (2015); McClelland et al. (1995);
Rasch & Born (2013)).

To stabilize the previously learned patterns, an artificial neural network can revisit old experiences,
in the mechanism called ”replay” or ”rehearsal. In the mammalian brain, such reminiscence is ob-
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Figure 1: SplitMNIST task protocol. In task-incremental scenarios the model learns classes pair-
wise and during testing it knows which pair the current image belongs to. In domain-incremental
scenario the model needs to decide whether the image belongs to the first or the second class in its
corresponding pair, but the identity of the pair is irrelevant (e.g., all odd numbers in MNIST get
the same label assigned). In class-incremental scenario the model needs to learn how to distinguish
between a given digit and all other digits witnessed so far. Figure adapted from Van de Ven & Tolias
(2019).

served for example during sleep, when the hippocampal activity reinstates activity in the neocortical
processing systems. One hypothesis regarding this behaviour is that it is responsible for effective
consolidation and stabilization of long-term memories (McClelland et al. (1995)). The simplest
form of rehearsal would be to store a subset of previously encountered training data and iteratively
retrain the model from scratch every time a new task arises. However, storing exact copies of past
experiences would be impossible in capacity-constrained animal brains, deeming such an approach
not biologically plausible. In machine learning there are situations when data storage becomes im-
practical or impossible, for example, due to privacy issues or computational constraints. Instead, a
growing number of methods rely on generative replay, where the data distribution is learned by a
generative model. By sampling from the generator, it is possible to access features relevant to the
previous tasks and interleave them with the current dataset. A basic architecture of a generative
replay framework, where the generator and the solver are separate neural models, was proposed by
Shin et al. (2017), and the concept was further developed by Van de Ven et al. (2020) and Kirichenko
et al. (2021), to name a few.

In this work we focus on Shin et al.’s dual-model architecture, even though it does not achieve the
highest performance on standard benchmarks (Van de Ven et al., 2020; Kirichenko et al., 2021). We
make this choice for two main reasons. First, the dual-model architecture can be applied to any
neural classifier without additional modifications to the network’s structure. This flexibility makes
it convenient in situations when classifier (or, more generally, task solver) models are already well-
established and trained, and the requirement to learn class-incrementally arises as an additional func-
tionality, without being considered during the model’s design. In such cases, the implementation of
suitable generators eliminates the need for a complete redesign and retraining of the classifier, such
as incorporating feedback connections. A second noteworthy advantage of the dual-model approach
lies in its simplicity. The process of generating the pseudodata (for example, images belonging to
the previously learned classes) and training the classifier can be clearly separated, facilitating a more
transparent understanding of each component’s contribution to the overall performance.

We propose a simple and universal mechanism for improving generative replay models, addressing
one of their common weaknesses - poor scalability to a larger number of tasks due to error propa-
gation in the generator (Lesort et al. (2019a); Aljundi et al. (2019)). As we investigate a scenario
when the original training data cannot be stored, the generative model also needs to learn continu-
ally, iteratively retraining itself on its own generated samples. If pseudodata generated for one of the
tasks contains features unnecessary or confusing for the classifier, there exists a chance that these
features are going to be preserved in the distribution learned by the generator, detrimentally affecting
replay’s effectiveness for all the subsequent tasks. To combat this, we propose a method of filtering
the generated data by allowing the classifier to automatically select best-quality samples and remove
data lacking necessary features — in other words, we allow the solver to self-supervise the replay
process. A conceptually similar approach, using the classifier‘s confidence about the generated sam-
ples as a contribution to the generator‘s loss function, was explored by Aljundi et al. (2019), but the
policy we propose can be treated as a stricter variant, when pseudodata quality is assessed on the
dataset level instead of just encouraging the model to improve it with time.

We show that when the number of tasks is sufficiently high, self-supervised filtering of pseudodata
has a small, but positive effect on the performance in terms of accuracy, and that its contribution is
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strongly, positively correlated with the number of tasks. Notably, this observation is general enough
that the proposed method can be applied to most of the existing generative replay architectures.

To sum up, the main contribution of our paper is a general technique of filtering pseudodata, improv-
ing the performance of generative replay in class-incremental learning scenarios. We also investigate
the scalability of this technique with the number of tasks, an approach that can be helpful for the
community working on the catastrophic forgetting problem.

2 METHODS

In this section, we describe the models we used for experiments, the dataset, and the training pro-
cedure applied. The code is publicly available here: link to code repository anonymized for peer
review

As mentioned, the main contribution of our work is a method of filtering pseudodata sampled from
the generator. In order to do this we label each generated image using the classifier and then remove
samples classified with confidence below a selected threshold. Here by ”confidence” we mean the
highest value returned by the softmax function in the output layer. The higher the threshold, the
stricter the filtering policy.

2.1 MODELS USED IN THE EXPERIMENTS

To investigate and demonstrate the effectiveness of the proposed filtering procedure we performed
classification experiments using various neural network models. To generate pseudodata we used
a Real-valued Non-Volume Preserving (RealNVP/RNVP) Normalizing Flow or a Variational Au-
toencoder (VAE). To classify the data we trained a standard, densely connected Bayesian Neural
Network (BNN) and its regularized variant following the method of Variational Continual Learn-
ing (VCL). The models, described in detail below, were combined into four experimental setups:
RNVP+BNN, RNVP+VCL, VAE+BNN and VAE+VCL.

2.1.1 BAYESIAN NEURAL NETWORKS AND VARIATIONAL CONTINUAL LEARNING

Bayesian neural networks are models that incorporate Bayesian methods to model uncertainty in the
network’s weights and biases (Jospin et al. (2022)). Parameters in a BNN are given as probability
distributions instead of point values, so the exact strength of connections is drawn every time a
forward pass is performed. As such, if run several times with the same input, a BNN generates a
vector of predictions, the variance of which can be used to reason about the result’s uncertainty. This
is particularly useful in tasks where uncertainty plays a critical role, such as medical diagnosis or
financial risk assessment. Reducing catastrophic forgetting in this class of models is thus crucial for
enabling continual learning in such areas. Moreover, we believe that densely-connected BNNs are
sufficiently similar to traditional, non-Bayesian networks, for our method to work in both cases.

As a stochastic model, BNNs need to be trained using probabilistic inference. The most common
families of methods used for this purpose are various forms of Markov-Chain Monte Carlo (MCMC)
sampling and Variational Inference (VI). In this work we used the latter to train the classifiers, as it
scales better to larger models.

Variational Inference approximates the true posterior distribution of the weights and biases of the
neural network with a simpler, parametric distribution. The parameters of the approximate distribu-
tion are learned using gradient descent to minimize the Kullback-Leibler (KL) divergence. However,
since direct calculation of KL would require knowledge about the form of the true posterior, the op-
timization is performed indirectly by maximizing the evidence lower bound (ELBO):

L(θ, ϕ;X,y) = Eqϕ(θ)[log pθ(y|X, θ)]− KL(qϕ(θ)||p(θ)) (1)

where X and y are the input data and output labels, respectively, θ and ϕ are the parameters of the
neural network and the approximate distribution, and p is the prior distribution over the weights.
The first term of ELBO is the expected log-likelihood of the data under the current approximate
distribution (implemented as categorical cross entropy in our case), and the second term is the KL
divergence between the approximate distribution and the prior.
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Due to high computational requirements of calculating and storing dependencies between the net-
work’s parameters, usually both the approximate posterior and the prior take the form of a fully-
factorized Gaussian (Izmailov et al. (2021)).

In Bayesian modeling, the prior distribution represents the uncertainty about the parameters before
any data is observed. In standard BNN training, it usually takes the form of a unit normal dis-
tribution, as it’s difficult to form any assumptions about the network’s parameters before training.
However, such an assumption becomes easier to make when a new task appears in a continual learn-
ing scenario – the prior knowledge in this case corresponds to the knowledge the network acquired
while learning the previous tasks. In other words, to utilize this information, the model trained on
task n should be used as a prior for task n+1. This approach, Variational Continual Learning was first
proposed by Nguyen et al. (2017), and can be treated as a regularization-based method of continual
learning for BNNs.

In the brain, such regularization, called ”metaplasticity” allows memories to remain stable by re-
ducing the plasticity of synaptic connections as new memories are formed (Abraham (2008)). In
VCL, encouraging the modification of the parameters that carry the least information regarding
the previous task is handled automatically thanks to the KL divergence term. Metaplasticity-based
regularization is a base of several state-of-the-art methods for continual learning, such as Synaptic
Intelligence (Zenke et al. (2017)) and Elastic Weight Consolidation (Kirkpatrick et al. (2017)), but,
on their own, such methods fail in class-IL scenarios, where using replay-based algorithms seems
to be necessary (Lesort et al. (2019b); Van de Ven et al. (2020)). Here we used VCL to regularize
weight updates in selected models, thus introducing metaplasticity, to check how it contributes to
the BNN‘s performance.

The classifier used for the experiments presented in this paper was a densely connected BNN with
two hidden layers, 256 nodes in each layer. It is further referred to as a ”BNN” or a ”VCL” model,
depending on whether a standard unit Gaussian or a previous posterior was used as a prior distribu-
tion for each task.

2.1.2 REALNVP NORMALIZING FLOWS

One of the generators used in the experiments is a Real-valued Non-Volume Preserving Normalizing
Flow, proposed by Dinh et al. (2016). Normalizing Flows (NFs) are a class of generative models that
aim to model complex probability distributions by performing a series of invertible transformations
on a simple base (latent) distribution. In one variant of such a transformation, RealNVP, the input
(a sample from the base distribution) is divided into two subsets – the values in the first one are
scaled and shifted by factors calculated based on the second one. While this transformation as a
whole needs to be invertible, the function used to calculate the factors does not, which allows the
use of even complex neural models to accurately capture the dependencies between variables. In
practice, a RealNVP generator is built using many blocks of such transformations (coupling layers).
The input subsets switch places after each layer so that each value in the input tensor undergoes a
transformation once every second layer. Since NFs are invertible, it is possible to calculate the exact
likelihood of training data and minimize it directly with gradient descent optimizers.

The generator used in this work, further referred to as the ”RealNVP” model, consisted of eight
blocks, each block containing a permutation layer (switching the input subsets) and a RealNVP
transformation layer, followed by batch normalization. To calculate scale and shift factors, each
RNVP coupling layer used a multilayer perceptron with two hidden layers, 56 nodes per layer. The
model was implemented as a conditional generator which means that while the parameters of the
Flow were shared between all the classes in the training dataset, each class was represented by a
separate latent distribution (a multivariate Gaussian). As a result, the samples to be transformed by
the coupling layers were drawn from different distributions, depending on which class was chosen
for generation.

2.1.3 VARIATIONAL AUTOENCODERS

Variational Autoencoders (Kingma & Welling (2013)) are a well-established class of probabilistic
generators where each model consists of two neural networks: an encoder and a decoder. The
encoder maps input data to a latent distribution (usually a multivariate Gaussian) while the decoder
reconstructs the output using a sample from the said distribution. As opposed to Normalizing Flows,
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Figure 2: Schematic view of the training procedure. In the class-incremental learning scenario,
classes are presented sequentially, in exclusive groups, but the model needs to keep the ability to
recognize all classes witnessed so far. After training the solver and the generator on all data available,
the framework enters the self-supervised stage when it generates and filters pseudodata used for the
next iteration of training.

Variational Autoencoders are not invertible and as such need to be trained indirectly by maximizing
the evidence lower bound.

The VAE used in this work was implemented as a convolutional, non-conditional generator – a
single, two-dimensional latent distribution was shared between classes.

2.2 EXPERIMENTAL PROCEDURE

We formulated the learning problem as a class-incremental scenario. During each task, the model
was presented with only two classes of images, but it was expected to be able to classify all classes
witnessed so far. Figure 2 contains a schematic depiction of the training procedure.

2.2.1 EMNIST DATASET

To extend the number of tasks beyond the maximum five provided by MNIST dataset, a standard
benchmark in the field (LeCun (1998); Parisi et al. (2019)), we chose to use EMNIST Balanced
(Cohen et al. (2017)), which serves as an extension of the former. It contains pictures of both digits
and letters, 47 classes in total. Here we report results of training on up to 16 tasks (covering 32
classes), since for longer training protocols the quality of the generators would often decrease to
a point where they do not generate enough good-quality samples to be accepted by the classifier,
especially with stricter filtering.

For both training and evaluation, we scaled the pixel values to the range [0, 1]. For experiments using
RealNVP we applied additional preprocessing converting pixel intensities to logits as recommended
by Dinh et al. (2016).

2.2.2 MODEL TRAINING AND PSEUDODATA GENERATION

The experimental procedure consisted of three main components: model training, pseudodata gen-
eration, and testing. First the main component, described in algorithm 1, combined the incoming
real data with generated pseudodata and trained both classifier and the generator on all the available
images. An internal loop was used for pseudodata generation (algorithm 2). There, the current state
of the generator was used to sample a fixed number of images, so that the training dataset consisting
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of real and pseudodata was class-balanced. Next, these images were classified by the solver and all
samples classified below the assigned level of confidence were removed — a step that we refer to
as ”pseudodata-filtering”. This filtering was repeated until the pseudo-dataset reached the requested
size, chosen to be 2500 per class in our implementation. Finally, after training on each task, the
model was asked to classify real test images belonging to all previously observed classes, without
knowing when a particular class was encountered. In the next section, we report the results in terms
of accuracy, averaged over all the random initializations of the models‘parameters and sampling
functions.

Algorithm 1 Incremental Learning Procedure

1: Initialize a generator
2: for each task do
3: Load and preprocess the next dataset
4: if task id > 0 then
5: Generate pseudodata, a fixed number of images for each class
6: end if
7: Concatenate the real and pseudo datasets
8: Permute the training dataset
9: Initialize classifier with suitable prior

10: Train the classifier
11: Train the generator
12: end for

Algorithm 2 pseudodata Generation

1: current pseudo size← 0
2: while current pseudo size < pseudo dataset size do
3: Generate samples
4: Classify the generated images n times
5: Calculate the mean prediction (confidence) for each class
6: Remove samples classified below the confidence threshold
7: if conditional generator then
8: Remove samples classified incorrectly
9: end if

10: Add remaining samples to the pseudo-dataset
11: Increase current pseudo size by the number of accepted samples
12: end while

3 RESULTS

We performed all the experiments thirty times, with different random seeds. The models were tested
after training on each task by classifying test data belonging to all the classes witnessed so far.
Whenever filtering was applied, the confidence threshold was set to 90, 95, or 99 percent. Especially
with higher thresholds, some generators entered infinite loops at various later points during training,
when they kept trying to generate replay samples that kept being rejected by the classifier. In such
circumstances, the training was terminated, so not all thirty resulting data points are available for
higher task numbers. We compared the performance of models trained with and without filtering
using Student‘s T-test for the difference of means (figure 3) and Mood‘s test for the difference
of medians (figure 4. The exact p-values, as well as the results of the Mann-Whitney U test, for
comparison, are provided in the Appendix.

Overall, models trained with pseudodata filtering performed better in terms of mean accuracy in 75%
of cases. Moreover, this effect scales with the number of tasks as seen in Table 1 showing Pearson’s
correlation coefficients between the improvement in accuracy and the length of training, the high
positive values suggest a dependency between them. For the difference of medians we observed
a positive trend, albeit less consistent and not statistically significant given the chosen thresholds
(α = 0.05 or α = 0.01), suggesting a higher data granularity required for fair comparison with this
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Figure 3: Differences between mean accuracies of models trained with and without filtering. Results
for which the Student’s t-test returned p value not larger than 0.05 or 0.01 are marked with red and
green, respectively. Error bars represent standard errors of the difference of means.

statistic. Another issue visible in the figures, especially with VAE as a generator, is that the filtering
procedure had a negligible or even detrimental effect when the number of tasks was low. We suggest
an interpretation of this phenomenon and elaborate on its consequences for the applicability of our
method in the Discussion.
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Figure 4: Differences between median accuracies of models trained with and without filtering. Re-
sults for which the Mood’s test returned p value not larger than 0.05 or 0.01 are marked with red and
green, respectively.
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Model Threshold R
RNVP+BNN 0.90 0.87

0.95 0.92
0.99 0.93

RNVP+VCL 0.90 0.97
0.95 0.86
0.99 0.97

VAE+BNN 0.90 0.97
0.95 0.96
0.99 0.76

VAE+VCL 0.90 0.97
0.95 0.89
0.99 0.80

Table 1: Pearson’s correlation coefficients between differences of mean accuracies between models
with and without filtering, and the number of tasks. All results are statistically significant with
α = 0.05.

4 DISCUSSION

In this paper, we presented a method of filtering samples from a generative model used for data
replay in class-incremental continual learning scenario. Our original hypothesis consisted of two
parts: first, that data filtering will improve the accuracy of a classifier trained with generative replay;
second, that this improvement will positively scale with the number of tasks. The justification
behind the first part is that by allowing the solver to select data it can classify with the highest
level of confidence, we automatically reinforce the presence of features important for distinguishing
between classes in the replayed dataset. As for scaling of the effect, we assume that without data
filtering more errors can propagate from task to task, since the generator may learn to repeat its own
mistakes. With filtering, if such a mistake would reduce the sample‘s usefulness for learning the
task, it will be removed from the training set used both by the solver and the generator.

The results we present confirm both parts of our hypothesis to some degree. First of all, in the ma-
jority of cases where performance with and without filtering was significantly different, the filtering
did result in improved accuracy, except for the cases when the number of tasks was small and/or the
confidence threshold was very high. The reason for this may be that for the first few tasks, the error
propagation in the generator is not very significant, and radical filtering of the pseudodata reduces
the diversity of samples, limiting the solver‘s ability to generalize. This suggests that the confidence
threshold is a hyperparameter that is very important to optimize while taking into consideration the
expected scale of the learning problem. However, even when the initial improvement was negligible
or negative at the beginning, it grew as the training progressed, eventually reaching positive values
in all investigated model configurations. As the difference in accuracy and the number of tasks seem
to be strongly correlated, this pattern can be expected to be relevant for even larger problems, and
the filtering can be even more useful when even more tasks need to be learned in a sequence. Future
research should focus on exploring other filters than the classifier‘s confidence and assessing the
technique‘s robustness for more complex datasets.

When it comes to related work, a conceptually similar approach was proposed by Aljundi et al.
(2019) who control sampling of memories in exact and generative replay. The major difference is
that they realize this by modifying the loss function of the generator, for example penalizing the
entropy of classifier-assigned labels, encouraging the generator to create data that the classifier will
be confident about. As such, this model-focused approach differs from our data-focused one, but in
their ablation studies, Aljundi et al. (2019) show that this entropy term is essential to outperform the
baseline, which works in favor of using classifier‘s results for selective generative replay.

In summary, the self-supervised pseudodata filtering can be a useful technique for improving gen-
erative replay when the number of tasks is large. Being a general method, it can become a helpful
addition other approaches combating catastrophic forgetting in deep neural networks.
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A.1 STUDENT‘S T-TEST

Confidence threshold Trained task Accuracy difference p

0.900 0 -0.006 0.831
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0.900 4 1.852 0.057
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0.900 9 2.431 0.042
0.900 10 3.564 0.002
0.900 11 4.040 0.000
0.900 12 4.323 0.000
0.900 13 4.884 0.000
0.900 14 4.816 0.000
0.900 15 4.928 0.000
0.950 0 0.027 0.270
0.950 1 0.059 0.796
0.950 2 0.545 0.204
0.950 3 0.921 0.191
0.950 4 2.388 0.013
0.950 5 1.744 0.098
0.950 6 1.312 0.250
0.950 7 2.145 0.064
0.950 8 2.373 0.056
0.950 9 2.132 0.077
0.950 10 3.047 0.010
0.950 11 3.258 0.001
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Confidence threshold Trained task Accuracy difference p

0.950 12 3.257 0.001
0.950 13 3.636 0.001
0.950 14 3.708 0.000
0.950 15 4.113 0.000
0.990 0 0.024 0.400
0.990 1 0.236 0.332
0.990 2 0.140 0.778
0.990 3 -0.400 0.599
0.990 4 0.842 0.400
0.990 5 -0.249 0.819
0.990 6 -1.348 0.269
0.990 7 -0.666 0.612
0.990 8 -0.255 0.849
0.990 9 -0.165 0.897
0.990 10 0.783 0.647
0.990 11 1.764 0.254
0.990 12 2.520 0.086
0.990 13 3.453 0.030
0.990 14 3.191 0.033
0.990 15 3.951 0.008

Table 2: Results of Student‘s T-test for VAE+BNN model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 0.030 0.649
0.900 1 -0.107 0.727
0.900 2 -0.240 0.639
0.900 3 -0.503 0.263
0.900 4 0.422 0.575
0.900 5 0.678 0.420
0.900 6 0.839 0.365
0.900 7 1.912 0.063
0.900 8 2.054 0.087
0.900 9 2.611 0.033
0.900 10 2.777 0.036
0.900 11 2.629 0.033
0.900 12 3.122 0.020
0.900 13 3.684 0.013
0.900 14 3.888 0.007
0.900 15 3.762 0.010
0.950 0 0.170 0.001
0.950 1 -0.460 0.093
0.950 2 -1.810 0.000
0.950 3 -2.529 0.000
0.950 4 -1.653 0.007
0.950 5 -0.999 0.102
0.950 6 -0.765 0.277
0.950 7 0.267 0.751
0.950 8 0.740 0.459
0.950 9 1.529 0.142
0.950 10 2.026 0.070
0.950 11 2.399 0.023
0.950 12 3.422 0.004
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Confidence threshold Trained task Accuracy difference p

0.950 13 4.488 0.001
0.950 14 4.380 0.001
0.950 15 4.056 0.002
0.990 0 0.018 0.786
0.990 1 -0.090 0.723
0.990 2 -2.402 0.000
0.990 3 -4.201 0.000
0.990 4 -3.287 0.000
0.990 5 -2.986 0.000
0.990 6 -2.263 0.005
0.990 7 -0.966 0.274
0.990 8 -0.732 0.471
0.990 9 0.983 0.323
0.990 10 0.913 0.539
0.990 11 1.599 0.376
0.990 12 2.730 0.272
0.990 13 3.939 0.167
0.990 14 4.530 0.095
0.990 15 3.998 0.205

Table 3: Results of Student‘s T-test for VAE+VCL model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 -0.026 0.502
0.900 1 0.085 0.894
0.900 2 -0.831 0.213
0.900 3 -1.077 0.139
0.900 4 -0.838 0.207
0.900 5 -0.512 0.381
0.900 6 -0.064 0.915
0.900 7 0.596 0.432
0.900 8 0.549 0.541
0.900 9 1.318 0.196
0.900 10 1.545 0.119
0.900 11 1.362 0.183
0.900 12 2.354 0.039
0.900 13 1.521 0.205
0.900 14 1.585 0.222
0.900 15 1.880 0.132
0.950 0 -0.053 0.134
0.950 1 0.129 0.840
0.950 2 -1.124 0.116
0.950 3 -0.716 0.304
0.950 4 -0.651 0.361
0.950 5 -0.330 0.614
0.950 6 0.270 0.674
0.950 7 0.211 0.791
0.950 8 0.410 0.657
0.950 9 1.480 0.123
0.950 10 1.637 0.100
0.950 11 1.554 0.118
0.950 12 2.877 0.009
0.950 13 2.770 0.017
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Confidence threshold Trained task Accuracy difference p

0.950 14 2.642 0.042
0.950 15 3.145 0.013
0.990 0 -0.045 0.259
0.990 1 0.929 0.114
0.990 2 -0.112 0.863
0.990 3 0.320 0.599
0.990 4 0.381 0.542
0.990 5 0.920 0.107
0.990 6 1.572 0.006
0.990 7 1.313 0.095
0.990 8 1.102 0.198
0.990 9 1.453 0.149
0.990 10 1.797 0.078
0.990 11 1.844 0.085
0.990 12 3.180 0.005
0.990 13 2.852 0.012
0.990 14 2.707 0.041
0.990 15 3.173 0.012

Table 4: Results of Student‘s T-test for RNVP+BNN model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 0.019 0.397
0.900 1 0.642 0.091
0.900 2 0.774 0.110
0.900 3 0.866 0.029
0.900 4 0.899 0.019
0.900 5 1.260 0.003
0.900 6 1.185 0.001
0.900 7 1.463 0.001
0.900 8 1.701 0.000
0.900 9 1.655 0.001
0.900 10 1.725 0.006
0.900 11 1.762 0.095
0.900 12 2.294 0.140
0.900 13 2.182 0.213
0.900 14 2.598 0.187
0.900 15 2.208 0.281
0.950 0 -0.016 0.489
0.950 1 0.319 0.437
0.950 2 0.180 0.723
0.950 3 -0.243 0.553
0.950 4 0.024 0.953
0.950 5 0.274 0.532
0.950 6 0.221 0.527
0.950 7 0.179 0.709
0.950 8 0.355 0.532
0.950 9 0.313 0.593
0.950 10 0.636 0.370
0.950 11 1.398 0.076
0.950 12 2.193 0.022
0.950 13 2.444 0.031
0.950 14 2.135 0.082

Continued on next page

14



Under review as a conference paper at ICLR 2024

Confidence threshold Trained task Accuracy difference p

0.950 15 2.080 0.112
0.990 0 -0.010 0.672
0.990 1 0.037 0.930
0.990 2 -0.421 0.468
0.990 3 -0.130 0.776
0.990 4 -0.032 0.938
0.990 5 0.820 0.060
0.990 6 0.768 0.025
0.990 7 0.966 0.022
0.990 8 1.178 0.015
0.990 9 1.278 0.011
0.990 10 1.581 0.026
0.990 11 1.413 0.091
0.990 12 2.155 0.037
0.990 13 2.213 0.056
0.990 14 2.590 0.034
0.990 15 2.685 0.036

Table 5: Results of Student‘s T-test for RNVP+VCL model configuration.

A.2 MANN-WHITNEY U TEST

Confidence threshold Trained task Accuracy difference p

0.900 0 -0.006 0.877
0.900 1 0.303 0.248
0.900 2 0.453 0.424
0.900 3 0.539 0.732
0.900 4 1.852 0.024
0.900 5 1.600 0.109
0.900 6 1.231 0.306
0.900 7 1.990 0.059
0.900 8 1.994 0.082
0.900 9 2.431 0.031
0.900 10 3.564 0.001
0.900 11 4.040 0.000
0.900 12 4.323 0.000
0.900 13 4.884 0.000
0.900 14 4.816 0.000
0.900 15 4.928 0.000
0.950 0 0.027 0.304
0.950 1 0.059 0.880
0.950 2 0.545 0.284
0.950 3 0.921 0.213
0.950 4 2.388 0.002
0.950 5 1.744 0.036
0.950 6 1.312 0.134
0.950 7 2.145 0.053
0.950 8 2.373 0.030
0.950 9 2.132 0.027
0.950 10 3.047 0.002
0.950 11 3.258 0.000
0.950 12 3.257 0.000
0.950 13 3.636 0.000
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Confidence threshold Trained task Accuracy difference p

0.950 14 3.708 0.000
0.950 15 4.113 0.000
0.990 0 0.024 0.270
0.990 1 0.236 0.322
0.990 2 0.140 0.752
0.990 3 -0.400 0.429
0.990 4 0.842 0.229
0.990 5 -0.249 0.734
0.990 6 -1.348 0.117
0.990 7 -0.666 0.660
0.990 8 -0.255 0.829
0.990 9 -0.165 0.393
0.990 10 0.783 0.585
0.990 11 1.764 0.765
0.990 12 2.520 0.121
0.990 13 3.453 0.004
0.990 14 3.191 0.011
0.990 15 3.951 0.000

Table 6: Results of Mann-Whitney U test for VAE+BNN model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 0.030 0.631
0.900 1 -0.107 0.767
0.900 2 -0.240 0.714
0.900 3 -0.503 0.439
0.900 4 0.422 0.094
0.900 5 0.678 0.139
0.900 6 0.839 0.181
0.900 7 1.912 0.012
0.900 8 2.054 0.016
0.900 9 2.611 0.005
0.900 10 2.777 0.006
0.900 11 2.629 0.010
0.900 12 3.122 0.007
0.900 13 3.684 0.004
0.900 14 3.888 0.004
0.900 15 3.762 0.009
0.950 0 0.170 0.006
0.950 1 -0.460 0.038
0.950 2 -1.810 0.000
0.950 3 -2.529 0.000
0.950 4 -1.653 0.005
0.950 5 -0.999 0.036
0.950 6 -0.765 0.092
0.950 7 0.267 0.980
0.950 8 0.740 0.675
0.950 9 1.529 0.156
0.950 10 2.026 0.133
0.950 11 2.399 0.020
0.950 12 3.422 0.001
0.950 13 4.488 0.000
0.950 14 4.380 0.000
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Confidence threshold Trained task Accuracy difference p

0.950 15 4.056 0.002
0.990 0 0.018 0.875
0.990 1 -0.090 0.855
0.990 2 -2.402 0.001
0.990 3 -4.201 0.000
0.990 4 -3.287 0.000
0.990 5 -2.986 0.000
0.990 6 -2.263 0.001
0.990 7 -0.966 0.125
0.990 8 -0.732 0.132
0.990 9 0.983 0.693
0.990 10 0.913 0.982
0.990 11 1.599 0.457
0.990 12 2.730 0.115
0.990 13 3.939 0.068
0.990 14 4.530 0.035
0.990 15 3.998 0.108

Table 7: Results of Mann-Whitney U test for VAE+VCL model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 -0.026 0.664
0.900 1 0.085 0.953
0.900 2 -0.831 0.136
0.900 3 -1.077 0.142
0.900 4 -0.838 0.119
0.900 5 -0.512 0.245
0.900 6 -0.064 0.716
0.900 7 0.596 0.489
0.900 8 0.549 0.549
0.900 9 1.318 0.227
0.900 10 1.545 0.142
0.900 11 1.362 0.193
0.900 12 2.354 0.028
0.900 13 1.521 0.193
0.900 14 1.585 0.201
0.900 15 1.880 0.112
0.950 0 -0.053 0.180
0.950 1 0.129 0.991
0.950 2 -1.124 0.076
0.950 3 -0.716 0.366
0.950 4 -0.651 0.432
0.950 5 -0.330 0.519
0.950 6 0.270 0.681
0.950 7 0.211 0.991
0.950 8 0.410 0.769
0.950 9 1.480 0.275
0.950 10 1.637 0.149
0.950 11 1.554 0.163
0.950 12 2.877 0.012
0.950 13 2.770 0.036
0.950 14 2.642 0.047
0.950 15 3.145 0.017
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Confidence threshold Trained task Accuracy difference p

0.990 0 -0.045 0.347
0.990 1 0.929 0.084
0.990 2 -0.112 0.681
0.990 3 0.320 0.860
0.990 4 0.381 0.639
0.990 5 0.920 0.119
0.990 6 1.572 0.010
0.990 7 1.313 0.073
0.990 8 1.102 0.236
0.990 9 1.453 0.177
0.990 10 1.797 0.084
0.990 11 1.844 0.073
0.990 12 3.180 0.006
0.990 13 2.852 0.017
0.990 14 2.707 0.050
0.990 15 3.173 0.013

Table 8: Results of Mann-Whitney U test for RNVP+BNN model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 0.019 0.348
0.900 1 0.642 0.109
0.900 2 0.774 0.199
0.900 3 0.866 0.063
0.900 4 0.899 0.023
0.900 5 1.260 0.004
0.900 6 1.185 0.000
0.900 7 1.463 0.001
0.900 8 1.701 0.000
0.900 9 1.655 0.002
0.900 10 1.725 0.006
0.900 11 1.762 0.076
0.900 12 2.294 0.093
0.900 13 2.182 0.218
0.900 14 2.598 0.272
0.900 15 2.208 0.522
0.950 0 -0.016 0.631
0.950 1 0.319 0.487
0.950 2 0.180 0.947
0.950 3 -0.243 0.301
0.950 4 0.024 0.989
0.950 5 0.274 0.457
0.950 6 0.221 0.426
0.950 7 0.179 0.153
0.950 8 0.355 0.060
0.950 9 0.313 0.152
0.950 10 0.636 0.113
0.950 11 1.398 0.048
0.950 12 2.193 0.022
0.950 13 2.444 0.033
0.950 14 2.135 0.118
0.950 15 2.080 0.164
0.990 0 -0.010 0.815
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Confidence threshold Trained task Accuracy difference p

0.990 1 0.037 0.755
0.990 2 -0.421 0.741
0.990 3 -0.130 0.961
0.990 4 -0.032 0.728
0.990 5 0.820 0.028
0.990 6 0.768 0.012
0.990 7 0.966 0.006
0.990 8 1.178 0.006
0.990 9 1.278 0.006
0.990 10 1.581 0.017
0.990 11 1.413 0.037
0.990 12 2.155 0.035
0.990 13 2.213 0.069
0.990 14 2.590 0.045
0.990 15 2.685 0.046

Table 9: Results of Mann-Whitney U test for RNVP+VCL model configuration.

A.3 MOOD‘S TEST

Confidence threshold Trained task Accuracy difference p

0.900 0 0.010 0.617
0.900 1 0.225 0.453
0.900 2 -0.003 1.000
0.900 3 -0.430 0.803
0.900 4 1.258 0.211
0.900 5 0.472 0.901
0.900 6 0.549 0.530
0.900 7 1.509 0.530
0.900 8 1.670 0.096
0.900 9 1.032 0.071
0.900 10 1.683 0.018
0.900 11 1.932 0.000
0.900 12 2.789 0.000
0.900 13 3.458 0.000
0.900 14 3.516 0.000
0.900 15 3.055 0.000
0.950 0 0.040 0.080
0.950 1 0.075 0.901
0.950 2 0.368 0.901
0.950 3 0.719 0.102
0.950 4 2.331 0.008
0.950 5 1.423 0.102
0.950 6 1.006 0.530
0.950 7 1.574 0.204
0.950 8 2.041 0.091
0.950 9 1.553 0.242
0.950 10 1.353 0.086
0.950 11 1.919 0.003
0.950 12 2.307 0.003
0.950 13 2.714 0.000
0.950 14 2.863 0.000
0.950 15 2.752 0.000
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Confidence threshold Trained task Accuracy difference p

0.990 0 0.040 0.080
0.990 1 0.130 0.901
0.990 2 -0.265 1.000
0.990 3 -1.064 0.377
0.990 4 0.747 0.901
0.990 5 -0.672 0.366
0.990 6 -1.542 0.157
0.990 7 -0.164 1.000
0.990 8 0.523 0.900
0.990 9 -0.276 0.686
0.990 10 -0.951 0.715
0.990 11 -0.032 1.000
0.990 12 0.683 0.233
0.990 13 1.501 0.047
0.990 14 1.702 0.233
0.990 15 1.726 0.005

Table 10: Results of Mood‘s test for VAE+BNN model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 0.060 0.527
0.900 1 0.465 0.639
0.900 2 0.642 0.266
0.900 3 0.054 1.000
0.900 4 1.235 0.079
0.900 5 1.460 0.079
0.900 6 1.601 0.266
0.900 7 2.726 0.079
0.900 8 2.715 0.104
0.900 9 3.011 0.104
0.900 10 2.794 0.023
0.900 11 2.380 0.023
0.900 12 2.438 0.023
0.900 13 2.956 0.104
0.900 14 3.653 0.071
0.900 15 3.135 0.251
0.950 0 0.145 0.093
0.950 1 -0.568 0.171
0.950 2 -2.365 0.010
0.950 3 -2.864 0.000
0.950 4 -1.587 0.010
0.950 5 -1.083 0.064
0.950 6 -0.529 0.217
0.950 7 0.511 1.000
0.950 8 0.944 0.343
0.950 9 1.376 0.114
0.950 10 1.734 0.425
0.950 11 2.213 0.038
0.950 12 2.538 0.007
0.950 13 3.876 0.001
0.950 14 3.707 0.001
0.950 15 3.153 0.009
0.990 0 0.080 0.266
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Confidence threshold Trained task Accuracy difference p

0.990 1 0.098 1.000
0.990 2 -1.360 0.036
0.990 3 -3.144 0.000
0.990 4 -2.494 0.000
0.990 5 -2.523 0.000
0.990 6 -1.903 0.006
0.990 7 -0.703 0.863
0.990 8 -1.398 0.330
0.990 9 0.670 0.745
0.990 10 0.235 1.000
0.990 11 0.622 0.642
0.990 12 1.668 0.100
0.990 13 3.004 0.100
0.990 14 3.763 0.081
0.990 15 3.123 0.214

Table 11: Results of Mood‘s test for VAE+VCL model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 -0.010 1.000
0.900 1 0.323 0.763
0.900 2 -1.393 0.132
0.900 3 -1.400 0.132
0.900 4 -1.284 0.132
0.900 5 -1.151 0.132
0.900 6 -0.091 1.000
0.900 7 0.572 0.366
0.900 8 1.067 0.366
0.900 9 2.141 0.366
0.900 10 2.065 0.132
0.900 11 1.845 0.132
0.900 12 2.954 0.132
0.900 13 2.865 0.763
0.900 14 2.541 0.366
0.900 15 2.711 0.448
0.950 0 -0.035 0.762
0.950 1 -0.200 0.366
0.950 2 -1.428 0.132
0.950 3 -0.722 0.763
0.950 4 -0.528 0.763
0.950 5 -0.705 0.366
0.950 6 0.447 0.763
0.950 7 -0.094 1.000
0.950 8 0.606 0.763
0.950 9 1.468 0.366
0.950 10 1.778 0.366
0.950 11 1.161 0.132
0.950 12 2.500 0.132
0.950 13 2.979 0.763
0.950 14 2.494 0.763
0.950 15 3.145 0.448
0.990 0 -0.080 0.366
0.990 1 0.940 0.132
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Confidence threshold Trained task Accuracy difference p

0.990 2 -0.488 0.763
0.990 3 -0.451 0.763
0.990 4 0.203 1.000
0.990 5 0.773 0.035
0.990 6 1.453 0.007
0.990 7 1.046 0.132
0.990 8 0.570 0.132
0.990 9 2.335 0.366
0.990 10 2.104 0.366
0.990 11 1.387 0.035
0.990 12 1.982 0.048
0.990 13 3.269 0.171
0.990 14 2.216 0.448
0.990 15 3.003 0.171

Table 12: Results of Mood‘s test for RNVP+BNN model configuration.

Confidence threshold Trained task Accuracy difference p

0.900 0 0.025 0.425
0.900 1 0.450 0.037
0.900 2 0.513 0.233
0.900 3 0.483 0.454
0.900 4 0.516 0.233
0.900 5 1.111 0.037
0.900 6 1.451 0.037
0.900 7 1.909 0.003
0.900 8 2.186 0.011
0.900 9 1.852 0.043
0.900 10 1.649 0.015
0.900 11 2.645 0.114
0.900 12 2.239 0.155
0.900 13 1.480 0.155
0.900 14 2.298 0.155
0.900 15 2.888 0.653
0.950 0 0.000 0.924
0.950 1 0.252 0.175
0.950 2 -0.028 1.000
0.950 3 -0.404 0.303
0.950 4 0.034 1.000
0.950 5 0.698 0.233
0.950 6 0.474 0.454
0.950 7 0.948 0.101
0.950 8 1.259 0.036
0.950 9 0.852 0.261
0.950 10 1.504 0.103
0.950 11 1.767 0.049
0.950 12 1.184 0.005
0.950 13 1.934 0.106
0.950 14 0.880 0.106
0.950 15 1.727 0.465
0.990 0 0.030 0.281
0.990 1 0.092 0.761
0.990 2 -0.227 0.888
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Confidence threshold Trained task Accuracy difference p

0.990 3 -0.075 1.000
0.990 4 0.296 0.761
0.990 5 0.929 0.037
0.990 6 0.861 0.037
0.990 7 0.862 0.101
0.990 8 1.201 0.099
0.990 9 1.248 0.043
0.990 10 1.756 0.118
0.990 11 2.259 0.159
0.990 12 2.486 0.116
0.990 13 2.706 0.322
0.990 14 3.508 0.116
0.990 15 3.600 0.365

Table 13: Results of Mood‘s test for RNVP+VCL model configuration.
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