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Abstract

Test-Time Adaptation (TTA) is a critical001
paradigm for tackling distribution shifts during002
inference, especially in visual recognition tasks.003
However, while acoustic models face similar004
challenges due to distribution shifts in test-time005
speech, TTA techniques specifically designed006
for acoustic modeling in the context of open-007
world data shifts remain scarce. This gap is fur-008
ther exacerbated when considering the unique009
characteristics of acoustic foundation models:010
1) they are primarily built on transformer ar-011
chitectures with layer normalization and 2)012
they deal with test-time speech data of vary-013
ing lengths in a non-stationary manner. These014
aspects make the direct application of vision-015
focused TTA methods, which are mostly reliant016
on batch normalization and assume indepen-017
dent samples, infeasible. In this paper, we delve018
into TTA for pre-trained acoustic models fac-019
ing open-world data shifts. We find that noisy,020
high-entropy speech frames, often non-silent,021
carry key semantic content. Traditional TTA022
methods might inadvertently filter out this infor-023
mation using potentially flawed heuristics. In024
response, we introduce a learning-based adapta-025
tion enriched by confidence enhancement. Not-026
ing that speech signals’ short-term consistency,027
we also apply consistency regularization dur-028
ing test-time optimization. Our experiments029
on synthetic and real-world datasets affirm our030
method’s superiority over existing baselines.031

1 Introduction032

Deep neural networks (DNNs) have exhibited re-033

markable performance in scenarios where the train-034

ing and testing sets adhere to the independent and035

identically distributed (i.i.d) assumption. However,036

real-world applications frequently involve domain037

shifts between the training to testing sets, such as vi-038

sual variations due to evolving weather conditions039

in vision tasks (Hendrycks and Dietterich, 2019;040

Koh et al., 2021) and variations in timbre due to041

changing speakers in speech-related tasks (Liao,042
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Figure 1: Robustness analysis of Wav2vec2 Base and
Large on open-world corruptions including 1) Noise
(N): additive noises on LibriSpeech test-other set, 2)
Accent (A): accents of L2 learners on L2-Arctic sub-
set 3) Singing (S): sung speech on DSing test set. In-
Domain (ID) indicates the performance on LibriSpeech
test-other set without additive noises. WER is short for
Word Error Rate.

2013). Unfortunately, DNNs are susceptible to per- 043

formance degradation under such domain shifts, un- 044

derscoring the importance of adapting DNN-based 045

models to enhance their robustness in the face of 046

open-world distribution shifts. 047

Test-Time Adaptation (TTA) emerges as a criti- 048

cal paradigm for addressing distribution shifts at in- 049

ference time, which involves two lines of research, 050

Test-Time Training (Sun et al., 2020) (TTT) and 051

fully TTA (Wang et al., 2020). TTT necessitates 052

more backward passes and source data to alter train- 053

ing with additional self-supervised objectives while 054

fully TTA enables online updates of neural net- 055

works on test data in a source-free way, thus requir- 056

ing a lower computational cost compared to TTT. 057

Recent investigations (Niu et al., 2023; Zhou et al., 058

2023) have delved into TTA under the context of 059

open-world data shifts, a more practical considera- 060

tion for real-world applications. Notwithstanding 061

TTA’s success in tackling various forms of corrup- 062

tion in vision recognition tasks (Zhang et al., 2022; 063

Boudiaf et al., 2022), the development of TTA tech- 064

niques tailored for acoustic modeling in the context 065

of open-world data shifts remains scarce. 066
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In the light of human auditory system’s inher-067

ent adaptability to real-world speech, it exhibits068

resilience in the face of diverse forms of speech cor-069

ruption. However, while recent pre-trained acous-070

tic foundation models, such as Wav2vec2 (Baevski071

et al., 2020), with task-specific fine-tuning achieve072

excellent performances in tasks such as Automatic073

Speech Recognition (ASR), they exhibit notable074

performance degradation when confronted with075

open-world speech during test-time, as depicted076

in Figure 1. Consequently, there exists an emer-077

gent demand to adapt these acoustic foundation078

models to open-world shifts when deployed in the079

real world. However, these models pose unique080

challenges due to their characteristics: 1) they are081

primarily built upon transformer architectures with082

layer normalization and 2) they deal with test-time083

speech data of varying lengths in a non-stationary084

manner. These distinctive features make it imprac-085

tical to directly apply existing vision-focused TTA086

methods. These TTA techniques heavily rely on087

batch normalization, which acoustic foundation088

models lack. Additionally, they assume sample in-089

dependence, an assumption that does not hold in090

the context of speech data.091

In this work, we investigate the TTA of pre-092

trained foundation models facing open-world data093

shifts. Specifically, we focus on fully TTA to094

avoid altering the training of acoustic foundation095

models. Our goal is to leverage publicly avail-096

able pre-trained acoustic models and adapt them097

to open-world data shifts. We initially follow the098

heuristic-based TTAs from prior works, such as099

Niu et al. (2023) designed for image classifica-100

tions, to pinpoint a substantial proportion of noisy101

frames within non-silent speech segments before102

adaptation. Although Niu et al. (2023) charac-103

terized these high-entropy noisy frames as unreli-104

able and potentially harmful for model adaptation,105

we observed that merely discarding these noisy106

non-silent frames adversely affected model perfor-107

mance. This is because these frames contain vital108

semantic information crucial for accurate recogni-109

tion. Consequently, rather than excluding these110

frames, we introduce a learning-driven method,111

termed Confidence Enhanced Adaptation (CEA),112

designed to ‘denoising’ the intermediate represen-113

tation of these noisy frames.114

Additionally, we emphasize that frames within115

a short speech segment are temporally coherent,116

largely due to the consistent nature of phonemic117

content within such windows. This contrasts with118

image samples in a batch, which are frequently 119

treated as independent entities. We conduct a 120

wide range of experiments on both synthetic and 121

real-world datasets, systematically assessing the 122

model’s robustness against Gaussian noises, envi- 123

ronmental sounds, accents of second language (L2) 124

learners, and singing (a.k.a sung speech). The ex- 125

perimental results substantiate the superiority of 126

our proposed method over existing baselines. 127

In summary, our contributions are summarized 128

as follows: 129

• We conduct an analysis of the robustness of 130

acoustic foundation models under open-world 131

speech data shifts, revealing that noisy speech 132

frames with high entropy are frequently non- 133

silent and bear critical semantic content. 134

• We introduce a learning-based adaptation ap- 135

proach enriched by confidence enhancement 136

to boost the reliability of noisy frames and 137

apply short-term consistency regularization 138

for acoustic foundation models at test-time 139

adaptation. 140

• We perform a wide range of experiments on 141

both synthetic and real-world datasets, includ- 142

ing novel experiments on real-world music 143

datasets for the first time, thus contributing 144

to the TTA community. Empirical results 145

substantiate the superior performance of our 146

method over existing baselines. 147

2 Related Work 148

Test-Time Adaptation. Test-time adaption plays 149

an essential role in addressing distribution shifts 150

encountered in test samples for a given pre-trained 151

source model. Existing TTA methods can be 152

categorized into two primary approaches: test- 153

time training (TTT) (Sun et al., 2020) and fully 154

TTA (Wang et al., 2020). TTT methods commonly 155

incorporate additional self-supervised objectives 156

during the model training phase (Liu et al., 2021; 157

Bartler et al., 2022). In contrast, fully TTA ex- 158

clusively updates models during the test phase us- 159

ing unsupervised objectives. Notably, fully TTA 160

methods in the domain of computer vision have 161

relied on Batch Normalization layers (Ioffe and 162

Szegedy, 2015; Lim et al., 2023; Niu et al., 2022) 163

while recent works (Niu et al., 2023) have begun to 164

explore the potential of transformer-based mod- 165

els such as Vision Transformer (ViT) (Dosovit- 166

skiy et al., 2020), which employs layer normal- 167
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ization (Ba et al., 2016). Furthermore, there has168

been a growing interest in configuring TTA meth-169

ods to suit real-world deployment scenarios that170

involve dynamic changes in environmental condi-171

tions (Wang et al., 2022). While vision-centric172

TTA approaches (Wang et al., 2022; Gong et al.,173

2022) exhibit an ability to address non-i.i.d data174

streams in fluctuating environments, they continue175

to operate under the assumption of sample indepen-176

dence within the same batch, rendering them less177

applicable to speech data. Despite the plethora of178

TTA methods, real-world data shifts encompassing179

both covariate and label shifts pose challenges to180

real-world deployment (Koh et al., 2021; Niu et al.,181

2023; Zhou et al., 2023). Consequently, further182

investigation is needed to address these challenges,183

and this paper focuses on tackling them.184

Robustness in Speech. The realm of ro-185

bust speech processing has a rich historical back-186

drop (Abdel-Hamid et al., 2012; Li et al., 2014;187

Kim and Stern, 2016; Swietojanski et al., 2016).188

Prior studies have explored the acoustic shifts with189

a focus on distinct aspects, such as speaker adapta-190

tion (Liao, 2013; Swietojanski and Renals, 2014),191

and accent adaptation (Yang et al., 2023b), often192

treating these facets in isolation. Consequently,193

these approaches encounter challenges when con-194

fronted with the broader context of open-world data195

shifts. Another research line focuses on the devel-196

opment of adaptation approaches for acoustic or197

speech models by reprogramming input data (Yang198

et al., 2021, 2023a,b) in a parameter-efficient man-199

ner, or designing wave prompts (Gao et al., 2022).200

A notable distinction between these works and TTA201

is their reliance on labeled target data pairs for su-202

pervised learning, as opposed to unsupervised TTA.203

Furthermore, despite the recent success of the large204

pre-trained acoustic model, the development of205

TTA methods for such acoustic foundation models206

remains scarce. Recent works theoretically analyze207

the layer-wise representations and the transferabil-208

ity (Pasad et al., 2021; Chen et al., 2023) and pro-209

vide a pilot study on TTA for ASR (Lin et al., 2022;210

Kim et al., 2023). Our work focuses on designing211

generic TTA methods for pre-trained acoustic foun-212

dation models under open-world speech data shifts.213

3 Preliminary214

We center our focus on the fully Test-Time Adapta-215

tion framework, characterized by episodic model216

adaptation, where the model is reset after process-217

ing each utterance. We denote the pre-trained 218

acoustic foundation model as fΘ(y|x). We inves- 219

tigate the core parts shared by most acoustic foun- 220

dation models such as Wav2vec2 (Baevski et al., 221

2020), HuBERT (Hsu et al., 2021), WavLM (Chen 222

et al., 2022) and Whisper (Radford et al., 2023), 223

which can be typically decomposed into two con- 224

stituent components: a feature extractor gϕ(z|x), 225

parameterized by ϕ, and a transformer encoder 226

hθ(y|z), parameterized by θ. This decomposition 227

is expressed as: 228

fΘ(y|x) = hθ(gϕ(x)) (1) 229

where Θ = {θ, ϕ} represents the collective set of 230

model parameters. The feature extractor gϕ takes as 231

input waveform audio or log-mel spectrogram. The 232

transformer encoder hθ serves as an audio encoder 233

and outputs acoustic representations. Considering a 234

test-time speech sequence x1:n of variable length n, 235

typically with arbitrary domain shifts, the primary 236

objective entails adapting the pre-trained acoustic 237

model fΘ to enhance its performance for x1:n. 238

4 Method 239

In this section, we first analyze the common source 240

of open-world shifts in the speech domain, and then 241

provide our findings and methods for addressing 242

open-world shifts. The overview of our method is 243

presented in Figure 2. 244

4.1 Open-World Shifts in the Speech Domain 245

Open-world distribution shifts encountered within 246

the speech domain may originate from several 247

sources, including: 248

Speaker Changes. Timbre variations in speech 249

stemming from changes in the speaker’s identity. 250

Environmental Noises. Perturbations intro- 251

duced by ambient noises in the recording environ- 252

ments. 253

Pronunciation Changes. Alteration in pronun- 254

ciation characteristics such as accent or singing. 255

Text-Domain Changes. Shifts in the linguistic 256

content or context of the speech data. 257

It is noteworthy that speaker changes, environ- 258

mental noises, and pronunciation changes are typ- 259

ically categorized as covariate shift, as they per- 260

tain to variations in the input data distribution. In 261

contrast, text-domain changes are categorized as 262

label shift, as they involve alterations in the out- 263

put distribution. Furthermore, it is important to 264
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Figure 2: The overall framework of the proposed method. The figure takes a Connectionist Temporal Classification
(CTC) based acoustic foundation model as an example. This framework involves two steps. The confidence enhanced
adaptation is first performed to boost the reliability of noisy frames. The temporal consistency regularization is
employed across the entire input sequence and jointly optimized with entropy minimization.

acknowledge that real-world speech data often ex-265

hibit shifts stemming from multiple sources simul-266

taneously, rendering the task of adaptation to open-267

world shifts complex and challenging.268

4.2 Confidence Enhanced Adaptation269

To gain insights into the behavior of pre-trained270

acoustic models at the frame-level prediction in the271

presence of open-world distribution shifts, our ini-272

tial analysis centers on the entropy distribution of273

speech data subjected to such shifts. We conducted274

experiments using both the LibriSpeech test-other275

dataset, which was deliberately corrupted by addi-276

tive Gaussian noises, and the DSing test set. These277

experiments were performed with the Wav2vec2278

Base model. We subsequently evaluated the per-279

centages of high-entropy and low-entropy frames280

for both non-silent and silent speech segments. The281

classification of frames as silent or non-silent was282

determined based on pseudo labels derived from283

model predictions.284

As illustrated in Figure 3, our findings reveal that,285

prior to any adaptation (Step=0), within the non-286

silent frames category, there exists a prevalence287

of high-entropy frames compared to low-entropy288

ones for Base models. Conversely, the opposite289

trend is observed within the silent frames category.290

It is worth noting that existing literature provides291

heuristic insights suggesting that high-entropy sam-292

ples may be unreliable and could potentially have a293

detrimental impact on model adaptation. However,294

it is crucial to recognize that these noisy frames 295

contain essential content information that is criti- 296

cal for downstream tasks such as speech recogni- 297

tion. While prior research suggests that filtering 298

out such unreliable samples may aid in stabiliz- 299

ing adaptation and improving performance, this 300

approach proves infeasible in our specific case. 301

In response, we have proposed a learning-based 302

adaptation approach aimed at enhancing the con- 303

fidence of uncertain predictions, particularly for 304

noisy frames. Denoting ŷci = fΘ(c|x1:n) as the 305

predicted probability of class c for i-th frame, we 306

quantify uncertainty through entropy, defined as: 307

E(xi) = −
∑
c

ŷci log ŷ
c
i (2) 308

Traditional heuristic-based Test-Time Adapta- 309

tion (TTA) often relies on manually set thresholds 310

for filtering our data samples of high entropy. In 311

contrast, our approach utilizes pseudo labels ŷi 312

assigned to each frame xi and applies entropy min- 313

imization exclusively to non-silent frames, without 314

the need of setting such thresholds. Specifically, we 315

minimize a weighted entropy function, expressed 316

as follows: 317

min
Θ′={ϕ,θLN}

n∑
i=1

S(xi)E(xi) (3) 318

where θLN denotes the affine parameters associ- 319

ated with layer normalization in the transformer en- 320
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Figure 3: Distribution of Entropy in Acoustic Models:
the entropy distributions are computed for Wav2vec2
Base models on the LibriSpeech noise-corrupted test-
other and DSing test datasets across adaptation steps.
We employ a threshold of 0.4 ∗ lnC, as recommended
in Niu et al. (2022), where C represents the number of
task classes. Frames with entropy values exceeding this
threshold are highlighted in red, indicating high-entropy
(h) frames, while low-entropy (l) frames are marked in
blue. We use • to denote non-silent (non-sil) frames and
△ for silent (sil) frames. The training steps range from
0 to 9, and the results presented in each subfigure are
based on the average of 100 random samples.

coder h, and S(xi) represents frame-level weights,321

defined as:322

S(xi) =
1

1 + exp(−E(xi))
Iŷi̸=c0(xi) (4)323

where c0 signifies the index corresponding to324

silent frames, and I is an indicator function. Such325

design empowers the model to assign greater im-326

portance to frames where it exhibits lower confi-327

dence. The increased weight encourages the model328

to focus more on these uncertain frames during329

adaptation, potentially leading to heightened model330

confidence on such frames. We term this approach331

“confidence-enhanced adaptation”. Notice that this332

adaptation process entails an update of the feature333

extractor gϕ. This empowers models with the capa-334

bility to adapt to open-world shifts, even in the pres-335

ence of substantial covariate shifts. As evidenced336

in Figure 3, the count of high-entropy frames di-337

minishes while low-entropy frame counts increase338

with each adaptation step, underscoring the effec-339

tiveness of confidence-enhanced adaptation.340

4.3 Short-Term Consistency of Speech Signals341

In the domain of speech signal processing, a salient342

characteristic is the short-term stability, where343

successive speech frames often convey the same344

phoneme or speech unit. This intrinsic tempo-345

ral correlation is a defining attribute of speech346

data. Nevertheless, conventional Test-Time Adap- 347

tation (TTA) methods largely overlook this inherent 348

temporal correlation within individual speech se- 349

quences. 350

To address this limitation, we propose a feature- 351

wise short-term consistency regularization tech- 352

nique. We perform this regularization step after 353

the confidence-enhanced adaptation process. This 354

sequencing is deliberate as introducing temporal 355

regularization over representations of noisy frames 356

can potentially confuse models and yield undesir- 357

able optimization outcomes. Concretely, the reg- 358

ularization is jointly optimized alongside entropy 359

minimization, as represented by the following equa- 360

tion: 361

min
ΘLN

n∑
i=1

E(xi)+α
n−k+1∑
i=1

||z′k+i−1−z′i||2Iŷi ̸=c0(xi)

(5) 362

where α denotes the weight assigned to the reg- 363

ularization loss, and ΘLN represents the affine pa- 364

rameters associated with layer normalization across 365

the entire acoustic model. Here, zi signifies the fea- 366

ture representation of i-th frame obtained from the 367

fine-tuned feature extractor, and z′i represents the 368

modified feature representation achieved through a 369

parameter-free self-attention operation. The param- 370

eter k denotes the size of the window considered as 371

the neighborhood of frame xi. This regularization 372

technique effectively captures the inherent tempo- 373

ral consistency found in speech data by compelling 374

the representation of xi to closely resemble that of 375

its neighboring frames within a predefined window. 376

Despite the possible peaky behavior of CTC, the 377

proposed temporal consistency can be treated as 378

introducing the inductive bias of "short-term stabil- 379

ity" in the adaptation (Rabiner et al., 2007). 380

5 Experiments 381

In this section, we undertake an evaluation of the 382

robustness of acoustic foundation models against 383

various forms of open-world corruption. We dis- 384

cuss the robustness against synthetic noises includ- 385

ing Gaussian noises and real-world environmental 386

sounds in Section 5.2, real-world data shifts includ- 387

ing L2 accents and singing voice (sung speech) in 388

Section 5.3, and decoding strategy pertaining to 389

language models in Section 5.4. We provide more 390

evaluation results using various acoustic models in 391

Appendix A.5. 392
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Method Level 1 Level 2 Level 3 Level 4 Level 5 Average

Source 13.9 24.4 39.5 54.5 75.7 41.6
Tent 11.6 19.7 32.2 46.3 69.2 35.8
SAR 12.7 21.5 35.0 49.2 72.0 38.1
TeCo 13.6 19.7 32.2 46.3 69.3 35.8
SUTA 10.9 16.7 24.6 34.7 56.5 28.7
Ours 10.7 16.2 24.0 34.1 56.5 28.3

Table 1: WER (%) results on LS-C over five severity levels of Gaussian noises using Wav2vec2 Base with greedy
decoding. The best results are bold.

5.1 Experimental Setup393

Datasets. Our experiments involve the utilization394

of four distinct datasets: two synthetic and two real-395

world datasets. The first synthetic dataset, named396

LS-C, represents the LibriSpeech (Panayotov et al.,397

2015) test-other set Corrupted by additive Gaus-398

sian noises. We introduce five levels of severity399

to simulate various degrees of corruption as per400

(Hendrycks and Dietterich, 2019) for evaluating the401

trend of model robustness. Higher levels indicate402

more severe corruption although heavily corrupted403

speech data may not be common cases in the real404

world. Subsequently, the second synthetic dataset,405

named LS-P, is the LibriSpeech test-other set Per-406

turbed by real-world environmental sounds. This407

dataset encompasses eight diverse types of envi-408

ronmental sound, including Air Conditioner, Bab-409

ble, Munching, Shutting Door, Vacuum Cleaner,410

Airport Announcements, Copy Machine, and Typ-411

ing. These environmental sounds are from the MS-412

SNSD noise test set (Reddy et al., 2019). Each413

type is added to the original audio with five dis-414

tinctive signal-to-noise ratios (SNRs) representing415

five levels of severity. Our study further extends416

to two real-world datasets with open-world data417

shifts. The L2-Arctic (Zhao et al., 2018) dataset418

comprises speech data from second language (L2)419

learners originating from six countries with differ-420

ent first languages (L1): Arabic, Mandarin, Hindi,421

Korean, Spanish, and Vietnamese. Furthermore,422

we broaden our investigation to encompass music423

datasets, DSing (Dabike and Barker, 2019) and424

Hansen (Hansen and Fraunhofer, 2012), featur-425

ing singing voice (sung speech). More details of426

dataset statistics can be found in Appendix A.1427

and details of implementation can be found in Ap-428

pendix A.2.429

Baselines. To assess the adaptation performance430

of our proposed method, we consider the follow-431

ing TTA baselines. Tent (Wang et al., 2020) adapt 432

transformation layers with the objective of entropy 433

minimization. Despite it being initially proposed 434

for batch normalization, we refer to updating the 435

affine parameters of layer normalization as Tent 436

in our work. In addition, we involve the base- 437

line TeCo (Yi et al., 2023), originally proposed 438

for video classification with temporal coherence 439

regularization, due to its applicability to sequential 440

data. Our comparison also includes the SAR (Niu 441

et al., 2023), specifically designed to address data 442

shifts in the dynamic wild world. Furthermore, we 443

also introduce comparisons with SUTA (Lin et al., 444

2022) using entropy minimization and minimum 445

class confusion, and SGEM (Kim et al., 2023) us- 446

ing sequential-level generalized entropy minimiza- 447

tion in conjunction with beam search employing 448

language models. 449

5.2 Robustness to Synthetic Noises 450

5.2.1 Gaussian Noises 451

In the initial phase of our experiments, we focus on 452

synthetic data and assess the robustness in the pres- 453

ence of various levels of Gaussian noise injected 454

into the test speech audio. The outcomes are re- 455

ported in Table 1. It is observed that our proposed 456

method consistently outperforms existing baseline 457

approaches across five levels of noise. Notably, our 458

approach achieves a relative improvement of 32.0% 459

on average in terms of WER, when compared to 460

using the source model without adaptation. 461

Furthermore, it is imperative to note that SAR, 462

designed for addressing data shifts in dynamic real- 463

world scenarios, demonstrates comparatively less 464

improvement compared with the Tent method. This 465

observation underscores the limitations of filtering 466

noisy frames for speech recognition. Instead, the 467

learning-based adaptation adopted in our method 468

shows superiority. Moreover, we discover that 469
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10 5 0 -5 -10

Source 28.1 43.9 65.0 83.4 94.2
Tent 22.6 36.1 56.6 77.9 91.4
SAR 24.5 39.1 59.9 79.9 92.1
TeCo 22.5 36.2 56.6 77.9 91.3
SUTA 17.7 26.1 41.2 62.7 82.7
Ours 17.5 25.6 40.6 61.6 82.2

Table 2: WER (%) results on Air Conditioner sound
over five severity levels using Wav2vec2 Base with
greedy decoding. SNRs (dB) are listed in the first row.
The best results are bold.

10 5 0 -5 -10

Source 26.2 34.0 44.4 56.4 69.0
Tent 21.0 27.9 37.0 49.2 63.0
SAR 23.0 30.3 39.7 52.1 65.3
TeCo 21.0 27.8 37.0 49.1 63.0
SUTA 17.9 23.3 30.4 41.0 53.4
Ours 17.5 22.8 29.9 40.4 52.6

Table 3: WER (%) results on Typing sound over five
severity levels using Wav2vec2 Base with greedy de-
coding. SNRs (dB) are listed in the first row. The best
results are bold.

TeCo provides marginal improvement compared470

to Tent, indicating that coherence regularization is471

limited in the context of noisy frames. In contrast,472

our confidence-enhanced adaptation yields further473

benefits for temporal consistency regularization.474

5.2.2 Environmental Sounds475

We further evaluate the robustness on LS-P, which476

introduces eight common environmental sounds477

in the test audio at five levels of severity. The re-478

sults of adding Air Conditioner sound and Typing479

sound are reported in Table 2 and Table 3 respec-480

tively (Full experimental results can be found in481

Appendix A.8). It is noticeable that our method482

can yield over 30% relative improvements in low-483

SNR scenarios. Notably, for the case with 5 dB484

SNR in Table 2, our method demonstrates a sub-485

stantial 41.7% relative improvement, suggesting486

its efficacy in mitigating the impact of real-world487

environmental sound corruption.488

5.3 Robustness to Real-World Data Shifts489

5.3.1 L2 Accents490

Data shifts resulting from accent variations are491

a common occurrence in real-world scenarios,492

arising from differences in dialects or non-native493

speech patterns. Another pertinent instance of such 494

shifts is encountered in children’s speech, which 495

is also a common pronunciation change and one 496

type of accent in the real world. In order to assess 497

the robustness to such pronunciation variations, we 498

undertake the test-time adaptation to accents ex- 499

hibited by L2 learners using the L2-Arctic dataset. 500

To comprehensively evaluate the performance, we 501

evaluate all speakers for each L1 and present the 502

speaker-level results for each L1 in Appendix A.9. 503

The experimental findings consistently underscore 504

the superiority of our proposed method across dif- 505

ferent L1 categories. 506

5.3.2 Singing Voice 507

In this session, we discuss the robustness of speech 508

models to singing voice for the first time. Singing, 509

also referred to as sung speech, is characterized 510

by a distinctive pronunciation pattern. Notably, 511

it encompasses various frequency fluctuations, in- 512

cluding the apparent pitch variations along with 513

the melody. This constitutes a tremendous covari- 514

ate shift, rendering the adaptation from speech to 515

singing more challenging than that from speech to 516

speech. Moreover, the existence of professional 517

singing techniques further compounds the chal- 518

lenges associated with adaptation. For instance, 519

the elongation of word pronunciation, a common 520

occurrence in singing, is a departure from typical 521

speech patterns. 522

To evaluate the adaptation performance under 523

shifts from singing voice, we conduct experiments 524

on three music datasets, utilizing both Wav2vec2 525

Base and Wav2vec2 Large models. The outcomes 526

are presented in Table 4. The results indicate that 527

our proposed method consistently attains the best 528

performances for both Base and Large models. In 529

addition, the Wav2vec2 Large model exhibits supe- 530

rior robustness than the Base model. Nevertheless, 531

it still experiences a noticeable performance degra- 532

dation when compared with adaptation in noise 533

and accent robustness evaluations, suggesting the 534

limited ability of acoustic foundation models under 535

huge real-world data shifts. 536

5.4 Decoding Strategies 537

We discuss the decoding strategies employed in 538

experiments in this session. In our preceding exper- 539

iments, we mainly utilize greedy decoding, which 540

does not explicitly tackle the text-domain changes. 541

In the subsequent analysis, we compare our pro- 542

posed method with SGEM, which leverages beam 543
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Method
DSing-dev DSing-test Hansen Average

Base Large Base Large Base Large Base Large

Greedy Search

Source 61.8 40.6 60.1 38.8 64.3 43.7 62.1 41.0
Tent 55.7 34.8 56.1 33.2 60.2 39.1 57.3 35.7
SAR 58.8 40.6 57.2 38.2 62.7 42.7 59.6 40.5
TeCo 56.2 35.0 55.6 33.1 60.0 39.1 57.3 35.7
SUTA 53.9 34.9 51.3 33.6 58.0 39.3 54.4 35.9
Ours 53.5 34.0 50.1 31.2 58.0 37.9 53.9 34.4

Beam Search

Source+LM 58.6 41.1 55.3 37.6 60.1 43.5 58.0 40.7
SGEM 54.4 34.4 50.8 33.0 57.8 38.6 54.3 35.3

Ours+LM 53.2 33.3 50.0 30.3 57.7 37.5 53.6 33.7

Table 4: WER (%) results on DSing-dev, DSing-test, and Hansen with greedy search and beam search. Base and
Large denote Wav2vec2 Base and Wav2vec2 Large respectively. The best results are bold.

Method Noise Accent Singing

Ours 24.0 23.0 50.1
w/o STCR 25.1 23.4 51.0
w/o CEA 35.9 26.9 54.5

Table 5: Ablation study of core components proposed
in our work. WER (%) results are reported.

search for decoding. The results are presented in544

Table 4. Notably, our findings reveal that even in545

the absence of explicit adaptation for the language546

model, our approach still consistently outperforms547

SGEM. We also observe that the results achieved548

by our method using greedy search can, on aver-549

age, surpass those of SGEM. We conjecture that550

our proposed short-term consistency regularization551

addresses the label shift implicitly by fostering la-552

bel coherency among neighbor frames. Moreover,553

it is discovered that the enhancements facilitated554

by adaptation are more pronounced compared to555

the ones achieved through beam search, indicating556

the significance of test-time adaptation for acoustic557

foundation models.558

6 Ablation Study559

We conduct the ablation study on Noise, Accent,560

Singing shifts respectively using Wav2vec2 Base561

with greedy search to dissect the individual impact562

of two core components proposed in our methods.563

The results presented in Table 5 illustrate that the564

removal of short-term consistency regularization565

(STCR) leads to a relatively modest decline in per- 566

formance, in contrast to the more substantial dete- 567

rioration observed upon the removal of confidence 568

enhanced adaptation (CEA). This observation un- 569

derscores the significance of our proposed CEA. 570

Furthermore, the introduction of STCR yields ad- 571

ditional performance gains when employed in con- 572

junction with CEA. These experimental findings 573

also indicate a pronounced efficacy of our method 574

in mitigating noise shifts as opposed to accent and 575

singing shifts. We conjecture the reason could be 576

that the shift caused by Gaussian noises for each 577

frame is consistent while other shifts such as accent 578

shift could be different within frames. 579

7 Conclusions 580

In this paper, we study the fully Test-Time Adap- 581

tation of pre-trained acoustic foundation models 582

to address open-world data shifts. By investigat- 583

ing the role of noisy frames with high entropy 584

within non-silent speech segments, we introduce 585

a novel Confidence Enhanced Adaptation method 586

to enhance the reliability of noisy frames via de- 587

noising their intermediate representations rather 588

than discarding them. Moreover, our emphasis on 589

short-term consistency of speech signals leads us 590

to apply consistency regularization, yielding fur- 591

ther improvement in WER performance for speech 592

data. Extensive experiments on synthetic and real- 593

world datasets demonstrated the effectiveness of 594

our approach over existing baselines under the 595

open-world data shifts. 596
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Limitations597

Our work is subject to several limitations. Firstly,598

our primary focus has been on utilizing encoder-599

only models for main adaptation experiments. Fur-600

ther research endeavors could extend our experi-601

ments on encoder-decoder models, and encompass602

a broader exploration of adaptation techniques for603

the decoder part, particularly for text-domain adap-604

tation. It remains challenging to adapt language605

models to address text-domain shifts due to the606

unavailability of target domain texts in the TTA607

setting. Consequently, we consider incorporating608

large language foundation models into the recogni-609

tion decoding process as a promising direction in610

future work for tackling open-world text-domain611

shifts. Furthermore, it is important to acknowledge612

that our main experiments are conducted within613

the domain of automatic speech recognition. The614

broader applicability of our method to diverse tasks,615

including but not limited to speaker-level tasks, spo-616

ken language understanding tasks, and general au-617

dio classification tasks remains unexplored. There-618

fore, we consider adapting our approach to these619

tasks under open-world data shifts as the future620

work.621
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A Appendix842

A.1 Dataset Details843

We show the statistics of datasets used in our work844

in Table 6 where # Utt. indicates the total number845

of utterances. We build our synthetic datasets on846

LibriSpeech test-other set. For LS-C, we add the847

Gaussian noises when preparing the data loader848

and use the amplitudes {0.005, 0.01, 0.015, 0.02,849

0.03} as level 1-5 severity. For LS-P, we use the850

AirConditioner_6, Typing_2, Babble_4, Munch-851

ing_3, ShuttingDoor_6, VacuumCleaner_1, Airpor-852

tAnnouncements_2, CopyMachine_2 wave files853

from MS-SNSD 1 as the environmental sounds and854

synthesize audios with signal-to-noise ratios {10,855

5, 0, -5, -10} seperately. For L2-Arctic, we use856

the default splits of 24 non-native speakers with857

a balanced gender and L1 distribution. For music858

datasets, we use the default DSing dev and test sets859

and the full Hansen set (no split).

Type Datasets # Utt. Duration

Noise
LS-C 14695 25.5 h
LS-P 117560 204 h

Accent L2-Arctic 26867 27.1 h

Music
DSing-dev 482 41 min
DSing-test 480 48 min

Hansen 634 34 min

Table 6: Statistics of evaluation datasets.
860

A.2 Implementation Details861

In our experimental evaluations, we mainly employ862

the acoustic foundation model, Wav2vec2. Specifi-863

cally, we utilize its Connectionist Temporal Classi-864

fication (CTC) variants with different model sizes,865

Wav2vec2 Base and Wav2vec2 Large. We involve866

the usage of publicly available Wav2vev2 Base 2867

and Wav2vec2 Large 3 models fine-tuned on speech868

recognition tasks. Given that CTC-based models869

do not explicitly model silences, we take those870

with the pseudo label <BLANK> as silent frames871

and the rest as non-silent frames as per (Kürzinger872

et al., 2020; Wei et al., 2022). We mainly conduct873

experiments on these two models despite the appli-874

cability of our method to other transformer-based875

1https://github.com/microsoft/MS-SNSD
2https://huggingface.co/facebook/wav2vec2-base-960h
3https://huggingface.co/facebook/wav2vec2-large-960h-

lv60-self

architectures of acoustic foundation models. To 876

make a fair comparison with methods employing 877

beam search, we utilize the same 4-gram language 878

model 4 as SGEM. Since our test-time setting re- 879

quires no access to the target text, we use the lan- 880

guage model trained on the speech dataset despite 881

the text-domain shift. All speech inputs are sam- 882

pled or resampled at 16Khz. 883

We use Pytorch and Huggingface Transformers 884

in our implementation. All experiments are run on 885

a single NVIDIA A5000 GPU (24G). We evaluate 886

the performance of all baselines after adaptation 887

for ten steps. We use the AdamW optimizer as 888

default for all experiments. The weight α of con- 889

sistency regularization is set to be 0.3. We consider 890

the learning rate in {2e-4, 5e-4, 8e-4} for tuning 891

affine parameters of layer normalization and con- 892

sider the learning rate in {2e-5, 5e-5} for tuning 893

feature extractor. 894

A.3 More Ablation Study on Strategies for 895

Frame Selection 896

We proceed to analyze strategies utilized for the 897

selection of speech frames optimized within the 898

CEA framework. We investigate three pseudo- 899

label-based strategies, namely a) selection of non- 900

silent frames (as used in our method), b) selection 901

of silent frames, and c) selection of all frames. The 902

results are detailed in Table 7. The empirical find- 903

ings reveal that the optimization of silent frames or 904

all frames within CEA yields inferior performance 905

compared to the optimization of non-silent frames. 906

Moreover, it is observed that the degradation is not 907

so substantial, as optimizing silent or all frames 908

may also contribute to enhancing the reliability of 909

noisy frames. 910

Strategy DSing-dev DSing-test

Non-Silent 53.5 50.1
Silent 54.9 51.7

All 54.9 50.6

Table 7: Ablation study of strategies for frame selection.
WER (%) results are reported.

A.4 Analysis on Large Vocabulary Size 911

Our proposed method can be generalizable to mod- 912

els with large vocabulary sizes. Theoretically, the 913

maximum entropy for non-silent frames is expected 914

to increase due to the larger number of classes. 915

4https://huggingface.co/patrickvonplaten/wav2vec2-base-
100h-with-lm
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Practically, this might also depend on the test input916

and models. To analyze the entropy distribution for917

non-silent and silent frames, we conduct an addi-918

tional experiment using the Conformer-CTC model919

with BPE tokenization, which has a larger vocab-920

ulary size than the one of the Wav2vec2 model.921

We observed an increase in entropy for non-silent922

frames from 59.4% to 70.0%, as illustrated in Table923

8.924

Wav2vec2 Base Conformer-CTC

n-sil-h 0.594 0.700
n-sil-l 0.406 0.300
sil-h 0.362 0.497
sil-l 0.638 0.503

Table 8: Entropy Distribution at Step 0 for models with
different vocabulary sizes. "non-sil" and "sil" refer to
non-silent and silent frames, respectively. "h / l" indi-
cates frames with high or low entropy.

A.5 Results on More Acoustic Foundation925

Models926

In an extension of the main experiments, we delved927

into the adaptation performance across diverse928

acoustic foundation models. Specifically, our addi-929

tional experiments utilize various models including,930

Hubert-Base 5, Hubert-Large 6, WavLM-Base 7,931

and WavLM-Large 8 from Huggingface. These ex-932

periments are conducted to assess the adaptation933

performance ain relation to different model sizes,934

and training data sources. The outcomes on the LS-935

C and DSing-test datasets are reported in Table 9936

and Table 10 respectively. We employ the word er-937

ror rate reduction (WERR) to measure the relative938

improvement brought by our adaptation method.939

We summarize the findings as follows:940

Model Sizes. A comparative analysis is con-941

ducted between the base and large versions of each942

model. The findings reveal that large models con-943

sistently surpass base models. Furthermore, our944

proposed approach uniformly improves both base945

and large models. A notable observation is that our946

method elicits a greater average improvement in947

base models compared to large models within the948

5https://huggingface.co/danieleV9H/hubert-base-libri-
clean-ft100h

6https://huggingface.co/facebook/hubert-large-ls960-ft
7https://huggingface.co/patrickvonplaten/wavlm-libri-

clean-100h-base-plus
8https://huggingface.co/patrickvonplaten/wavlm-libri-

clean-100h-large

LS-C dataset. This trend is particularly pronounced 949

under lower noise levels ranging from 1 to 3. In 950

contrast, within the DSing-test set, the enhance- 951

ment for large models is more significant than for 952

base models. The phenomenon may be attributed to 953

the fact that large models already exhibit commend- 954

able performance under minor corruptions, even 955

without adaptation, thus providing limited scope 956

for further improvement. However, in scenarios 957

involving significant shifts, the expansive parame- 958

terization of large models facilitates more effective 959

adaptation, whereas base models face challenges. 960

Training Data Sources. A comparative eval- 961

uation of models trained with different datasets, 962

including Wav2vec2-Large trained with 960h Lib- 963

riSpeech set, Hubert-Large trained with 960h Lib- 964

riSpeech set, and WavLM-Large trained with 100h 965

LibriSpeech clean set, indicates that the larger-size 966

data set establish a stronger foundation for test-time 967

adaptation. A similar inference can be drawn when 968

comparing Wav2vec2-Base trained with 960h Lib- 969

riSpeech set, Hubert-Base trained with 100h Lib- 970

riSpeech clean set, and WavLM-Base trained with 971

100h LibriSpeech clean set. 972

In summary, our proposed unsupervised TTA 973

method demonstrates a considerable benefit across 974

diverse acoustic foundation models, reflecting sub- 975

stantial improvements for different model sizes and 976

training data sources. 977

A.6 Connection with Existing Frozen Model 978

Adaptation 979

Our TTA-based method also exhibits parameter 980

efficiency. It is essential to emphasize that our 981

approach does not introduce additional layers of 982

normalization. Instead, we adapt the affine param- 983

eters (the scale γ and the shift β) of the existing 984

layer normalization from the pre-training phase, 985

which means no new trainable parameters are intro- 986

duced. It is noteworthy to highlight the difference 987

between our method and existing frozen model 988

adaptation methods, such as P-tuning, LoRA, and 989

Adapter. Unlike these techniques, our method con- 990

ducts source-free unsupervised adaptation using a 991

single utterance. Furthermore, our primary objec- 992

tive of adaptation is to address open-world acoustic 993

data shifts, rather than task adaptation. 994

A.7 Results on Different Parameterizations 995

In order to further evaluate the effectiveness of our 996

proposed method across diverse parameterizations, 997

we conduct additional experiments on the DSing- 998
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Size Level 1 Level 2 Level 3 Level 4 Level 5 Avg

Wav2vec2

Source
Base 13.9 24.4 39.5 54.5 75.7 41.6
Large 5.0 8.1 14.6 24.9 46.9 19.9

Ours
Base 10.7 16.2 24.0 34.1 56.5 28.3
Large 4.3 6.1 9.7 15.1 31.1 13.3

WERR (%)
Base 23.0 33.6 39.2 37.4 25.4 31.7
Large 14.0 24.7 33.6 39.4 33.7 29.1

Hubert

Source
Base 26.1 32.7 40.6 49.0 63.4 42.4
Large 5.0 6.4 8.9 12.8 24.3 11.5

Ours
Base 19.3 23.7 28.9 35.0 47.5 30.9
Large 4.3 5.2 6.9 9.1 16.1 8.3

WERR (%)
Base 26.1 27.5 28.8 28.6 25.1 27.2
Large 14.0 18.8 22.5 28.9 33.7 23.6

WavLM

Source
Base 24.1 35.9 48.2 59.8 76.7 48.9
Large 14.4 17.5 21.5 26.1 36.1 23.1

Ours
Base 15.1 19.8 25.9 32.8 47.6 28.2
Large 10.7 12.4 14.5 17.1 23.9 15.7

WERR (%)
Base 37.3 44.8 46.3 45.2 37.9 42.3
Large 25.7 29.1 32.6 34.5 33.8 31.1

Table 9: WER (%) results on LS-C over five severity levels of Gaussian noises using both base and large models of
Wav2vec2, Hubert, WavLM with greedy decoding. WERR stands for word error rate reduction.

Wav2vec2 Hubert WavLM

Base Large Base Large Base Large

Source 60.1 38.8 71.5 43.9 76.1 66.2
Ours 50.1 31.2 62.4 32.4 59.6 51.1

WERR (%) 16.6 19.6 12.7 26.2 21.7 22.8

Table 10: WER (%) results on DSing-test using both base and large models of Wav2vec2, Hubert, WavLM with
greedy decoding. WERR stands for word error rate reduction.
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Type
Base Large

WER Params WER Params

Bias-Only 52.5 0.10M 31.8 0.28M
LNs 52.4 0.04M 31.4 0.11M

FE+LNs 50.1 4.63M 31.2 4.84M
Full 51.2 89.7M 31.9 307M

Table 11: Results with different parameterizations on
DSing-test using Wav2vec2 Base and Large models. We
consider (1) Bias-Only: all bias terms, (2) LNs: all scale
and shift terms of Layer Normalization, 3) FE+LNs:
parameters of the feature extractor and all scale and
shift terms of Layer Normalization, and (4) Full: all
parameters. Word Error Rate (%) and the number of
parameters (Params) are reported.

test set using Wav2vec2 Base and Large models.999

Specifically, we explore four distinct parameteri-1000

zation schemes and compute their corresponding1001

number of parameters: (1) Bias-Only refers to fine-1002

tuning only bias terms as per Zaken et al. (2021).1003

(2) LNs encompasses the adjustment of all scale1004

and shift terms associated with layer normalization.1005

(3) FE+LNs involves the parameters of the feature1006

extractor in addition to all scale and shift terms of1007

layer normalization. (4) Full entails the fine-tuning1008

of all parameters within the model. It is important1009

to note that all other experimental settings except1010

for parameterization have remained consistent. The1011

experimental results are presented in Table 11. Our1012

findings reveal that our method exhibits compat-1013

ibility with different parameterizations, yielding1014

comparable performances. Among these parame-1015

terizations, LNs demonstrate the smallest number1016

of parameters adjusted, thereby illustrating the pa-1017

rameter efficiency of our method.1018

A.8 Full Results for LS-P1019

We present the full WER results for eight environ-1020

mental sounds of five severity levels in Table 12 -1021

19. The first row denotes signal-to-noise ratios.1022

A.9 Full Results for L2-Arctic1023

We present the full speaker-level WER results for1024

each L1 in Table 20 - 25. The first row denotes the1025

speaker ID. The details of the speaker ID can be1026

found in the L2-Arctic 9.1027

9https://psi.engr.tamu.edu/l2-arctic-corpus/
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10 5 0 -5 -10

Source 28.1 43.9 65.0 83.4 94.2
Tent 22.6 36.1 56.6 77.9 91.4
SAR 24.5 39.1 59.9 79.9 92.1
TeCo 22.5 36.2 56.6 77.9 91.3
SUTA 17.7 26.1 41.2 62.7 82.7
Ours 17.5 25.6 40.6 61.6 82.2

Table 12: Air Conditioner.

10 5 0 -5 -10

Source 26.2 34.0 44.4 56.4 69.0
Tent 21.0 27.9 37.0 49.2 63.0
SAR 23.0 30.3 39.7 52.1 65.3
TeCo 21.0 27.8 37.0 49.1 63.0
SUTA 17.9 23.3 30.4 41.0 53.4
Ours 17.5 22.8 29.9 40.4 52.6

Table 13: Typing.

10 5 0 -5 -10

Source 50.4 62.8 74.6 83.8 90.1
Tent 44.8 57.6 71.1 82.7 90.5
SAR 47.3 57.8 72.1 82.5 89.6
TeCo 44.8 57.6 71.1 82.7 90.5
SUTA 39.7 51.9 64.4 76.4 85.2
Ours 39.3 51.5 64.1 76.3 85.3

Table 14: Munching.

10 5 0 -5 -10

Source 19.2 23.6 29.7 37.0 45.0
Tent 16.4 20.5 26.0 33.0 41.5
SAR 17.7 22.0 27.7 35.0 42.7
TeCo 16.3 20.5 26.0 32.9 41.5
SUTA 14.9 18.5 23.6 29.9 37.7
Ours 14.8 18.3 23.4 29.7 37.4

Table 15: Shutting Door.

10 5 0 -5 -10

Source 57.8 76.6 91.5 98.2 99.9
Tent 49.7 69.2 87.2 97.0 99.6
SAR 52.6 72.7 88.5 96.9 99.8
TeCo 49.7 69.2 87.2 96.9 99.6
SUTA 39.8 56.7 76.6 93.2 98.6
Ours 39.3 56.0 76.0 93.0 98.6

Table 16: Vacuum Cleaner.

10 5 0 -5 -10

Source 40.9 54.3 66.3 75.8 83.4
Tent 36.1 49.3 62.8 73.7 82.4
SAR 38.2 51.0 64.0 74.3 82.2
TeCo 36.1 49.2 62.8 73.7 82.3
SUTA 31.2 43.8 58.3 70.4 79.3
Ours 31.2 43.7 58.1 70.5 79.7

Table 17: Airpoint Announcements.

10 5 0 -5 -10

Source 49.8 63.5 76.6 86.9 93.5
Tent 44.4 58.9 74.2 86.3 93.7
SAR 46.6 60.7 74.8 86.2 93.2
TeCo 44.4 58.8 74.2 86.2 93.7
SUTA 39.3 52.7 67.4 80.8 89.7
Ours 38.9 52.3 67.3 81.0 89.8

Table 18: Copy Machine.

10 5 0 -5 -10

Source 66.6 81.6 94.7 104.3 111.2
Tent 62.0 77.8 92.0 102.2 109.4
SAR 62.8 77.7 90.5 102.1 106.9
TeCo 61.9 77.8 91.9 102.2 109.4
SUTA 55.5 73.0 88.6 101.1 109.2
Ours 55.5 73.0 89.1 102.0 110.3

Table 19: Babble.
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ABA SKA YBAA ZHAA

Source 21.0 32.5 16.7 17.3
Tent 18.4 28.4 14.5 14.4
SAR 19.4 30.3 15.7 15.3
TeCo 18.4 28.4 14.5 14.4
SUTA 17.8 27.2 13.7 14.0
Ours 17.7 26.8 13.5 13.9

Table 20: Arabic.

BWC LXC NCC TXHC

Source 28.5 33.5 26.9 21.1
Tent 24.1 29.2 22.8 18.1
SAR 26.3 30.9 25.0 19.5
TeCo 24.1 29.3 22.9 18.0
SUTA 23.3 27.6 21.5 17.4
Ours 23.0 27.7 21.3 17.3

Table 21: Mandarin.

ASI RRBI SVBI TNI

Source 14.3 15.7 19.8 18.6
Tent 11.7 12.9 15.7 15.6
SAR 12.7 14.0 17.6 16.7
TeCo 11.7 13.0 15.8 15.6
SUTA 11.3 12.5 14.3 14.9
Ours 11.3 12.2 14.3 14.8

Table 22: Hindi.

HJK HKK YDCK YKWK

Source 11.8 23.3 17.2 17.0
Tent 9.7 20.8 15.0 14.5
SAR 10.9 21.7 15.8 15.5
TeCo 9.8 20.8 15.0 14.5
SUTA 9.5 19.8 14.2 13.8
Ours 9.5 19.7 13.9 13.7

Table 23: Korean.

EBVS ERMS MBMPS NJS

Source 35.7 24.2 14.1 14.6
Tent 31.7 20.0 12.7 12.4
SAR 33.5 21.7 13.4 13.2
TeCo 31.7 20.0 12.7 12.4
SUTA 29.7 18.7 12.3 12.1
Ours 29.5 18.5 12.3 12.1

Table 24: Spanish.

HQTV PNV THV TLV

Source 41.6 18.5 38.1 41.1
Tent 38.0 16.4 34.4 38.1
SAR 40.3 17.6 36.2 39.4
TeCo 38.0 16.4 34.4 38.0
SUTA 36.5 15.5 33.2 36.8
Ours 36.3 15.5 32.9 36.8

Table 25: Vietnamese.
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