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ABSTRACT

Large Language Models (LLMs) are increasingly used to automate hardware de-
sign tasks, including the generation of Verilog code. While early benchmarks
focus primarily on functional correctness, efficient hardware design demands ad-
ditional optimization for synthesis metrics such as area, delay, and power. Ex-
isting benchmarks fall short in evaluating these aspects comprehensively: they
often lack optimized baselines or testbenches for verification. To address these
gaps, we present Pluto, a benchmark and evaluation framework designed to as-
sess the efficiency of LLM-generated Verilog designs. Pluto presents a compre-
hensive evaluation set of 114 problems with self-checking testbenches and mul-
tiple Pareto-optimal reference implementations. Experimental results show that
state-of-the-art LLMs can achieve high functional correctness, reaching 78.3% at
pass@1, but their synthesis efficiency still lags behind expert-crafted implemen-
tations, with area efficiency of 63.8%, delay efficiency of 65.9%, and power effi-
ciency of 64.0% at eff@1. This highlights the need for efficiency-aware evaluation
frameworks such as Pluto to drive progress in hardware-focused LLM research.

1 INTRODUCTION

Large Language Models (LLMs) are beginning to reshape hardware design by automating key steps
in hardware design workflows, including Verilog code generation Thakur et al. (2023a;b); Liu et al.
(2023a), optimization Yao et al. (2024); Guo & Zhao (2025), verification Qiu et al. (2024a), de-
bugging Tsai et al. (2024), high-level synthesis Xiong et al. (2024), and post-synthesis metric esti-
mation Abdelatty et al. (2025). While these advances highlight the potential of LLMs in hardware
design, most research has focused on functional correctness of generated designs, with little atten-
tion to design quality metrics such as area, delay, and power.

In hardware design, the quality of Verilog code is not determined solely by functional correctness.
Designs typically undergo logic synthesis, where Verilog code is mapped to gate-level implementa-
tions in a target technology. This process exposes critical efficiency metrics—such as silicon area,
timing delay, and power consumption—that directly impact manufacturability and performance.
Unlike software code, where correctness and execution speed often suffice, hardware code quality
is inherently tied to these post-synthesis metrics.

In order to evaluate the functional correctness of LLM-generated Verilog code, several benchmarks
have been proposed including VerilogEval Liu et al. (2023a) and RTLLM Lu et al. (2024). Recent
efforts, including RTLRewriter Yao et al. (2024), ResBench Guo & Zhao (2025), GenBen Wan et al.
(2025), and TuRTLe Garcia-Gasulla et al. (2025), have begun to evaluate quality of LLM-generated
hardware code in terms of post-synthesis metrics. However, these benchmarks face key limitations:

• Absence of Optimal Ground Truth Solutions True efficiency should be measured against
implementations that are explicitly optimized for specific objectives such as silicon area,
delay, or power consumption. Prior studies rely on canonical solutions from VerilogEval
and RTLLM as reference solutions. Our analysis shows that these solutions are not the
most optimal in terms of post-synthesis metrics.

• Lack of Clock Latency Agnostic Testbenches Many common optimization pat-
terns—such as register pipelining, resource sharing, or FSM restructuring—introduce vari-
ations in clock-cycle latency between the optimized and unoptimized designs. To support
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fair evaluation, testbenches must be self-checking and tolerant of different latency require-
ments. Existing benchmarks, however, assume identical latency between the reference
model and the design under test, making them unsuitable for efficiency benchmarking.

In order to address these limitations, we introduce Pluto, the first benchmark designed to evaluate
both functional correctness and synthesis efficiency of LLM-generated Verilog code. Our contribu-
tions are as follows:

• Per-Metric Ground Truth Optimal Solutions. We provide a suite of 114 problems where
each is optimized for area, delay, and power separately, yielding Pareto-front optimal solu-
tions. Our ground truth solutions are significantly more efficient than canonical solutions
in RTLLM and VerilogEval.

• Optimization-Aware Testbenches. Each problem is accompanied by clock-cycle agnostic
testbenches that accommodate varying latency requirements, ensuring robust evaluation of
different optimization patterns.

• Comprehensive Evaluation. We adapt the eff@k metric introduced in Qiu et al. (2024b)
to measure the efficiency of hardware designs. Our extended metric is a three-dimensional
vector that evaluates LLM-generated code across multiple objectives: area, delay and
power.

2 RELATED WORK

Software Code Benchmarks Large Language Models (LLMs) have been extensively studied for
code generation across both software and hardware domains, with most early benchmarks focusing
primarily on functional correctness rather than efficiency. In software, works such as Mercury Du
et al. (2024) and ENAMEL Qiu et al. (2024b) move beyond correctness to explicitly evaluate run-
time efficiency of LLM-generated programs. The Mercury Du et al. (2024) benchmark contains
LeetCode style problems. Each problem is accompanied by an expert-written solution that repre-
sents the most optimal implementation in terms of run-time efficiency. ENAMEL Qiu et al. (2024b)
also introduces a Python benchmark to evaluate the run-time efficiency of LLM-generated code.

Hardware Code Benchmarks In hardware design, early work on LLM-generated Verilog empha-
sized functional correctness. VerilogEval Liu et al. (2023a) only evaluates whether the LLM gen-
erated code passes the testbench check, while RTLLM Lu et al. (2024) additionally checks if the
generated code is synthesizable. More recent efforts have shifted toward assessing and improv-
ing the efficiency of LLM-generated designs, which can be categorized into two main categories:
Specifications-to-Efficient-Verilog where the LLM is tasked with translating natural language in-
struction to optimized Verilog code directly, and Unoptimized-Verilog-to-Optimized-Verilog, where
the LLM is tasked with rewriting an unoptimized Verilog code to optimized Verilog code.

In the Specifications-to-Efficient-Verilog formulation, the LLM is prompted with a natural language
problem description and directly generates optimized Verilog. Benchmarks, such as GenBen Wan
et al. (2025), TuRTLe Garcia-Gasulla et al. (2025), evaluate these generations in functional correct-
ness, synthesizability, and post-synthesis metrics such as area, delay, and power. However, it relies
on VerilogEval problems as ground truth. These reference designs are not necessarily optimized
for power, performance, or area, and thus do not represent true Pareto-optimal solutions. ResBench
Guo & Zhao (2025) also does not define any gold-standard or reference-optimal implementations,
which makes it difficult to quantitatively assess how close the generated solutions are to ideal results.

The Unoptimized-Verilog-to-Optimized-Verilog setting provides the LLM with a functionally cor-
rect but unoptimized Verilog implementation and asks it to produce a more efficient version. RTL-
Rewriter Yao et al. (2024) enhances this with retrieval-augmented generation and feedback through
the synthesis loop. However, RTLRewriter lacks associated testbenches, making it unsuitable for
assessing the functional correctness of the generated code.

As summarized in Table 1, Pluto is the first benchmark to offer per-metric optimization, provid-
ing separate expert-optimized reference designs for area, delay, and power. This enables targeted,
metric-specific evaluation of LLMs, an aspect missing from prior benchmarks.
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Table 1: Comparison of prior software and hardware code generation benchmarks. Pluto addresses
key limitations by enabling metric-specific optimization with three reference implementations per
problem, each optimized for area, delay, or power.

Benchmark Language Functionality Synthesizability Efficiency Per-Metric Optimisation Tasks
HumanEval Python ✓ – × × 164
Mercury Python ✓ – ✓ × 256
ENAMEL Python ✓ – ✓ × 142
VerilogEval Verilog ✓ × × × 156
RTLLM Verilog ✓ ✓ × × 30
RTLRewriter Verilog × ✓ ✓ × 95
ResBench Verilog ✓ ✓ × × 56
GenBen Verilog ✓ ✓ × × 300
TuRTLe Verilog ✓ ✓ × × 223
CVDP Verilog ✓ ✓ × × 783

Pluto (Ours) Verilog ✓ ✓ ✓ ✓ 114

3 PLUTO BENCHMARK

module opt_power (
  input  [31:0] din,
  output [5:0] dout
);
 always_comb begin 
   idx   = '0; 
   found = 1'b0; 
   for (int i = 0; i < 32; i++) begin 
     if (!found && din[i]) begin 
      idx = 5'(i); 
      found = 1'b1; 
     end 
   end 
 end 
 assign dout = found ? idx : 5'(32);
endmodule

module opt_delay (
  input  [31:0] din,
  output [5:0] dout
);
  assign masked_bits = 

din & (-din);
  case (masked_bits):
    32'h00000001: dout = 0; 
    32'h00000002: dout = 1; 
    .... 
    32'h20000000: dout = 29;
    32'h40000000: dout = 30
    32'h80000000: dout = 31;
  endcase 
endmodule

module opt_area (
  input  [31:0] din,
  output [5:0] dout
);
  logic [5:0] temp [31:0];
  genvar i; 

  generate for (i = 31; i >= 0; i--)begin
     assign temp[i] = din[i] ? 

    i[5:0] : temp[i+1]; 
   end endgenerate 
   assign dout = temp[0];

endmodule

   
  
Trailing Zeros Circuit - Problem # 27
Find the number of trailing 0s in the binary representation of the input (din). If the input value is all 0s, the number of
trailing 0s is the data width (DATA_WIDTH)
   
  
  

   Area Optimized   Delay Optimized
   

  Power Optimized

//

Score

Circuit: LSB Isolation via 2's
Complement & Parallel One Hot Encoder 

Circuit: MSB Priority Encoder via
Mux Chain 

Circuit: Scan from LSB to MSB with
found flag to reduce switching  

..

ScoreScore

Figure 1: Overview of the Pluto benchmark on the trailing zeros detection task. We show three
reference implementations optimized for different synthesis metrics compared to the unoptimized
baseline: (left) area, using a mux-based priority encoder, reducing area by 33%; (center) delay, using
an LSB isolation circuit with a parallel one-hot encoder, reducing delay by 44%; and (right) power,
using an LSB-to-MSB scanning method with early termination, reducing total power by 34%. See
Appendix. A.1 for unoptimized baseline and self-checking testbench.

3.1 DATA CONSTRUCTION

To enable a comprehensive evaluation of synthesis efficiency for LLM-generated hardware code,
we construct the Pluto evaluation set, which contains a diverse collection of high-quality digital
design problems spanning a broad range of difficulties. Specifically, we curated 114 problems from
various publicly available sources, including open-source hardware projects, educational platforms
such as ChipDev ChipDev (2025), a LeetCode-inspired platform for practicing Verilog coding, and
prior benchmark suites such as RTLRewriter Yao et al. (2024), RTLLM Lu et al. (2024), and Ver-
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ilogEval Liu et al. (2023b). Each problem is specified by a high-level description outlining the
functional requirements, together with a baseline unoptimized Verilog implementation.

The problem set covers a wide spectrum of tasks in digital logic design, ranging from arithmetic
units and control circuits to sequential state machines. To systematically capture variation in design
complexity, we adopt ChipDev’s difficulty annotations and classify problems into three levels: easy,
medium, and hard. These labels reflect the intrinsic challenge of translating the textual description
into a correct Verilog implementation, thereby providing a principled way to distinguish between
problems of different complexity.

Importantly, the resulting collection balances accessibility with challenge: many problems that ap-
pear straightforward can nonetheless expose substantial differences in synthesis efficiency depend-
ing on the optimization strategies applied. The diverse composition of easy, medium, and hard tasks
therefore enables a nuanced assessment of an LLM’s ability to generate synthesis-efficient Verilog
under varying constraints. In total, the 114 selected problems provide a representative and scalable
testbed for benchmarking LLM-based Verilog efficiency.

Each problem instance in the Pluto benchmark includes the following components:

• Prompt: A natural language description of the hardware design task intended to guide the
LLM-generation.

• Module Header: A fixed interface shared across all versions of the Verilog module to
ensure consistency and comparability.

• Unoptimized Verilog Code: A baseline implementation used as the reference for testing.

• Optimized Verilog Code: Three distinct implementations with tradeoffs, each optimized
by hand using design experts for a single metric: area, delay, or power.

• Testbench: A manually crafted, fully self-checking testbench that verifies functional equiv-
alence between the unoptimized and any optimized design. These testbenches ensure full
input space coverage and flag any mismatches during simulation. For sequential circuits,
testbenches are clock-cycle agnostic, supporting latency differences introduced by opti-
mizations such as pipelining or resource sharing.

All components in the evaluation set are manually developed. This ensures high quality and guar-
antees that the LLM under evaluation has not previously encountered any part of the dataset during
training. In particular, the testbenches and optimized code serve as held-out ground truth references,
providing an unbiased benchmark for assessing the efficiency and correctness of LLM-generated
Verilog designs.

To illustrate the structure of problems in the Pluto evaluation set, Figure 1 presents the example
of a trailing zeros detection circuit, categorized as an easy problem, along with its three metric-
specific optimizations. As shown, each optimization achieves peak efficiency in its targeted metric,
while performance in the remaining two metrics declines. This behavior emphasizes the inherent
trade-offs across design objectives in hardware design and highlights the necessity of metric-specific
optimization strategies.

3.2 OPTIMIZATION WORKFLOW

Each unoptimized design in the Pluto set is further refined through manual optimization by expert
engineers to generate three distinct versions optimized separately for area, delay, and power. This
workflow follows a systematic process that ensures both the correctness and the efficiency of the re-
sulting designs. After applying metric-specific transformations, each optimized circuit is rigorously
verified for functional correctness using Icarus Verilog Williams et al. (2002), supported by robust
self-checking testbenches that guarantee equivalence with the unoptimized baseline. The optimized
versions are then synthesized to confirm that improvements translate into measurable gains in area,
timing, or power, thereby providing reliable performance baselines against which LLM-generated
designs can be evaluated.

To understand how these efficiency gains are achieved, we visualize the optimization strategies ap-
plied across the dataset in appendix A.2. The strategies vary significantly depending on the target
metric. For area, arithmetic optimizations and logic simplification are most commonly employed,
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and FSM restructuring plays an important role in reducing redundant states and transitions. Delay
improvements rely heavily on exploiting parallelism and restructuring control logic, often comple-
mented by logic simplification and pipelining techniques that shorten the critical path. For power,
it’s reducing switching activity through register and logic optimizations, supported by techniques
such as operand isolation, and clock gating to further suppress unnecessary toggling.

The distribution of strategies reveals that no single optimization technique dominates across all
objectives. Instead, engineers select strategies tailored to the specific metric, reflecting the trade-
offs inherent in digital design. As shown in Figure 2, this process results in consistent improvements
across the dataset, with average reductions of 19.19% in area, 21.96% in delay, and 22.55% in
power. This highlights the importance of metric-specific approaches and provide a robust baseline
for evaluating LLM-generated hardware code efficiency.

To further illustrate the impact of expert-driven optimization, Table 2 presents representative exam-
ples drawn from both RTLLM and VerilogEval. These case studies highlight how different strate-
gies, such as arithmetic unit sharing, FSM encoding choices, and counter-based control logic, trans-
late into concrete improvements across area, delay, and power. As shown, across both VerilogEval
and RTLLM, expert-optimized designs consistently outperform baseline implementations. In partic-
ular, for RTLLM problems our expert-written solutions achieve average improvements of 18.75% in
area, 22.75% in delay, and 20.43% in power compared to their canonical solutions. For VerilogEval
problems, the improvements average 10.46% in area, 10.33% in delay, and 13.61% in power.

(a) Area Comparison (b) Delay Comparison (c) Power Comparison

Figure 2: Distribution of area, delay, and power across Pluto benchmark designs before and after
manual metric-specific optimizations.

Table 2: A sample of benchmark problems from Pluto dataset. Our expert-optimized solutions
(area, delay, power) are significantly more efficient than the baseline benchmark implementations.
See Appendix A.3 for full problem implementation.

ID Source Problem
Description

Benchmark Solu-
tion

Expert Solution (Ours)

#60 RTLLM ALU for a 32-bit MIPS-ISA
CPU with operations like
{ADD, SUB, AND, OR,
XOR, SLT, shifts, LUI}.

ALU implemen-
tation with case
statement and
parameterized op-
codes.

Area ↓ 26%: Shared adder for arithmetic, simplified flag
logic, and operand reuse
Delay ↓ 26%: Parallel datapaths with one-hot muxing
Power ↓ 4%: Operand gating and early zeroing for large
shifts to cut switching activity

#68 RTLLM FSM detecting the sequence
10011 on a serial input
stream with support for con-
tinuous and overlapping de-
tection

States binary en-
coded, sequential
next-state logic, and
registered Mealy
output

Area ↓ 32%: Casez-based transitions and direct output
Delay ↓ 17%: One-hot state encoding with pre-decoded in-
puts and Moore-style output
Power ↓ 23%: Compact binary encoding and casez-based
transitions to cut toggling

#87 VerilogEval Module controls a shift
register enable signal,
shift ena asserted for 4
clock cycles on reset, then
remain 0 until the next reset

Uses explicit states
with next-state logic
to drive shift ena

Area ↓ 47%: Minimized register width (2-bit counter) and
compact comparator logic
Delay ↓ 37%: Wider counter (3 bits) to simplify comparison
and reduce logic depth on the critical path
Power ↓ 46%: Small counter reused

#104 VerilogEval Conway’s Game of Life
with a 16×16 toroidal grid:
each cell updates based on
neighbor counts n (live if
n = 3 or n = 2 & alive)

Straightforward
RTL with per-
cell neighbor
recomputation and
sequential summing

Area ↓ 19%: Shared neighbor computations across rows,
bitwise rotations for wraparound, less duplicate summations
Delay ↓ 37%: Parallel neighbor summation with carry-save
adder tree and direct decode for 2 and 3
Power ↓ 36%: Reduced toggling via computation reuse
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3.3 EFFICIENCY METRICS

We use the pass@k Liu et al. (2023a) for measuring the functional correctness of LLM-generated
Verilog code. The pass@k metric, defined in appendix. A.5, measures the percentage of problems
for which at least one of the top-k generated samples passes the self-checking testbench.

To evaluate the synthesis efficiency of functionally correct samples, we adapt the eff@k introduced
in Qiu et al. (2024b) to Verilog code. First, we introduce the efficiency score ei,j , defined in Eq. 1,
which quantifies how close an LLM-generated design is to optimal ground truth implementation.
In this equation, R̂i,j denotes the reported synthesis metric (e.g., area, delay, or power) for the j-th
sample of problem i, Ti,j denotes an upper bound beyond which the design is considered inefficient,
and Ri,j denotes the optimal (lowest) known reference value for that metric. A score of 1 indicates
that the sample exactly matches the optimal reference, while a score of 0 indicates that it exceeds
the acceptable threshold or is functionally incorrect.

ei,j =


max(0, Ti,j − R̂i,j)

Ti,j −Ri,j
, if ni,j is correct

0, otherwise.
(1)

eff@k =
1

N

N∑
i=1

EJ⊆{1,...,n}, |J|=k

[
max
j∈J

ei,j

]

=
1

N

N∑
i=1

n∑
r=k

(
r−1
k−1

)(
n
k

) ei,(r).

(2)

We then use the efficiency score ei,j for computing the eff@k, defined in Eq. 2 as the average of the
best (i.e., highest) efficiency scores among the top-k functionally correct samples for each problem.
We use the unbiased estimator introduced in Qiu et al. (2024b) for computing eff@k which computes
the expectation value over a random subset J of code samples with size K.

4 EVALUATION RESULTS

We evaluate 18 large language models (LLMs) using our Pluto benchmark, which includes pro-
prietary LLMs, general-purpose foundation models, code-specialized models, and Verilog-tuned
models. To comprehensively assess efficiency-aware generation, we consider the two problem for-
mulations in Pluto: translating unoptimized Verilog code into optimized implementations, and gen-
erating optimized code directly from natural-language specifications. For the first problem formu-
lation, only instruction-tuned models are evaluated, as code completion models generally reproduce
the unoptimized code without meaningful improvements.

4.1 MAIN RESULTS

Table 3 (a) reports the pass@k and eff@k metrics for the first problem formulation, where the task is
to re-write unoptimized Verilog into more efficient implementations. Several trends emerge. First,
in terms of functional correctness (pass@k), domain-tuned models such as VeriThoughts-Inst-7B
and RTLCoder-DeepSeek-V1 achieve performance comparable to much larger foundational models
like DeepSeek-Chat, demonstrating the benefit of Verilog-specific training. However, in terms of
synthesis efficiency (eff@k), all models exhibit a noticeable drop relative to their pass@k scores.
This gap underscores a common limitation: while LLMs can generate functionally correct Verilog,
they struggle to match the Pareto-efficient expert baselines across area, delay, and power.

Table 3 (b) reports the pass@k and eff@k metrics for the second problem formulation, where models
are tasked with translating natural language specifications into optimized Verilog implementations.
This task is more challenging, and as a result, both pass@k and eff@k scores are consistently lower
across all models. Similar to the first formulation, all models also exhibit lower eff@k values com-
pared to their corresponding pass@k scores, underscoring the persistent difficulty of generating
designs that are not only functionally correct but also synthesis-efficient. However, the relative gap
between pass@k and eff@k is smaller in this setting compared to the first formulation. This is
because specification-to-RTL translation is substantially harder: models often struggle to produce
functionally correct code in the first place, which suppresses both correctness and efficiency scores.
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Table 3: Evaluation results using Pluto for two problem formulations: P1: Unoptimized-Verilog-
to-Optimized-Verilog and P2: Specifications-to-Optimized-Verilog. pass@k measures functional
correctness, while eff@k measures efficiency across area, delay, and power.

(a) P1: Unoptimized-Verilog-to-Optimized-Verilog

Model pass@1 pass@5 pass@10 eff@1 eff@5 eff@10

Area Delay Power Area Delay Power Area Delay Power

GPT-3.5 0.325 0.517 0.594 0.271 0.296 0.282 0.462 0.491 0.450 0.540 0.568 0.520
GPT-4o-mini 0.506 0.705 0.751 0.469 0.476 0.467 0.662 0.677 0.639 0.714 0.744 0.687

DeepSeek-Chat 0.612 0.802 0.860 0.586 0.599 0.601 0.776 0.795 0.794 0.839 0.862 0.846
Llama-3.3-70B-Instruct 0.473 0.701 0.757 0.446 0.462 0.429 0.662 0.696 0.662 0.707 0.760 0.735
Llama-3.1-8B-Instruct 0.160 0.432 0.567 0.127 0.156 0.145 0.358 0.437 0.384 0.494 0.584 0.505
Mistral-7B-Instruct-v0.2 0.106 0.318 0.453 0.078 0.094 0.100 0.244 0.296 0.301 0.358 0.446 0.427
Mixtral-8x7B-v0.1 0.255 0.520 0.652 0.217 0.231 0.210 0.462 0.487 0.447 0.593 0.630 0.561
starcoder2-15b-instruct-v0.1 0.659 0.960 0.988 0.611 0.633 0.591 0.879 0.924 0.871 0.913 0.952 0.904
CodeLlama-70b-Instruct-hf 0.576 0.905 0.956 0.522 0.541 0.523 0.842 0.876 0.824 0.903 0.925 0.878
DeepSeek-Coder-33B 0.783 0.963 0.997 0.638 0.659 0.640 0.902 0.927 0.883 0.942 0.960 0.927
Qwen2.5-Coder-7B-Inst 0.479 0.785 0.866 0.438 0.452 0.419 0.710 0.759 0.741 0.785 0.848 0.833

yang-z/CodeV-QC-7B 0.231 0.416 0.506 0.211 0.208 0.187 0.381 0.390 0.361 0.455 0.491 0.442
RTLCoder-DeepSeek-V1 0.532 0.854 0.915 0.471 0.495 0.468 0.774 0.789 0.757 0.843 0.850 0.809
VeriThoughts-Inst.-7B 0.611 0.797 0.854 0.540 0.560 0.524 0.708 0.740 0.702 0.763 0.785 0.765

(b) P2: Specifications-to-Optimized-Verilog

Model pass@1 pass@5 pass@10 eff@1 eff@5 eff@10

Area Delay Power Area Delay Power Area Delay Power

GPT-3.5 0.239 0.395 0.471 0.225 0.235 0.225 0.373 0.390 0.381 0.439 0.469 0.468
GPT-4o-mini 0.391 0.533 0.591 0.360 0.377 0.363 0.475 0.520 0.495 0.532 0.572 0.551

DeepSeek-Chat 0.557 0.688 0.719 0.545 0.552 0.528 0.689 0.680 0.651 0.726 0.710 0.684
Llama-3.3-70B-Instruct 0.363 0.541 0.594 0.348 0.345 0.342 0.515 0.533 0.510 0.564 0.602 0.557
Llama-3.1-8B-Instruct 0.087 0.224 0.301 0.075 0.073 0.081 0.189 0.184 0.204 0.270 0.251 0.279
Mistral-7B-Instruct-v0.2 0.030 0.108 0.164 0.024 0.015 0.024 0.078 0.067 0.088 0.112 0.117 0.134
Mixtral-8x7B-v0.1 0.082 0.176 0.222 0.082 0.068 0.079 0.172 0.131 0.163 0.202 0.166 0.211
starcoder2-15b-instruct-v0.1 0.243 0.454 0.512 0.226 0.249 0.220 0.429 0.466 0.409 0.489 0.525 0.458
CodeLlama-70b-Instruct-hf 0.212 0.446 0.532 0.202 0.207 0.194 0.418 0.440 0.437 0.498 0.535 0.524
DeepSeek-Coder-33B 0.257 0.429 0.482 0.231 0.254 0.246 0.387 0.424 0.421 0.446 0.490 0.468
Qwen2.5-Coder-7B-Inst 0.164 0.324 0.389 0.158 0.162 0.148 0.307 0.319 0.295 0.366 0.375 0.357

code-gen-verilog-16b 0.068 0.200 0.289 0.069 0.064 0.058 0.188 0.175 0.188 0.268 0.253 0.272
yang-z/CodeV-CL-7B 0.265 0.485 0.553 0.233 0.243 0.237 0.432 0.455 0.436 0.493 0.536 0.511
yang-z/CodeV-QC-7B 0.260 0.458 0.529 0.223 0.229 0.222 0.420 0.415 0.410 0.497 0.480 0.478
yang-z/CodeV-All-QC 0.175 0.317 0.374 0.150 0.162 0.144 0.297 0.304 0.256 0.368 0.379 0.284
RTLCoder-DeepSeek-V1 0.203 0.400 0.480 0.177 0.199 0.184 0.345 0.404 0.361 0.417 0.499 0.430
RTLCoder-Mistral 0.199 0.347 0.418 0.185 0.188 0.188 0.316 0.332 0.329 0.381 0.411 0.395
VeriThoughts-Inst.-7B 0.216 0.336 0.398 0.211 0.206 0.207 0.316 0.330 0.329 0.367 0.394 0.393

4.2 ABLATION STUDIES

In addition to the Verilog code writing style, post-synthesis metrics are also influenced by external
factors such as the synthesis tool employed, the target technology library, and the optimization
sequence executed by the tool. To understand the robustness of our proposed benchmark and isolate
the impact of these factors, we present two ablation studies that evaluate efficiency trends in the
Pluto benchmark across different synthesis tools, optimization strategies, and technology libraries.

4.2.1 SYNTHESIS TOOL AND TECHNOLOGY AGNOSTICISM

In this experiment, we repeated synthesis runs for the three optimized reference implementations
in Pluto, as well as the unoptimized baseline, using two distinct synthesis tools: Yosys Wolf et al.
(2013), an open-source framework, and Cadence Genus cad, a commercial synthesis tool. To further
evaluate generalizability, we also targeted two technology libraries representing different fabrication
nodes: the SkyWater 130nm library Google and a 65nm TSMC library tsm. We then computed the
efficiency score for each tool and library configuration by comparing each optimized implementation
against the corresponding unoptimized baseline across area, delay, and power metrics. As shown in
Figure 3, efficiency scores remain consistent across all synthesis tool and technology combinations.
This demonstrates that Pluto’s optimization patterns deliver consistent tradeoffs across different
synthesis tools and technology libraries.
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(a) Genus: Area (earea) (b) Genus: Delay (edelay) (c) Genus: Power (epower)

(d) Yosys: Area (earea) (e) Yosys: Delay (edelay) (f) Yosys: Power (epower)

Figure 3: Efficiency scores for area, delay, and power across all benchmark problems, using both
Cadence Genus and Yosys with different technology libraries. Results show consistent efficiency
trends across synthesis tools and technologies.

(a) P15: Polynomial (b) P5: Divide-by-evens (c) P28: Adder

Figure 4: Area–delay tradeoffs of three problems in the Pluto benchmark under different synthesis
strategies. Each strategy corresponds to a distinct sequence of ABC logic synthesis commands.

4.2.2 SYNTHESIS OPTIMIZATION STRATEGIES

We also examine how different synthesis optimization strategies influence the post-synthesis met-
rics of Pluto’s optimized implementations. Synthesis tools allow designers to specify optimization
directives that steer the tool’s internal heuristics toward minimizing a particular metric while po-
tentially sacrificing others. To study this effect, we synthesized selected problems from the Pluto
benchmark under both area-optimized and delay-optimized optimization strategies. We used Yosys
as our synthesis tool and targeted the SkyWater 130nm library. Within Yosys, logic optimization
is carried out using the ABC framework Synthesis & Group (2024), which provides a collection
of optimization heuristics that can be configured to emphasize different objectives such as area or
delay minimization. Figure 4 illustrates the resulting Pareto fronts of area–delay trade-offs across
three representative problems. As expected, delay-optimized code consistently achieves superior
timing performance at the expense of larger area, whereas area-optimized code achieves lower area
but incurs higher delays. These results confirm that synthesis settings primarily shift designs along
the area–delay curve, while coding style remains the dominant factor, validating Pluto’s ability to
capture design efficiency independent of synthesis optimization settings.

5 FAILURE ANALYSIS AND INSIGHTS

While LLMs reliably produce functionally correct Verilog, their ability to optimize is uneven across
metrics. Area optimization is comparatively tractable, since it often reduces to logic simplification or
FSM re-encoding. By contrast, delay requires identifying and shortening the critical path, and power
depends on subtle factors like switching activity and memory usage. This difficulty is reflected in
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(a) (b)

Figure 5: Failure mode analysis of optimization outcomes. (a) Quadrant plot showing the correla-
tion between functional correctness (Pass@1) and synthesis efficiency (Eff@1) across area, delay,
and power objectives. (b) Heatmap of optimization strategy difficulty across different optimization
objectives area, delay, and power.

our quadrant analysis (Figure 5a and 8), where many delay- and power-optimized designs remain
correct but fail to improve efficiency, whereas area optimizations succeed more often.

Model scale and specialization strongly influence outcomes. Larger models (33B, 70B) capture
richer patterns and propose alternative architectures. Models with explicit reasoning traces (e.g.,
DeepSeek, VeriThoughts) better decompose transformations and achieve stronger optimizations.
Domain-tuned models outperform code models, which in turn outperform general-purpose LLMs,
showing the value of Verilog-specific pretraining. A fundamental limitation is that Verilog train-
ing data lacks efficiency labels. LLMs therefore default to surface-level pattern matching rather
than structural reasoning, and without feedback or synthesis-in-the-loop, they cannot tell whether
changes reduce gate count or lengthen the critical path. Completion-style models exacerbate this
issue, often rephrasing the baseline instead of innovating, whereas instruction-tuned models attempt
more substantive edits.

Finally, analysis of optimization strategies (Figure 5b) shows that the hardest transformations are
register optimizations for delay, followed by resource sharing for power, and sequential restructuring
for delay. In contrast, strategies tied to area are easier, aligning with our observation that area is the
most accessible metric for LLMs. Together, these findings suggest that true progress will require
metric-aware feedback and efficiency-focused benchmarks such as Pluto to guide future advances.

6 CONCLUSION

In this paper, we introduced Pluto, a comprehensive benchmark designed to evaluate the synthesis
efficiency of LLM-generated Verilog code. Pluto provides an evaluation set of 114 hardware design
problems, each accompanied by three reference optimized implementations (targeting area, delay,
and power), an unoptimized baseline, a self-checking testbench, and a natural language description.
Experimental results show that while LLMs can achieve high functional correctness, reaching up
to 78.3% at pass@1, their synthesis efficiency remains limited: area efficiency of 63.8%, delay
efficiency of 65.9%, and power efficiency of 64.0% at eff@1 compared to expert-crafted designs.
These findings highlight the importance of efficiency-aware benchmarks beyond correctness alone
and highlights the current limitations of LLMs in hardware optimization.
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A APPENDIX

A.1 UNOPTIMIZED CODE AND TESTBENCH FOR PROBLEM #17 (TRAILING ZEROS) IN
FIGURE 1

A.1.1 UNOPTIMIZED CODE

1 module unopt_model #(parameter
2 DATA_WIDTH = 32
3 ) (
4 input [DATA_WIDTH-1:0] din,
5 output logic [$clog2(DATA_WIDTH):0] dout
6 );
7
8 logic [DATA_WIDTH-1:0] din_adj;
9 logic [$clog2(DATA_WIDTH):0] idx;

10
11 always_comb begin
12 idx = 0;
13 din_adj = din & (˜din+1);
14 for (int i=0; i<DATA_WIDTH; i++) begin
15 idx += (din_adj[i]) ? i : 0;
16 end
17 end
18
19 assign dout = (din_adj == 0 ? DATA_WIDTH : din_adj == 1 ? 0 : idx);
20
21 endmodule

A.1.2 SELF-CHECKING TESTBENCH

1 ‘timescale 1 ps/1 ps
2
3 module tb();
4
5 reg clk = 0;
6 initial forever #5 clk = ˜clk;
7
8 wire [5:0] dout_opt, dout_unopt;
9 reg [31:0] din;

10
11 integer errors = 0;
12 integer errortime = 0;
13 integer clocks = 0;
14 integer total_cycles = 200;
15
16 initial begin
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17 $dumpfile("wave.vcd");
18 $dumpvars(1, clk, din, dout_opt, dout_unopt);
19
20 // Initialize din to avoid X values
21 din = 0;
22
23 // Generate random values for din
24 repeat(total_cycles) @(posedge clk) din = $random;
25 end
26
27 wire tb_match;
28 assign tb_match = (dout_opt === dout_unopt);
29
30 opt_model opt_model (
31 .din(din),
32 .dout(dout_opt)
33 );
34
35 unopt_model unopt_model (
36 .din(din),
37 .dout(dout_unopt)
38 );
39
40 always @(posedge clk) begin
41 clocks = clocks + 1;
42 if (!tb_match) begin
43 if (errors == 0) errortime = $time;
44 errors = errors + 1;
45 end
46
47 // Print the signals for debugging
48 $display("Time=%0t | Cycle=%0d | din=%h | opt=%h | unopt=%h | match=%b",
49 $time, clocks, din, dout_opt, dout_unopt, tb_match);
50
51 if (clocks >= total_cycles) begin
52 $display("Simulation completed.");
53 $display("Total mismatches: %1d out of %1d samples", errors, clocks);
54 $display("Simulation finished at %0d ps", $time);
55 $finish;
56 end
57 end
58
59 initial begin
60 #1000000
61 $display("TIMEOUT");
62 $finish();
63 end
64
65 endmodule

A.2 OPTIMIZATION STRATEGIES

Figure 6: Optimization strategies employed for area, delay, and power improvements.
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A.3 CODE OF EXAMPLE PROBLEMS IN TABLE 2

In the example problems shown in the appendix, the area- and power-optimized solutions coincided,
as area-oriented designs also achieved the best power results, and vice versa. This overlap arises
because common power-saving techniques, such as clock gating and operand isolation, were not
applicable as some designs lacked a clock signal, while others did not include an enable signal.
Consequently, explicit power-specific transformations could not be meaningfully applied. Moreover,
in certain cases, power optimizations indirectly reduced area, further reinforcing the convergence of
the two objectives into a single optimized implementation.

A.3.1 PROBLEM #60: RTLLM ALU

Problem description: Implement a 32-bit Arithmetic Logic Unit (ALU) for a MIPS-ISA CPU.
The ALU takes two 32-bit operands (a and b) and a 6-bit control signal (aluc) that specifies which
operation to perform. Based on this control signal, the ALU produces a 32-bit result (r) and several
status outputs: zero indicates whether the result is zero, carry flags if a carry occurred, negative
shows if the result is negative, overflow signals arithmetic overflow, and flag is used for set-less-
than instructions (slt and sltu). The module supports arithmetic, logical, shift, and immediate load
operations defined by specific opcodes (e.g., ADD, SUB, AND, OR, XOR, SLT, LUI).
Benchmark solution: ALU implementation with case statement and parameterized opcodes.

1 module unopt_model(
2 input [31:0] a,
3 input [31:0] b,
4 input [5:0] aluc,
5 output [31:0] r,
6 output zero,
7 output carry,
8 output negative,
9 output overflow,

10 output flag
11 );
12
13 parameter ADD = 6’b100000;
14 parameter ADDU = 6’b100001;
15 parameter SUB = 6’b100010;
16 parameter SUBU = 6’b100011;
17 parameter AND = 6’b100100;
18 parameter OR = 6’b100101;
19 parameter XOR = 6’b100110;
20 parameter NOR = 6’b100111;
21 parameter SLT = 6’b101010;
22 parameter SLTU = 6’b101011;
23 parameter SLL = 6’b000000;
24 parameter SRL = 6’b000010;
25 parameter SRA = 6’b000011;
26 parameter SLLV = 6’b000100;
27 parameter SRLV = 6’b000110;
28 parameter SRAV = 6’b000111;
29 parameter JR = 6’b001000;
30 parameter LUI = 6’b001111;
31
32 wire signed [31:0] a_signed;
33 wire signed [31:0] b_signed;
34
35 reg [32:0] res;
36
37 assign a_signed = a;
38 assign b_signed = b;
39 assign r = res[31:0];
40
41 assign flag = (aluc == SLT || aluc == SLTU) ? ((aluc == SLT) ? (a_signed < b_signed) : (a < b)) : 1’bz;
42 assign zero = (res == 32’b0) ? 1’b1 : 1’b0;
43
44 always @ (a or b or aluc)
45 begin
46 case(aluc)
47 ADD: begin
48 res <= a_signed + b_signed;
49 end
50 ADDU: begin
51 res <= a + b;
52 end
53 SUB: begin
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54 res <= a_signed - b_signed;
55 end
56 SUBU: begin
57 res <= a - b;
58 end
59 AND: begin
60 res <= a & b;
61 end
62 OR: begin
63 res <= a | b;
64 end
65 XOR: begin
66 res <= a ˆ b;
67 end
68 NOR: begin
69 res <= ˜(a | b);
70 end
71 SLT: begin
72 res <= a_signed < b_signed ? 1 : 0;
73 end
74 SLTU: begin
75 res <= a < b ? 1 : 0;
76 end
77 SLL: begin
78 res <= b << a;
79 end
80 SRL: begin
81 res <= b >> a;
82 end
83 SRA: begin
84 res <= b_signed >>> a_signed;
85 end
86 SLLV: begin
87 res <= b << a[4:0];
88 end
89 SRLV: begin
90 res <= b >> a[4:0];
91 end
92 SRAV: begin
93 res <= b_signed >>> a_signed[4:0];
94 end
95 LUI: begin
96 res <= {a[15:0], 16’h0000};
97 end
98 default:
99 begin

100 res <= 32’bz;
101 end
102 endcase
103 end
104 endmodule

Our expert-written area and power optimized solution: Shared adder for arithmetic, simplified
flag logic and operand reuse, leading to 26% area reduction. Operand gating and early zeroing for
large shifts to cut switching activity, for 4% power reduction.

1
2 wire sub_mode = (aluc==SUB) | (aluc==SUBU) | (aluc==SLT) | (aluc==SLTU);
3 wire [31:0] b_eff = sub_mode ? ˜b : b;
4 wire cin = sub_mode;
5 wire [32:0] sum33 = {1’b0,a} + {1’b0,b_eff} + cin;
6
7 wire [31:0] add_res = sum33[31:0];
8 wire add_carry = sum33[32];
9

10 wire ovf = (a[31]ˆadd_res[31]) & (b_eff[31]ˆadd_res[31]);
11
12 wire signed_lt = add_res[31] ˆ ovf;
13 wire uns_lt = ˜add_carry;
14 wire [31:0] slt_res = {31’b0, signed_lt};
15 wire [31:0] sltu_res = {31’b0, uns_lt};
16
17 wire [31:0] and_res = a & b;
18 wire [31:0] or_res = a | b;
19 wire [31:0] xor_res = a ˆ b;
20 wire [31:0] nor_res = ˜(a | b);
21
22 wire [4:0] sa5 = a[4:0];
23 wire any_hi = |a[31:5];
24
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25 wire [31:0] sll_full = any_hi ? 32’b0 : (b << sa5);
26 wire [31:0] srl_full = any_hi ? 32’b0 : (b >> sa5);
27 wire [31:0] sra_full = any_hi ? {32{b[31]}} : ($signed(b) >>> sa5);
28
29 wire [31:0] sllv_res = (b << a[4:0]);
30 wire [31:0] srlv_res = (b >> a[4:0]);
31 wire [31:0] srav_res = ($signed(b) >>> a[4:0]);
32
33 wire [31:0] lui_res = {a[15:0], 16’h0000};
34
35 reg [31:0] r_int;
36 always @* begin : result_mux
37 (* parallel_case, full_case *)
38 case (aluc)
39 ADD, ADDU: r_int = add_res;
40 SUB, SUBU: r_int = add_res;
41 AND: r_int = and_res;
42 OR: r_int = or_res;
43 XOR: r_int = xor_res;
44 NOR: r_int = nor_res;
45 SLT: r_int = slt_res;
46 SLTU: r_int = sltu_res;
47 SLL: r_int = sll_full;
48 SRL: r_int = srl_full;
49 SRA: r_int = sra_full;
50 SLLV: r_int = sllv_res;
51 SRLV: r_int = srlv_res;
52 SRAV: r_int = srav_res;
53 LUI: r_int = lui_res;
54 JR: r_int = 32’bz;
55 default: r_int = 32’bz;
56 endcase
57 end
58
59 assign r = r_int;
60 assign zero = ˜(|r_int);
61
62 assign carry = 1’bz;
63 assign overflow = 1’bz;
64 assign negative = 1’bz;
65 assign flag = (aluc==SLT) ? signed_lt :
66 (aluc==SLTU) ? uns_lt :
67 1’bz;
68 endmodule

Our expert-written delay optimized solution: Parallel datapaths with one-hot muxing for shallow
critical path, leading to 26% delay reduction.

1 wire signed [31:0] a_signed = a;
2 wire signed [31:0] b_signed = b;
3
4 wire [31:0] add_u = a + b;
5 wire [31:0] sub_u = a - b;
6 wire signed [31:0] add_s = a_signed + b_signed;
7 wire signed [31:0] sub_s = a_signed - b_signed;
8
9 wire [31:0] and_res = a & b;

10 wire [31:0] or_res = a | b;
11 wire [31:0] xor_res = a ˆ b;
12 wire [31:0] nor_res = ˜(a | b);
13
14 wire slt_res = (a_signed < b_signed);
15 wire sltu_res = (a < b);
16
17 wire [4:0] shamt5 = a[4:0];
18
19
20 wire [31:0] sll_full = (b << a); // full ’a’
21 wire [31:0] srl_full = (b >> a); // full ’a’
22 wire [31:0] sra_full = ($signed(b) >>> a_signed);// full signed ’a’
23 wire [31:0] sllv_res = (b << shamt5);
24 wire [31:0] srlv_res = (b >> shamt5);
25 wire [31:0] srav_res = ($signed(b) >>> shamt5);
26
27 wire [31:0] lui_res = {a[15:0], 16’h0000};
28
29 wire sel_ADD = (aluc==ADD);
30 wire sel_ADDU = (aluc==ADDU);
31 wire sel_SUB = (aluc==SUB);
32 wire sel_SUBU = (aluc==SUBU);
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33 wire sel_AND = (aluc==AND);
34 wire sel_OR = (aluc==OR);
35 wire sel_XOR = (aluc==XOR);
36 wire sel_NOR = (aluc==NOR);
37 wire sel_SLT = (aluc==SLT);
38 wire sel_SLTU = (aluc==SLTU);
39 wire sel_SLL = (aluc==SLL);
40 wire sel_SRL = (aluc==SRL);
41 wire sel_SRA = (aluc==SRA);
42 wire sel_SLLV = (aluc==SLLV);
43 wire sel_SRLV = (aluc==SRLV);
44 wire sel_SRAV = (aluc==SRAV);
45 wire sel_LUI = (aluc==LUI);
46 wire sel_JR = (aluc==JR);
47
48 wire any_sel = sel_ADD|sel_ADDU|sel_SUB|sel_SUBU|sel_AND|sel_OR|sel_XOR|sel_NOR|
49 sel_SLT|sel_SLTU|sel_SLL|sel_SRL|sel_SRA|sel_SLLV|sel_SRLV|sel_SRAV|sel_LUI;
50
51 wire [31:0] r_known =
52 (sel_ADD ? add_s : 32’b0) |
53 (sel_ADDU ? add_u : 32’b0) |
54 (sel_SUB ? sub_s : 32’b0) |
55 (sel_SUBU ? sub_u : 32’b0) |
56 (sel_AND ? and_res: 32’b0) |
57 (sel_OR ? or_res : 32’b0) |
58 (sel_XOR ? xor_res: 32’b0) |
59 (sel_NOR ? nor_res: 32’b0) |
60 (sel_SLT ? {31’b0, slt_res } : 32’b0) |
61 (sel_SLTU ? {31’b0, sltu_res} : 32’b0) |
62 (sel_SLL ? sll_full : 32’b0) |
63 (sel_SRL ? srl_full : 32’b0) |
64 (sel_SRA ? sra_full : 32’b0) |
65 (sel_SLLV ? sllv_res : 32’b0) |
66 (sel_SRLV ? srlv_res : 32’b0) |
67 (sel_SRAV ? srav_res : 32’b0) |
68 (sel_LUI ? lui_res : 32’b0);
69
70 assign r = (any_sel && !sel_JR) ? r_known : 32’bz;
71
72 assign zero = (r == 32’b0) ? 1’b1 : 1’b0;
73
74 assign flag = (sel_SLT) ? slt_res :
75 (sel_SLTU) ? sltu_res :
76 1’bz;
77
78 assign carry = 1’bz;
79 assign negative = 1’bz;
80 assign overflow = 1’bz;
81 endmodule

A.3.2 PROBLEM #68: RTLLM FSM

Problem description: Implement a finit state machine (FSM) that detects the input sequence 10011
on a single-bit input stream. The module has three inputs: the serial input bit (IN), the clock (CLK),
and a synchronous reset (RST). It produces one output, MATCH, which is asserted high when the
specified sequence is recognized. The FSM supports continuous input and loop detection. When
reset is active, the FSM initializes and MATCH is cleared to 0. The output MATCH is asserted
during the cycle when the last 1 of the target sequence is received, and the design ensures that
repeated or overlapping patterns (e.g., 100110011) correctly generate multiple match pulses.
Benchmark solution: States are binary-encoded, with sequential next-state logic in a Mealy FSM
while output occupies a register.

1 module unopt_model (
2 input wire IN,
3 input wire CLK,
4 input wire RST,
5 output wire MATCH
6 );
7
8 reg [2:0] ST_cr,ST_nt;
9

10 parameter s0 = 3’b000;
11 parameter s1 = 3’b001;
12 parameter s2 = 3’b010;
13 parameter s3 = 3’b011;
14 parameter s4 = 3’b100;
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15 parameter s5 = 3’b101;
16
17 always@(posedge CLK or posedge RST) begin
18 if(RST)
19 ST_cr <= s0;
20 else
21 ST_cr <= ST_nt;
22 end
23
24 always@(*) begin
25 case(ST_cr)
26 s0:begin
27 if (IN==0)
28 ST_nt = s0;
29 else
30 ST_nt = s1;
31 end
32
33 s1:begin
34 if (IN==0)
35 ST_nt = s2;
36 else
37 ST_nt = s1;
38 end
39
40 s2:begin
41 if (IN==0)
42 ST_nt = s3;
43 else
44 ST_nt = s1;
45 end
46
47 s3:begin
48 if (IN==0)
49 ST_nt = s0;
50 else
51 ST_nt = s4;
52 end
53
54 s4:begin
55 if (IN==0)
56 ST_nt = s2;
57 else
58 ST_nt = s5;
59 end
60
61 s5:begin
62 if (IN==0)
63 ST_nt = s2;
64 else
65 ST_nt = s1;
66 end
67
68 endcase
69 end
70
71 always@(*) begin
72 if(RST)
73 MATCH <= 0;
74 else if (ST_cr == s4 && IN == 1)
75 MATCH <= 1;
76 else
77 MATCH <= 0;
78 end
79
80 endmodule

Our expert-written area and power optimized solution: Casez-based transitions and direct Mealy
output computation, removing extra register, leading to 32% area reduction. Compact binary encod-
ing and casez-based transitions to cut toggling for 23% power reduction.

1 localparam [2:0] s0=3’b000, s1=3’b001, s2=3’b010,
2 s3=3’b011, s4=3’b100, s5=3’b101;
3
4 reg [2:0] ST_cr, ST_nt;
5
6 always @(posedge CLK or posedge RST) begin
7 if (RST)
8 ST_cr <= s0;
9 else
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10 ST_cr <= ST_nt;
11 end
12
13 always @* begin
14 ST_nt = s0;
15 casez ({ST_cr, IN})
16 // s0: 0->s0, 1->s1
17 {s0,1’b0}: ST_nt = s0;
18 {s0,1’b1}: ST_nt = s1;
19
20 // s1: 0->s2, 1->s1
21 {s1,1’b0}: ST_nt = s2;
22 {s1,1’b1}: ST_nt = s1;
23
24 // s2: 0->s3, 1->s1
25 {s2,1’b0}: ST_nt = s3;
26 {s2,1’b1}: ST_nt = s1;
27
28 // s3: 0->s0, 1->s4
29 {s3,1’b0}: ST_nt = s0;
30 {s3,1’b1}: ST_nt = s4;
31
32 // s4: 0->s2, 1->s5
33 {s4,1’b0}: ST_nt = s2;
34 {s4,1’b1}: ST_nt = s5;
35
36 // s5: 0->s2, 1->s1
37 {s5,1’b0}: ST_nt = s2;
38 {s5,1’b1}: ST_nt = s1;
39
40 default: ST_nt = s0;
41 endcase
42 end
43
44 assign MATCH = (ST_cr == s4) & IN;
45
46 endmodule

Our expert-written delay optimized solution: One-hot state encoding with pre-decoded inputs
and Moore-style output, leading to 23% delay reduction.

1
2 reg [5:0] S, S_next;
3
4 reg [5:0] S, S_next;
5
6 always @(posedge CLK or posedge RST) begin
7 if (RST)
8 S <= 6’b000001; // s0
9 else

10 S <= S_next;
11 end
12
13 wire in1 = IN;
14 wire in0 = ˜IN;
15
16 always @* begin
17 S_next[0] = (S[0] & in0) | (S[3] & in0); // -> s0
18 S_next[1] = (S[0] & in1) | (S[1] & in1) | (S[2] & in1)
19 | (S[5] & in1); // -> s1
20 S_next[2] = (S[1] & in0) | (S[4] & in0) | (S[5] & in0); // -> s2
21 S_next[3] = (S[2] & in0); // -> s3
22 S_next[4] = (S[3] & in1); // -> s4
23 S_next[5] = (S[4] & in1); // -> s5
24 end
25
26 always @(posedge CLK or posedge RST) begin
27 if (RST)
28 MATCH <= 1’b0;
29 else
30 MATCH <= S[5];
31 end
32 endmodule

A.3.3 PROBLEM #87: VERILOGEVAL PROB095

Problem description: Implement a module that generates a control signal (shift ena) for a shift
register. The module has a clock input (clk), a synchronous active-high reset (reset), and a single
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output (shift ena). The functionality requires that when the FSM is reset, the shift ena signal is as-
serted high for exactly four consecutive clock cycles before being deasserted permanently. After this
sequence, shift ena remains low indefinitely until another reset occurs, at which point the behavior
repeats. All sequential operations are triggered on the positive edge of the clock.
Benchmark solution: Uses explicit states with next-state logic to drive shift ena.

1 module unopt_model (
2 input clk,
3 input reset,
4 output reg shift_ena
5 );
6 parameter B0=0, B1=1, B2=2, B3=3, Done=4;
7
8 reg [2:0] state, next;
9

10 always @* begin
11 case (state)
12 B0: next = B1;
13 B1: next = B2;
14 B2: next = B3;
15 B3: next = Done;
16 Done: next = Done;
17 default: next = B0;
18 endcase
19 end
20
21 always @(posedge clk) begin
22 if (reset) begin
23 state <= B0;
24 shift_ena <= 1’b1;
25 end else begin
26 state <= next;
27 shift_ena <= (next != Done);
28 end
29 end
30 endmodule

Our expert-written area and power optimized solution: Minimized register width, using a 2-bit
counter, and compact comparator logic, leading to 47% area reduction. Small counter reused which
reduced toggling activity to minimize dynamic power, for 46% power reduction.

1 reg [1:0] counter; // 2 bits are enough to count up to 4
2
3 always @(posedge clk) begin
4 if (reset) begin
5 counter <= 2’b00; // Reset counter
6 shift_ena <= 1’b1; // Enable on reset
7 end else if (counter < 2’b11) begin
8 counter <= counter + 1; // Increment counter
9 shift_ena <= 1’b1; // Keep shift_ena high while counting

10 end else begin
11 shift_ena <= 1’b0; // Disable after 4 cycles
12 end
13 end
14
15 endmodule

Our expert-written delay optimized solution: Wider counter, using 3 bits, to simplify comparison
and reduce logic depth on the critical path, leading to 37% delay reduction.

1 reg [2:0] count; // 3-bit counter to count 4 cycles
2
3 always @(posedge clk) begin
4 if (reset) begin
5 count <= 3’b000; // Reset count
6 shift_ena <= 1’b1; // Enable shift initially
7 end else if (count < 3’b011) begin
8 count <= count + 1; // Increment count
9 shift_ena <= 1’b1; // Keep shift enabled

10 end else begin
11 shift_ena <= 1’b0; // Disable shift after 4 cycles
12 end
13 end
14
15 endmodule
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A.3.4 PROBLEM #104: VERILOGEVAL PROB136

Problem description: Implement a cellular automaton game, similar to Conway’s Game of Life,
on a 16x16 grid. The grid is represented as a 256-bit vector (q), where each row of 16 cells maps
to a sub-vector, and each cell can be alive (1) or dead (0). The module has a clock input (clk),
a load signal (load) for synchronously loading an initial 256-bit state (data) into q, and produces
the updated 256-bit grid state as output. At every positive clock edge, the grid advances by one
timestep, with each cell’s next state determined by its number of neighbors: cells die with fewer
than 2 or more than 3 neighbors, remain unchanged with exactly 2 neighbors, and become alive with
exactly 3 neighbors. The grid is modeled as a toroid, meaning edges wrap around so that cells on
the boundaries consider neighbors from the opposite side.
Benchmark solution: Straightforward RTL with per-cell neighbor recomputation and sequential
summing.

1 module unopt_model (
2 input clk,
3 input load,
4 input [255:0] data,
5 output reg [255:0] q
6 );
7
8 logic [323:0] q_pad;
9 always@(*) begin

10 for (int i=0;i<16;i++)
11 q_pad[18*(i+1)+1 +: 16] = q[16*i +: 16];
12 q_pad[1 +: 16] = q[16*15 +: 16];
13 q_pad[18*17+1 +: 16] = q[0 +: 16];
14
15 for (int i=0; i<18; i++) begin
16 q_pad[i*18] = q_pad[i*18+16];
17 q_pad[i*18+17] = q_pad[i*18+1];
18 end
19 end
20
21 always @(posedge clk) begin
22 for (int i=0;i<16;i++)
23 for (int j=0;j<16;j++) begin
24 q[i*16+j] <=
25 ((q_pad[(i+1)*18+j+1 -1+18] + q_pad[(i+1)*18+j+1 +18] + q_pad[(i+1)*18+j+1 +1+18] +
26 q_pad[(i+1)*18+j+1 -1] + q_pad[(i+1)*18+j+1+1] +
27 q_pad[(i+1)*18+j+1 -1-18] + q_pad[(i+1)*18+j+1 -18] + q_pad[(i+1)*18+j+1 +1-18]) & 3’h7 | q[i*16+j]) == 3’h3;
28 end
29
30 if (load)
31 q <= data;
32
33 end
34
35 endmodule

Our expert-written area and power optimized solution: Sharing per-row horizontal sums and
bitwise rotations for toroidal wrap, minimizing summations for 19% area reduction. Computation
reuse decreasing toggling, leading to 36% power reduction.

1 // --- Helpers ---------------------------------------------------------------
2 function automatic [7:0] idx(input [3:0] r, input [3:0] c);
3 idx = {r, c}; // r*16 + c
4 endfunction
5
6 // Bit-rotate wires (toroidal wrap) - wiring only (no logic area)
7 function automatic [15:0] rol1(input [15:0] x); rol1 = {x[14:0], x[15]}; endfunction
8 function automatic [15:0] ror1(input [15:0] x); ror1 = {x[0], x[15:1]}; endfunction
9

10 // Add-three 1-bit vectors in parallel: returns {carry,sum}
11 // a+b+c = sum ˆ (2*carry) per bit
12 function automatic [31:0] add3_vec(input [15:0] a, input [15:0] b, input [15:0] c);
13 add3_vec[15:0] = a ˆ b ˆ c; // sum (LSB)
14 add3_vec[31:16] = (a & b) | (a & c) | (b & c); // carry (means +2)
15 endfunction
16
17 // --- Unpack rows (wires) ---------------------------------------------------
18 wire [15:0] row [15:0];
19 genvar ur;
20 generate
21 for (ur = 0; ur < 16; ur = ur + 1) begin : UNPACK
22 assign row[ur] = q[{ur[3:0], 4’b0000} +: 16];
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23 end
24 endgenerate
25
26 // --- Precompute per-row horizontal neighbors (shared) ----------------------
27 wire [15:0] rol [15:0], ror [15:0];
28 wire [15:0] sTrip [15:0], cTrip [15:0]; // for (L,C,R) of each row (0..3)
29 wire [15:0] sPair [15:0], cPair [15:0]; // for (L,R) of each row (0..2)
30
31 genvar hr;
32 generate
33 for (hr = 0; hr < 16; hr = hr + 1) begin : HROW
34 assign rol[hr] = rol1(row[hr]);
35 assign ror[hr] = ror1(row[hr]);
36
37 // Triplet = left + center + right (encoded as s + 2*c)
38 wire [31:0] trip_pack = add3_vec(rol[hr], row[hr], ror[hr]);
39 assign sTrip[hr] = trip_pack[15:0];
40 assign cTrip[hr] = trip_pack[31:16];
41
42 // Pair = left + right
43 assign sPair[hr] = rol[hr] ˆ ror[hr];
44 assign cPair[hr] = rol[hr] & ror[hr];
45 end
46 endgenerate
47
48 integer r;
49 reg [255:0] nxt;
50
51 reg [3:0] rn, rp;
52 reg [15:0] sT, cT, sM, cM, sB, cB;
53 reg [15:0] sS, cS; // sum of (sT + sM + sB) as s + 2*c
54 reg [15:0] U_is0, U_ge2, U_is1; // onehot(U) for U = cS + cT + cM + cB
55 reg [15:0] is3, is2;
56
57 always @* begin
58 nxt = ’0;
59
60 for (r = 0; r < 16; r = r + 1) begin
61 rn = (r == 0 ) ? 4’d15 : r - 1;
62 rp = (r == 15) ? 4’d0 : r + 1;
63
64 sT = sTrip[rn]; cT = cTrip[rn]; // top triplet from row r-1
65 sM = sPair[r ]; cM = cPair[r ]; // middle pair (no center) from row r
66 sB = sTrip[rp]; cB = cTrip[rp]; // bottom triplet from row r+1
67
68 {cS, sS} = add3_vec(sT, sM, sB);
69
70 U_is0 = ˜(cS | cT | cM | cB);
71 U_ge2 = ( (cS & cT) | (cS & cM) | (cS & cB)
72 | (cT & cM) | (cT & cB) | (cM & cB) );
73 U_is1 = ˜(U_is0 | U_ge2);
74
75 is3 = sS & U_is1;
76 is2 = ˜sS & U_is1;
77
78 nxt[{r[3:0], 4’b0000} +: 16] = is3 | (row[r] & is2);
79 end
80 end
81
82 always @(posedge clk) begin
83 if (load)
84 q <= data;
85 else
86 q <= nxt;
87 end
88 endmodule

Our expert-written delay optimized solution: Parallel neighbor summation with carry-save adder
tree and direct decode for 2 and 3, for shallow critical path, leading to 37% delay reduction.

1 function automatic [7:0] idx(input [3:0] r, input [3:0] c);
2 idx = {r, c};
3 endfunction
4
5 function automatic [15:0] rol1(input [15:0] x); rol1 = {x[14:0], x[15]}; endfunction
6 function automatic [15:0] ror1(input [15:0] x); ror1 = {x[0], x[15:1]}; endfunction
7
8 function automatic [31:0] add3_vec(input [15:0] a, input [15:0] b, input [15:0] c);
9 add3_vec[15:0] = a ˆ b ˆ c; // s

10 add3_vec[31:16] = (a & b) | (a & c) | (b & c); // c (>=2)
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11 endfunction
12
13 integer r;
14 reg [255:0] nxt;
15
16 reg [3:0] rn, rp;
17 reg [15:0] ru, r0, rd;
18 reg [15:0] ru_l, ru_c, ru_r;
19 reg [15:0] r0_l, r0_r;
20 reg [15:0] rd_l, rd_c, rd_r;
21
22 reg [15:0] sT, cT, sM, cM, sB, cB, sS, cS;
23 reg [15:0] U_is0, U_ge2, U_is1; // onehot decode for U = cS+cT+cM+cB
24 reg [15:0] is3, is2; // neighbor count ==3 / ==2
25
26 always @* begin
27 nxt = ’0;
28
29 for (r = 0; r < 16; r = r + 1) begin
30 rn = (r == 0 ) ? 4’d15 : r - 1;
31 rp = (r == 15) ? 4’d0 : r + 1;
32
33 ru = q[{rn,4’b0000} +: 16];
34 r0 = q[{r ,4’b0000} +: 16];
35 rd = q[{rp,4’b0000} +: 16];
36
37 ru_l = rol1(ru); ru_c = ru; ru_r = ror1(ru);
38 r0_l = rol1(r0); r0_r = ror1(r0);
39 rd_l = rol1(rd); rd_c = rd; rd_r = ror1(rd);
40
41 {cT, sT} = add3_vec(ru_l, ru_c, ru_r); // counts 0..3
42 sM = (r0_l ˆ r0_r); // pair: 0..2
43 cM = (r0_l & r0_r);
44 {cB, sB} = add3_vec(rd_l, rd_c, rd_r);
45
46 {cS, sS} = add3_vec(sT, sM, sB);
47
48 U_is0 = ˜(cS | cT | cM | cB);
49 U_ge2 = ( (cS & cT) | (cS & cM) | (cS & cB)
50 | (cT & cM) | (cT & cB) | (cM & cB) );
51 U_is1 = ˜(U_is0 | U_ge2);
52
53 is3 = sS & U_is1;
54 is2 = ˜sS & U_is1;
55
56 nxt[{r[3:0],4’b0000} +: 16] = is3 | (r0 & is2);
57 end
58 end
59
60 always @(posedge clk) begin
61 if (load)
62 q <= data;
63 else
64 q <= nxt;
65 end
66 endmodule

A.4 SAMPLING DIVERSITY

In Figure 7, we show three LLM-generated Verilog modules of a parallel-in-serial-out shift register,
targeting area optimization, with normalized area efficiency values of 0.924, 0.963 and 1.0, respec-
tively. These samples illustrate how increasing k allows models to generate progressively better
implementations. The third sample avoids unnecessary counters and state tracking, reducing both
area and complexity.

A.5 PASS@K DEFINITION

The pass@k metric, defined in equation 3, is used for measuring the functional correctness of LLM-
generated code. Here, N is the total number of problems in the evaluation set, ni is the number
of samples generated for problem i, and ci is the number of functionally correct samples for that
problem.
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module opt_model #(parameter DATA_WIDTH = 32) (

    input clk,

    input resetn,

    input [DATA_WIDTH-1:0] din,

    input din_en,

    output logic dout

);

    reg [DATA_WIDTH-1:0] shift_reg; 

    reg [$clog2(DATA_WIDTH)-1:0] bit_index;

    always @(posedge clk or negedge resetn) begin

        if (!resetn) begin

            shift_reg <= {DATA_WIDTH{1'b0}};

            bit_index <= 0;

            dout <= 1'b0;

        end else if (din_en) begin

            shift_reg <= din;

            bit_index <= 0;

            dout <= din[0];

        end else if (bit_index < DATA_WIDTH-1) begin

            dout <= shift_reg[bit_index + 1];

            bit_index <= bit_index + 1;

        end else begin

            dout <= 1'b0;

        end

    end

endmodule

(a) k = 1

module opt_model #(parameter DATA_WIDTH = 32) (

    input clk,

    input resetn,

    input [DATA_WIDTH-1:0] din,

    input din_en,

    output logic dout

);

    reg [DATA_WIDTH-1:0] shift_reg; 

    reg [$clog2(DATA_WIDTH)-1:0] bit_index;

    always @(posedge clk) begin

        if (din_en) begin

            shift_reg <= din;

            bit_index <= 0;

            dout <= din[0];

        end else if (bit_index < DATA_WIDTH-1) begin

            dout <= shift_reg[bit_index + 1];

            bit_index <= bit_index + 1;

        end else begin

            dout <= 1'b0;

        end

    end

endmodule

(b) k = 5

module opt_model #(parameter DATA_WIDTH = 32) (

  input clk,

  input resetn,

  input [DATA_WIDTH-1:0] din,

  input din_en,

  output logic dout

);

    logic [DATA_WIDTH-1:0] temp;

    always @(posedge clk or negedge resetn) begin

        if (!resetn) begin

            temp <= 0;

        end else if (din_en) begin

            temp <= din;

        end else begin

            temp <= temp >> 1;

        end

     end

    assign dout = temp[0];

endmodule

(c) k = 10

Figure 7: Three area-optimized implementations of the piso shift register module (Prob-
lem #16) generated at k ∈ {1, 5, 10}. The circuit shifts the least significant bit of a multi-bit input
din to the single-bit output dout sequentially, starting when din en goes high. All designs are
functionally correct but structurally diverse.

pass@k = EN
i=1

[
1− C(ni − ci, k)

C(ni, k)

]
(3)

A.6 FAILURE ANALYSIS

In Figure. 8, we visualize the set of problems that heavy high pass@k and low eff@k to get better
insight on the set of problems that are hard to optimize.

Figure 8: Quadrant plot showing the correlation between functional correctness (Pass@1) and syn-
thesis efficiency (Eff@1) across area, delay, and power objectives.

23


	Introduction
	Related Work
	Pluto Benchmark
	Data Construction
	Optimization Workflow
	Efficiency Metrics

	Evaluation Results
	Main Results
	Ablation Studies
	Synthesis Tool and Technology Agnosticism
	Synthesis Optimization Strategies


	Failure Analysis and Insights
	Conclusion
	Appendix
	Unoptimized Code and Testbench for Problem #17 (Trailing Zeros) in Figure 1
	Unoptimized Code
	Self-Checking Testbench

	Optimization Strategies
	Code of Example Problems in Table 2
	Problem #60: RTLLM ALU
	Problem #68: RTLLM FSM
	Problem #87: VerilogEval Prob095
	Problem #104: VerilogEval Prob136

	Sampling Diversity
	Pass@k Definition
	Failure Analysis


