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ABSTRACT

Large Language Models (LLMs) are increasingly used to automate hardware de-
sign tasks, including the generation of Verilog code. While early benchmarks
focus primarily on functional correctness, efficient hardware design demands ad-
ditional optimization for synthesis metrics such as area, delay, and power. Ex-
isting benchmarks fall short in evaluating these aspects comprehensively: they
often lack optimized baselines or testbenches for verification. To address these
gaps, we present Pluto, a benchmark and evaluation framework designed to as-
sess the efficiency of LLM-generated Verilog designs. Pluto presents a compre-
hensive evaluation set of 114 problems with self-checking testbenches and mul-
tiple Pareto-optimal reference implementations. Experimental results show that
state-of-the-art LLMs can achieve high functional correctness, reaching 78.3% at
pass@1, but their synthesis efficiency still lags behind expert-crafted implemen-
tations, with area efficiency of 63.8%, delay efficiency of 65.9%, and power effi-
ciency of 64.0% at eff@1. This highlights the need for efficiency-aware evaluation
frameworks such as Pluto to drive progress in hardware-focused LLM research.

1 INTRODUCTION

Large Language Models (LLMs) are beginning to reshape hardware design by automating key steps
in hardware design workflows, including Verilog code generation [Thakur et al.|(2023ajb); [Liu et al.
(2023a), optimization [Yao et al.| (2024); |Guo & Zhao| (2025), verification |Qiu et al.| (2024a), de-
bugging Tsai et al.| (2024), high-level synthesis Xiong et al.|(2024), and post-synthesis metric esti-
mation |Abdelatty et al.| (2025). While these advances highlight the potential of LLMs in hardware
design, most research has focused on functional correctness of generated designs, with little atten-
tion to design quality metrics such as area, delay, and power.

In hardware design, the quality of Verilog code is not determined solely by functional correctness.
Designs typically undergo logic synthesis, where Verilog code is mapped to gate-level implemen-
tations in a target technology. This process exposes critical efficiency metrics, such as silicon area,
timing delay, and power consumption, that directly impact manufacturability and performance. Un-
like software code, where correctness and execution speed often suffice, hardware code quality is
inherently tied to these post-synthesis metrics.

In order to evaluate the functional correctness of LLM-generated Verilog code, several benchmarks
have been proposed including VerilogEval Liu et al.|(2023a) and RTLLM |Lu et al.| (2024). Recent
efforts, including RTLRewriter|Yao et al.|(2024), ResBench|Guo & Zhao|(2025), GenBen|Wan et al.
(2025), and TuRTLe Garcia-Gasulla et al.|(2025), have begun to evaluate quality of LLM-generated
hardware code in terms of post-synthesis metrics. However, these benchmarks face key limitations:

* Absence of Optimal Ground Truth Solutions True efficiency should be measured against
implementations that are explicitly optimized for specific objectives such as silicon area,
delay, or power consumption. Prior studies rely on canonical solutions from VerilogEval
and RTLLM as reference solutions. Our analysis shows that these solutions are not the
most optimal in terms of post-synthesis metrics.

» Lack of Clock Latency Agnostic Testbenches Many common optimization patterns, such
as register pipelining, resource sharing, or FSM restructuring, introduce variations in clock-
cycle latency between the optimized and unoptimized designs. To support fair evaluation,



Under review as a conference paper at ICLR 2026

testbenches must be self-checking and tolerant of different latency requirements. Existing
benchmarks, however, assume identical latency between the reference model and the design
under test, making them unsuitable for efficiency benchmarking.

In order to address these limitations, we introduce Pluto, the first benchmark designed to evaluate
both functional correctness and synthesis efficiency of LLM-generated Verilog code. Our contribu-
tions are as follows:

* Per-Metric Ground Truth Optimal Solutions. We provide a suite of 114 problems where
each is optimized for area, delay, and power separately, yielding Pareto-front optimal solu-
tions. Our ground truth solutions are significantly more efficient than canonical solutions
in RTLLM and VerilogEval.

» Optimization-Aware Testbenches. Each problem is accompanied by clock-cycle agnostic
testbenches that accommodate varying latency requirements, ensuring robust evaluation of
different optimization patterns.

* Comprehensive Evaluation. We adapt the eff@k metric introduced in |Q1u et al.| (2024b)
to measure the efficiency of hardware designs. Our extended metric is a three-dimensional
vector that evaluates LLM-generated code across multiple objectives: area, delay and
power.

2 RELATED WORK

Software Code Benchmarks Large Language Models (LLMs) have been extensively studied for
code generation across both software and hardware domains, with most early benchmarks focusing
primarily on functional correctness rather than efficiency. In software, works such as Mercury Du
et al.| (2024) and ENAMEL |Q1u et al.[(2024b) move beyond correctness to explicitly evaluate run-
time efficiency of LLM-generated programs. The Mercury Du et al.| (2024) benchmark contains
LeetCode style problems. Each problem is accompanied by an expert-written solution that repre-
sents the most optimal implementation in terms of run-time efficiency. ENAMEL |Q1u et al.|(2024b)
also introduces a Python benchmark to evaluate the run-time efficiency of LLM-generated code.

Hardware Code Benchmarks In hardware design, early work on LLM-generated Verilog empha-
sized functional correctness. VerilogEval [Liu et al.| (2023a)) only evaluates whether the LLM gen-
erated code passes the testbench check, while RTLLM |Lu et al.| (2024) additionally checks if the
generated code is synthesizable. More recent efforts have shifted toward assessing and improv-
ing the efficiency of LLM-generated designs, which can be categorized into two main categories:
Specifications-to-Efficient-Verilog where the LLM is tasked with translating natural language in-
struction to optimized Verilog code directly, and Unoptimized-Verilog-to-Optimized-Verilog, where
the LLM is tasked with rewriting an unoptimized Verilog code to optimized Verilog code.

In the Specifications-to-Efficient-Verilog formulation, the LLM is prompted with a natural language
problem description and directly generates optimized Verilog. Benchmarks, such as GenBen [Wan
et al.|(2025), TuRTLe Garcia-Gasulla et al.|(2025)), evaluate these generations in functional correct-
ness, synthesizability, and post-synthesis metrics such as area, delay, and power. However, it relies
on VerilogEval problems as ground truth. These reference designs are not necessarily optimized
for power, performance, or area, and thus do not represent true Pareto-optimal solutions. ResBench
Guo & Zhao| (2025)) also does not define any gold-standard or reference-optimal implementations,
which makes it difficult to quantitatively assess how close the generated solutions are to ideal results.

The Unoptimized-Verilog-to-Optimized-Verilog setting provides the LLM with a functionally cor-
rect but unoptimized Verilog implementation and asks it to produce a more efficient version. RTL-
Rewriter|Yao et al.|(2024) enhances this with retrieval-augmented generation and feedback through
the synthesis loop. However, RTLRewriter lacks associated testbenches, making it unsuitable for
assessing the functional correctness of the generated code.

As summarized in Table [I] Pluto is the first benchmark to offer per-metric optimization, provid-
ing separate expert-optimized reference designs for area, delay, and power. This enables targeted,
metric-specific evaluation of LLMs, an aspect missing from prior benchmarks.
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Table 1: Comparison of prior software and hardware code generation benchmarks. Pluto addresses
key limitations by enabling metric-specific optimization with three reference implementations per
problem, each optimized for area, delay, or power.

Benchmark |Language | Functionality Synthesizability Efficiency Per-Metric Optimisation | Tasks

HumanEval |Python v - X X 164
Mercury Python v - v X 256
ENAMEL | Python v - v X 142
VerilogEval | Verilog v X X X 156
RTLLM Verilog v v X X 30
RTLRewriter | Verilog X v v X 95
ResBench Verilog v v X X 56
GenBen Verilog v v X X 300
TuRTLe Verilog v v X X 223
CVDP Verilog v v X X 783
Pluto (Ours) | Verilog | v v v v | 114

3 PLUTO BENCHMARK
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Figure 1: Overview of the Pluto benchmark on the trailing zeros detection task. We show three
reference implementations optimized for different synthesis metrics compared to the unoptimized
baseline: (left) area, using a mux-based priority encoder, reducing area by 33%; (center) delay, using
an LSB isolation circuit with a parallel one-hot encoder, reducing delay by 44%; and (right) power,
using an LSB-to-MSB scanning method with early termination, reducing total power by 34%. See
Appendix. @ for unoptimized baseline and self-checking testbench.

3.1 DATA CONSTRUCTION

To enable a comprehensive evaluation of synthesis efficiency for LLM-generated hardware code,
we construct the Pluto evaluation set, which contains a diverse collection of high-quality digital
design problems spanning a broad range of difficulties. Specifically, we curated 114 problems from
various publicly available sources, including open-source hardware projects, educational platforms
such as ChipDev ChipDev| (2025)), a LeetCode-inspired platform for practicing Verilog coding, and
prior benchmark suites such as RTLRewriter |Yao et al.| (2024), RTLLM |Lu et al.| (2024), and Ver-
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ilogEval [Liu et al.| (2023b). Each problem is specified by a high-level description outlining the
functional requirements, together with a baseline unoptimized Verilog implementation.

The problem set covers a wide spectrum of tasks in digital logic design, ranging from arithmetic
units and control circuits to sequential state machines. To systematically capture variation in design
complexity, we adopt ChipDev’s difficulty annotations and classify problems into three levels: easy,
medium, and hard. These labels reflect the intrinsic challenge of translating the textual description
into a correct Verilog implementation, thereby providing a principled way to distinguish between
problems of different complexity.

Importantly, the resulting collection balances accessibility with challenge: many problems that ap-
pear straightforward can nonetheless expose substantial differences in synthesis efficiency depend-
ing on the optimization strategies applied. The diverse composition of easy, medium, and hard tasks
therefore enables a nuanced assessment of an LLM’s ability to generate synthesis-efficient Verilog
under varying constraints. In total, the 114 selected problems provide a representative and scalable
testbed for benchmarking LL.M-based Verilog efficiency.

Each problem instance in the Pluto benchmark includes the following components:

* Prompt: A natural language description of the hardware design task intended to guide the
LLM-generation.

* Module Header: A fixed interface shared across all versions of the Verilog module to
ensure consistency and comparability.

* Unoptimized Verilog Code: A baseline implementation used as the reference for testing.

* Optimized Verilog Code: Three distinct implementations with tradeoffs, each optimized
by hand using design experts for a single metric: area, delay, or power.

* Testbench: A manually crafted, fully self-checking testbench that verifies functional equiv-
alence between the unoptimized and any optimized design. These testbenches ensure full
input space coverage and flag any mismatches during simulation. For sequential circuits,
testbenches are clock-cycle agnostic, supporting latency differences introduced by opti-
mizations such as pipelining or resource sharing.

All components in the evaluation set are manually developed. This ensures high quality and guar-
antees that the LLM under evaluation has not previously encountered any part of the dataset during
training. In particular, the testbenches and optimized code serve as held-out ground truth references,
providing an unbiased benchmark for assessing the efficiency and correctness of LLM-generated
Verilog designs.

To illustrate the structure of problems in the Pluto evaluation set, Figure |I| presents the example
of a trailing zeros detection circuit, categorized as an easy problem, along with its three metric-
specific optimizations. As shown, each optimization achieves peak efficiency in its targeted metric,
while performance in the remaining two metrics declines. This behavior emphasizes the inherent
trade-offs across design objectives in hardware design and highlights the necessity of metric-specific
optimization strategies.

3.2 OPTIMIZATION WORKFLOW

Each unoptimized design in the Pluto set is further refined through manual optimization by expert
engineers to generate three distinct versions optimized separately for area, delay, and power. This
workflow follows a systematic process that ensures both the correctness and the efficiency of the re-
sulting designs. After applying metric-specific transformations, each optimized circuit is rigorously
verified for functional correctness using Icarus Verilog [Williams et al.| (2002)), supported by robust
self-checking testbenches that guarantee equivalence with the unoptimized baseline. The optimized
versions are then synthesized to confirm that improvements translate into measurable gains in area,
timing, or power, thereby providing reliable performance baselines against which LLM-generated
designs can be evaluated.

To understand how these efficiency gains are achieved, we visualize the optimization strategies ap-
plied across the dataset in appendix [A.2] The strategies vary significantly depending on the target
metric. For area, arithmetic optimizations and logic simplification are most commonly employed,
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and FSM restructuring plays an important role in reducing redundant states and transitions. Delay
improvements rely heavily on exploiting parallelism and restructuring control logic, often comple-
mented by logic simplification and pipelining techniques that shorten the critical path. For power,
it’s reducing switching activity through register and logic optimizations, supported by techniques
such as operand isolation, and clock gating to further suppress unnecessary toggling.

The distribution of strategies reveals that no single optimization technique dominates across all
objectives. Instead, engineers select strategies tailored to the specific metric, reflecting the trade-
offs inherent in digital design. As shown in Figure [2] this process results in consistent improve-
ments across all /74 designs, with average reductions of 19.19% (SD=18.99%) in area, 21.96%
(SD=20.99%) in delay, and 22.55% (SD=21.65%) in power. This highlights the importance of
metric-specific approaches and provide a robust baseline for evaluating LLM-generated hardware
code efficiency.

To further illustrate the impact of expert-driven optimization, Table [2] presents representative exam-
ples drawn from both RTLLM and VerilogEval. These case studies highlight how different strate-
gies, such as arithmetic unit sharing, FSM encoding choices, and counter-based control logic, trans-
late into concrete improvements across area, delay, and power. As shown, across both VerilogEval
and RTLLM, expert-optimized designs consistently outperform baseline implementations. In par-
ticular, for RTLLM problems our expert-written solutions achieve average improvements of 18.75%
(SD=14.55%) in area, 22.75% (SD=20.99%) in delay, and 20.43% (SD=21.65%) in power com-
pared to their canonical solutions. For VerilogEval problems, the improvements average 10.46%
(SD=14.40%) in area, 10.33% (SD=15.10%) in delay, and 13.61% (SD=18.86%) in power.
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Figure 2: Distribution of area, delay, and power across all 114 tasks in Pluto before and after manual
metric-specific optimizations.

Table 2: A sample of benchmark problems from Pluto dataset. Our expert-optimized solutions
(area, delay, power) are significantly more efficient than the baseline benchmark implementations.
See Appendix [A.3|for full problem implementation.

ID Source Problem Benchmark Solu- | Expert Solution (Ours)
‘ ‘ Description tion

#60 RTLLM ALU for a 32-bit MIPS-ISA | ALU  implemen- | Area | 26%: Shared adder for arithmetic, simplified flag
CPU with operations like | tation with case | logic, and operand reuse
{ADD, SUB, AND, OR, | statement and | Delay | 26%: Parallel datapaths with one-hot muxing
XOR, SLT, shifts, LUT}. parameterized op- | Power | 4%: Operand gating and early zeroing for large

codes. shifts to cut switching activity

#68 RTLLM FSM detecting the sequence | States binary en- | Area | 32%: Casez-based transitions and direct output
10011 on a serial input | coded, sequential | Delay | 17%: One-hot state encoding with pre-decoded in-
stream with support for con- | next-state logic, and | puts and Moore-style output
tinuous and overlapping de- | registered ~ Mealy | Power | 23%: Compact binary encoding and casez-based
tection output transitions to cut toggling

#87 | VerilogEval | Module controls a shift | Uses explicit states | Area | 47%: Minimized register width (2-bit counter) and
register ~ enable  signal, | with next-state logic | compact comparator logic
shift_ena asserted for 4 | to drive shift_ena Delay | 37%: Wider counter (3 bits) to simplify comparison
clock cycles on reset, then and reduce logic depth on the critical path
remain O until the next reset Power | 46%: Small counter reused

#104 | VerilogEval | Conway’s Game of Life | Straightforward Area | 19%: Shared neighbor computations across rows,
witha 16 X 16 toroidal grid: | RTL ~ with  per- | bitwise rotations for wraparound, less duplicate summations
each cell updates based on | cell neighbor | Delay | 37%: Parallel neighbor summation with carry-save
neighbor counts n (live if | recomputation and | adder tree and direct decode for 2 and 3
n = 3orn = 2 & alive) sequential summing | Power | 36%: Reduced toggling via computation reuse
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3.3 EFFICIENCY METRICS

We use the pass@k |Liu et al.| (2023a) for measuring the functional correctness of LLM-generated
Verilog code. The pass@k metric, defined in appendix. measures the percentage of problems
for which at least one of the top-k generated samples passes the self-checking testbench.

To evaluate the synthesis efficiency of functionally correct samples, we adapt the eff@k introduced
in |Qiu et al.| (2024b)) to Verilog code. First, we introduce the efficiency score e; ;, defined in Eq. E],
which quantifies how close an LLM-generated design is to optimal ground truth implementation.
In this equation, ]%L j denotes the reported synthesis metric (e.g., area, delay, or power) for the j-th
sample of problem ¢, T; ; denotes an upper bound beyond which the design is considered inefficient,
and R; ; denotes the optimal (lowest) known reference value for that metric. A score of 1 indicates
that the sample exactly matches the optimal reference, while a score of 0 indicates that it exceeds
the acceptable threshold or is functionally incorrect.

N
1

- ff@k = — E - X
max(0, T;,; — Rij) . . cff @ N Z JE{Lyms | JI=k |:Ijn€63<el’]]

, ifn; ; is correct i=1

€ij = Tij — Rij N n (r-1
0, otherwise. 1 ZZ (k1)
=N my  Cis(r)
M N i=1 r=Fk (k)

2)

We then use the efficiency score e; ; for computing the eff@k, defined in Eq. E] as the average of the
best (i.e., highest) efficiency scores among the top-k functionally correct samples for each problem.
We use the unbiased estimator introduced in|Qiu et al.| (2024b)) for computing eff@k which computes
the expectation value over a random subset J of code samples with size K.

4 EVALUATION RESULTS

We evaluate 18 large language models (LLMs) using our Pluto benchmark, which includes pro-
prietary LLMs, general-purpose foundation models, code-specialized models, and Verilog-tuned
models. To comprehensively assess efficiency-aware generation, we consider the two problem for-
mulations in Pluto: translating unoptimized Verilog code into optimized implementations, and gen-
erating optimized code directly from natural-language specifications. For the first problem formu-
lation, only instruction-tuned models are evaluated, as code completion models generally reproduce
the unoptimized code without meaningful improvements.

4.1 MAIN RESULTS

Table 3 (a) reports the pass @k and eff@k metrics for the first problem formulation, where the task is
to re-write unoptimized Verilog into more efficient implementations. Several trends emerge. First,
in terms of functional correctness (pass@k), domain-tuned models such as VeriThoughts-Inst-7B
and RTLCoder-DeepSeek-V1 achieve performance comparable to much larger foundational models
like DeepSeek-Chat, demonstrating the benefit of Verilog-specific training. However, in terms of
synthesis efficiency (eff@k), all models exhibit a noticeable drop relative to their pass@k scores.
This gap underscores a common limitation: while LLMs can generate functionally correct Verilog,
they struggle to match the Pareto-efficient expert baselines across area, delay, and power.

Table 3] (b) reports the pass @k and eff@k metrics for the second problem formulation, where models
are tasked with translating natural language specifications into optimized Verilog implementations.
This task is more challenging, and as a result, both pass@k and eff@k scores are consistently lower
across all models. Similar to the first formulation, all models also exhibit lower eff@k values com-
pared to their corresponding pass@k scores, underscoring the persistent difficulty of generating
designs that are not only functionally correct but also synthesis-efficient. However, the relative gap
between pass@k and eff@k is smaller in this setting compared to the first formulation. This is
because specification-to-RTL translation is substantially harder: models often struggle to produce
functionally correct code in the first place, which suppresses both correctness and efficiency scores.
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Table 3: Evaluation results using Pluto for two problem formulations: P1: Unoptimized-Verilog-
to-Optimized-Verilog and P2: Specifications-to-Optimized- Verilog. pass @k measures functional
correctness, while eff@k measures efficiency across area, delay, and power.

(a) P1: Unoptimized- Verilog-to-Optimized- Verilog

Model pass@1 pass@5 pass@10 eff@1l eff@5 eff@10

Area Delay Power Area Delay Power Area Delay Power
GPT-3.5 0.325 0.517 0.594 0271 0296 0.282 0462 0491 0450 0.540 0.568 0.520
GPT-40-mini 0.506 0.705 0.751 0.469 0.476 0467 0.662 0.677 0.639 0.714 0.744 0.687
DeepSeek-Chat 0.612 0.802 0.860 0.586 0.599 0.601 0.776 0.795 0.794 0.839 0.862 0.846
Llama-3.3-70B-Instruct 0.473 0.701 0.757 0.446 0462 0429 0.662 0.696 0.662 0.707 0.760 0.735
Llama-3.1-8B-Instruct 0.160 0.432 0.567 0.127 0.156 0.145 0.358 0.437 0.384 0494 0.584 0.505
Mistral-7B-Instruct-v0.2 0.106 0.318 0.453 0.078 0.094 0.100 0.244 0296 0301 0.358 0.446 0427
Mixtral-8x7B-v0.1 0.255 0.520 0.652 0217 0231 0210 0462 0487 0447 0593 0.630 0.561

starcoder2-15b-instruct-v0.1 ~ 0.659 0.960 0.988 0.611 0.633 0591 0.879 0924 0.871 0913 0952 0.904
CodeLlama-70b-Instruct-hf 0.576 0.905 0.956 0.522 0.541 0523 0.842 0876 0.824 0.903 0925 0.878

DeepSeek-Coder-33B 0.783 0.963 0.997 0.638 0.659 0.640 0.902 0927 0.883 0.942 0.960 0.927
Qwen2.5-Coder-7B-Inst 0.479 0.785 0.866 0438 0452 0419 0710 0.759 0.741 0.785 0.848 0.833
yang-z/CodeV-QC-7B 0.231 0.416 0.506 0211 0208 0.187 0.381 0390 0.361 0455 0491 0442
RTLCoder-DeepSeek-V1 0.532 0.854 0.915 0.471 0495 0468 0.774 0.789 0.757 0.843 0.850 0.809
VeriThoughts-Inst.-7B 0.611 0.797 0.854 0.540 0.560 0.524 0.708 0.740 0.702 0.763 0.785 0.765

(b) P2: Specifications-to-Optimized- Verilog

Model pass@1 pass@5 pass@10 eff@1 eff@5 eff@10

Area Delay Power Area Delay Power Area Delay Power
GPT-3.5 0.239 0.395 0.471 0.225 0235 0.225 0373 0390 0381 0439 0469 0468
GPT-40-mini 0.391 0.533 0.591 0.360 0377 0363 0475 0520 0495 0532 0572 0.551
DeepSeek-Chat 0.557 0.688 0.719 0.545 0552 0528 0.689 0.680 0.651 0.726 0.710 0.684
Llama-3.3-70B-Instruct 0.363 0.541 0.594 0.348 0345 0.342 0515 0533 0510 0564 0.602 0.557
Llama-3.1-8B-Instruct 0.087 0.224 0.301 0.075 0.073 0.081 0.189 0.184 0.204 0.270 0251 0.279
Mistral-7B-Instruct-v0.2 0.030 0.108 0.164 0.024 0.015 0.024 0.078 0.067 0.088 0.112 0.117 0.134
Mixtral-8x7B-v0.1 0.082 0.176 0.222 0.082 0.068 0.079 0.172 0.131 0.163 0.202 0.166 0.211

starcoder2-15b-instruct-v0.1 ~ 0.243 0.454 0.512 0226 0249 0220 0429 0466 0409 0489 0525 0458
CodeLlama-70b-Instruct-hf 0.212 0.446 0.532 0202 0.207 0.194 0418 0440 0.437 0498 0.535 0.524

DeepSeek-Coder-33B 0.257 0.429 0.482 0231 0254 0246 0387 0424 0421 0446 0490 0.468
Qwen2.5-Coder-7B-Inst 0.164 0.324 0.389 0.158 0.162 0.148 0307 0319 0.295 0.366 0375 0.357
code-gen-verilog-16b 0.068 0.200 0.289 0.069 0.064 0.058 0.188 0.175 0.188 0.268 0.253 0.272
yang-z/CodeV-CL-7B 0.265 0.485 0.553 0233 0.243 0237 0432 0455 0436 0493 0.536 0.511
yang-z/CodeV-QC-7B 0.260 0.458 0.529 0223 0229 0222 0420 0415 0410 0497 0480 0478
yang-z/CodeV-All-QC 0.175 0.317 0.374 0.150 0.162 0.144 0297 0304 0.256 0.368 0379 0.284
RTLCoder-DeepSeek-V 1 0.203 0.400 0.480 0.177 0.199 0.184 0345 0.404 0361 0417 0499 0.430
RTLCoder-Mistral 0.199 0.347 0.418 0.185 0.188 0.188 0316 0.332 0.329 0.381 0411 0.395
VeriThoughts-Inst.-7B 0.216 0.336 0.398 0211 0206 0207 0316 0330 0329 0367 0394 0.393

4.2 ABLATION STUDIES

In addition to the Verilog code writing style, post-synthesis metrics are also influenced by external
factors such as the synthesis tool employed, the target technology library, and the optimization
sequence executed by the tool. To understand the robustness of our proposed benchmark and isolate
the impact of these factors, we present two ablation studies that evaluate efficiency trends in the
Pluto benchmark across different synthesis tools, optimization strategies, and technology libraries.

4.2.1 SYNTHESIS TOOL AND TECHNOLOGY AGNOSTICISM

In this experiment, we repeated synthesis runs for the three optimized reference implementations
in Pluto, as well as the unoptimized baseline, using two distinct synthesis tools: Yosys [Wolf et al.
(2013), an open-source framework, and Cadence Genus|cad, a commercial synthesis tool. To further
evaluate generalizability, we also targeted two technology libraries representing different fabrication
nodes: the SkyWater 130nm library |(Google|and a 65nm TSMC library tsm. We then computed the
efficiency score for each tool and library configuration by comparing each optimized implementation
against the corresponding unoptimized baseline across area, delay, and power metrics. As shown in
Figure 3] efficiency scores remain consistent across all synthesis tool and technology combinations.
This demonstrates that Pluto’s optimization patterns deliver consistent tradeoffs across different
synthesis tools and technology libraries.
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Figure 3: Efficiency scores for area, delay, and power across all benchmark problems, using both
Cadence Genus and Yosys with different technology libraries. Results show consistent efficiency

trends across synthesis tools and technologies.
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Figure 4: Area—delay tradeoffs of three problems in the Plufo benchmark under different synthesis

strategies. Each strategy corresponds to a distinct sequence of ABC logic synthesis commands.

4.2.2 SYNTHESIS OPTIMIZATION STRATEGIES

We also examine how different synthesis optimization strategies influence the post-synthesis met-
rics of Pluto’s optimized implementations. Synthesis tools allow designers to specify optimization
directives that steer the tool’s internal heuristics toward minimizing a particular metric while po-
tentially sacrificing others. To study this effect, we synthesized selected problems from the Pluto
benchmark under both area-optimized and delay-optimized optimization strategies. We used Yosys
as our synthesis tool and targeted the SkyWater 130nm library. Within Yosys, logic optimization
is carried out using the ABC framework Synthesis & Group| (2024), which provides a collection
of optimization heuristics that can be configured to emphasize different objectives such as area or
delay minimization. Figure []illustrates the resulting Pareto fronts of area—delay trade-offs across
three representative problems. As expected, delay-optimized code consistently achieves superior
timing performance at the expense of larger area, whereas area-optimized code achieves lower area
but incurs higher delays. These results confirm that synthesis settings primarily shift designs along
the area—delay curve, while coding style remains the dominant factor, validating Pluto’s ability to
capture design efficiency independent of synthesis optimization settings.

5 MULTI-OBJECTIVE OPTIMIZATION

Pluto also supports benchmarking LLMs for multi-objective optimization across area, delay, and
power. For each problem, the individually optimized design variants represent distinct Pareto-
optimal points. Together, they form a Pareto front that captures the trade-offs between these de-
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Table 4: Multi-objective performance comparison across metric combinations using the P2 problem
formulation (Specifications-to-Optimized-Verilog). Best metric set per model is bolded.

Model | Area-Delay | Area—Power | Delay-Power |Area-Delay—Power
| pass@10 eff@10 | pass@10 eff@10 | pass@10 eff@10 | pass@10 eff@10
GPT-40-mini 0.570 0.501 0.597 0.548 0.570 0.515 0.579 0.506
Llama3.3-70B-Instruct 0.649 0.615 0.605 0.577 0.640 0.600 0.605 0.567
Qwen2.5-Coder-7B-Instruct | 0.395 0.358 0.395 0.364 0.421 0.393 0.430 0.402
Mixtral-8x7B 0.219 0.193 0.219 0.204 0.237 0.207 0.228 0.207
StarCoder2 0.500 0.465 0.526 0.499 0.526 0.502 0.465 0.440
CodeLlama-70B 0.526 0.490 0.553 0.529 0.535 0.499 0.535 0.512
DeepSeek-Coder-33B 0.474 0.444 0.518 0.480 0.491 0.463 0.465 0.439
yang-z/CodeV-QC-7B 0.526 0.474 0.526 0.472 0.544 0.488 0.509 0.472
RTLCoder-DeepSeek-V1 0.483 0.409 0.465 0.437 0.439 0.399 0.474 0.450
VeriThoughts-Instruct-7B 0.386 0.368 0.404 0.389 0.421 0.411 0.342 0.323

sign metrics, enabling the evaluation of LLM-generated code for efficiency across multiple objec-
tives. To generalize the efficiency score to multiple metrics, we consider a task-specific metric set
M C {area, delay, power}, where the size of M determines the dimensionality of the objective
(e.g., two metrics for area—delay optimization or all three for full PPA evaluation). For each metric

m € M, let P(';L) denote the single-metric efficiency score (defined in Eq. ) We then compute a
multi-objective efficiency score as a weighted combination defined in Eq. [3] Finally, we obtain the
multi-objective eff@F by substituting """ for e; ; in Eq.

multl _ Z Woy, € Z])7 Z u}m:L meO (3)

meM meM

Table []shows the performance of different LLMs on multi-objective optimization across varying
metric combinations. For each metric set M, we report the multi-objective eff @k scores with equal
weighting (w,,=1/|M]) across all metrics in the set. The results show that, unlike single-metric
evaluation, there is no universally easiest metric combination. For example, GPT-40-mini peaks
on Area—Power, while the Llama3.3-70B-Instruct model achieves its highest score on Area—Delay.
Several mid-sized models, such as Mixtral and StarCoder2, achieve their best performance on De-
lay—Power. Across most models, the lowest scores appear on the Area—Delay or Area-Delay-Power
combinations, reflecting the inherently competing nature of these metrics. Overall, these results
indicate that multi-objective PPA optimization remains a challenging problem, and different LLMs
exhibit different strengths depending on the metric set.

6 FAILURE ANALYSIS AND INSIGHTS

While LLMs reliably produce functionally correct Verilog, their ability to optimize is uneven across
metrics. Area optimization is comparatively tractable, since it often reduces to logic simplifica-
tion or FSM re-encoding. These area optimizations represent common, syntactic, pattern-like edits
that appear frequently in code corpora and programmer-annotated examples, making them more
learnable for LLMs. By contrast, delay requires identifying and shortening the critical path, and
power depends on subtle factors like switching activity and memory usage. Crucially, area trans-
forms are often local (e.g., simplifying a logic expression), while power and delay optimization
typically requires global reasoning across the entire design (e.g., pipeline balancing, critical path
restructuring). Current LLMs, especially smaller ones, struggle with these larger-scope transforma-
tions. This difficulty is reflected in our quadrant analysis (Figure[SaJand [8), where many delay- and
power-optimized designs remain correct but fail to improve efficiency, whereas area optimizations
succeed more often. Moreover, analysis of optimization strategies (Figure [5b) shows that the hard-
est transformations are register optimizations for delay, followed by resource sharing for power, and
sequential restructuring for delay. In contrast, strategies tied to area are easier, aligning with our
observation that area is the most accessible metric for LLM:s.

Model scale and specialization strongly influence outcomes. Larger models (15B, 33B, 70B) cap-
ture richer patterns and propose alternative architectures, showing stronger generalization across
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Figure 5: Failure mode analysis of optimization outcomes. (a) Quadrant plot showing the correla-
tion between functional correctness (Pass@ ) and synthesis efficiency (Eff@ 1) across area, delay,
and power objectives. (b) Heatmap of optimization strategy difficulty across different optimization
objectives area, delay, and power.

most optimization tactics. For example, larger code models perform more consistently on FSM op-
timization compared to smaller models, though they still struggle with register optimization and re-
source sharing. Models with explicit reasoning traces (e.g., DeepSeek, VeriThoughts) better decom-
pose transformations and achieve stronger optimizations. Interestingly, register optimization lags
behind other strategies across all DeepSeek variants (DeepSeek-Chat, DeepSeek-Coder, RTLCoder-
DeepSeek-V1), suggesting this tactic requires capabilities beyond what current architectures cap-
ture, regardless of scale or specialization. Domain-tuned models outperform code models, which
in turn outperform general-purpose LLMs, showing the value of Verilog-specific pretraining. No-
tably, generalist chat models show weaker performance on power-optimization techniques like clock
gating and operand isolation, which are less prevalent in general training datasets.

Finally, a fundamental limitation is that Verilog training data lacks efficiency labels. LLMs therefore
default to surface-level pattern matching rather than structural reasoning, and without feedback or
synthesis-in-the-loop, they cannot tell whether changes reduce gate count or lengthen the critical
path. Completion-style models exacerbate this issue, often rephrasing the baseline instead of in-
novating, whereas instruction-tuned models attempt more substantive edits. These findings suggest
that true progress will require efficiency-focused benchmarks such as Pluto to guide future advances.

7 CONCLUSION

In this paper, we introduced Pluto, a comprehensive benchmark designed to evaluate the synthesis
efficiency of LLM-generated Verilog code. Pluto provides an evaluation set of 114 hardware design
problems, each accompanied by three reference optimized implementations (targeting area, delay,
and power), an unoptimized baseline, a self-checking testbench, and a natural language description.
Experimental results show that while LLMs can achieve high functional correctness, reaching up
to 78.3% at pass@1, their synthesis efficiency remains limited: area efficiency of 63.8%, delay
efficiency of 65.9%, and power efficiency of 64.0% at eff@1 compared to expert-crafted designs.
These findings highlight the importance of efficiency-aware benchmarks beyond correctness alone
and highlights the current limitations of LLMs in hardware optimization.

10
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A APPENDIX

A.1 UNOPTIMIZED CODE AND TESTBENCH FOR PROBLEM #17 (TRAILING ZEROS) IN
FiGURE(]

A.1.1 UNOPTIMIZED CODE

module unopt_model # (parameter
DATA_WIDTH = 32
)
input [DATA_WIDTH-1:0] din,
output logic [$clog2 (DATA_WIDTH) :0] dout
)i

logic [DATA_WIDTH-1:0] din_adj;
logic [$clog2 (DATA_WIDTH) :0] idx;

always_comb begin
idx = 0;
din_adj = din & ("din+l);
for (int i=0; i<DATA_WIDTH; i++) begin
idx += (din_adj[i]) 2 i : 0;

end
end
assign dout = (din_adj == 0 ? DATA_WIDTH : din_adj == 1 2 0 : idx);
endmodule

A.1.2 SELF-CHECKING TESTBENCH
‘timescale 1 ps/1 ps
module tb();

reg clk = 0;
initial forever #5 clk = T“clk;

wire [5:0] dout_opt, dout_unopt;
reg [31:0] din;

integer errors = 0;
integer errortime = 0;
integer clocks = 0;

integer total_cycles = 200;

initial begin
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Sdumpfile ("wave.vcd");
$Sdumpvars (1, clk, din, dout_opt, dout_unopt);

// Initialize din to avoid X values
din = 0;

ate ra

// G m values for din
repeat (total_cycles) @(posedge clk) din = $random;
end

wire tb_match;
assign tb_match = (dout_opt === dout_unopt);

opt_model opt_model (
.din (din),
.dout (dout_opt)

)i

unopt_model unopt_model (
.din (din),
.dout (dout_unopt)

)i

always @ (posedge clk) begin

clocks = clocks + 1;

if (!tb_match) begin
if (errors == 0) errortime = Stime;
errors = errors + 1;

end

// Print the signals

$display ("Time=%0t_| _Cycle ooa_ | _din=%h_|_opt=%h_|_unopt=%h_|_match=%b",
$time, clocks, din, dout_opt, dout_unopt, tb_match);

if (clocks >= total_cycles) begin
S$display ("Simulation_completed.");

$display ("Total_mismatches:_%1d_out_of_%1d_samples", errors, clocks);
$display ("Simulation,_finished at_%0d_ps", S$time);
$finish;
end
end

initial begin
#1000000
$display ("TIMEOUT") ;
Sfinish();

end

endmodule

A.2 OPTIMIZATION STRATEGIES

logic_simplification

fsm_optimization

arithmetic_optimization 100%
register_optimization
80%
parallel_processing
sequential_optimization 60%
already_optimized 40%
resource_sharing
20%
memory_optimization
0%

register_pipelining
clock_gating

operand_isolation

Area Delay Power

Figure 6: Optimization strategies employed for area, delay, and power improvements.
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A.3 CODE OF EXAMPLE PROBLEMS IN TABLE2l

In the example problems shown in the appendix, the area- and power-optimized solutions coincided,
as area-oriented designs also achieved the best power results, and vice versa. This overlap arises
because common power-saving techniques, such as clock gating and operand isolation, were not
applicable as some designs lacked a clock signal, while others did not include an enable signal.
Consequently, explicit power-specific transformations could not be meaningfully applied. Moreover,
in certain cases, power optimizations indirectly reduced area, further reinforcing the convergence of
the two objectives into a single optimized implementation.

A.3.1 PROBLEM #60: RTLLM ALU

Problem description: Implement a 32-bit Arithmetic Logic Unit (ALU) for a MIPS-ISA CPU.
The ALU takes two 32-bit operands (a and b) and a 6-bit control signal (aluc) that specifies which
operation to perform. Based on this control signal, the ALU produces a 32-bit result (r) and several
status outputs: zero indicates whether the result is zero, carry flags if a carry occurred, negative
shows if the result is negative, overflow signals arithmetic overflow, and flag is used for set-less-
than instructions (slt and sltu). The module supports arithmetic, logical, shift, and immediate load
operations defined by specific opcodes (e.g., ADD, SUB, AND, OR, XOR, SLT, LUI).
Benchmark solution: ALU implementation with case statement and parameterized opcodes.

module unopt_model (
input [31:0] a,
input [31:0] b,
input [5:0] aluc,
output [31:0] r,
output zero,
output carry,
output negative,
output overflow,
output flag
)i

parameter ADD = 6’b100000;
parameter ADDU = 6'b100001;
parameter SUB = 6’b100010;
parameter SUBU = 6’b100011;
parameter AND = 6'b100100;
parameter OR = 6’b100101;
parameter XOR = 6’b100110;
parameter NOR = 6’b100111;
parameter SLT = 6’b101010;
parameter SLTU = 6’b101011;
parameter SLL = 6'b000000;
parameter SRL = 6’b000010;
parameter SRA = 6’b000011;
parameter SLLV = 6’b000100;
parameter SRLV = 6’b000110;
parameter SRAV = 6'b000111;
parameter JR = 6'b001000;
parameter LUI = 6’b001111;

wire signed [31:0] a_signed;
wire signed [31:0] b_signed;

reg [32:0] res;

assign a_signed = a;
assign b_signed = b;

assign r = res[31:0];
assign flag = (aluc == SLT || aluc == SLTU) ? ((aluc == SLT) ? (a_signed < b_signed) : (a < b))
assign zero = (res == 32'b0) ? 1’bl : 1’b0;

always @ (a or b or aluc)
begin
case (aluc)
ADD: begin
res <= a_signed + b_signed;
end
ADDU: begin
res <= a + b;
end
SUB: begin
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res <= a_signed - b_signed;
end
SUBU: begin
res <= a - Db;
end
AND: begin
res <= a & b;
end
OR: begin
res <= a | b;
end
XOR: begin
res <= a " Db;
end
NOR: begin
res <= “(a | b);
end
SLT: begin
res <= a_signed < b_signed ? 1
end
SLTU: begin
res <= a <b 2?21 : 0;
end
SLL: begin
res <= b << a;
end
SRL: begin
res <= b >> a;
end
SRA: begin
res <= b_signed >>> a_signed;
end
SLLV: begin
res <= b << al[4:0];
end
SRLV: begin
res <= b >> a(4:0];
end
SRAV: begin

res <= b_signed >>> a_signed[4:

end
LUI: begin

res <= {a[l1l5:0], 16"h0000};
end

default:
begin
res <= 32'bz;
end
endcase
end
endmodule

0]

;

Our expert-written area and power optimized solution: Shared adder for arithmetic, simplified
flag logic and operand reuse, leading to 26% area reduction. Operand gating and early zeroing for
large shifts to cut switching activity, for 4% power reduction.

wire
wire
wire
wire

wire
wire

wire

wire
wire
wire
wire

wire
wire
wire
wire

wire
wire

sub_mode = (aluc==SUB) | (aluc==SUBU) | (aluc==SLT) | (aluc==SLTU);
[31:0] b_eff = sub_mode ? "b : b;
cin = sub_mode;
[32:0] sum33 = {1’b0,a} + {1'b0,b_eff} + cin;
[31:0] add_res = sum33[31:0];
add_carry = sum33[32];
ovf = (a[31]"add_res[31]) & (b_eff[31] add_res[31]);
signed_1lt = add_res[31] "~ ovf;
uns_1t = Tadd_carry;
[31:0] slt_res = {31'b0, signed_lt};
[31:0] sltu_res = {31’b0, uns_1t};
[31:0] and_res = a & b;
[31:0] or_res = a | b;
[31:0] xor_res = a "~ b;
[31:0] nor_res = “(a | b);
[4:0] sab = al[4:0];
any_hi = [a[31:5];
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25 wire [31:0] sll_full = any_hi ? 32’'b0 : (b << sab);
26 wire [31:0] srl_full = any_hi ? 32'b0 : (b >> sab);
27 wire [31:0] sra_full = any_hi ? {32{b[31]}} : (S$signed(b) >>> sab);
28

29 wire [31:0] sllv_res = (b << afl4:0]);

30 wire [31:0] srlv_res = (b >> afl4:0]);

31 wire [31:0] srav_res = ($signed(b) >>> a[4:0]);
32

33 wire [31:0] lui_res = {a[l15:0], 16"h0000};
34

35 reg [31:0] r_int;

36 always @x begin : result_mux

37 (x» parallel_case, full_case x)

38 case (aluc)

39 ADD, ADDU: r_int = add_res;

40 SUB, SUBU: r_int = add_res;

41 AND: r_int = and_res;

42 OR: r_int = or_res;

43 XOR: r_int = xor_res;

44 NOR: r_int = nor_res;

45 SLT: r_int = slt_res;

46 SLTU: r_int = sltu_res;

47 SLL: r_int = sll_full;

48 SRL: r_int = srl_full;

49 SRA: r_int = sra_full;

50 SLLV: r_int = sllv_res;

51 SRLV: r_int = srlv_res;

52 SRAV: r_int = srav_res;

53 LUI: r_int = lui_res;

54 JR: r_int = 32'bz;

55 default: r_int = 32'bz;

56 endcase

57 end

58

59 assign r = r_int;

60 assign zero = " (|r_int);

61

62 assign carry = 1'bz;

63 assign overflow = 1'bz;

64 assign negative = 1’bz;

65 assign flag = (aluc==SLT) ? signed_lt
66 (aluc==SLTU) ? uns_lt

67 1'bz;

68  endmodule

Our expert-written delay optimized solution: Parallel datapaths with one-hot muxing for shallow
critical path, leading to 26% delay reduction.

wire signed [31:0] a_signed = a;

1

2 wire signed [31:0] b_signed = b;

3

4 wire [31:0] add_u = a + b;

5 wire [31:0] sub_u = a - b;

6 wire signed [31:0] add_s = a_signed + b_signed;
7 wire signed [31:0] sub_s = a_signed - b_signed;
8

9 wire [31:0] and_res = a & b;

10 wire [31:0] or_res = a | b;

11 wire [31:0] xor_res = a " b;

12 wire [31:0] nor_res = “(a | b);

13

14 wire slt_res = (a_signed < b_signed);

15 wire sltu_res = (a < b);

16

17 wire [4:0] shamt5 = a[4:0];

18

19

20 wire [31:0] sll_full = (b << a); // full ’a
21 wire [31:0] srl_full = (b >> a); // full '
22 wire [31:0] sra_full = ($signed(b) >>> a_signed);// full signed ’a’
23 wire [31:0] sllv_res = (b << shamt5);

24 wire [31:0] srlv_res = (b >> shamt5);

25 wire [31:0] srav_res = ($signed(b) >>> shamt5);
26

27 wire [31:0] lui_res = {a[l5:0], 16”h0000};

28

29 wire sel_ADD = (aluc==ADD);

30 wire sel_ADDU = (aluc==ADDU);

31 wire sel_SUB = (aluc==SUB);

32 wire sel_SUBU = (aluc==SUBU);

16



Under review as a conference paper at ICLR 2026

33 wire sel_AND (aluc==AND) ;

34 wire sel_OR = (aluc==0R);

35 wire sel _XOR = (aluc==XOR);

36 wire sel_NOR = (aluc==NOR);

37 wire sel_SLT = (aluc==SLT);

38 wire sel_SLTU = (aluc==SLTU);

39 wire sel_SLL = (aluc==SLL);

40 wire sel SRL = (aluc==SRL);

41 wire sel_SRA = (aluc==SRA);

42 wire sel_SLLV = (aluc==SLLV);

43 wire sel_SRLV = (aluc==SRLV);

44 wire sel_SRAV = (aluc==SRAV);

45 wire sel_LUI = (aluc==LUI);

46 wire sel_JR = (aluc==JR);

47

48 wire any_sel = sel ADD|sel ADDU|sel_SUB|sel_SUBU|sel_AND|sel_OR|sel_XOR|sel_ NOR|
49 sel_SLT|sel_SLTU|sel_SLL|sel_SRL|sel_SRA|sel_SLLV|sel_SRLV|sel_SRAV|sel LUI;
50

51 wire [31:0] r_known =

52 (sel_ADD ? add_s : 327b0) |

53 (sel_ADDU ? add_u : 32’b0) |

54 (sel_SUB ? sub_s : 32'b0) |

55 (sel_SUBU ? sub_u : 32'b0) |

56 (sel_AND ? and_res: 32'b0) |

57 (sel_OR ? or_res : 32'b0) |

58 (sel_XOR ? xor_res: 32'b0) |

59 (sel_NOR ? nor_res: 32'b0) |

60 (sel_SLT ? {31'b0, slt_res } : 32'b0) |
61 (sel_SLTU ? {31’b0, sltu_res} : 32'b0) |
62 (sel_SLL ? sll_full : 32'b0) |

63 (sel_SRL ? srl_full : 32'b0) |

64 (sel_SRA ? sra_full : 32'b0) |

65 (sel_SLLV ? sllv_res : 32’b0) |

66 (sel_SRLV ? srlv_res : 32'b0) |

67 (sel_SRAV ? srav_res : 32'b0) |

68 (sel_LUI ? lui_res : 32'b0);

69

70 assign r = (any_sel && !sel_JR) ? r_known : 32’'bz;
71

72 assign zero = (r == 32’b0) ? 1’bl : 1’'b0;

73

74 assign flag = (sel_SLT) ? slt_res

75 (sel_SLTU) ? sltu_res

76 1"bz;

71

78 assign carry = 1'bz;

79 assign negative = 1’bz;

80 assign overflow = 1’bz;

81 endmodule

A.3.2 PROBLEM #68: RTLLM FSM

Problem description: Implement a finit state machine (FSM) that detects the input sequence 10011
on a single-bit input stream. The module has three inputs: the serial input bit (IN), the clock (CLK),
and a synchronous reset (RST). It produces one output, MATCH, which is asserted high when the
specified sequence is recognized. The FSM supports continuous input and loop detection. When
reset is active, the FSM initializes and MATCH is cleared to 0. The output MATCH is asserted
during the cycle when the last 1 of the target sequence is received, and the design ensures that
repeated or overlapping patterns (e.g., 100110011) correctly generate multiple match pulses.
Benchmark solution: States are binary-encoded, with sequential next-state logic in a Mealy FSM
while output occupies a register.

1 module unopt_model (
2 input wire IN,

input wire CLK,
4 input wire RST,
5 output wire MATCH

6 )i
8 reg [2:0] ST_cr,ST_nt;

10 parameter s0 = 3’b000;
1l parameter sl = 3'b001;
12 parameter s2 = 3'b010;
13 parameter s3 = 3'b011;
14 parameter s4 = 3'b100;

17
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parameter s5 = 3’bl01;

always@ (posedge CLK or posedge RST) begin
if (RST)
ST_cr <= s0;
else
ST_cr <= ST_nt;
end

always@ (%) begin
case (ST_cr)

sO0:begin
if (IN==0)
ST_nt = s0;
else
ST_nt = sl;
end
sl:begin
if (IN==0)
ST_nt = s2;
else
ST_nt = sl;
end
s2:begin
if (IN==0)
ST_nt = s3;
else
ST_nt = sl;
end
s3:begin
if (IN==0)
ST_nt = s0;
else
ST_nt = s4;
end
s4:begin
if (IN==0)
ST_nt = s2;
else
ST_nt = s5;
end
s5:begin
if (IN==0)
ST_nt = s2;
else
ST_nt = sl;
end
endcase

end

always@ () begin
1f (RST)
MATCH <= 0;
else if (ST_cr == s4 && IN == 1)
MATCH <= 1;
else
MATCH <= 0;
end

endmodule

Our expert-written area and power optimized solution: Casez-based transitions and direct Mealy
output computation, removing extra register, leading to 32% area reduction. Compact binary encod-
ing and casez-based transitions to cut toggling for 23% power reduction.

localparam [2:0] s0=3"b000, s1=3"b001, s2=3'b010,
s3=3"b011, s4=3'"b100, s5=3'b101;

reg [2:0] ST_cr, ST_nt;
always @ (posedge CLK or posedge RST) begin
if (RST)

ST_cr <= s0;
else

18



46

16

18
19
20
21
23
24
25
26
27
28
29
30
31

Under review as a conference paper at ICLR 2026

ST_cr
end

always @x begin
ST_nt = sO0;
casez ({ST_cr,

<= ST_nt;

IN})

>sl
s0;
= sl;

>s1
s2;
sl;

{s0,1"b0}: ST_nt =
{s0,1"bl}: ST_nt
// sl: 0 2, 1-
{s1,1’b0}: ST_nt =
{sl,1’bl}: ST_nt
// s2: 0->s83, ->s
{s2,1’b0}: ST_nt =
{s2,1’bl}: ST_nt =
// s3: 0->s0, 1->s!
{s3,1"b0}: ST_nt =
{s3,1"bl}: ST_nt
// s4: 0->s2, 1->
{s4,1"b0}: ST_nt
{s4,1'bl}: ST_nt
// s5: 0->s2, 1->s
{s5,1"b0}: ST_nt =
{s5,1"bl}: ST_nt
default: ST_nt
endcase
end
assign MATCH = (ST_cr ==

endmodule

s4) & IN;

Our expert-written delay optimized solution: One-hot state encoding with pre-decoded inputs
and Moore-style output, leading to 23% delay reduction.

reg [5:0] S, S_next;
reg [5:0] S, S_next;
always @ (posedge CLK or posedge RST) begin
if (RST)
S <= 6’b000001; // s0O
else
S <= S_next;
end
wire inl = IN;
wire in0O = TIN;
always @x begin
S_next[0] = (S[0] & in0) | (S[3] & in0); // s0
S_next[1l] = (S[0] & inl) | (S[1] & inl) | (S[2] & inl)
| (S[5] & inl); /] =
S_next[2] = (S[1] & in0) | (S[4] & in0) | (S[5] & 1in0); //
S_next[3] = (S[2] & in0); //
S_next[4] = (S[3] & inl); //
S_next[5] = (S[4] & inl); //
end
always @ (posedge CLK or posedge RST) begin
if (RST)
MATCH <= 1’b0;
else
MATCH <= S[5];
end
endmodule

A.3.3 PROBLEM #87: VERILOGEVAL PROB095

Problem description: Implement a module that generates a control signal (shift_ena) for a shift
register. The module has a clock input (clk), a synchronous active-high reset (reset), and a single
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output (shift_ena). The functionality requires that when the FSM is reset, the shift_ena signal is as-
serted high for exactly four consecutive clock cycles before being deasserted permanently. After this
sequence, shift_ena remains low indefinitely until another reset occurs, at which point the behavior
repeats. All sequential operations are triggered on the positive edge of the clock.

Benchmark solution: Uses explicit states with next-state logic to drive shift_ena.

module unopt_model (
input clk,
input reset,
output reg shift_ena
)i
parameter B0=0, Bl=1, B2=2, B3=3, Done=4;

reg [2:0] state, next;

always @% begin
case (state)

BO: next = Bl;

Bl: next = B2;

B2: next = B3;

B3: next = Done;

Done: next = Done;

default: next = BO;
endcase

end

always @ (posedge clk) begin
if (reset) begin
state <= BO;
shift_ena <= 1’bl;
end else begin

state <= next;
shift_ena <= (next != Done);
end
end
endmodule

Our expert-written area and power optimized solution: Minimized register width, using a 2-bit
counter, and compact comparator logic, leading to 47% area reduction. Small counter reused which
reduced toggling activity to minimize dynamic power, for 46% power reduction.

reg [1:0] counter; // 2 bits are enough to count up to 4
always @ (posedge clk) begin
if (reset) begin
counter <= 2'b00;
shift_ena <= 1'Dbl;
end else if (counter < 2’bll) begin
counter <= counter + 1; // Ir

ent

shift_ena <= 1'bl; // Keep
end else begin
shift_ena <= 1'b0; // Disa after ol
end
end
endmodule

Our expert-written delay optimized solution: Wider counter, using 3 bits, to simplify comparison
and reduce logic depth on the critical path, leading to 37% delay reduction.

reg [2:0] count; // 3-bit counter to count

always @ (posedge clk) begin
if (reset) begin
count <= 3’b000; 3€
shift_ena <= 1’bl; // Enable shift initiall
end else if (count < 3’b011) begin
count <= count + 1; // Incren
shift_ena <= 1'Dbl;
end else begin
shift_ena <= 1’b0; // Disable shift after 4 cycles
end
end

endmodule

20
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A.3.4 PROBLEM #104: VERILOGEVAL PROB136

Problem description: Implement a cellular automaton game, similar to Conway’s Game of Life,
on a 16x16 grid. The grid is represented as a 256-bit vector (q), where each row of 16 cells maps
to a sub-vector, and each cell can be alive (1) or dead (0). The module has a clock input (clk),
a load signal (load) for synchronously loading an initial 256-bit state (data) into g, and produces
the updated 256-bit grid state as output. At every positive clock edge, the grid advances by one
timestep, with each cell’s next state determined by its number of neighbors: cells die with fewer
than 2 or more than 3 neighbors, remain unchanged with exactly 2 neighbors, and become alive with
exactly 3 neighbors. The grid is modeled as a toroid, meaning edges wrap around so that cells on
the boundaries consider neighbors from the opposite side.
Benchmark solution: Straightforward RTL with per-cell neighbor recomputation and sequential
summing.
module unopt_model (

input clk,

input load,

input [255:0] data,

output reg [255:0] g
)i

logic [323:0] g_pad;
always@ () begin
for (int 1=0;1<16;1i++)
q_pad[18x (i+1)+1 +: 16] = g[l6*i +: 16];
g_pad[l +: 16] = g[l6x15 +: 16];
q_pad[18x17+1 +: 16] = gq[0 +: 16];

for (int i=0; i<18; i++) begin

g pad[ix18] = g _pad[ix18+16];
g _pad[ix18+17] = g _pad[ix18+1];
end

end

always @ (posedge clk) begin
for (int 1i=0;i<16;i++)
for (int j=0;j<16; j++) begin
qlixl6+]3] <=
((g_pad[ (i+1) *18+j+1 -1+18] + g_pad[(i+1)*18+3j+1 +18] + g _pad[(i+1)*18+j+1 +1+18] +
g _pad[ (i+1) »18+j+1 -1] + g _pad[ (i+1)*18+j+1+1] +

q pad[ (i+1)%18+9+1 -1-18]  + g pad[(i+1)*18+3+1 -18] + g pad[(i+1)*18+3+1 +1-18]) & 3’h7

end

if (load)
q <= data;

end

endmodule

QOur expert-written area and power optimized solution: Sharing per-row horizontal sums and
bitwise rotations for toroidal wrap, minimizing summations for 19% area reduction. Computation
reuse decreasing toggling, leading to 36% power reduction.

——— Helpers ———————— ==

function automatic [7:0] idx(input [3:0] r, input [3:0] c);

idx = {r, c}; // r+16
endfunction
Bit-rotate wires (toroidal wrap) - wiring only (no logic area)
function automatic [15:0] roll (input [15:0] x); roll = {x[14:0], x[15]}; endfunction
function automatic [15:0] rorl(input [15:0] x); rorl = {x[0], x[15:1]}; endfunction

in parallel: returns {carry,sum}

xcarry
[31:0]
a’”~ b " c;

aad3_vec(input [15:0] a, input [15:0] b, input [15:0] c);
/ / n (LSB)
ry (means +2)

add3_vec[15:0]
add3_vec([31:16] = (a & b) | (a & c) | (b & c);
endfunction

// Unpack rows (wires)
wire [15:0] row [15:0];
genvar ur;
generate
for (ur = 0; ur < 16; ur = ur + 1) begin : UNPACK
assign row[ur] = g[{ur[3:0], 4"b0000} +: 16];
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end
endgenerate
// —-— Precompute per-i horizontal neighbors (shared) --———--------------———
wire [15:0] rol [15:0], ror [15:01;
wire [15:0] sTrip [15:0], cTrip [15:0]; // for (L,C,R) of row (0..3)
wire [15:0] sPair [15:0], cPair [15:0]; // for (L,R) of each row (0..2)
genvar hr;
generate
for (hr = 0; hr < 16; hr = hr + 1) begin HROW
assign rol[hr] = roll(rowlhr]);
assign ror[hr] = rorl(rowlhr]);
// riplet = left + center + right (encoded as s + 2xc)
wire [31:0] trip_pack = add3_vec(rol[hr], rowl[hr], rorl[hr]);
assign sTrip[hr] = trip_pack[15:0];
assign cTriplhr] = trip_pack[31:16];
// Pair = left + right
assign sPair[hr] = roll[hr] " ror[hr];
assign cPair[hr] = rol[hr] & ror[hr];
end
endgenerate
integer r;
reg [255:0] nxt;
reg [3:0] rn, rp;
reg [15:0] sT, cT, sM, cM, sB, cB;
reg [15:0] sS, cS; // (sT + sM + sB) as s + 2*cC
reg [15:0] U_is0, U_ge2, U_isl; // onehot (U) for U= c¢cS + cT + cM + cB
reg [15:0] 1is3, 1is2;
always @x begin
nxt = '0;
for (r = 0; r < 16; r = r + 1) begin
rn = (r == 0 ) ? 4’'dl5 r - 1;
rp = (r == 15) ? 4'd0 r + 1;
sT = sTrip[rn]; cT = cTrip[rn]; // top triplet from row
sM = sPair[r ]; cM = cPair[r ]; // middle pair (r cente
sB = sTrip[rpl; cB = cTriplrp]l; // bottom triplet from
{cS, sS} = add3_vec(sT, sM, sB);
U_is0 = "(cS | ¢cT | cM | cB);
U_ge2 = ( (cS & cT) | (cS & cM) | (cS & cB)
| (¢cT & cM) | (cT & cB) | (cM & cB) );
U_isl = " (U_is0 | U_ge2);
is3 = sS & U_isl;
is2 = "sS & U_isl;
nxt [{r[3:0], 4’b0000} +: 16] = is3 | (row[r] & 1is2);
end
end
always @ (posedge clk) begin
if (load)
q <= data;
else
g <= nxt;
end
endmodule

Our expert-written delay optimized solution: Parallel neighbor summation with carry-save adder
tree and direct decode for 2 and 3, for shallow critical path, leading to 37% delay reduction.

function automatic [
idx = {r, c};
endfunction

function automatic [
function automatic [

function automatic [
add3_vec[15:0] =
add3_vec[31:16] =

7:0] idx(input [3:0] r, input [3:0] c);

15:0] roll(input [15:0] x); roll = {x[14:0], x[15]}; endfunction
15:0] rorl(input [15:0] x); rorl = {x[0], x[15:1]}; endfunction
31:0] add3_vec (input [15:0] a, input [15:0] b, input [15:0] c);

a " b ci // s

(a & b) | (a &c) | (b&c); // ¢ (>=2)
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endfunction

integer r;

reg [255:0] nxt;
reg [3:0] rn, rp;
reg [15:0] ru, r0, rd;
reg [15:0] ru_l, ru_c, ru_r;
reg [15:0] rO0_1, rO_r;
reg [15:0] rd_ 1, rd_c, rd_r;
reg [15:0] sT, cT, sM, cM, sB, cB, sS, cS;
reg [15:0] U_isO, U_ge2, U_isl; // onehot decode for U = cS+cT+cM+cB
reg [15:0] 1is3, 1is2; // neighbor count ==3 / ==2
always @x begin
nxt = ’0;
for (r = 0; r < 16; r = r + 1) begin
rn = (r == 0 ) ? 4'dl5 r - 1;
rp = (r == 15) 2 4'd0 r + 1;
ru = gq[{rn,4’b0000} +: 16];
r0 = g[{r ,4"b0000} +: 16];
rd = g[{rp,4"b0000} +: 16];
ru_l = roll(ru); ru_c = ru; ru_r = rorl(ru);
r0_1 = roll(r0); rO_r = rorl(r0);
rd_1 = roll(rd); rd_c = rd; rd_r = rorl(rd);
{cT, sT} = add3_vec(ru_l, ru_c, ru_r); // counts 0..3
sM = (r0_1 "~ rO_r); // pair: 0..2
cM = (r0_1 & rO_r);
{cB, sB} = add3_vec(rd_1l, rd_c, rd_r);
{cS, sS} = add3_vec(sT, sM, sB);
U_is0 = "(cS | cT | cM | cB);
U. ge2 = ( (cS & cT) | (cS & cM) | (cS & cB)
| (¢cT & cM) | (cT & cB) | (cM & cB) );
U_isl = " (U_is0 | U_ge2);
is3 = sS & U_isl;
is2 = "sS & U_isl;
nxt [{r[3:0],4’b0000} +: 16] = is3 | (r0 & is2);
end
end
always @ (posedge clk) begin
if (load)
q <= data;
else
g <= nxt;
end
endmodule

A.4 PASS@K DEFINITION

The pass @k metric, defined in equation [] is used for measuring the functional correctness of LLM-
generated code. Here, IV is the total number of problems in the evaluation set. For a given problem
i, we generate n; samples and evaluate their functional correctness, obtaining ¢; correct samples.
The metric estimates the probability that at least one of the correct solution appears when drawing
k samples.

C(?’Ll — C; k)

@k=EN,[1-—~ 2 4
pass =1 Cni, k) @
where C(n, k) denotes the binomial coefficient 'n choose k’ and the term 1 — 70(5(7} ;c%)k) represents

the probability that at least one of the k& samples is correct from the n; total samples.

The metric averages this probability across all N problems to provide an unbiased estimate of the
model’s functional correctness when generating k samples per problem.
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Implementation Note: Following standard practice, we generate n > k samples per problem (typ-
ically n = 10) and compute pass@k for various values of k (e.g., k € 1,5, 10) to obtain unbiased
estimates without requiring k separate evaluation runs.

A.5 SAMPLING DIVERSITY

In Figure[7] we show three LLM-generated Verilog modules of a parallel-in-serial-out shift register,
targeting area optimization, with normalized area efficiency values of 0.924, 0.963 and 1.0, respec-
tively. This diversity demonstrates why eff@k with £ > 1 is valuable: generating multiple samples
increases the likelihood of obtaining high-quality implementations. The optimal sample (rightmost)
avoids unnecessary counters and state tracking present in the other solutions, reducing both area
and complexity, a correct solution that might not appear in a single generation attempt but becomes
accessible when drawing multiple samples.

# DATA_WIDTH = 32) ( # DATA_WIDTH = 32) ( # DATA_WIDTH = 32) (
clk, clk, clk,
resetn, resetn, resetn,

[DATA_WIDTH-1:0] din, [DATA_WIDTH-1:0] din, [DATA_WIDTH-1:0] din,

[DATA_WIDTH-1:0] shift_reg; [DATA_WIDTH-1:0] shift_reg;
[$clog2 (DATA_WIDTH)-1:0] bit_index; [$clog2 (DATA_WIDTH)-1:0] bit_index;

0;

<= din[0]; (din_en)
bit_index <= 0; (bit_index < DATA WIDTH-1) temp <= din;

dout <= din[0]; dout <= shift_reg[bit_index + 11;

(bit_index < DATA_WIDTH-1) bit_index <= bit_index + 1; temp <= temp >> 1;
dout <= shift_reg[bit_index + 11;
bit_index <= bit_index + 1; dout <= 1'b0;

dout <= 1'b0;

dout = temp[0];

(a) Top generation at k = 1 (b) Top generation at k = 5 (c) Top generation at k = 10

Figure 7: Three area-optimized implementations of the piso_shift_register module (Prob-
lem #16) generated at k € {1,5,10}. The circuit shifts the least significant bit of a multi-bit input
din to the single-bit output dout sequentially, starting when din_en goes high. All designs are
functionally correct but structurally diverse.

A.6 FAILURE ANALYSIS

In Figure. [8] we visualize the set of problems that have high pass@k and low eff@k to get better
insight on the set of problems that are hard to optimize.

A.7 PROMPTING WITH OPTIMIZATION STRATEGIES

To assess whether the relatively lower eff @k scores stem from missing optimization guidance, we
repeated the experiment using the first prompting strategy, where the LLM rewrites an unoptimized
Verilog module into a more efficient implementation, but this time we explicitly provided the opti-
mization goals and permissible strategies for each metric. The results, summarized in Table[5] show
that explicit guidance yields only marginal and model-dependent improvements. A few models
(e.g., Mixtral, StarCoder2-15B, CodeLlama-70B, and CodeV-QC-7B) show moderate gains across
several efficiency metrics, while others improve only in isolated cases (e.g., GPT-40-mini improves
mainly in power, Qwen2.5-Coder-7B only in delay). However, for several strong models, includ-
ing DeepSeek-Chat and Llama-3.3-70B, efficiency scores worsen despite being given optimization
strategies. Overall, the gap between pass@k and eff @k remains substantial, indicating that the lim-
ited efficiency performance is not primarily caused by insufficient prompt specification, but rather
reflects the underlying difficulty of generating functionally correct and resource-efficient RTL si-
multaneously.
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Table 5: Efficiency results when using the first prompting strategy with explicit optimization goals
and metric-specific optimization strategies. While a few models exhibit modest or selective improve-
ments, most models show limited or no gains, and several regress. Overall, providing optimization
guidance does not substantially narrow the gap between pass @k and eff@k.

Model pass@1 pass@5 pass@10 eff@1 eff@5 eff@10

Area Delay Power Area Delay Power Area Delay Power
GPT-40-mini 0.471 0.667 0.725 0.435 0.440 0423 0.622 0.637 0.642 0.696 0.693 0.716
DeepSeek-Chat 0.502 0.728 0.795 0.487 0.496 0485 0.717 0.719 0.709 0.795 0.789 0.774
Llama-3.3-70B-Instruct 0.429 0.666 0.752 0.400 0.412 0404 0.626 0.666 0.627 0.703 0.753 0.714
Mixtral-8x7B-v0.1 0.271 0.562 0.696 0232 0255 0244 0491 0.528 0.508 0.607 0.648 0.632
starcoder2-15b-instruct-v0.1 ~ 0.686 0.969 0.985 0.632  0.653 0.615 0.893 0917 0.888 0.904 0.935 0.904
CodeLlama-70b-Instruct-hf ~ 0.599 0.904 0.944 0.538 0.559 0.547 0.834 0.857 0.846 0.877 0.905 0.895
DeepSeek-Coder-33B 0.6088 09358  0.9766 0.5539 0.5706 0.5648 0.8745 0.8948 0.887 0.9270 0.9514 0.9191
Qwen2.5-Coder-7B-Inst 0.443 0.756 0.839 0.399 0421 0389 0.675 0.735 0.692 0.745 0.834 0.785
yang-z/CodeV-QC-7B 0.396 0.662 0.725 0360 0.359 0.347 0.593 0.638 0.601 0.644 0.718 0.667
RTLCoder-DeepSeek-V 1 0470  0.816 0.895 0418 0428 0413 0.738 0.780 0.726 0.828 0.860 0.803
VeriThoughts-Inst.-7B 0.545 0.770 0.836 0.475 0.508 0.492 0.673 0.715 0.699 0.748 0.774 0.758
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Figure 8: Quadrant plot showing the correlation between functional correctness (Pass@ ) and syn-
thesis efficiency (Eff@I) across area, delay, and power objectives.
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