
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PLUTO: A BENCHMARK FOR EVALUATING EFFI-
CIENCY OF LLM-GENERATED HARDWARE CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly used to automate hardware de-
sign tasks, including the generation of Verilog code. While early benchmarks
focus primarily on functional correctness, efficient hardware design demands ad-
ditional optimization for synthesis metrics such as area, delay, and power. Ex-
isting benchmarks fall short in evaluating these aspects comprehensively: they
often lack optimized baselines or testbenches for verification. To address these
gaps, we present Pluto, a benchmark and evaluation framework designed to as-
sess the efficiency of LLM-generated Verilog designs. Pluto presents a compre-
hensive evaluation set of 114 problems with self-checking testbenches and mul-
tiple Pareto-optimal reference implementations. Experimental results show that
state-of-the-art LLMs can achieve high functional correctness, reaching 78.3% at
pass@1, but their synthesis efficiency still lags behind expert-crafted implemen-
tations, with area efficiency of 63.8%, delay efficiency of 65.9%, and power effi-
ciency of 64.0% at eff@1. This highlights the need for efficiency-aware evaluation
frameworks such as Pluto to drive progress in hardware-focused LLM research.

1 INTRODUCTION

Large Language Models (LLMs) are beginning to reshape hardware design by automating key steps
in hardware design workflows, including Verilog code generation Thakur et al. (2023a;b); Liu et al.
(2023a), optimization Yao et al. (2024); Guo & Zhao (2025), verification Qiu et al. (2024a), de-
bugging Tsai et al. (2024), high-level synthesis Xiong et al. (2024), and post-synthesis metric esti-
mation Abdelatty et al. (2025). While these advances highlight the potential of LLMs in hardware
design, most research has focused on functional correctness of generated designs, with little atten-
tion to design quality metrics such as area, delay, and power.

In hardware design, the quality of Verilog code is not determined solely by functional correctness.
Designs typically undergo logic synthesis, where Verilog code is mapped to gate-level implementa-
tions in a target technology. This process exposes critical efficiency metrics—such as silicon area,
timing delay, and power consumption—that directly impact manufacturability and performance.
Unlike software code, where correctness and execution speed often suffice, hardware code quality
is inherently tied to these post-synthesis metrics.

In order to evaluate the functional correctness of LLM-generated Verilog code, several benchmarks
have been proposed including VerilogEval Liu et al. (2023a) and RTLLM Lu et al. (2024). Recent
efforts, including RTLRewriter Yao et al. (2024), ResBench Guo & Zhao (2025), GenBen Wan et al.
(2025), and TuRTLe Garcia-Gasulla et al. (2025), have begun to evaluate quality of LLM-generated
hardware code in terms of post-synthesis metrics. However, these benchmarks face key limitations:

• Absence of Optimal Ground Truth Solutions True efficiency should be measured against
implementations that are explicitly optimized for specific objectives such as silicon area,
delay, or power consumption. Prior studies rely on canonical solutions from VerilogEval
and RTLLM as reference solutions. Our analysis shows that these solutions are not the
most optimal in terms of post-synthesis metrics.

• Lack of Clock Latency Agnostic Testbenches Many common optimization pat-
terns—such as register pipelining, resource sharing, or FSM restructuring—introduce vari-
ations in clock-cycle latency between the optimized and unoptimized designs. To support

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

fair evaluation, testbenches must be self-checking and tolerant of different latency require-
ments. Existing benchmarks, however, assume identical latency between the reference
model and the design under test, making them unsuitable for efficiency benchmarking.

In order to address these limitations, we introduce Pluto, the first benchmark designed to evaluate
both functional correctness and synthesis efficiency of LLM-generated Verilog code. Our contribu-
tions are as follows:

• Per-Metric Ground Truth Optimal Solutions. We provide a suite of 114 problems where
each is optimized for area, delay, and power separately, yielding Pareto-front optimal solu-
tions. Our ground truth solutions are significantly more efficient than canonical solutions
in RTLLM and VerilogEval.

• Optimization-Aware Testbenches. Each problem is accompanied by clock-cycle agnostic
testbenches that accommodate varying latency requirements, ensuring robust evaluation of
different optimization patterns.

• Comprehensive Evaluation. We adapt the eff@k metric introduced in Qiu et al. (2024b)
to measure the efficiency of hardware designs. Our extended metric is a three-dimensional
vector that evaluates LLM-generated code across multiple objectives: area, delay and
power.

2 RELATED WORK

Software Code Benchmarks Large Language Models (LLMs) have been extensively studied for
code generation across both software and hardware domains, with most early benchmarks focusing
primarily on functional correctness rather than efficiency. In software, works such as Mercury Du
et al. (2024) and ENAMEL Qiu et al. (2024b) move beyond correctness to explicitly evaluate run-
time efficiency of LLM-generated programs. The Mercury Du et al. (2024) benchmark contains
LeetCode style problems. Each problem is accompanied by an expert-written solution that repre-
sents the most optimal implementation in terms of run-time efficiency. ENAMEL Qiu et al. (2024b)
also introduces a Python benchmark to evaluate the run-time efficiency of LLM-generated code.

Hardware Code Benchmarks In hardware design, early work on LLM-generated Verilog empha-
sized functional correctness. VerilogEval Liu et al. (2023a) only evaluates whether the LLM gen-
erated code passes the testbench check, while RTLLM Lu et al. (2024) additionally checks if the
generated code is synthesizable. More recent efforts have shifted toward assessing and improv-
ing the efficiency of LLM-generated designs, which can be categorized into two main categories:
Specifications-to-Efficient-Verilog where the LLM is tasked with translating natural language in-
struction to optimized Verilog code directly, and Unoptimized-Verilog-to-Optimized-Verilog, where
the LLM is tasked with rewriting an unoptimized Verilog code to optimized Verilog code.

In the Specifications-to-Efficient-Verilog formulation, the LLM is prompted with a natural language
problem description and directly generates optimized Verilog. Benchmarks, such as GenBen Wan
et al. (2025), TuRTLe Garcia-Gasulla et al. (2025), evaluate these generations in functional correct-
ness, synthesizability, and post-synthesis metrics such as area, delay, and power. However, it relies
on VerilogEval problems as ground truth. These reference designs are not necessarily optimized
for power, performance, or area, and thus do not represent true Pareto-optimal solutions. ResBench
Guo & Zhao (2025) also does not define any gold-standard or reference-optimal implementations,
which makes it difficult to quantitatively assess how close the generated solutions are to ideal results.

The Unoptimized-Verilog-to-Optimized-Verilog setting provides the LLM with a functionally cor-
rect but unoptimized Verilog implementation and asks it to produce a more efficient version. RTL-
Rewriter Yao et al. (2024) enhances this with retrieval-augmented generation and feedback through
the synthesis loop. However, RTLRewriter lacks associated testbenches, making it unsuitable for
assessing the functional correctness of the generated code.

As summarized in Table 1, Pluto is the first benchmark to offer per-metric optimization, provid-
ing separate expert-optimized reference designs for area, delay, and power. This enables targeted,
metric-specific evaluation of LLMs, an aspect missing from prior benchmarks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of prior software and hardware code generation benchmarks. Pluto addresses
key limitations by enabling metric-specific optimization with three reference implementations per
problem, each optimized for area, delay, or power.

Benchmark Language Functionality Synthesizability Efficiency Per-Metric Optimisation Tasks
HumanEval Python ✓ – × × 164
Mercury Python ✓ – ✓ × 256
ENAMEL Python ✓ – ✓ × 142
VerilogEval Verilog ✓ × × × 156
RTLLM Verilog ✓ ✓ × × 30
RTLRewriter Verilog × ✓ ✓ × 95
ResBench Verilog ✓ ✓ × × 56
GenBen Verilog ✓ ✓ × × 300
TuRTLe Verilog ✓ ✓ × × 223
CVDP Verilog ✓ ✓ × × 783

Pluto (Ours) Verilog ✓ ✓ ✓ ✓ 114

3 PLUTO BENCHMARK

module opt_power (
 input [31:0] din,
 output [5:0] dout
);
 always_comb begin
 idx = '0;
 found = 1'b0;
 for (int i = 0; i < 32; i++) begin
 if (!found && din[i]) begin
 idx = 5'(i);
 found = 1'b1;
 end
 end
 end
 assign dout = found ? idx : 5'(32);
endmodule

module opt_delay (
 input [31:0] din,
 output [5:0] dout
);
 assign masked_bits =

din & (-din);
 case (masked_bits):
 32'h00000001: dout = 0;
 32'h00000002: dout = 1;

 32'h20000000: dout = 29;
 32'h40000000: dout = 30
 32'h80000000: dout = 31;
 endcase
endmodule

module opt_area (
 input [31:0] din,
 output [5:0] dout
);
 logic [5:0] temp [31:0];
 genvar i;

 generate for (i = 31; i >= 0; i--)begin
 assign temp[i] = din[i] ?

 i[5:0] : temp[i+1];
 end endgenerate
 assign dout = temp[0];

endmodule

Trailing Zeros Circuit - Problem # 27
Find the number of trailing 0s in the binary representation of the input (din). If the input value is all 0s, the number of
trailing 0s is the data width (DATA_WIDTH)

 Area Optimized Delay Optimized

 Power Optimized

//

Score

Circuit: LSB Isolation via 2's
Complement & Parallel One Hot Encoder

Circuit: MSB Priority Encoder via
Mux Chain

Circuit: Scan from LSB to MSB with
found flag to reduce switching

..

ScoreScore

Figure 1: Overview of the Pluto benchmark on the trailing zeros detection task. We show three
reference implementations optimized for different synthesis metrics compared to the unoptimized
baseline: (left) area, using a mux-based priority encoder, reducing area by 33%; (center) delay, using
an LSB isolation circuit with a parallel one-hot encoder, reducing delay by 44%; and (right) power,
using an LSB-to-MSB scanning method with early termination, reducing total power by 34%. See
Appendix. A.1 for unoptimized baseline and self-checking testbench.

3.1 DATA CONSTRUCTION

To enable a comprehensive evaluation of synthesis efficiency for LLM-generated hardware code,
we construct the Pluto evaluation set, which contains a diverse collection of high-quality digital
design problems spanning a broad range of difficulties. Specifically, we curated 114 problems from
various publicly available sources, including open-source hardware projects, educational platforms
such as ChipDev ChipDev (2025), a LeetCode-inspired platform for practicing Verilog coding, and
prior benchmark suites such as RTLRewriter Yao et al. (2024), RTLLM Lu et al. (2024), and Ver-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ilogEval Liu et al. (2023b). Each problem is specified by a high-level description outlining the
functional requirements, together with a baseline unoptimized Verilog implementation.

The problem set covers a wide spectrum of tasks in digital logic design, ranging from arithmetic
units and control circuits to sequential state machines. To systematically capture variation in design
complexity, we adopt ChipDev’s difficulty annotations and classify problems into three levels: easy,
medium, and hard. These labels reflect the intrinsic challenge of translating the textual description
into a correct Verilog implementation, thereby providing a principled way to distinguish between
problems of different complexity.

Importantly, the resulting collection balances accessibility with challenge: many problems that ap-
pear straightforward can nonetheless expose substantial differences in synthesis efficiency depend-
ing on the optimization strategies applied. The diverse composition of easy, medium, and hard tasks
therefore enables a nuanced assessment of an LLM’s ability to generate synthesis-efficient Verilog
under varying constraints. In total, the 114 selected problems provide a representative and scalable
testbed for benchmarking LLM-based Verilog efficiency.

Each problem instance in the Pluto benchmark includes the following components:

• Prompt: A natural language description of the hardware design task intended to guide the
LLM-generation.

• Module Header: A fixed interface shared across all versions of the Verilog module to
ensure consistency and comparability.

• Unoptimized Verilog Code: A baseline implementation used as the reference for testing.

• Optimized Verilog Code: Three distinct implementations with tradeoffs, each optimized
by hand using design experts for a single metric: area, delay, or power.

• Testbench: A manually crafted, fully self-checking testbench that verifies functional equiv-
alence between the unoptimized and any optimized design. These testbenches ensure full
input space coverage and flag any mismatches during simulation. For sequential circuits,
testbenches are clock-cycle agnostic, supporting latency differences introduced by opti-
mizations such as pipelining or resource sharing.

All components in the evaluation set are manually developed. This ensures high quality and guar-
antees that the LLM under evaluation has not previously encountered any part of the dataset during
training. In particular, the testbenches and optimized code serve as held-out ground truth references,
providing an unbiased benchmark for assessing the efficiency and correctness of LLM-generated
Verilog designs.

To illustrate the structure of problems in the Pluto evaluation set, Figure 1 presents the example
of a trailing zeros detection circuit, categorized as an easy problem, along with its three metric-
specific optimizations. As shown, each optimization achieves peak efficiency in its targeted metric,
while performance in the remaining two metrics declines. This behavior emphasizes the inherent
trade-offs across design objectives in hardware design and highlights the necessity of metric-specific
optimization strategies.

3.2 OPTIMIZATION WORKFLOW

Each unoptimized design in the Pluto set is further refined through manual optimization by expert
engineers to generate three distinct versions optimized separately for area, delay, and power. This
workflow follows a systematic process that ensures both the correctness and the efficiency of the re-
sulting designs. After applying metric-specific transformations, each optimized circuit is rigorously
verified for functional correctness using Icarus Verilog Williams et al. (2002), supported by robust
self-checking testbenches that guarantee equivalence with the unoptimized baseline. The optimized
versions are then synthesized to confirm that improvements translate into measurable gains in area,
timing, or power, thereby providing reliable performance baselines against which LLM-generated
designs can be evaluated.

To understand how these efficiency gains are achieved, we visualize the optimization strategies ap-
plied across the dataset in appendix A.2. The strategies vary significantly depending on the target
metric. For area, arithmetic optimizations and logic simplification are most commonly employed,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

and FSM restructuring plays an important role in reducing redundant states and transitions. Delay
improvements rely heavily on exploiting parallelism and restructuring control logic, often comple-
mented by logic simplification and pipelining techniques that shorten the critical path. For power,
it’s reducing switching activity through register and logic optimizations, supported by techniques
such as operand isolation, and clock gating to further suppress unnecessary toggling.

The distribution of strategies reveals that no single optimization technique dominates across all
objectives. Instead, engineers select strategies tailored to the specific metric, reflecting the trade-
offs inherent in digital design. As shown in Figure 2, this process results in consistent improvements
across the dataset, with average reductions of 19.19% in area, 21.96% in delay, and 22.55% in
power. This highlights the importance of metric-specific approaches and provide a robust baseline
for evaluating LLM-generated hardware code efficiency.

To further illustrate the impact of expert-driven optimization, Table 2 presents representative exam-
ples drawn from both RTLLM and VerilogEval. These case studies highlight how different strate-
gies, such as arithmetic unit sharing, FSM encoding choices, and counter-based control logic, trans-
late into concrete improvements across area, delay, and power. As shown, across both VerilogEval
and RTLLM, expert-optimized designs consistently outperform baseline implementations. In partic-
ular, for RTLLM problems our expert-written solutions achieve average improvements of 18.75% in
area, 22.75% in delay, and 20.43% in power compared to their canonical solutions. For VerilogEval
problems, the improvements average 10.46% in area, 10.33% in delay, and 13.61% in power.

(a) Area Comparison (b) Delay Comparison (c) Power Comparison

Figure 2: Distribution of area, delay, and power across Pluto benchmark designs before and after
manual metric-specific optimizations.

Table 2: A sample of benchmark problems from Pluto dataset. Our expert-optimized solutions
(area, delay, power) are significantly more efficient than the baseline benchmark implementations.
See Appendix A.3 for full problem implementation.

ID Source Problem
Description

Benchmark Solu-
tion

Expert Solution (Ours)

#60 RTLLM ALU for a 32-bit MIPS-ISA
CPU with operations like
{ADD, SUB, AND, OR,
XOR, SLT, shifts, LUI}.

ALU implemen-
tation with case
statement and
parameterized op-
codes.

Area ↓ 26%: Shared adder for arithmetic, simplified flag
logic, and operand reuse
Delay ↓ 26%: Parallel datapaths with one-hot muxing
Power ↓ 4%: Operand gating and early zeroing for large
shifts to cut switching activity

#68 RTLLM FSM detecting the sequence
10011 on a serial input
stream with support for con-
tinuous and overlapping de-
tection

States binary en-
coded, sequential
next-state logic, and
registered Mealy
output

Area ↓ 32%: Casez-based transitions and direct output
Delay ↓ 17%: One-hot state encoding with pre-decoded in-
puts and Moore-style output
Power ↓ 23%: Compact binary encoding and casez-based
transitions to cut toggling

#87 VerilogEval Module controls a shift
register enable signal,
shift ena asserted for 4
clock cycles on reset, then
remain 0 until the next reset

Uses explicit states
with next-state logic
to drive shift ena

Area ↓ 47%: Minimized register width (2-bit counter) and
compact comparator logic
Delay ↓ 37%: Wider counter (3 bits) to simplify comparison
and reduce logic depth on the critical path
Power ↓ 46%: Small counter reused

#104 VerilogEval Conway’s Game of Life
with a 16×16 toroidal grid:
each cell updates based on
neighbor counts n (live if
n = 3 or n = 2 & alive)

Straightforward
RTL with per-
cell neighbor
recomputation and
sequential summing

Area ↓ 19%: Shared neighbor computations across rows,
bitwise rotations for wraparound, less duplicate summations
Delay ↓ 37%: Parallel neighbor summation with carry-save
adder tree and direct decode for 2 and 3
Power ↓ 36%: Reduced toggling via computation reuse

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 EFFICIENCY METRICS

We use the pass@k Liu et al. (2023a) for measuring the functional correctness of LLM-generated
Verilog code. The pass@k metric, defined in appendix. A.5, measures the percentage of problems
for which at least one of the top-k generated samples passes the self-checking testbench.

To evaluate the synthesis efficiency of functionally correct samples, we adapt the eff@k introduced
in Qiu et al. (2024b) to Verilog code. First, we introduce the efficiency score ei,j , defined in Eq. 1,
which quantifies how close an LLM-generated design is to optimal ground truth implementation.
In this equation, R̂i,j denotes the reported synthesis metric (e.g., area, delay, or power) for the j-th
sample of problem i, Ti,j denotes an upper bound beyond which the design is considered inefficient,
and Ri,j denotes the optimal (lowest) known reference value for that metric. A score of 1 indicates
that the sample exactly matches the optimal reference, while a score of 0 indicates that it exceeds
the acceptable threshold or is functionally incorrect.

ei,j =


max(0, Ti,j − R̂i,j)

Ti,j −Ri,j
, if ni,j is correct

0, otherwise.
(1)

eff@k =
1

N

N∑
i=1

EJ⊆{1,...,n}, |J|=k

[
max
j∈J

ei,j

]

=
1

N

N∑
i=1

n∑
r=k

(
r−1
k−1

)(
n
k

) ei,(r).

(2)

We then use the efficiency score ei,j for computing the eff@k, defined in Eq. 2 as the average of the
best (i.e., highest) efficiency scores among the top-k functionally correct samples for each problem.
We use the unbiased estimator introduced in Qiu et al. (2024b) for computing eff@k which computes
the expectation value over a random subset J of code samples with size K.

4 EVALUATION RESULTS

We evaluate 18 large language models (LLMs) using our Pluto benchmark, which includes pro-
prietary LLMs, general-purpose foundation models, code-specialized models, and Verilog-tuned
models. To comprehensively assess efficiency-aware generation, we consider the two problem for-
mulations in Pluto: translating unoptimized Verilog code into optimized implementations, and gen-
erating optimized code directly from natural-language specifications. For the first problem formu-
lation, only instruction-tuned models are evaluated, as code completion models generally reproduce
the unoptimized code without meaningful improvements.

4.1 MAIN RESULTS

Table 3 (a) reports the pass@k and eff@k metrics for the first problem formulation, where the task is
to re-write unoptimized Verilog into more efficient implementations. Several trends emerge. First,
in terms of functional correctness (pass@k), domain-tuned models such as VeriThoughts-Inst-7B
and RTLCoder-DeepSeek-V1 achieve performance comparable to much larger foundational models
like DeepSeek-Chat, demonstrating the benefit of Verilog-specific training. However, in terms of
synthesis efficiency (eff@k), all models exhibit a noticeable drop relative to their pass@k scores.
This gap underscores a common limitation: while LLMs can generate functionally correct Verilog,
they struggle to match the Pareto-efficient expert baselines across area, delay, and power.

Table 3 (b) reports the pass@k and eff@k metrics for the second problem formulation, where models
are tasked with translating natural language specifications into optimized Verilog implementations.
This task is more challenging, and as a result, both pass@k and eff@k scores are consistently lower
across all models. Similar to the first formulation, all models also exhibit lower eff@k values com-
pared to their corresponding pass@k scores, underscoring the persistent difficulty of generating
designs that are not only functionally correct but also synthesis-efficient. However, the relative gap
between pass@k and eff@k is smaller in this setting compared to the first formulation. This is
because specification-to-RTL translation is substantially harder: models often struggle to produce
functionally correct code in the first place, which suppresses both correctness and efficiency scores.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Evaluation results using Pluto for two problem formulations: P1: Unoptimized-Verilog-
to-Optimized-Verilog and P2: Specifications-to-Optimized-Verilog. pass@k measures functional
correctness, while eff@k measures efficiency across area, delay, and power.

(a) P1: Unoptimized-Verilog-to-Optimized-Verilog

Model pass@1 pass@5 pass@10 eff@1 eff@5 eff@10

Area Delay Power Area Delay Power Area Delay Power

GPT-3.5 0.325 0.517 0.594 0.271 0.296 0.282 0.462 0.491 0.450 0.540 0.568 0.520
GPT-4o-mini 0.506 0.705 0.751 0.469 0.476 0.467 0.662 0.677 0.639 0.714 0.744 0.687

DeepSeek-Chat 0.612 0.802 0.860 0.586 0.599 0.601 0.776 0.795 0.794 0.839 0.862 0.846
Llama-3.3-70B-Instruct 0.473 0.701 0.757 0.446 0.462 0.429 0.662 0.696 0.662 0.707 0.760 0.735
Llama-3.1-8B-Instruct 0.160 0.432 0.567 0.127 0.156 0.145 0.358 0.437 0.384 0.494 0.584 0.505
Mistral-7B-Instruct-v0.2 0.106 0.318 0.453 0.078 0.094 0.100 0.244 0.296 0.301 0.358 0.446 0.427
Mixtral-8x7B-v0.1 0.255 0.520 0.652 0.217 0.231 0.210 0.462 0.487 0.447 0.593 0.630 0.561
starcoder2-15b-instruct-v0.1 0.659 0.960 0.988 0.611 0.633 0.591 0.879 0.924 0.871 0.913 0.952 0.904
CodeLlama-70b-Instruct-hf 0.576 0.905 0.956 0.522 0.541 0.523 0.842 0.876 0.824 0.903 0.925 0.878
DeepSeek-Coder-33B 0.783 0.963 0.997 0.638 0.659 0.640 0.902 0.927 0.883 0.942 0.960 0.927
Qwen2.5-Coder-7B-Inst 0.479 0.785 0.866 0.438 0.452 0.419 0.710 0.759 0.741 0.785 0.848 0.833

yang-z/CodeV-QC-7B 0.231 0.416 0.506 0.211 0.208 0.187 0.381 0.390 0.361 0.455 0.491 0.442
RTLCoder-DeepSeek-V1 0.532 0.854 0.915 0.471 0.495 0.468 0.774 0.789 0.757 0.843 0.850 0.809
VeriThoughts-Inst.-7B 0.611 0.797 0.854 0.540 0.560 0.524 0.708 0.740 0.702 0.763 0.785 0.765

(b) P2: Specifications-to-Optimized-Verilog

Model pass@1 pass@5 pass@10 eff@1 eff@5 eff@10

Area Delay Power Area Delay Power Area Delay Power

GPT-3.5 0.239 0.395 0.471 0.225 0.235 0.225 0.373 0.390 0.381 0.439 0.469 0.468
GPT-4o-mini 0.391 0.533 0.591 0.360 0.377 0.363 0.475 0.520 0.495 0.532 0.572 0.551

DeepSeek-Chat 0.557 0.688 0.719 0.545 0.552 0.528 0.689 0.680 0.651 0.726 0.710 0.684
Llama-3.3-70B-Instruct 0.363 0.541 0.594 0.348 0.345 0.342 0.515 0.533 0.510 0.564 0.602 0.557
Llama-3.1-8B-Instruct 0.087 0.224 0.301 0.075 0.073 0.081 0.189 0.184 0.204 0.270 0.251 0.279
Mistral-7B-Instruct-v0.2 0.030 0.108 0.164 0.024 0.015 0.024 0.078 0.067 0.088 0.112 0.117 0.134
Mixtral-8x7B-v0.1 0.082 0.176 0.222 0.082 0.068 0.079 0.172 0.131 0.163 0.202 0.166 0.211
starcoder2-15b-instruct-v0.1 0.243 0.454 0.512 0.226 0.249 0.220 0.429 0.466 0.409 0.489 0.525 0.458
CodeLlama-70b-Instruct-hf 0.212 0.446 0.532 0.202 0.207 0.194 0.418 0.440 0.437 0.498 0.535 0.524
DeepSeek-Coder-33B 0.257 0.429 0.482 0.231 0.254 0.246 0.387 0.424 0.421 0.446 0.490 0.468
Qwen2.5-Coder-7B-Inst 0.164 0.324 0.389 0.158 0.162 0.148 0.307 0.319 0.295 0.366 0.375 0.357

code-gen-verilog-16b 0.068 0.200 0.289 0.069 0.064 0.058 0.188 0.175 0.188 0.268 0.253 0.272
yang-z/CodeV-CL-7B 0.265 0.485 0.553 0.233 0.243 0.237 0.432 0.455 0.436 0.493 0.536 0.511
yang-z/CodeV-QC-7B 0.260 0.458 0.529 0.223 0.229 0.222 0.420 0.415 0.410 0.497 0.480 0.478
yang-z/CodeV-All-QC 0.175 0.317 0.374 0.150 0.162 0.144 0.297 0.304 0.256 0.368 0.379 0.284
RTLCoder-DeepSeek-V1 0.203 0.400 0.480 0.177 0.199 0.184 0.345 0.404 0.361 0.417 0.499 0.430
RTLCoder-Mistral 0.199 0.347 0.418 0.185 0.188 0.188 0.316 0.332 0.329 0.381 0.411 0.395
VeriThoughts-Inst.-7B 0.216 0.336 0.398 0.211 0.206 0.207 0.316 0.330 0.329 0.367 0.394 0.393

4.2 ABLATION STUDIES

In addition to the Verilog code writing style, post-synthesis metrics are also influenced by external
factors such as the synthesis tool employed, the target technology library, and the optimization
sequence executed by the tool. To understand the robustness of our proposed benchmark and isolate
the impact of these factors, we present two ablation studies that evaluate efficiency trends in the
Pluto benchmark across different synthesis tools, optimization strategies, and technology libraries.

4.2.1 SYNTHESIS TOOL AND TECHNOLOGY AGNOSTICISM

In this experiment, we repeated synthesis runs for the three optimized reference implementations
in Pluto, as well as the unoptimized baseline, using two distinct synthesis tools: Yosys Wolf et al.
(2013), an open-source framework, and Cadence Genus cad, a commercial synthesis tool. To further
evaluate generalizability, we also targeted two technology libraries representing different fabrication
nodes: the SkyWater 130nm library Google and a 65nm TSMC library tsm. We then computed the
efficiency score for each tool and library configuration by comparing each optimized implementation
against the corresponding unoptimized baseline across area, delay, and power metrics. As shown in
Figure 3, efficiency scores remain consistent across all synthesis tool and technology combinations.
This demonstrates that Pluto’s optimization patterns deliver consistent tradeoffs across different
synthesis tools and technology libraries.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Genus: Area (earea) (b) Genus: Delay (edelay) (c) Genus: Power (epower)

(d) Yosys: Area (earea) (e) Yosys: Delay (edelay) (f) Yosys: Power (epower)

Figure 3: Efficiency scores for area, delay, and power across all benchmark problems, using both
Cadence Genus and Yosys with different technology libraries. Results show consistent efficiency
trends across synthesis tools and technologies.

(a) P15: Polynomial (b) P5: Divide-by-evens (c) P28: Adder

Figure 4: Area–delay tradeoffs of three problems in the Pluto benchmark under different synthesis
strategies. Each strategy corresponds to a distinct sequence of ABC logic synthesis commands.

4.2.2 SYNTHESIS OPTIMIZATION STRATEGIES

We also examine how different synthesis optimization strategies influence the post-synthesis met-
rics of Pluto’s optimized implementations. Synthesis tools allow designers to specify optimization
directives that steer the tool’s internal heuristics toward minimizing a particular metric while po-
tentially sacrificing others. To study this effect, we synthesized selected problems from the Pluto
benchmark under both area-optimized and delay-optimized optimization strategies. We used Yosys
as our synthesis tool and targeted the SkyWater 130nm library. Within Yosys, logic optimization
is carried out using the ABC framework Synthesis & Group (2024), which provides a collection
of optimization heuristics that can be configured to emphasize different objectives such as area or
delay minimization. Figure 4 illustrates the resulting Pareto fronts of area–delay trade-offs across
three representative problems. As expected, delay-optimized code consistently achieves superior
timing performance at the expense of larger area, whereas area-optimized code achieves lower area
but incurs higher delays. These results confirm that synthesis settings primarily shift designs along
the area–delay curve, while coding style remains the dominant factor, validating Pluto’s ability to
capture design efficiency independent of synthesis optimization settings.

5 FAILURE ANALYSIS AND INSIGHTS

While LLMs reliably produce functionally correct Verilog, their ability to optimize is uneven across
metrics. Area optimization is comparatively tractable, since it often reduces to logic simplification or
FSM re-encoding. By contrast, delay requires identifying and shortening the critical path, and power
depends on subtle factors like switching activity and memory usage. This difficulty is reflected in

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 5: Failure mode analysis of optimization outcomes. (a) Quadrant plot showing the correla-
tion between functional correctness (Pass@1) and synthesis efficiency (Eff@1) across area, delay,
and power objectives. (b) Heatmap of optimization strategy difficulty across different optimization
objectives area, delay, and power.

our quadrant analysis (Figure 5a and 8), where many delay- and power-optimized designs remain
correct but fail to improve efficiency, whereas area optimizations succeed more often.

Model scale and specialization strongly influence outcomes. Larger models (33B, 70B) capture
richer patterns and propose alternative architectures. Models with explicit reasoning traces (e.g.,
DeepSeek, VeriThoughts) better decompose transformations and achieve stronger optimizations.
Domain-tuned models outperform code models, which in turn outperform general-purpose LLMs,
showing the value of Verilog-specific pretraining. A fundamental limitation is that Verilog train-
ing data lacks efficiency labels. LLMs therefore default to surface-level pattern matching rather
than structural reasoning, and without feedback or synthesis-in-the-loop, they cannot tell whether
changes reduce gate count or lengthen the critical path. Completion-style models exacerbate this
issue, often rephrasing the baseline instead of innovating, whereas instruction-tuned models attempt
more substantive edits.

Finally, analysis of optimization strategies (Figure 5b) shows that the hardest transformations are
register optimizations for delay, followed by resource sharing for power, and sequential restructuring
for delay. In contrast, strategies tied to area are easier, aligning with our observation that area is the
most accessible metric for LLMs. Together, these findings suggest that true progress will require
metric-aware feedback and efficiency-focused benchmarks such as Pluto to guide future advances.

6 CONCLUSION

In this paper, we introduced Pluto, a comprehensive benchmark designed to evaluate the synthesis
efficiency of LLM-generated Verilog code. Pluto provides an evaluation set of 114 hardware design
problems, each accompanied by three reference optimized implementations (targeting area, delay,
and power), an unoptimized baseline, a self-checking testbench, and a natural language description.
Experimental results show that while LLMs can achieve high functional correctness, reaching up
to 78.3% at pass@1, their synthesis efficiency remains limited: area efficiency of 63.8%, delay
efficiency of 65.9%, and power efficiency of 64.0% at eff@1 compared to expert-crafted designs.
These findings highlight the importance of efficiency-aware benchmarks beyond correctness alone
and highlights the current limitations of LLMs in hardware optimization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Cadence Genus Synthesis Solution. https://www.cadence.com/en US/home/tools/digital-design-
and-signoff/synthesis/genus-synthesis.html.

TSMC 65nm Technology Library (Proprietary). Accessed under license from TSMC.

Manar Abdelatty, Jingxiao Ma, and Sherief Reda. Metrex: A benchmark for verilog code metric
reasoning using llms. In Proceedings of the 30th Asia and South Pacific Design Automation
Conference, pp. 995–1001, 2025.

ChipDev. ChipDev: Hardware Interview Prep & Verilog Practice. https://chipdev.io, 2025.
Accessed: 2025-01-01.

Mingzhe Du, Anh Tuan Luu, Bin Ji, Qian Liu, and See-Kiong Ng. Mercury: A code efficiency
benchmark for code large language models. In The Thirty-eight Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track, 2024.

Dario Garcia-Gasulla, Gokcen Kestor, Emanuele Parisi, Miquel Albert’i-Binimelis, Cristian Gutier-
rez, Razine Moundir Ghorab, Orlando Montenegro, Bernat Homs, and Miquel Moreto. Turtle: A
unified evaluation of llms for rtl generation. arXiv preprint arXiv:2504.01986, 2025.

Google. Skywater-pdk. https://github.com/google/skywater-pdk. Accessed: 2025-
02-09.

Ce Guo and Tong Zhao. Resbench: Benchmarking llm-generated fpga designs with resource aware-
ness. arXiv preprint arXiv:2503.08823, 2025.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Invited paper: Verilogeval:
Evaluating large language models for verilog code generation. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 1–8, 2023a. doi: 10.1109/ICCAD57390.
2023.10323812.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large
language models for verilog code generation. In 2023 IEEE/ACM International Conference on
Computer Aided Design (ICCAD), pp. 1–8. IEEE, 2023b.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In 2024 29th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 722–727. IEEE, 2024.

Ruidi Qiu, Grace Li Zhang, Rolf Drechsler, Ulf Schlichtmann, and Bing Li. Autobench: Au-
tomatic testbench generation and evaluation using llms for hdl design. In Proceedings of the
2024 ACM/IEEE International Symposium on Machine Learning for CAD, MLCAD ’24, New
York, NY, USA, 2024a. Association for Computing Machinery. ISBN 9798400706998. doi:
10.1145/3670474.3685956. URL https://doi.org/10.1145/3670474.3685956.

Ruizhong Qiu, Weiliang Will Zeng, James Ezick, Christopher Lott, and Hanghang Tong. How
efficient is llm-generated code? a rigorous & high-standard benchmark. arXiv preprint
arXiv:2406.06647, 2024b.

Berkeley Logic Synthesis and Verification Group. Abc: A system for sequential synthesis and veri-
fication. Technical report, University of California, Berkeley, 2024. URL https://people.
eecs.berkeley.edu/˜alanmi/abc/.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. In 2023 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1–6. IEEE, 2023a.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM
Transactions on Design Automation of Electronic Systems, 2023b.

10

https://chipdev.io
https://github.com/google/skywater-pdk
https://doi.org/10.1145/3670474.3685956
https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

YunDa Tsai, Mingjie Liu, and Haoxing Ren. Rtlfixer: Automatically fixing rtl syntax errors with
large language models. In IEEE/ACM Design Automation Conference (DAC’24), pp. 1–8, 2024.
doi: 10.1109/ICCAD57390.2023.10323812.

Gwok-Waa Wan, Yubo Wang, SamZaak Wong, Jingyi Zhang, Mengnv Xing, Zhe Jiang, Nan Guan,
Ying Wang, Ning Xu, Qiang Xu, and Xi Wang. Genben: A generative benchmark for LLM-aided
design. In Proceedings of the International Conference on Learning Representations (ICLR),
2025. URL https://openreview.net/forum?id=gtVo4xcpFI. Under review.

Stephen Williams et al. Icarus verilog: open-source verilog more than a year later. Linux Journal,
2002.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys—a free verilog synthesis suite. In 21st
Austrian Workshop on Microelectronics (Austrochip), volume 97, 2013.

Chenwei Xiong, Cheng Liu, Huawei Li, and Xiaowei Li. Hlspilot: Llm-based high-level synthesis.
arXiv preprint arXiv:2408.06810, 2024.

Xufeng Yao, Yiwen Wang, Xing Li, Yingzhao Lian, Ran Chen, Lei Chen, Mingxuan Yuan, Hong
Xu, and Bei Yu. Rtlrewriter: Methodologies for large models aided rtl code optimization. arXiv
preprint arXiv:2409.11414, 2024.

A APPENDIX

A.1 UNOPTIMIZED CODE AND TESTBENCH FOR PROBLEM #17 (TRAILING ZEROS) IN
FIGURE 1

A.1.1 UNOPTIMIZED CODE

1 module unopt_model #(parameter
2 DATA_WIDTH = 32
3) (
4 input [DATA_WIDTH-1:0] din,
5 output logic [$clog2(DATA_WIDTH):0] dout
6);
7
8 logic [DATA_WIDTH-1:0] din_adj;
9 logic [$clog2(DATA_WIDTH):0] idx;

10
11 always_comb begin
12 idx = 0;
13 din_adj = din & (˜din+1);
14 for (int i=0; i<DATA_WIDTH; i++) begin
15 idx += (din_adj[i]) ? i : 0;
16 end
17 end
18
19 assign dout = (din_adj == 0 ? DATA_WIDTH : din_adj == 1 ? 0 : idx);
20
21 endmodule

A.1.2 SELF-CHECKING TESTBENCH

1 ‘timescale 1 ps/1 ps
2
3 module tb();
4
5 reg clk = 0;
6 initial forever #5 clk = ˜clk;
7
8 wire [5:0] dout_opt, dout_unopt;
9 reg [31:0] din;

10
11 integer errors = 0;
12 integer errortime = 0;
13 integer clocks = 0;
14 integer total_cycles = 200;
15
16 initial begin

11

https://openreview.net/forum?id=gtVo4xcpFI

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

17 $dumpfile("wave.vcd");
18 $dumpvars(1, clk, din, dout_opt, dout_unopt);
19
20 // Initialize din to avoid X values
21 din = 0;
22
23 // Generate random values for din
24 repeat(total_cycles) @(posedge clk) din = $random;
25 end
26
27 wire tb_match;
28 assign tb_match = (dout_opt === dout_unopt);
29
30 opt_model opt_model (
31 .din(din),
32 .dout(dout_opt)
33);
34
35 unopt_model unopt_model (
36 .din(din),
37 .dout(dout_unopt)
38);
39
40 always @(posedge clk) begin
41 clocks = clocks + 1;
42 if (!tb_match) begin
43 if (errors == 0) errortime = $time;
44 errors = errors + 1;
45 end
46
47 // Print the signals for debugging
48 $display("Time=%0t | Cycle=%0d | din=%h | opt=%h | unopt=%h | match=%b",
49 $time, clocks, din, dout_opt, dout_unopt, tb_match);
50
51 if (clocks >= total_cycles) begin
52 $display("Simulation completed.");
53 $display("Total mismatches: %1d out of %1d samples", errors, clocks);
54 $display("Simulation finished at %0d ps", $time);
55 $finish;
56 end
57 end
58
59 initial begin
60 #1000000
61 $display("TIMEOUT");
62 $finish();
63 end
64
65 endmodule

A.2 OPTIMIZATION STRATEGIES

Figure 6: Optimization strategies employed for area, delay, and power improvements.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.3 CODE OF EXAMPLE PROBLEMS IN TABLE 2

In the example problems shown in the appendix, the area- and power-optimized solutions coincided,
as area-oriented designs also achieved the best power results, and vice versa. This overlap arises
because common power-saving techniques, such as clock gating and operand isolation, were not
applicable as some designs lacked a clock signal, while others did not include an enable signal.
Consequently, explicit power-specific transformations could not be meaningfully applied. Moreover,
in certain cases, power optimizations indirectly reduced area, further reinforcing the convergence of
the two objectives into a single optimized implementation.

A.3.1 PROBLEM #60: RTLLM ALU

Problem description: Implement a 32-bit Arithmetic Logic Unit (ALU) for a MIPS-ISA CPU.
The ALU takes two 32-bit operands (a and b) and a 6-bit control signal (aluc) that specifies which
operation to perform. Based on this control signal, the ALU produces a 32-bit result (r) and several
status outputs: zero indicates whether the result is zero, carry flags if a carry occurred, negative
shows if the result is negative, overflow signals arithmetic overflow, and flag is used for set-less-
than instructions (slt and sltu). The module supports arithmetic, logical, shift, and immediate load
operations defined by specific opcodes (e.g., ADD, SUB, AND, OR, XOR, SLT, LUI).
Benchmark solution: ALU implementation with case statement and parameterized opcodes.

1 module unopt_model(
2 input [31:0] a,
3 input [31:0] b,
4 input [5:0] aluc,
5 output [31:0] r,
6 output zero,
7 output carry,
8 output negative,
9 output overflow,

10 output flag
11);
12
13 parameter ADD = 6’b100000;
14 parameter ADDU = 6’b100001;
15 parameter SUB = 6’b100010;
16 parameter SUBU = 6’b100011;
17 parameter AND = 6’b100100;
18 parameter OR = 6’b100101;
19 parameter XOR = 6’b100110;
20 parameter NOR = 6’b100111;
21 parameter SLT = 6’b101010;
22 parameter SLTU = 6’b101011;
23 parameter SLL = 6’b000000;
24 parameter SRL = 6’b000010;
25 parameter SRA = 6’b000011;
26 parameter SLLV = 6’b000100;
27 parameter SRLV = 6’b000110;
28 parameter SRAV = 6’b000111;
29 parameter JR = 6’b001000;
30 parameter LUI = 6’b001111;
31
32 wire signed [31:0] a_signed;
33 wire signed [31:0] b_signed;
34
35 reg [32:0] res;
36
37 assign a_signed = a;
38 assign b_signed = b;
39 assign r = res[31:0];
40
41 assign flag = (aluc == SLT || aluc == SLTU) ? ((aluc == SLT) ? (a_signed < b_signed) : (a < b)) : 1’bz;
42 assign zero = (res == 32’b0) ? 1’b1 : 1’b0;
43
44 always @ (a or b or aluc)
45 begin
46 case(aluc)
47 ADD: begin
48 res <= a_signed + b_signed;
49 end
50 ADDU: begin
51 res <= a + b;
52 end
53 SUB: begin

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

54 res <= a_signed - b_signed;
55 end
56 SUBU: begin
57 res <= a - b;
58 end
59 AND: begin
60 res <= a & b;
61 end
62 OR: begin
63 res <= a | b;
64 end
65 XOR: begin
66 res <= a ˆ b;
67 end
68 NOR: begin
69 res <= ˜(a | b);
70 end
71 SLT: begin
72 res <= a_signed < b_signed ? 1 : 0;
73 end
74 SLTU: begin
75 res <= a < b ? 1 : 0;
76 end
77 SLL: begin
78 res <= b << a;
79 end
80 SRL: begin
81 res <= b >> a;
82 end
83 SRA: begin
84 res <= b_signed >>> a_signed;
85 end
86 SLLV: begin
87 res <= b << a[4:0];
88 end
89 SRLV: begin
90 res <= b >> a[4:0];
91 end
92 SRAV: begin
93 res <= b_signed >>> a_signed[4:0];
94 end
95 LUI: begin
96 res <= {a[15:0], 16’h0000};
97 end
98 default:
99 begin

100 res <= 32’bz;
101 end
102 endcase
103 end
104 endmodule

Our expert-written area and power optimized solution: Shared adder for arithmetic, simplified
flag logic and operand reuse, leading to 26% area reduction. Operand gating and early zeroing for
large shifts to cut switching activity, for 4% power reduction.

1
2 wire sub_mode = (aluc==SUB) | (aluc==SUBU) | (aluc==SLT) | (aluc==SLTU);
3 wire [31:0] b_eff = sub_mode ? ˜b : b;
4 wire cin = sub_mode;
5 wire [32:0] sum33 = {1’b0,a} + {1’b0,b_eff} + cin;
6
7 wire [31:0] add_res = sum33[31:0];
8 wire add_carry = sum33[32];
9

10 wire ovf = (a[31]ˆadd_res[31]) & (b_eff[31]ˆadd_res[31]);
11
12 wire signed_lt = add_res[31] ˆ ovf;
13 wire uns_lt = ˜add_carry;
14 wire [31:0] slt_res = {31’b0, signed_lt};
15 wire [31:0] sltu_res = {31’b0, uns_lt};
16
17 wire [31:0] and_res = a & b;
18 wire [31:0] or_res = a | b;
19 wire [31:0] xor_res = a ˆ b;
20 wire [31:0] nor_res = ˜(a | b);
21
22 wire [4:0] sa5 = a[4:0];
23 wire any_hi = |a[31:5];
24

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

25 wire [31:0] sll_full = any_hi ? 32’b0 : (b << sa5);
26 wire [31:0] srl_full = any_hi ? 32’b0 : (b >> sa5);
27 wire [31:0] sra_full = any_hi ? {32{b[31]}} : ($signed(b) >>> sa5);
28
29 wire [31:0] sllv_res = (b << a[4:0]);
30 wire [31:0] srlv_res = (b >> a[4:0]);
31 wire [31:0] srav_res = ($signed(b) >>> a[4:0]);
32
33 wire [31:0] lui_res = {a[15:0], 16’h0000};
34
35 reg [31:0] r_int;
36 always @* begin : result_mux
37 (* parallel_case, full_case *)
38 case (aluc)
39 ADD, ADDU: r_int = add_res;
40 SUB, SUBU: r_int = add_res;
41 AND: r_int = and_res;
42 OR: r_int = or_res;
43 XOR: r_int = xor_res;
44 NOR: r_int = nor_res;
45 SLT: r_int = slt_res;
46 SLTU: r_int = sltu_res;
47 SLL: r_int = sll_full;
48 SRL: r_int = srl_full;
49 SRA: r_int = sra_full;
50 SLLV: r_int = sllv_res;
51 SRLV: r_int = srlv_res;
52 SRAV: r_int = srav_res;
53 LUI: r_int = lui_res;
54 JR: r_int = 32’bz;
55 default: r_int = 32’bz;
56 endcase
57 end
58
59 assign r = r_int;
60 assign zero = ˜(|r_int);
61
62 assign carry = 1’bz;
63 assign overflow = 1’bz;
64 assign negative = 1’bz;
65 assign flag = (aluc==SLT) ? signed_lt :
66 (aluc==SLTU) ? uns_lt :
67 1’bz;
68 endmodule

Our expert-written delay optimized solution: Parallel datapaths with one-hot muxing for shallow
critical path, leading to 26% delay reduction.

1 wire signed [31:0] a_signed = a;
2 wire signed [31:0] b_signed = b;
3
4 wire [31:0] add_u = a + b;
5 wire [31:0] sub_u = a - b;
6 wire signed [31:0] add_s = a_signed + b_signed;
7 wire signed [31:0] sub_s = a_signed - b_signed;
8
9 wire [31:0] and_res = a & b;

10 wire [31:0] or_res = a | b;
11 wire [31:0] xor_res = a ˆ b;
12 wire [31:0] nor_res = ˜(a | b);
13
14 wire slt_res = (a_signed < b_signed);
15 wire sltu_res = (a < b);
16
17 wire [4:0] shamt5 = a[4:0];
18
19
20 wire [31:0] sll_full = (b << a); // full ’a’
21 wire [31:0] srl_full = (b >> a); // full ’a’
22 wire [31:0] sra_full = ($signed(b) >>> a_signed);// full signed ’a’
23 wire [31:0] sllv_res = (b << shamt5);
24 wire [31:0] srlv_res = (b >> shamt5);
25 wire [31:0] srav_res = ($signed(b) >>> shamt5);
26
27 wire [31:0] lui_res = {a[15:0], 16’h0000};
28
29 wire sel_ADD = (aluc==ADD);
30 wire sel_ADDU = (aluc==ADDU);
31 wire sel_SUB = (aluc==SUB);
32 wire sel_SUBU = (aluc==SUBU);

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

33 wire sel_AND = (aluc==AND);
34 wire sel_OR = (aluc==OR);
35 wire sel_XOR = (aluc==XOR);
36 wire sel_NOR = (aluc==NOR);
37 wire sel_SLT = (aluc==SLT);
38 wire sel_SLTU = (aluc==SLTU);
39 wire sel_SLL = (aluc==SLL);
40 wire sel_SRL = (aluc==SRL);
41 wire sel_SRA = (aluc==SRA);
42 wire sel_SLLV = (aluc==SLLV);
43 wire sel_SRLV = (aluc==SRLV);
44 wire sel_SRAV = (aluc==SRAV);
45 wire sel_LUI = (aluc==LUI);
46 wire sel_JR = (aluc==JR);
47
48 wire any_sel = sel_ADD|sel_ADDU|sel_SUB|sel_SUBU|sel_AND|sel_OR|sel_XOR|sel_NOR|
49 sel_SLT|sel_SLTU|sel_SLL|sel_SRL|sel_SRA|sel_SLLV|sel_SRLV|sel_SRAV|sel_LUI;
50
51 wire [31:0] r_known =
52 (sel_ADD ? add_s : 32’b0) |
53 (sel_ADDU ? add_u : 32’b0) |
54 (sel_SUB ? sub_s : 32’b0) |
55 (sel_SUBU ? sub_u : 32’b0) |
56 (sel_AND ? and_res: 32’b0) |
57 (sel_OR ? or_res : 32’b0) |
58 (sel_XOR ? xor_res: 32’b0) |
59 (sel_NOR ? nor_res: 32’b0) |
60 (sel_SLT ? {31’b0, slt_res } : 32’b0) |
61 (sel_SLTU ? {31’b0, sltu_res} : 32’b0) |
62 (sel_SLL ? sll_full : 32’b0) |
63 (sel_SRL ? srl_full : 32’b0) |
64 (sel_SRA ? sra_full : 32’b0) |
65 (sel_SLLV ? sllv_res : 32’b0) |
66 (sel_SRLV ? srlv_res : 32’b0) |
67 (sel_SRAV ? srav_res : 32’b0) |
68 (sel_LUI ? lui_res : 32’b0);
69
70 assign r = (any_sel && !sel_JR) ? r_known : 32’bz;
71
72 assign zero = (r == 32’b0) ? 1’b1 : 1’b0;
73
74 assign flag = (sel_SLT) ? slt_res :
75 (sel_SLTU) ? sltu_res :
76 1’bz;
77
78 assign carry = 1’bz;
79 assign negative = 1’bz;
80 assign overflow = 1’bz;
81 endmodule

A.3.2 PROBLEM #68: RTLLM FSM

Problem description: Implement a finit state machine (FSM) that detects the input sequence 10011
on a single-bit input stream. The module has three inputs: the serial input bit (IN), the clock (CLK),
and a synchronous reset (RST). It produces one output, MATCH, which is asserted high when the
specified sequence is recognized. The FSM supports continuous input and loop detection. When
reset is active, the FSM initializes and MATCH is cleared to 0. The output MATCH is asserted
during the cycle when the last 1 of the target sequence is received, and the design ensures that
repeated or overlapping patterns (e.g., 100110011) correctly generate multiple match pulses.
Benchmark solution: States are binary-encoded, with sequential next-state logic in a Mealy FSM
while output occupies a register.

1 module unopt_model (
2 input wire IN,
3 input wire CLK,
4 input wire RST,
5 output wire MATCH
6);
7
8 reg [2:0] ST_cr,ST_nt;
9

10 parameter s0 = 3’b000;
11 parameter s1 = 3’b001;
12 parameter s2 = 3’b010;
13 parameter s3 = 3’b011;
14 parameter s4 = 3’b100;

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

15 parameter s5 = 3’b101;
16
17 always@(posedge CLK or posedge RST) begin
18 if(RST)
19 ST_cr <= s0;
20 else
21 ST_cr <= ST_nt;
22 end
23
24 always@(*) begin
25 case(ST_cr)
26 s0:begin
27 if (IN==0)
28 ST_nt = s0;
29 else
30 ST_nt = s1;
31 end
32
33 s1:begin
34 if (IN==0)
35 ST_nt = s2;
36 else
37 ST_nt = s1;
38 end
39
40 s2:begin
41 if (IN==0)
42 ST_nt = s3;
43 else
44 ST_nt = s1;
45 end
46
47 s3:begin
48 if (IN==0)
49 ST_nt = s0;
50 else
51 ST_nt = s4;
52 end
53
54 s4:begin
55 if (IN==0)
56 ST_nt = s2;
57 else
58 ST_nt = s5;
59 end
60
61 s5:begin
62 if (IN==0)
63 ST_nt = s2;
64 else
65 ST_nt = s1;
66 end
67
68 endcase
69 end
70
71 always@(*) begin
72 if(RST)
73 MATCH <= 0;
74 else if (ST_cr == s4 && IN == 1)
75 MATCH <= 1;
76 else
77 MATCH <= 0;
78 end
79
80 endmodule

Our expert-written area and power optimized solution: Casez-based transitions and direct Mealy
output computation, removing extra register, leading to 32% area reduction. Compact binary encod-
ing and casez-based transitions to cut toggling for 23% power reduction.

1 localparam [2:0] s0=3’b000, s1=3’b001, s2=3’b010,
2 s3=3’b011, s4=3’b100, s5=3’b101;
3
4 reg [2:0] ST_cr, ST_nt;
5
6 always @(posedge CLK or posedge RST) begin
7 if (RST)
8 ST_cr <= s0;
9 else

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

10 ST_cr <= ST_nt;
11 end
12
13 always @* begin
14 ST_nt = s0;
15 casez ({ST_cr, IN})
16 // s0: 0->s0, 1->s1
17 {s0,1’b0}: ST_nt = s0;
18 {s0,1’b1}: ST_nt = s1;
19
20 // s1: 0->s2, 1->s1
21 {s1,1’b0}: ST_nt = s2;
22 {s1,1’b1}: ST_nt = s1;
23
24 // s2: 0->s3, 1->s1
25 {s2,1’b0}: ST_nt = s3;
26 {s2,1’b1}: ST_nt = s1;
27
28 // s3: 0->s0, 1->s4
29 {s3,1’b0}: ST_nt = s0;
30 {s3,1’b1}: ST_nt = s4;
31
32 // s4: 0->s2, 1->s5
33 {s4,1’b0}: ST_nt = s2;
34 {s4,1’b1}: ST_nt = s5;
35
36 // s5: 0->s2, 1->s1
37 {s5,1’b0}: ST_nt = s2;
38 {s5,1’b1}: ST_nt = s1;
39
40 default: ST_nt = s0;
41 endcase
42 end
43
44 assign MATCH = (ST_cr == s4) & IN;
45
46 endmodule

Our expert-written delay optimized solution: One-hot state encoding with pre-decoded inputs
and Moore-style output, leading to 23% delay reduction.

1
2 reg [5:0] S, S_next;
3
4 reg [5:0] S, S_next;
5
6 always @(posedge CLK or posedge RST) begin
7 if (RST)
8 S <= 6’b000001; // s0
9 else

10 S <= S_next;
11 end
12
13 wire in1 = IN;
14 wire in0 = ˜IN;
15
16 always @* begin
17 S_next[0] = (S[0] & in0) | (S[3] & in0); // -> s0
18 S_next[1] = (S[0] & in1) | (S[1] & in1) | (S[2] & in1)
19 | (S[5] & in1); // -> s1
20 S_next[2] = (S[1] & in0) | (S[4] & in0) | (S[5] & in0); // -> s2
21 S_next[3] = (S[2] & in0); // -> s3
22 S_next[4] = (S[3] & in1); // -> s4
23 S_next[5] = (S[4] & in1); // -> s5
24 end
25
26 always @(posedge CLK or posedge RST) begin
27 if (RST)
28 MATCH <= 1’b0;
29 else
30 MATCH <= S[5];
31 end
32 endmodule

A.3.3 PROBLEM #87: VERILOGEVAL PROB095

Problem description: Implement a module that generates a control signal (shift ena) for a shift
register. The module has a clock input (clk), a synchronous active-high reset (reset), and a single

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

output (shift ena). The functionality requires that when the FSM is reset, the shift ena signal is as-
serted high for exactly four consecutive clock cycles before being deasserted permanently. After this
sequence, shift ena remains low indefinitely until another reset occurs, at which point the behavior
repeats. All sequential operations are triggered on the positive edge of the clock.
Benchmark solution: Uses explicit states with next-state logic to drive shift ena.

1 module unopt_model (
2 input clk,
3 input reset,
4 output reg shift_ena
5);
6 parameter B0=0, B1=1, B2=2, B3=3, Done=4;
7
8 reg [2:0] state, next;
9

10 always @* begin
11 case (state)
12 B0: next = B1;
13 B1: next = B2;
14 B2: next = B3;
15 B3: next = Done;
16 Done: next = Done;
17 default: next = B0;
18 endcase
19 end
20
21 always @(posedge clk) begin
22 if (reset) begin
23 state <= B0;
24 shift_ena <= 1’b1;
25 end else begin
26 state <= next;
27 shift_ena <= (next != Done);
28 end
29 end
30 endmodule

Our expert-written area and power optimized solution: Minimized register width, using a 2-bit
counter, and compact comparator logic, leading to 47% area reduction. Small counter reused which
reduced toggling activity to minimize dynamic power, for 46% power reduction.

1 reg [1:0] counter; // 2 bits are enough to count up to 4
2
3 always @(posedge clk) begin
4 if (reset) begin
5 counter <= 2’b00; // Reset counter
6 shift_ena <= 1’b1; // Enable on reset
7 end else if (counter < 2’b11) begin
8 counter <= counter + 1; // Increment counter
9 shift_ena <= 1’b1; // Keep shift_ena high while counting

10 end else begin
11 shift_ena <= 1’b0; // Disable after 4 cycles
12 end
13 end
14
15 endmodule

Our expert-written delay optimized solution: Wider counter, using 3 bits, to simplify comparison
and reduce logic depth on the critical path, leading to 37% delay reduction.

1 reg [2:0] count; // 3-bit counter to count 4 cycles
2
3 always @(posedge clk) begin
4 if (reset) begin
5 count <= 3’b000; // Reset count
6 shift_ena <= 1’b1; // Enable shift initially
7 end else if (count < 3’b011) begin
8 count <= count + 1; // Increment count
9 shift_ena <= 1’b1; // Keep shift enabled

10 end else begin
11 shift_ena <= 1’b0; // Disable shift after 4 cycles
12 end
13 end
14
15 endmodule

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.3.4 PROBLEM #104: VERILOGEVAL PROB136

Problem description: Implement a cellular automaton game, similar to Conway’s Game of Life,
on a 16x16 grid. The grid is represented as a 256-bit vector (q), where each row of 16 cells maps
to a sub-vector, and each cell can be alive (1) or dead (0). The module has a clock input (clk),
a load signal (load) for synchronously loading an initial 256-bit state (data) into q, and produces
the updated 256-bit grid state as output. At every positive clock edge, the grid advances by one
timestep, with each cell’s next state determined by its number of neighbors: cells die with fewer
than 2 or more than 3 neighbors, remain unchanged with exactly 2 neighbors, and become alive with
exactly 3 neighbors. The grid is modeled as a toroid, meaning edges wrap around so that cells on
the boundaries consider neighbors from the opposite side.
Benchmark solution: Straightforward RTL with per-cell neighbor recomputation and sequential
summing.

1 module unopt_model (
2 input clk,
3 input load,
4 input [255:0] data,
5 output reg [255:0] q
6);
7
8 logic [323:0] q_pad;
9 always@(*) begin

10 for (int i=0;i<16;i++)
11 q_pad[18*(i+1)+1 +: 16] = q[16*i +: 16];
12 q_pad[1 +: 16] = q[16*15 +: 16];
13 q_pad[18*17+1 +: 16] = q[0 +: 16];
14
15 for (int i=0; i<18; i++) begin
16 q_pad[i*18] = q_pad[i*18+16];
17 q_pad[i*18+17] = q_pad[i*18+1];
18 end
19 end
20
21 always @(posedge clk) begin
22 for (int i=0;i<16;i++)
23 for (int j=0;j<16;j++) begin
24 q[i*16+j] <=
25 ((q_pad[(i+1)*18+j+1 -1+18] + q_pad[(i+1)*18+j+1 +18] + q_pad[(i+1)*18+j+1 +1+18] +
26 q_pad[(i+1)*18+j+1 -1] + q_pad[(i+1)*18+j+1+1] +
27 q_pad[(i+1)*18+j+1 -1-18] + q_pad[(i+1)*18+j+1 -18] + q_pad[(i+1)*18+j+1 +1-18]) & 3’h7 | q[i*16+j]) == 3’h3;
28 end
29
30 if (load)
31 q <= data;
32
33 end
34
35 endmodule

Our expert-written area and power optimized solution: Sharing per-row horizontal sums and
bitwise rotations for toroidal wrap, minimizing summations for 19% area reduction. Computation
reuse decreasing toggling, leading to 36% power reduction.

1 // --- Helpers ---
2 function automatic [7:0] idx(input [3:0] r, input [3:0] c);
3 idx = {r, c}; // r*16 + c
4 endfunction
5
6 // Bit-rotate wires (toroidal wrap) - wiring only (no logic area)
7 function automatic [15:0] rol1(input [15:0] x); rol1 = {x[14:0], x[15]}; endfunction
8 function automatic [15:0] ror1(input [15:0] x); ror1 = {x[0], x[15:1]}; endfunction
9

10 // Add-three 1-bit vectors in parallel: returns {carry,sum}
11 // a+b+c = sum ˆ (2*carry) per bit
12 function automatic [31:0] add3_vec(input [15:0] a, input [15:0] b, input [15:0] c);
13 add3_vec[15:0] = a ˆ b ˆ c; // sum (LSB)
14 add3_vec[31:16] = (a & b) | (a & c) | (b & c); // carry (means +2)
15 endfunction
16
17 // --- Unpack rows (wires) ---
18 wire [15:0] row [15:0];
19 genvar ur;
20 generate
21 for (ur = 0; ur < 16; ur = ur + 1) begin : UNPACK
22 assign row[ur] = q[{ur[3:0], 4’b0000} +: 16];

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

23 end
24 endgenerate
25
26 // --- Precompute per-row horizontal neighbors (shared) ----------------------
27 wire [15:0] rol [15:0], ror [15:0];
28 wire [15:0] sTrip [15:0], cTrip [15:0]; // for (L,C,R) of each row (0..3)
29 wire [15:0] sPair [15:0], cPair [15:0]; // for (L,R) of each row (0..2)
30
31 genvar hr;
32 generate
33 for (hr = 0; hr < 16; hr = hr + 1) begin : HROW
34 assign rol[hr] = rol1(row[hr]);
35 assign ror[hr] = ror1(row[hr]);
36
37 // Triplet = left + center + right (encoded as s + 2*c)
38 wire [31:0] trip_pack = add3_vec(rol[hr], row[hr], ror[hr]);
39 assign sTrip[hr] = trip_pack[15:0];
40 assign cTrip[hr] = trip_pack[31:16];
41
42 // Pair = left + right
43 assign sPair[hr] = rol[hr] ˆ ror[hr];
44 assign cPair[hr] = rol[hr] & ror[hr];
45 end
46 endgenerate
47
48 integer r;
49 reg [255:0] nxt;
50
51 reg [3:0] rn, rp;
52 reg [15:0] sT, cT, sM, cM, sB, cB;
53 reg [15:0] sS, cS; // sum of (sT + sM + sB) as s + 2*c
54 reg [15:0] U_is0, U_ge2, U_is1; // onehot(U) for U = cS + cT + cM + cB
55 reg [15:0] is3, is2;
56
57 always @* begin
58 nxt = ’0;
59
60 for (r = 0; r < 16; r = r + 1) begin
61 rn = (r == 0) ? 4’d15 : r - 1;
62 rp = (r == 15) ? 4’d0 : r + 1;
63
64 sT = sTrip[rn]; cT = cTrip[rn]; // top triplet from row r-1
65 sM = sPair[r]; cM = cPair[r]; // middle pair (no center) from row r
66 sB = sTrip[rp]; cB = cTrip[rp]; // bottom triplet from row r+1
67
68 {cS, sS} = add3_vec(sT, sM, sB);
69
70 U_is0 = ˜(cS | cT | cM | cB);
71 U_ge2 = ((cS & cT) | (cS & cM) | (cS & cB)
72 | (cT & cM) | (cT & cB) | (cM & cB));
73 U_is1 = ˜(U_is0 | U_ge2);
74
75 is3 = sS & U_is1;
76 is2 = ˜sS & U_is1;
77
78 nxt[{r[3:0], 4’b0000} +: 16] = is3 | (row[r] & is2);
79 end
80 end
81
82 always @(posedge clk) begin
83 if (load)
84 q <= data;
85 else
86 q <= nxt;
87 end
88 endmodule

Our expert-written delay optimized solution: Parallel neighbor summation with carry-save adder
tree and direct decode for 2 and 3, for shallow critical path, leading to 37% delay reduction.

1 function automatic [7:0] idx(input [3:0] r, input [3:0] c);
2 idx = {r, c};
3 endfunction
4
5 function automatic [15:0] rol1(input [15:0] x); rol1 = {x[14:0], x[15]}; endfunction
6 function automatic [15:0] ror1(input [15:0] x); ror1 = {x[0], x[15:1]}; endfunction
7
8 function automatic [31:0] add3_vec(input [15:0] a, input [15:0] b, input [15:0] c);
9 add3_vec[15:0] = a ˆ b ˆ c; // s

10 add3_vec[31:16] = (a & b) | (a & c) | (b & c); // c (>=2)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

11 endfunction
12
13 integer r;
14 reg [255:0] nxt;
15
16 reg [3:0] rn, rp;
17 reg [15:0] ru, r0, rd;
18 reg [15:0] ru_l, ru_c, ru_r;
19 reg [15:0] r0_l, r0_r;
20 reg [15:0] rd_l, rd_c, rd_r;
21
22 reg [15:0] sT, cT, sM, cM, sB, cB, sS, cS;
23 reg [15:0] U_is0, U_ge2, U_is1; // onehot decode for U = cS+cT+cM+cB
24 reg [15:0] is3, is2; // neighbor count ==3 / ==2
25
26 always @* begin
27 nxt = ’0;
28
29 for (r = 0; r < 16; r = r + 1) begin
30 rn = (r == 0) ? 4’d15 : r - 1;
31 rp = (r == 15) ? 4’d0 : r + 1;
32
33 ru = q[{rn,4’b0000} +: 16];
34 r0 = q[{r ,4’b0000} +: 16];
35 rd = q[{rp,4’b0000} +: 16];
36
37 ru_l = rol1(ru); ru_c = ru; ru_r = ror1(ru);
38 r0_l = rol1(r0); r0_r = ror1(r0);
39 rd_l = rol1(rd); rd_c = rd; rd_r = ror1(rd);
40
41 {cT, sT} = add3_vec(ru_l, ru_c, ru_r); // counts 0..3
42 sM = (r0_l ˆ r0_r); // pair: 0..2
43 cM = (r0_l & r0_r);
44 {cB, sB} = add3_vec(rd_l, rd_c, rd_r);
45
46 {cS, sS} = add3_vec(sT, sM, sB);
47
48 U_is0 = ˜(cS | cT | cM | cB);
49 U_ge2 = ((cS & cT) | (cS & cM) | (cS & cB)
50 | (cT & cM) | (cT & cB) | (cM & cB));
51 U_is1 = ˜(U_is0 | U_ge2);
52
53 is3 = sS & U_is1;
54 is2 = ˜sS & U_is1;
55
56 nxt[{r[3:0],4’b0000} +: 16] = is3 | (r0 & is2);
57 end
58 end
59
60 always @(posedge clk) begin
61 if (load)
62 q <= data;
63 else
64 q <= nxt;
65 end
66 endmodule

A.4 SAMPLING DIVERSITY

In Figure 7, we show three LLM-generated Verilog modules of a parallel-in-serial-out shift register,
targeting area optimization, with normalized area efficiency values of 0.924, 0.963 and 1.0, respec-
tively. These samples illustrate how increasing k allows models to generate progressively better
implementations. The third sample avoids unnecessary counters and state tracking, reducing both
area and complexity.

A.5 PASS@K DEFINITION

The pass@k metric, defined in equation 3, is used for measuring the functional correctness of LLM-
generated code. Here, N is the total number of problems in the evaluation set, ni is the number
of samples generated for problem i, and ci is the number of functionally correct samples for that
problem.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

module opt_model #(parameter DATA_WIDTH = 32) (

 input clk,

 input resetn,

 input [DATA_WIDTH-1:0] din,

 input din_en,

 output logic dout

);

 reg [DATA_WIDTH-1:0] shift_reg;

 reg [$clog2(DATA_WIDTH)-1:0] bit_index;

 always @(posedge clk or negedge resetn) begin

 if (!resetn) begin

 shift_reg <= {DATA_WIDTH{1'b0}};

 bit_index <= 0;

 dout <= 1'b0;

 end else if (din_en) begin

 shift_reg <= din;

 bit_index <= 0;

 dout <= din[0];

 end else if (bit_index < DATA_WIDTH-1) begin

 dout <= shift_reg[bit_index + 1];

 bit_index <= bit_index + 1;

 end else begin

 dout <= 1'b0;

 end

 end

endmodule

(a) k = 1

module opt_model #(parameter DATA_WIDTH = 32) (

 input clk,

 input resetn,

 input [DATA_WIDTH-1:0] din,

 input din_en,

 output logic dout

);

 reg [DATA_WIDTH-1:0] shift_reg;

 reg [$clog2(DATA_WIDTH)-1:0] bit_index;

 always @(posedge clk) begin

 if (din_en) begin

 shift_reg <= din;

 bit_index <= 0;

 dout <= din[0];

 end else if (bit_index < DATA_WIDTH-1) begin

 dout <= shift_reg[bit_index + 1];

 bit_index <= bit_index + 1;

 end else begin

 dout <= 1'b0;

 end

 end

endmodule

(b) k = 5

module opt_model #(parameter DATA_WIDTH = 32) (

 input clk,

 input resetn,

 input [DATA_WIDTH-1:0] din,

 input din_en,

 output logic dout

);

 logic [DATA_WIDTH-1:0] temp;

 always @(posedge clk or negedge resetn) begin

 if (!resetn) begin

 temp <= 0;

 end else if (din_en) begin

 temp <= din;

 end else begin

 temp <= temp >> 1;

 end

 end

 assign dout = temp[0];

endmodule

(c) k = 10

Figure 7: Three area-optimized implementations of the piso shift register module (Prob-
lem #16) generated at k ∈ {1, 5, 10}. The circuit shifts the least significant bit of a multi-bit input
din to the single-bit output dout sequentially, starting when din en goes high. All designs are
functionally correct but structurally diverse.

pass@k = EN
i=1

[
1− C(ni − ci, k)

C(ni, k)

]
(3)

A.6 FAILURE ANALYSIS

In Figure. 8, we visualize the set of problems that heavy high pass@k and low eff@k to get better
insight on the set of problems that are hard to optimize.

Figure 8: Quadrant plot showing the correlation between functional correctness (Pass@1) and syn-
thesis efficiency (Eff@1) across area, delay, and power objectives.

23

	Introduction
	Related Work
	Pluto Benchmark
	Data Construction
	Optimization Workflow
	Efficiency Metrics

	Evaluation Results
	Main Results
	Ablation Studies
	Synthesis Tool and Technology Agnosticism
	Synthesis Optimization Strategies

	Failure Analysis and Insights
	Conclusion
	Appendix
	Unoptimized Code and Testbench for Problem #17 (Trailing Zeros) in Figure 1
	Unoptimized Code
	Self-Checking Testbench

	Optimization Strategies
	Code of Example Problems in Table 2
	Problem #60: RTLLM ALU
	Problem #68: RTLLM FSM
	Problem #87: VerilogEval Prob095
	Problem #104: VerilogEval Prob136

	Sampling Diversity
	Pass@k Definition
	Failure Analysis

