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ABSTRACT

Solving Traveling Salesman Problem (TSP) is NP-hard yet fundamental for wide
real-world applications. Classical exact methods face challenges in scaling, and
heuristic methods often require domain-specific parameter calibration. While
learning-based approaches have shown promise, they suffer from poor generaliza-
tion and limited scalability due to fixed training data. This work proposes ViTSP, a
novel framework that leverages pre-trained vision language models (VLMs) to visu-
ally guide the solution process for large-scale TSPs. The VLMs function to identify
promising small-scale subproblems from a visualized TSP instance, which are then
efficiently optimized using an off-the-shelf solver to improve the global solution.
ViTSP bypasses the dedicated model training at the user end while maintaining
effectiveness across diverse instances. Experiments on real-world TSP instances
ranging from 1k to 88k nodes demonstrate that ViTSP consistently achieves solu-
tions with average optimality gaps below 0.2%, outperforming existing learning-
based methods. Under the same runtime budget, it surpasses the best-performing
heuristic solver, LKH-3, by reducing its gaps by 12% to 100%, particularly on
very-large-scale instances with more than 10k nodes. Our framework offers a new
perspective in hybridizing pre-trained generative models and operations research
solvers in solving combinatorial optimization problems, with practical implica-
tions for integration into more complex logistics systems. The code is available at
https://anonymous.4open.science/r/ViTSP_codes-6683.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) is a fundamental combinatorial optimization (CO) problem
with broad real-world applications, including transportation, logistics, and chip design (Applegate,
2006; Yin et al., 2023). Efficiently solving TSPs not only yields economical and societal benefits
across those domains but also informs the development of solution strategies for other CO problems.
The operations research (OR) community has developed numerous exact and heuristic algorithms to
address this NP-hard problem (Davendra, 2010). However, exact methods often struggle to produce
high-quality solutions as the problem size increases. Heuristic algorithms offer faster approximate
solutions, yet their effectiveness depends on domain-specific knowledge and careful calibration
of instance-specific parameters.

Advances of machine learning (ML) have led to various learning-based approaches for solving
TSPs (referred to as neural solvers), including end-to-end models for solution construction (Vaswani
et al., 2017; Jin et al., 2023; Sun & Yang, 2023; Li et al., 2024) and learned neural strategies for
local improvement (Zong et al., 2022; Cheng et al., 2023; Ye et al., 2023; 2024b; Zheng et al.,
2024). These methods are shown to shorten the computation time and maintain good solutions for
in-distribution, small-scale instances (nodes < 1,000) (Wu et al., 2024). However, they suffer from
poor generalization and limited scalability as soon as the real-world problem deviates from the
training data.

The surge of pre-trained large language models (LLMs) and vision language models (VLMs) has
raised interest in their potential for tackling optimization problems. Their efforts mainly focused
on end-to-end construction of text-based solutions (Yang et al., 2023; Elhenawy et al., 2024) or
on heuristic designs (Ye et al., 2024a; Liu et al., 2024) that rely solely on textual information of
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TSP instances. While these studies open new perspectives on using generative models to rethink
optimization, their approaches fall short of demonstrating reliable performance on large-scale
practical TSPs (Khan & Hamad, 2024)

In this study, we reconsider how recent advances of pre-trained generative models can effectively
complement established OR techniques for solving varying large-scale TSP instances to facilitate
broader application domains. We leverage pre-trained VLMs to provide adaptive decomposition
heuristics that integrate directly into the optimization routine. Effective decomposition must account
not only for spatial locality but also for combinatorial neighborhoods that help escape local optima.
VLMs are well-suited for this task, as they can interpret instance-specific spatial structures by treating
TSP instances as 2D images, enabling more informed selection of subproblems. Importantly, unlike
ML approaches that require domain-specific training and graph embeddings, VLMs offer generic
reasoning capabilities that avoid costly data collection or retraining. Furthermore, the subproblems,
being smaller than their original TSP, can be reliably solved by exact solvers, avoiding performance
degradation often experienced in learned neural solvers (Joshi et al., 2022; Wu et al., 2024).

We propose ViTSP, a Vision-guided framework for solving large-scale TSP. In ViTSP, VLMs guide
the optimization process by identifying meaningful subproblems from visualized TSP instances,
while an off-the-shelf solver continuously refines those subproblems. ViTSP orchestrates the two
modules asynchronously to accommodate input/output (I/O) intensive VLMs and CPU-intensive
solvers. On unseen TSPLIB (Reinelt, 1991) instances ranging from 1k to 88k, ViTSP finds the
global optimum in 11 out of 33 instances and outperforms baseline learning-based methods, whose
performance degrades significantly compared to their reported in-distribution results. Compared to
the best-performing heuristic solver, LKH-3, ViTSP converges to superior solutions under the same
time budget and reduces optimality gaps by 12% to 100%. Our key contributions in this study are
summarized below:

1. We propose a vision-guided solution framework ViTSP that hybridizes VLMs and off-the-
shelf solvers to reach strong performance. ViTSP is able to adapt to TSP instances with
varying compositions.

2. Our approach leverages pre-trained VLMs to visually derive decomposition heuristics while
bypassing the costly and time-consuming training and data curation for edge deployment.

3. We conduct experiments on (very-)large-scale instances to validate the effectiveness of
ViTSP. The ablation studies further underpinned ViTSP’s ability to perform principled
guidance. To the best of our knowledge, our work presents one of the most comprehensive
evaluations of real-world TSPLIB instances with N > 1000, whereas few prior works
reported sufficient results at this scale.

2 RELATED WORKS

Existing approaches to solving large-scale TSP can be categorized into three primary schemes: (1)
OR approaches, (2) learning-based approaches, and (3) LLM/VLM-based approaches. We briefly
review these works in this section, and we supplement the detailed discussion in the Appendix B.

2.1 OR APPROACHES

Exact algorithms typically require explicit mathematical formulations and search for exact solutions
via branch and bound procedures (Laporte, 1992; Wolsey, 2020). Off-the-shelf exact solvers, such
as Concorde, Gurobi, and OR-Tools, have the potential to reach global optimality. Among them,
Concorde remains the state-of-the-art (SOTA), using specialized rules to speed up the search process.
However, the computation of exact solvers becomes intractable as the problem size increases.

Heuristic algorithms, such as farthest insertion (Rosenkrantz et al., 1974), genetic algorithm (Holland,
1992), and Lin-Kernighan-Helsgaun-3 (LKH-3) (Helsgaun, 2017), iteratively refine solutions based
on hand-crafted rules. LKH-3 is regarded as the SOTA in solving TSPs. However, LKH-3 relies on
tunable parameters, such as the number of total runs and candidate edges. Without domain knowledge
and instance-specific calibration, achieving strong performance is often non-trivial. According to
Adenso-Díaz & Laguna (2006), only about 10% of the effort in developing and testing heuristics or
metaheuristics goes into designing it, with the remaining 90% spent in parameter tuning.

2.2 LEARNING-BASED APPROACHES

Learning-based approaches for solving CO problems have gained wide attention since the surge
of deep learning. These works commonly employ graph neural networks to embed TSP instances.
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The networks are trained using either supervised learning, which requires high-quality solutions
from exact or heuristic methods as labels, or reinforcement learning, which relies on extensive
trial-and-error (Fu et al., 2021). Existing works mainly deploy trained networks under two paradigms.

End-to-end construction. This paradigm seeks to learn a policy to directly construct a solution,
using either autoregressive or non-autoregressive (heatmap-based) schemes. The autoregressive
scheme trains attention-based neural networks (Vaswani et al., 2017; Kwon et al., 2020; Jin et al.,
2023). The network sequentially constructs solutions by outputting one node at a time, with previous
outputs incorporated into the network to guide the generation of subsequent nodes (Deudon et al.,
2018; Kool et al., 2019). In contrast, the non-autoregressive approaches, such as Qiu et al. (2022);
Sun & Yang (2023); Li et al. (2023; 2024), estimate the likelihood of connecting each edge between
nodes and construct the solution in one shot.

Local improvement. This paradigm iteratively updates solutions using learned policies in two
ways. First, it repeatedly selects partial problems or decomposes the whole problem into separate
subproblems, and reconstructs them using a separate neural solver or an OR solver (Li et al., 2021;
Fu et al., 2021; Zong et al., 2022; Cheng et al., 2023; Pan et al., 2023; Ye et al., 2024b; Zheng et al.,
2024). Second, it learns to predict stepwise searching to assist existing OR algorithms (Xin et al.,
2021; Hudson et al., 2022; Zheng et al., 2022; Wu et al., 2022; Ye et al., 2023; Ma et al., 2023).

Despite promising in-distribution performance presented, specialized learning-based approaches
often fall short in handling out-of-distribution (OOD) instances since their neural networks were
trained on fixed datasets (Li & Zhang, 2025). Therefore, they often fail to compete with the reliability
of established OR solvers. Such limitations hinder their applicability at a practical scale. In fact, few
studies have evaluated OOD performance on open-source TSPLIB instances with more than 5,000
nodes (Reinelt, 1991), limiting our understanding of their robustness in real-world scenarios.

2.3 LLMS/VLMS-BASED APPROACHES

The surge of pre-trained LLMs/VLMs has drawn wide attention for optimization problems, including
TSP. Yang et al. (2023) treats node coordinates as text input and prompts LLMs to output solutions,
but the resulting solutions exhibit large optimality gaps even on small instances (i.e., N = 50). Another
approach in Elhenawy et al. (2024) uses TSP images and relies on the VLMs to read node indices
to construct tours. This design has limited scalability, as densely distributed nodes make it difficult
for the VLMs to correctly recognize node indices. Liu et al. (2024) prompts LLMs for automatic
heuristics design and translates them into code. However, their text-only framework overlooks
instance-specific spatial structure. Consequently, their standalone strategy exhibits large variance in
optimality gaps when applied to varying TSPs, limiting their reliability for practical use.

3 METHODS

We reposition VLMs from unreliable end-to-end solvers to practical complements that can be
integrated with established OR tools in building scalable optimization routines. In contrast to graph-
based neural solvers, which demand extensive training and still struggle to generalize, we leverage
the generic multi-modal reasoning of VLMs to process TSP as an image, enabling them to interpret
spatial structures and provide adaptive decompositions without task-specific training.

Building on this motivation, we propose the ViTSP framework (Figure 1), which integrates VLM
guidance into the optimization pipeline through three key modules: solution initialization, visual
selection, and subproblem optimization. Starting from an initial solution for a given TSP instance
(Sec 3.2 in Figure 1), VLMs identify box coordinates that delineate promising subproblems for further
refinement based on the visualized TSP solution (Sec 3.3 in Figure 1). The exact solver iteratively
optimizes returned subproblems to improve global solutions (Sec 3.4 in Figure 1). Iteratively
solving subproblems allows certain subproblems to be optimized combinatorially under varying
neighborhoods to escape local optima.

Since visual selection and subproblem optimization have distinct computational overheads, ViTSP co-
ordinates their outputs asynchronously via a shared global solution, trajectory history, and subproblem
queue to minimize the idle time in the subproblem optimization (Sec 3.5 in Figure 1).

The key advantages that ensure the effectiveness and scalability of our approach are threefold:
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Solvers

VLMs

Solution initialization (Sec 3.2)

Instruction + Trajectory

Visual selection of subproblems (Sec 3.3) 

Trajectory pool ΦGlobal solution Π∗

…

Subproblem queue Ω

…

Asynchronous orchestration (Sec 3.5) 

Subproblem optimization (Sec 3.4) 

…

Node Original route

Selected region

Fixed segment

Merged super node Removed route

Optimized route

Visual prompt Text prompt

Vision language model

Off-the-shelf solverSubproblem job

I/O-intensive

CPU-intensive

Figure 1: The vision-guided framework (ViTSP) for large-scale TSP, where pre-trained VLMs and off-
the-shelf solvers are asynchronously coordinated to identify and optimize subproblems, respectively.

1. We leverage the pre-trained models to provide a decomposition-like heuristic rather than an
error-prone end-to-end solution construction. As strong generalists for user-specified tasks,
these models eliminate the need for ad hoc (re-)training during real-world deployment.

2. Visually guiding the selection of box regions is scalable, as they rely on spatial coordinates
that remain consistent even as the TSP instance grows in size.

3. We reformulate the identified subproblems as standard TSPs. This allows us to harness the
robust exact solvers, guaranteeing high-quality improvement to the global solution.

3.1 PRELIMINARY: TRAVELING SALESMAN PROBLEM (TSP)

We briefly introduce the TSP in this section and provide detailed notations and descriptions in the
Appendix A. A TSP is characterized by a list of nodes and the corresponding coordinate sets or the
distance matrix. The goal of TSP is to find an optimal tour Π ∗ that departs from an initial node, visits
each node exactly once, and returns to the starting node, which minimizes the total distance traveled
L(Π ∗). Notably, when the distance between two nodes is identical in both directions, the problem is
known as symmetric TSP (STSP). In contrast, asymmetric TSP (ATSP) allows for different distances
between certain node pairs in opposite directions.

3.2 SOLUTION INITIALIZATION

The ViTSP is warm-started using heuristic solvers. Critically, to effectively handle OOD instances,
ViTSP avoids extensive parameter tuning and instead uses the default settings of the solver. This elim-
inates the dependency on prior domain knowledge that would otherwise hinder ViTSP’s adaptability
to varying instances.

3.3 VISUAL SELECTION OF SUBPROBLEMS BY VLMS

In the visual selection module Fselector(·), we prompt VLMs to select box regions and then formulate
them as subproblems. We provide an overview of multimodal prompts and expected outputs, and
defer the detailed example prompts in Appendix C. The pseudocode for the visual selection process
is detailed in Algorithm 1 in Appendix D.

Visual prompts. Given a TSP instance, we plot its nodes and their current connections on an image
based on their 2D coordinates and the global solution Π. This image is input to VLMs as a visual
prompt. An example of such visual input is illustrated in Figure 4 of Appendix C.

Textual prompts. We specify three types of information as textual inputs to an VLM: (1) meta-
instructions I , detailing the subproblem selection task description and the expected output format;
(2) selection trajectories Φ = {ϕ1, ϕ2, ...}, served as memory to address the stateless nature of
API-based VLM calls. Each trajectory entry ϕi includes a selected subproblem, the number of
nodes within this subproblem, the solution gain through optimization, and the solver’s runtime. The
selection trajectories from earlier steps reveal instance-specific structures as the solving progresses,
which informs VLMs to make better subsequent selections (Yang et al., 2023; Laskin et al., 2023;
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Monea et al., 2024; Moeini et al., 2025); (3) Pending subproblems Ω = {ω1, ω2, ...}, indicating
identified yet unsolved subproblems that remain in the queue. This avoids duplicated subproblems
selected by VLMs.

Image-level output. The VLM is prompted to generate a quadruple C = (xmin, xmax, ymin, ymax)
as a textual response. This quadruple represents the coordinates of a box region at the image level.
As generative models, VLMs can be flexibly tailored to generate Q coordinate sets C1, C2, . . . , CQ

per response (where Q ≥ 2). We will leverage these multiple-subproblem outputs during module
orchestration as described in Section 3.5.

Forming a subproblem. Given the current global solution Π, connections to the covered nodes within
a given box region are removed, leading to a list of free nodes W = {w1, w2, ..., w|W |}. The remain-
ing connected nodes outside of the box form segments K = {(π1

1 , . . . , π
1
c1), . . . , (π

|K|
1 , . . . , π

|K|
c|K|)},

where (πk
1 , . . . , π

k
ck
) denotes the k-th segment containing |ck| connected nodes; and πk

1 and πk
ck

denote the starting and ending nodes in the k-th segment, respectively. As a result, the visual selection
module produces a subproblem ω = (W,K).

Zoom-in reselection. ViTSP employs a zoom-in reselection to ensure scalability on very large-scale
TSPs. Because such instances often exhibit highly dense node distributions, making connections in
the initial visualization less discernible. To address this, a second round of selection is performed on
the initially identified subregion bounded by C. If the number of nodes |W | covered by the subregion
exceeds a predefined threshold α, the VLM zooms into it to examine the finer-grained pattern and
identify a new quadruple C ′.

3.4 SUBPROBLEM OPTIMIZATION

Rather than training a dedicated neural solver to optimize selected subproblems separately, as in prior
works that adopt the local improvement paradigm (Cheng et al., 2023; Pan et al., 2023; Zheng et al.,
2024), we transform the formulated subproblem ω = (W,K) into a standard symmetric TSP (STSP).
As existing exact solvers are primarily designed for STSP, this reformulation allows us to leverage
solvers to obtain a globally feasible solution with guaranteed quality.
3.4.1 REFORMULATING SUBPROBLEMS

During subproblem optimization, free nodes are reconnected either to other free nodes or to existing
segments. Similarly, connections within each segment are preserved from the solution Π, while the
links between the segment’s endpoints and the rest of the segments or free nodes are refined. By
aggregating each segment (πk

1 , . . . , π
k
ck
) into a super node sk, we construct a new list of nodes of

size |K| + |W |, denoted as {s1, ..., s|K|, w1, ..., w|W |}. This updated node list leads to a partially
asymmetric TSP (ATSP), characterized by an asymmetric block distance matrix:

DATSP =

[
D|K|×|K| D|K|×|W |
D|W |×|K| D|W |×|W |

]
(|W |+|K|)×(|W |+|K|)

where D|W |×|W | contains symmetric distances dwi,wj
between free nodes. The submatrices

D|W |×|K|, D|K|×|W |, and D|K|×|K| are the root of asymmetry. D|W |×|K| contains distances dwi,πk
1

from free nodes to the starting nodes of fixed segments, whereas D|K|×|W | represents distances
dπk

ck
,wi

from the ending nodes of fixed segments to free nodes; D|K|×|K| indicates the distances
dπk

ck
,πk

1
from the ending nodes of fixed segments to the starting nodes of other segments.

We further transform this partially ATSP into a standard STSP to make it compatible with the
solver. Following the approaches in Jonker & Volgenant (1983); Cirasella et al. (2001), the trans-
formation introduces a dummy node s′k for each node sk in the ATSP, expanding the node set to
{s1, ..., s|K|, s

′
1, ..., s

′
|K|, w1, ..., w|M |}. The resulting STSP is characterized by a symmetric block

distance matrix:

DSTSP =

 ∞ DT
|W |×|K| D̂T

|K|×|K|
D|W |×|K| D|W |×|W | DT

|K|×|W |
D̂|K|×|K| D|K|×|W | ∞


(|W |+2|K|)×(|W |+2|K|)

where the diagonal of D̂|K|×|K| is set to be a small enough value compared to the original D|K|×|K|,
which encourages the super nodes k and their corresponding dummy nodes k + |W | to be adjacently
connected during the optimization.
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3.4.2 SOLVING AND RECOVERING THE SOLUTION FOR THE ORIGINAL TSP

The solver optimizes an STSP using its DSTSP and produces an optimal solution Π ∗
STSP . The

output solution Π ∗
STSP is then recovered into the corresponding ATSP solution Π ∗

ATSP by directly
removing all dummy nodes in the solution Π ∗

STSP . Furthermore, each super node sk ∈ Π ∗
ATSP is

unfolded into its original segment (πk
1 , . . . , π

k
ck
). This recovery process results in an updated solution

for the original TSP conditioned on the identified subproblem ω: Π∗ = Fsolver(DSTSP , Tmax | ω),
where Tmax is the runtime limit set for the exact solvers. The time limit Tmax forces the solver to
stop improving lower bounds and return the best incumbent solutions. This prevents the solver from
getting stuck on certain subproblems for an excessively long time. We use the hill-climbing rule in
accepting this new solution if it reaches a lower objective value than the current solution.

3.5 ASYNCHRONOUS ORCHESTRATION

The visual selection module Fselector(·) is I/O intensive, dominated by waiting for responses from
the VLM server, whereas the exact solver module Fsolver(·) is CPU-intensive. Due to their distinct
computational profiles, sequential execution easily leaves solvers idle while waiting for VLM’s
sections. To address this, ViTSP executes the optimization and selection modules asynchronously
on multi-core CPU systems, assigning them to separate cores and coordinating through three shared
components: global solution Π, trajectory pool Φ, and subproblem queue Ω. These components
provide the necessary contextual information required for module execution.

To further improve efficiency, ViTSP deploys multiple VLMs and solvers. On the selection side, we
employ both fast-thinking and reasoning VLMs, leveraging pre-trained models with complementary
strengths (Shen et al., 2023; Snell et al., 2024; Kumar et al., 2025). Each single VLM is elicited to
generate Q coordinate sets {C1, C2, ..., CQ} per prompt, where Q ≥ 2.

On the optimization side, multiple identical solvers retrieve and optimize subproblems from the
shared queue in parallel, ensuring that newly generated subproblems are not left unprocessed. To
mitigate conflicts in updating global solutions, ViTSP assigns P slave solvers to optimize and screen
the retrieved subproblems, while a single master is permitted to update Π. Slave solvers discard
subproblems without improvements, while those yielding net gains are forwarded to the master solver
for refining Π. The process continues iteratively until no improvement is observed in K consecutive
steps. Detailed pseudocode is provided in Algorithm 2 in Appendix E.

4 EXPERIMENTS AND RESULTS ANALYSIS

4.1 EXPERIMENTAL SETUPS

Evaluation datasets. To comprehensively assess the performance of ViTSP, this work used TSP
instances from TSPLIB (Reinelt, 1991) and a synthetic TSP-10K dataset with uniformly distributed
nodes as primary evaluation datasets. The synthetic dataset contains 16 instances, following (Fang
et al., 2024). TSPLIB offers a wide range of real-world instances for TSP, covering diverse distribu-
tions and scales. Moreover, Reinelt (2007) provides proven optimality for instances, enabling
the measurement of optimality gaps even at very large scales. We chose TSP instances with
N ≥ 1, 000 from the dataset to represent (very-)large-scale problems, where exact solvers be-
gin to struggle. This results in 33 TSPLIB instances. These instances follow a naming format of
[keywords][number of nodes], such as pla85900. Instances with the same keywords are
from the same application domain. Notably, since our framework does not require additional training
or fine-tuning during implementation, we do not curate any training dataset.

None of the TSPLIB instances has been exposed to the baseline learning-based algorithms during their
training phase. This ensures a fair evaluation of generalizability and scalability across all baselines.
To the best of our knowledge, our work provides one of the most comprehensive evaluations on this
real-world benchmark dataset, offering a thorough assessment of the proposed ViTSP.

Evaluation metrics. We used two metrics to measure the performance of algorithms: (1) Optimality
gaps (%); and (2) Runtime (in seconds). We used the reported proven optimal objective values
L∗ (total distance traveled) for TSPLIB instances in Reinelt (2007) as reference and the gap is
calculated as: LModel−L∗

L∗ × 100%, where LModel is the objective value produced by a baseline model.
The recorded wall-clock runtime of ViTSP explicitly includes (1) the LKH initialization, (2) all VLM
API waiting and latency, and (3) the Concorde solving time for subproblems. Thus, our reported time
reflects the actual end-to-end wall time required by ViTSP in real-world settings.
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ViTSP setups. In the initialization module, we used LKH-3 with its default parameter settings to
warm start the ViTSP. In the visual selection module, we employed GPT-4.1 (fast thinking VLM) and
o4-mini (reasoning VLM) as the selectors in this study. We set the number of subproblems generated
per prompt Q = 2. In the subproblem optimization module, Concorde, the SOTA exact solver, was
utilized as the subproblem solver. ViTSP terminates when no improvement is observed in K = 5
consecutive steps, and the duration from initialization to termination is recorded as runtime. We
ran ViTSP for five runs and obtained the average gaps and runtimes. For more detailed parameter
configurations, please refer to Section F.5 in Appendix F.

Baselines. We compared our ViTSP against both classical OR approaches and learning-based
approaches. Specifically, we applied the following ten baselines: (1) Concorde; (2) LKH-3 (Default);
(3) LKH-3 (more RUNS) (4) FI; (5) AM; (6) DIFUSCO; (7) INViT; (8) SIT; (9) DeepACO; (10)
SO; (11) UDC; (12) EoH. Their description and implementation are provided in the Appendix F.

The selected learning-based approaches include both end-to-end solution construction methods and
local improvement techniques that match the decomposition heuristics used in this study. They either
provided open-source code and pre-trained checkpoints or reported results on TSPLIB instances
(e.g., SO). The selected EoH produced applicable results on large-scale instances, whereas other
LLM-based approaches, such as Yang et al. (2023); Elhenawy et al. (2024), failed to generate valid
solutions even on small-scale cases and were therefore not included as baselines in this study.

We align the runtime across baselines to ensure fair comparison. In addition to using the default
parameter values of LKH-3, we introduce LKH-3 (more RUNS), where the RUNS value is increased
to match LKH-3’s runtime with that of ViTSP on each instance. Similarly, Concorde, DeepACO,
UDC, and EoH are run with the same or slightly longer time limit as ViTSP. For FI, runtime is
deterministic with respect to instance size. End-to-end methods (AM, DIFUSCO, and INViT) also
have deterministic runtimes, as they perform only a single feedforward inference. When running
synthetic TSP-10K, we set the timelimit as 600 s to compare baselines’ performances.

Hardware. We used an AMD EPYC 7443 24-Core CPU and an Nvidia L40 GPU with 48GB memory
to implement our work and baseline algorithms. In ViTSP, the VLMs were accessed on demand
online. Their usage did not rely on local GPU resources but was confined by the I/O rate.

4.2 MAIN RESULTS

Performance comparison results are summarized in Tables 1 and 2, reporting runtime (in seconds) and
optimality gaps with the lowest gaps highlighted. The results of ViTSP are averaged over five runs.
Since ViTSP is warm-started from LKH-3 (Default), we further illustrate the reduction of optimality
gaps over time between ViTSP and LKH-3 on selected instances of different scales in Figure 2. This
comparison highlights ViTSP’s ability to improve solutions beyond what LKH-3 can achieve given
additional time. We present the complete results for optimality gap reduction over time across all
TSPLIB instances between ViTSP and LKH-3 in Appendix G. The selected box regions yielding gap
reductions by VLMs are illustrated in Appendix H.

Overall, ViTSP achieves an average gap of 0.19% across all instances while LKH-3 (more RUNS) has
an average gap of 0.31%. Surprisingly, ViTSP attains the global optimum in 11 out of 33 instances 1

with 1000 ≤ N < 2, 500, despite being an approximate approach. In 6 of these 11 cases 2, it reaches
optimality faster than Concorde, which in some cases has not yet reached the optimal solution within
the same time limit.

Figure 2: Optimality gaps over time on selected instances between ViTSP and LKH-3 (more RUNS).
1These 11 instances are dsj1000, pr1002, u1060, vm1084, rl1323, nrw1379,u1432, and fl1577,

d1655, rl1889, and pr2392.
2These 6 instances are u1060, vm1084, rl1323, u1432, fl1577, and rl1889.
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Table 1: Performance comparison on 33 TSPLIB instances (1000 ≤ n < 4000).
dsj1000 pr1002 u1060 vm1084 pcb1173 d1291 rl1304 rl1323 nrw1379 fl1400 u1432

Time(s) 46.2 8.3 106.7 57.5 50.2 252.5 25.8 122.3 45.7 115.4 111.8Concorde Gap 0.00% 0.00% 0.00% 0.00% 0.00% 0.65% 0.00% 0.03% 0.00% 0.24% 0.03%
Time(s) 1.9 2.0 2.0 2.1 2.2 2.5 2.7 2.7 3.4 4.5 3.8LKH-3

(Default) Gap 0.17% 0.47% 0.53% 0.12% 1.04% 0.61% 0.55% 0.21% 0.61% 0.19% 0.54%
Time(s) 20.5 95.1 100.4 22.9 93.0 248.8 45.9 64.8 162.4 75.0 95.6LKH-3

(RUNS) Gap 0.00% 0.00% 0.01% 0.00% 0.01% 0.00% 0.00% 0.05% 0.01% 0.18% 0.03%
Time(s) 0.4 0.4 0.5 0.4 0.5 0.7 0.6 0.7 0.8 0.8 0.8FI Gap 11.23% 10.30% 12.45% 9.51% 15.27% 21.50% 22.99% 20.78% 11.29% 4.17% 12.71%

Time(s) 0.8 0.7 0.8 0.8 0.9 1.0 1.0 1.1 1.1 1.1 1.1AM (G) Gap 41.43% 40.57% 56.78% 44.05% 41.71% 48.82% 38.22% 42.85% 37.74% 63.15% 37.27%
Time(s) 23.6 23.1 23.9 25.8 29.3 31.9 33.1 34.7 36.1 33.1 37.4DIFUSCO

(S + 2-opt) Gap 7.83% 9.04% 7.52% 6.18% 9.26% 9.70% 9.22% 8.23% 9.70% 4.48% 8.84%
Time(s) 7.6 6.5 6.7 6.5 8.1 8.7 8.3 8.4 10.0 8.7 10.1INViT Gap 8.65% 10.55% 9.74% 6.61% 6.85% 8.92% 8.97% 8.33% 6.57% 13.86% 5.09%
Time(s) 70.1 66.0 57.2 38.9 124.3 169.2 27.4 95.7 104.8 54.1 83.5SIT Gap 1.21% 1.13% 1.33% 0.83% 1.54% 4.33% 1.51% 1.35% 1.55% 4.52% 2.28%

Time(s) 165.1 164.1 167.0 171.9 185.5 199.7 200.6 200.8 209.8 215.7 213.4DeepACO Gap 21.51% 20.96% 37.97% 34.59% 20.40% 24.85% 35.00% 29.60% 18.92% 45.59% 14.75%
Time(s) 35.0 35.0 38.0 42.0 42.0 44.0 45.0SO Gap N/A N/A 2.21% 2.20% 2.87% N/A 6.76% 4.21% 1.63% 1.96% N/A

Time(s) 47.0 91.5 65.2 53.2 140.6 242.8 42.1 123.2 148.6 70.2 89.2UDC Gap 15.36% 18.75% 32.81% 29.28% 20.70% 25.30% 28.29% 18.01% 18.94% 33.57% 17.33%

Time(s) 48.1 93.2 62.7 53.8 137.7 245.3 41.9 123.5 146.2 69.8 87.4EoH Gap 448.08% 56.86% 596.53% 6.47% 104.29% 18.31% 89.73% 50.14% 94.52% 26.38% 35.39%

Time(s) 69.6 65.0 57.1 38.5 124.3 168.6 27.2 95.6 104.6 53.9 83.2ViTSP Gap 0.02% 0.01% 0.00% 0.00% 0.16% 0.15% 0.14% 0.03% 0.00% 0.18% 0.03%

fl1577 d1655 vm1748 u1817 rl1889 d2103 u2152 u2319 pr2392 pcb3038 fl3795

Time(s) 262.7 24.4 189.4 199.8 112.3 100.0 314.7 443.9 13.1 390.6 600.0Concorde Gap 1.52% 0.00% 0.05% 0.34% 0.09% 1.47% 0.25% 0.11% 0.00% 0.11% 0.44%
Time(s) 4.0 4.5 5.3 5.1 6.1 6.1 7.4 10.7 11.4 15.3 25.1LKH-3

(Default) Gap 0.25% 0.80% 0.55% 1.11% 0.57% 0.54% 0.95% 0.32% 1.08% 1.20% 1.73%
Time(s) 16.3 150.0 180.0 202.3 118.8 104.5 331.5 316.4 282.1 407.6 527.4LKH-3

(RUNS) Gap 0.00% 0.00% 0.12% 0.15% 0.06% 0.00% 0.09% 0.08% 0.03% 0.12% 0.67%
Time(s) 1.0 1.2 1.2 1.3 1.4 1.7 1.8 2.1 2.4 4.0 5.6FI Gap 17.61% 15.41% 11.90% 18.10% 17.63% 23.57% 20.65% 6.54% 13.71% 14.92% 17.57%

Time(s) 1.3 1.4 1.5 1.6 1.7 1.9 1.9 2.2 2.1 3.1 4.3AM (G) Gap 51.92% 61.15% 49.56% 56.51% 49.57% 55.48% 66.28% 29.92% 62.35% 62.33% 84.55%
Time(s) 44.3 46.2 53.8 55.9 61.4 77.8 79.1 94.8 111.2 214.1 327.3DIFUSCO

(S + 2-opt) Gap 7.66% 10.33% 8.93% 13.47% 8.53% 12.65% 13.94% 5.72% 10.74% 10.95% 6.98%
Time(s) 10.7 12.7 11.8 13.4 13.1 15.9 17.1 18.8 20.7 30.0 36.4INViT Gap 7.65% 11.54% 8.26% 8.32% 10.03% 7.74% 7.11% 0.93% 8.12% 7.85% 15.13%
Time(s) 59.0 111.6 163.1 180.3 89.2 84.5 238.5 245.1 187.8 336.6 252.7SIT Gap 5.04% 5.36% 1.17% 2.28% 4.01% 5.60% 4.21% 0.22% 1.12% 1.95% 7.55%

Time(s) 236.8 241.7 250.8 262.9 276.3 296.3 299.0 321.1 333.6 418.0 506.7DeepACO Gap 42.74% 25.46% 34.78% 25.78% 42.15% 19.32% 24.52% 11.12% 30.43% 24.71% 103.56%
Time(s) 51.0 53 58.0 71.0 66.0 93.0 121.0SO Gap 4.42% N/A 3.61% N/A 4.63% 8.32% 4.91% N/A N/A 2.67% 5.49%
Time(s) 93.2 146.8 178.3 198.5 108.9 95.4 312.5 265.1 248.9 364.5UDC Gap 24.94% 19.55% 33.24% 24.43% 36.28% 15.79% 27.32% 21.52% 28.25% 26.98% OOM

Time(s) 92.5 147.2 179.6 198.7 108.3 95.3 311.6 265.7 249.2 365.5 304.1EoH Gap 181.75% 26.82% 3.47% 18.07% 515.05% 279.06% 57.30% 50.31% 11.71% 33.82% 59.46%

Time(s) 58.9 111.2 162.8 180.0 89.0 84.0 238.3 244.9 187.6 336.3 252.4ViTSP Gap 0.00% 0.00% 0.05% 0.24% 0.03% 0.39% 0.08% 0.06% 0.09% 0.09% 0.57%

ViTSP outperforms LKH-3 in 20 out of 33 instances under the same time budget. In relative to the
optimality gaps of LKH-3, ViTSP further reduced gaps by 12.05% to 100.00%3. The best performance
reached by ViTSP are highlighted in yellow in Tables 1 and 2. Figure 2 further illustrates how both
methods reduce optimality gaps over time. As the SOTA heuristic, LKH-3 remains highly efficient
for instances with 1, 000 < N < 3, 000. When given a small amount of additional runtime beyond its
default settings, LKH-3 reduces optimality gaps more rapidly than ViTSP in the early phase. However,
its improvement quickly plateaus, whereas ViTSP continues to improve and eventually surpasses
or matches (both reaching a 0% gap) LKH-3. As the problem size increases beyond 4, 000, ViTSP
significantly speeds up the reduction of optimality gaps compared to LKH-3.

Learning-based methods struggle to generalize their learned policies to OOD instances, leading
to inferior performance compared to ViTSP. Large gaps remain across the baselines, which impair
their utilization at a practical scale. For example, despite their claimed speedup, AM and DeepACO
even underperform the simple heuristic algorithm FI, demonstrating their brittleness when no model

3A 100% reduction indicates ViTSP has reached the global optimum whereas LKH-3 has not.
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Table 2: Performance comparison on 33 TSPLIB instances (4000 < n ≤ 85900).
fnl4461 rl5915 rl5934 pla7397 rl11849 usa13509 brd14051 d15112 d18512 pla33810 pla85900

Time(s) 305.0 550.0 266.0 671.3 1000.0 960.0 1742.0 2500.0 2941.0Concorde Gap 0.30% 0.67% 0.89% 0.48% 0.85% 0.48% 0.49% 0.44% 0.57% Failed Failed

Time(s) 39.8 63.3 64.0 92.0 311.8 382.9 417.5 524.3 728.2 2079.7 22344.0LKH-3
(Default) Gap 0.96% 1.96% 1.56% 0.83% 1.75% 1.25% 1.18% 1.22% 1.29% 1.43% 1.31%

Time(s) 292.9 549.3 548.1 673.5 1014.4 979.3 1908.5 2974.5 3176.2 8237.9 33966.5LKH-3
(RUNS) Gap 0.45% 0.73% 0.47% 0.29% 1.06% 0.81% 0.82% 0.84% 0.94% 1.00% 1.13%

Time(s) 8.85 14.96 15.42 22.26 60.50 82.51 89.38 104.11 155.37 462.16 3294.52FI Gap 11.30% 22.15% 20.91% 13.24% 19.39% 12.52% 11.64% 11.67% 11.77% 16.84% 14.46%

Time(s) 5.18 7.97 8.23 11.06 23.51 29.63 31.62 35.46 50.77 153.60 959.18AM (G) Gap 70.93% 79.80% 86.11% 107.17% 104.74% 142.13% 111.99% 105.51% 118.44% 137.11% 175.24%
Time(s) 586.0 1321.0 1317.3 1946.9 5097.6 6598.8 7098.5 8226.8 12163.2DIFUSCO

(S + 2-opt) Gap 11.03% 11.53% 11.01% 9.32% 52.49% 26.47% 53.80% 61.81% 80.49% OOM OOM

Time(s) 55.3 51.4 51.5 73.6 154.0 220.0 232.4 234.3 373.9 1010.4 5910.8INViT Gap 6.58% 9.43% 10.84% 7.66% 10.19% 11.94% 9.21% 8.04% 8.38% 7.34% 6.34%
Time(s) 277.4 386.5 485.7 575.6 785.2 995.5 1725.9 2173.2 2320.1 5759.3 29864.0SIT Gap 1.42% 3.46% 5.09% 1.96% 5.01% 12.34% 4.39% 3.30% 3.73% 4.40% 6.60%

Time(s) 594.7 766.9 763.7 1061.7 2513.4 3424.8 3818.8 4560.3 7665.8 33819.5DeepACO Gap 37.31% 73.03% 77.79% 76.26% 94.37% 130.03% 102.88% 84.05% 100.42% 160.79% OOM

Time(s) 139.00 194.00 196.00SO Gap 2.43% 7.99% 6.14% N/A N/A N/A N/A N/A N/A N/A N/A

Time(s) 304.1UDC Gap 12.80% OOM OOM OOM OOM OOM OOM OOM OOM OOM OOM

Time(s) 305.1 539.2 468.2 739.2 725.6 961.0 1744.5 2501.7EoH Gap 3.10% 15.15% 26.68% 23.72% 114.86% 60.94% 70.64% 11.41% Failed Failed Failed

Time(s) 277.3 386.5 485.5 575.5 785.1 995.2 1725.3 2172.0 2319.0 5758.1 29863.6ViTSP Gap 0.16% 1.13% 0.41% 0.28% 1.03% 0.47% 0.31% 0.22% 0.36% 0.52% 0.83%

Table 3: Performance comparison on uniform instances with n = 10, 000.
Near-

optimality
LKH-3

(more RUNs) FI AM(G) DIFUSCO
(S + 2-opt) INViT SIT

(PRC,1000) DeepACO SO UDC ViTSP

Obj. 71.78 72.54 80.59 141.68 73.89 76.09 73.08 79.76 N/A OOM 72.28
Gap — 1.06% 12.27% 97.38% 2.94% 6.01% 1.81% 11.12% — — 0.70%
Time (s) — 645 55.3 17.5 610 30.9 1020 605.1 — — 615.7

reconfiguration or time-consuming retraining is performed. Furthermore, due to their high GPU
memory requirements, all learning-based algorithms except AM and INViT fail to scale to pla85900
and encounter OOM errors. Notably, UDC suffers from OOM when the instance size exceeds 5,000,
failing to produce feasible decomposition heuristics for very large-scale TSPs. For LLM-based
approaches, EoH shows limited effectiveness in designing heuristics for varying TSP instances,
exhibiting high variance in optimality gaps across the 33 TSPLIB instances. These observations
highlight the advantage of ViTSP, which leverages generative models to visually guide high-quality
decomposition heuristics while reducing reliance on local GPU resources and (re-)training.

Our experiments suggest that certain TSP structures can make optimization more or less difficult.
Although pr2392 is twice the size of prc1173, Concorde uses only 26% of the time required for
prc1173 to reach optimality for pr2392. Also, both ViTSP and LKH-3 struggle to find high-quality
solutions on fl1400, and ViTSP shows difficulty in reducing gaps on d2103 and rl5915.

As shown in Table 3, the results further confirm the effectiveness of our proposed ViTSP on very-
large-scale synthetic TSP, matching with the superior performance of ViTSP in TSPLIB instances
with n>10,000. Notably, ViTSP outperforms standalone LKH-3 and other learning-based methods.
Even though SIT has been trained on TSP-10K, it is still less effective than ViTSP at such a scale
within the same runtime budget.

4.3 ABLATION STUDIES

The effectiveness of VLMs. To verify that VLMs can conduct principled selection as visual selectors,
rather than fruitless permutation, we devise two heuristic selection policies adopted from Li et al.
(2021); Cheng et al. (2023): (1) Random sequence selector: uniformly and randomly selecting a
segment of a given length from the tour. The segment length is set to match the average number
of nodes selected per step by ViTSP. (2) Random box selector: uniformly and randomly selecting
rectangular subproblems of random sizes. It chooses Q = 2 subproblems at each step as ViTSP. We
replace the default VLM selector modules with these alternatives in ViTSP and execute the same
experiments on a given instance, where all scenarios start with solutions initialized using LKH-3.

9
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Table 4: The optimality gaps achieved by ViTSP using different initialization.
dsj1000 pr1002 u1060 vm1084 pcb1173 d1291 rl1304 rl1323 nrw1379 fl1400 u1432

Time (s) 69.6 65.0 57.1 38.5 124.3 168.6 27.2 95.6 104.6 53.9 83.2
LKH 0.02% 0.01% 0.00% 0.00% 0.16% 0.15% 0.14% 0.04% 0.00% 0.18% 0.03%
FI 0.50% 0.03% 0.64% 0.67% 0.21% 2.42% 8.01% 0.39% 0.01% 1.30% 1.43%

fl1577 d1655 vm1748 u1817 rl1889 d2103 u2152 u2319 pr2392 pcb3038 fl3795

Time (s) 58.9 111.2 162.8 180.0 89.0 84.0 238.3 244.9 187.6 336.3 252.4
LKH 0.00% 0.00% 0.05% 0.24% 0.03% 0.39% 0.08% 0.06% 0.09% 0.09% 0.57%
FI 17.61% 6.56% 0.04% 3.16% 0.50% 23.55% 0.98% 0.07% 0.41% 0.34% 3.02%

fnl4461 rl5915 rl5934 pla7397 rl11849 usa13509 brd14051 d15112 d18512 pla33810 pla85900

Time (s) 277.3 386.5 485.5 575.5 785.1 995.2 1725.3 2172.0 2319.0 5758.1 29863.6
LKH 0.16% 1.13% 0.41% 0.28% 1.03% 0.47% 0.31% 0.22% 0.36% 0.52% 0.83%
FI 2.49% 8.42% 6.40% 5.72% 9.36% 8.89% 0.52% 0.24% 0.54% 10.65% 2.81%

Due to the page limit, we report the optimality gaps over time using different selector policies on
selected instances in Figure 3. The full results are illustrated in Appendix I.

Figure 3: Ablation studies of different selection policies on selected instances.

VLMs are capable of performing meaningful, non-random subproblem selection as prompted in
the framework ViTSP. As shown in Figure 3, ViTSP consistently reduces optimality gaps over time
and outpaces both random sequence and random box methods. This highlights the effectiveness
of visually leveraging instance-specific structures to guide subproblem selection and generalize to
(very-) large-scale unseen TSP instances.

While the two random selection strategies demonstrate some ability to reduce gaps, they consistently
converge to local optima. Interestingly, for pla85900, the random sequence selection outperforms
ViTSP in the early stages by reducing the gap more rapidly. This suggests the potential value of
alternative operations beyond the box-region selection used in this study.

The effect of solution initialization. We examine the impact of solution initialization on the overall
performance of ViTSP. Based on the same runtime budget, we run ViTSP using LKH-3 with default
parameters and FI, respectively, to initialize the solution. We report the average optimality gaps based
on five runs in Table 4. The results show that the ViTSP initialized by LKH consistently outperforms
the one initialized by FI, since LKH is known for providing higher quality solutions. These results
confirm that while initialization affects performance, the VLM-guided decomposition consistently
improves over its corresponding initialization baseline.

4.4 ANALYSIS OF VITSP ITERATIONS

Valid subproblem rate. We here report the average valid subproblem rate per instance by VLMs
over five runs of ViTSP. The valid rate is the subproblems truly contributed to gap reductions after
the optimization divided by the total subproblems returned from VLMs during the iteration. As
shown in Table 5, the average valid rate ranges between 10% to 50%. These valid rates are achieved
without any task-specific training, as the VLMs used are entirely general-purpose. Overall, our results
demonstrate that VLMs can generate practically meaningful decomposition heuristics. Parameters
such as box size, number of boxes per call, and subregion shape offer additional room for optimization.
Future work may also to improve the valid selection rate further selection rate.

The visual and textual prompts in ViTSP play complementary and essential roles in eliciting effective
subproblems selection from VLMs. Prior works have shown that relying solely on textual inputs,
such as approaches use only coordinate lists Yang et al. (2023); Liu et al. (2024), struggle to produce
high-quality solutions. Conversely, multimodal approaches like Elhenawy et al. (2024) attempt to
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read specific node indices from TSP images through VLMs are unable to scale effectively as visual
clutter and index ambiguity grow rapidly with problem size. Together, these observations highlight
the necessity of carefully designed multimodal prompting to achieve valid and effective performance
throughout the ViTSP iterations.

Table 5: Valid rate of subproblems selected by VLMs across 33 TSPLIB instances.
dsj1000 pr1002 u1060 vm1084 pcb1173 d1291 rl1304 rl1323 nrw1379 fl1400 u1432
41.72% 53.81% 48.14% 35.93% 35.60% 10.42% 41.67% 30.15% 39.40% 33.00% 34.92%

fl1577 d1655 vm1748 u1817 rl1889 d2103 u2152 u2319 pr2392 pcb3038 fl3795
48.91% 25.44% 34.26% 24.75% 31.14% 50.00% 22.64% 12.83% 37.47% 30.66% 20.50%

fnl4461 rl5915 rl5934 pla7397 rl11849 usa13509 brd14051 d15112 d18512 pla33810 pla85900
43.99% 23.06% 37.62% 29.05% 17.02% 25.47% 36.84% 39.22% 35.89% 38.90% 40.37%

Cost of VLM API calls per instance. In ViTSP, the primary cost comes from online VLM API calls.
The cost of an API call depends on the input and output tokens. For GPT-4.1, the pricing is $2 for
every one million input tokens and $8 for every one million output tokens, while the pricing is $1.10
for every one million input tokens and $4.40 for one million output tokens for o4-mini. Here we
report in Table 6 the per-instance average API cost based on five runs. The remaining components
of the system, including LKH initialization and Concorde subproblem solving, are open-source
CPU-based tools and therefore incur negligible cost relative to VLM inference. The cost of API calls
for individual instances varies due to the number of valid iterations needed to reach the convergence.
From djs1000 to pla85900, the average cost ranges between $0.12 and $39.40.

Table 6: Average API cost per instance.
dsj1000 pr1002 u1060 vm1084 pcb1173 d1291 rl1304 rl1323 nrw1379 fl1400 u1432
$0.12 $0.26 $0.15 $0.15 $0.51 $0.83 $0.13 $0.35 $0.55 $0.21 $0.22

fl1577 d1655 vm1748 u1817 rl1889 d2103 u2152 u2319 pr2392 pcb3038 fl3795
$0.29 $0.55 $0.35 $0.77 $0.24 $0.36 $1.21 $0.54 $0.70 $1.40 $0.89

fnl4461 rl5915 rl5934 pla7397 rl11849 usa13509 brd14051 d15112 d18512 pla33810 pla85900
$0.56 $1.08 $1.20 $1.36 $0.90 $1.57 $3.44 $5.72 $5.62 $11.47 $39.40

5 CONCLUSIONS

In this study, we proposed a vision-guided framework to effectively solve TSPs with varying scales
and distributions. ViTSP hybridizes the strength of pre-trained VLMs and existing OR techniques by
selecting instance-specific subproblems visually and then delegating them to an off-the-shelf solver.
Our proposed ViTSP bypasses ad hoc training while exhibiting effectiveness and scalability, achieving
lower average optimality gaps than LKH-3 and baseline learning-based approaches. Because TSP
serves as the base case for a wide family of routing problems, the promising results from ViTSP
suggest opportunities to expand our framework to other routing problems. While this study validates
the effectiveness of visual guidance, interpreting how the decomposition is determined lies beyond
our current scope and remains an important future direction. Additionally, lightweight fine-tuning of
offline VLMs, as well as further exploration of in-context reinforcement learning, represent promising
future directions to further enhance performance of VLMs for TSP and broad routing problems.
Further limitations are discussed in the Appendix J. More broadly, this work highlights the potential
of generative AI to support CO at practical scales, particularly in settings where abundant training
data is unavailable. Further exploring the adoption to wider routing tasks could improve the expansion
of VLM in CO.
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A TRAVELING SALESMAN PROBLEM (TSP)

A TSP is characterized by a list of nodes i ∈ {1, 2, ..., N}, and the corresponding coordinate sets
{(xi, yi) | i = 1, 2, . . . , N} or the 2D Euclidean distance matrix DN . The 2D Euclidean distance
between a node pair is calculated as d(i, j) = [

√
(xj − xi)2 + (yj − yi)2] and we round the distance

to the nearest integer in this study.

The goal of TSP is to find an optimal tour that departs from an initial node, visits each node exactly
once, and returns to the starting node. With loss of generality, the solution Π in this study is
represented as a cyclic sequence of nodes Π = [π1, π2, ..., πN ] + [π1], where πn represents the
n-th node in this sequence, and π1 denotes both the starting and ending node of the tour to form a
complete cycle. The objective is to minimize the total distance traveled L(Π ) =

∑N−1
i=1 d(πi, πi+1)+

d(πN , π1).

When the distance between two nodes is identical in both directions, i.e., d(i, j) = d(j, i), the
problem is known as symmetric TSP (STSP). In contrast, asymmetric TSP (ATSP) allows for
different distances between certain node pairs in opposite directions, i.e., d(i, j) ̸= d(j, i).

B ADDITIONAL RELATED WORKS

B.1 OR APPROACHES

Many commercial solvers, such as Gurobi, OR-Tools, and CPLEX, are designed for generic optimiza-
tion purposes. They search for exact optimal solutions using techniques like branch and cut, but these
solvers struggle with large-scale optimization problems. Besides these commercial solvers, Concorde
is believed to be the SOTA exact solver designed for TSP to obtain optimal solutions. Essentially, it
also employs the LKH algorithm–the SOTA heuristic solver–and branch-and-cut techniques to find
exact solutions. Concorde has been shown to solve TSPs with more than 80k nodes, but still at the
expense of years of computation.

B.2 LEARNING-BASED APPROACHES

End-to-end construction. The autoregressive approach is characterized by an attention-based
network architecture, such as the Transformer (Vaswani et al., 2017), or its variants, such as Pointer-
former (Jin et al., 2023). AM in Kool et al. (2019) uses the REINFORCE algorithm to sequentially
predict the node with the highest probability, while POMO in Kwon et al. (2020) produces multiple
solutions in decoding steps to improve the model performance. In contrast, the non-autoregressive
approaches estimate the likelihood of connecting each edge between nodes to produce a heatmap.
For example, DIMES in Qiu et al. (2022) proposed learning a continuous space to parameterize the
solution distribution using an anisotropic graph neural network. DIFUSCO (Sun & Yang, 2023),
T2T (Li et al., 2023), and Fast T2T (Li et al., 2024) developed a graph-based diffusion model to
generate the solution, which denoises random noise and the problem instance to gradually produce a
feasible solution. However, DIFUSCO employs the 2-opt method to further refine the output, which
brings a significant performance gain. Its standalone performance to generalize to new instances is
questionable. Fang et al. (2024) introduced Invariant Nested View Transformer (INViT) to identify
partial nodes with similar distributions as the trained ones to hierarchically handle partial problems.
However, since these solvers always generate approximate solutions with an inevitable optimality
gap, the overall solution quality can deteriorate significantly in out-of-distribution instances.

Local improvement. Li et al. (2021) trains a backbone to select a promising subproblem and
then delegates it to an off-the-shelf solver for further improvement. Zong et al. (2022) developed
Rewriting-by-Generating (RBG) to iteratively refine the solution partitioning and infer new local
solutions by a trained generator. Similarly, Select-and-Optimize (SO) in Cheng et al. (2023) trained a
policy to select promising sequences within the complete tour and used a trained solver to improve
the selected sequence iteratively. Intuitively, the subproblem solution quality fully depends on the
solver. RBG and SO trained small-scale solvers following the methods in end-to-end construction.
Fu et al. (2021) developed a graph convolutional residual neural network with attention mechanisms
(AttGCRN) to optimize split subgraphs, and it fuses optimized partial solutions as the complete
solution. Similarly, H-TSP (Pan et al., 2023), GLOP (Ye et al., 2024b), and UDC (Zheng et al., 2024)
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decompose a TSP into open TSPs (instead of standard symmetric TSP) and optimize them using
dedicated trained solvers.

C PROMPTS TO VLMS FOR SUBPROBLEM VISUAL SELECTION

The meta-text prompt instructing VLMs to select promising TSP subproblems is devised as follows.
Italicized text in bold denotes placeholders for problem-specific inputs, and Q represents the number
of sub-regions to be selected per query. ∆ indicates the margin used to allow selection near the
edge of the instance. It is set to 10% of the spatial boundary of the given TSP instance. We do
not set parameters or rules for exploring, to investigate VLMs’ capability to learn from the context
to determine the best selection by itself. Due to the inherent differing execution pace between
modules in asynchronous orchestration, VLMs can generate selections on the same global solutions
before solvers finish current subproblem jobs. To mitigate duplicate selections from VLMs during
asynchronous processes, the real-time subproblem queue Ω is included as part of the input prompts
to VLMs.

You are tasked with improving an existing solution to a Traveling Salesman Problem (TSP)
by selecting a sub-region where the routes can be significantly optimized. Carefully consider
the locations of the nodes (in red) and connected routes (in black) in the initial solution on
a map. The boundary of the map is x_min= {x_min - ∆}, x_max= {x_max + ∆}, y_min=
{y_min - ∆}, y_max= {y_max + ∆}.

Please return {Q} sub-rectangle(s) that you believe would most reduce total travel distance
from further optimization by a downstream TSP solver. Analyze the problem to do meaningful
selections. Remember, if you don’t see significant improvement, try selecting larger areas
that cover more nodes based on your analysis of the prior selection trajectory.
Keep your output very brief as in the following template. Don’t tell me you cannot view or
analyze the map. I don’t want an excuse:
⟨coordinates⟩ x_min=1,000 , x_max=2,000 , y_min=1,000 , y_max=2,000 ⟨/coordinates⟩

Avoid selecting the same regions as follows, which are pending optimization: {pending
regions}
Below are some previous selection trajectories. Please avoid selecting the same subrectangle:
{prior selection trajectory}

where each entry in {pending regions} is retrieved from up-to-date subproblem queue Ω. Each entry
in the prior selection trajectory is based on the trajectory pool Φ and formatted as follows:

{coordinates}, number of nodes within the subrectangle= {number of nodes}, travel distance
reduction= {delta objective improvement}, computational time for this subproblem= {solver
runtime in second}

The visual prompt is an instance-specific image, visualizing the position of nodes and the current
tour based on Π∗. An example visual prompt is shown in Figure 4. In our implmentation, all TSP
instances are rendered using a consistent figure size (figsize=(20,20)). The image is gridded based on⌈√

ymax−ymin
100

⌉
to adaptively provide coordinate reference for VLM.
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Figure 4: An example of the visual prompt to VLMs. In this example, nrw1379 is used. The tour is
initialized by LKH-3.

D PSEUDO-CODES FOR VISUAL SELECTION MODULE

Algorithm 1 Visual Selection Module
1: Input: Current global solution Π∗, Selection trajectory Φ, Meta-instruction I , Pending subprob-

lem queue Ω, Number of subproblems per prompt Q, Maximum number of covered nodes α,
VLM visual selection Fselector.

2: (C1, . . . , CQ)← Fselector(Π
∗,Φ, I,Ω, Q)

3: for q = 1 to Q do
4: Compute the number of covered nodes M
5: while M > α do
6: Cq ← Fselector(Π

∗(Cq),Φ, I,Ω, 1) ▷ Zoom-in based on current solution within Cq

7: Update M
8: end while
9: ωq = (Wq,Kq)← FORMSUBPROBLEMS(Π∗, Cq)

10: end for
11: if

∣∣∣⋃Q
q=1 Wq

∣∣∣ ≤ α or ∃ i ̸= j such that Wi ∩Wj ̸= ∅ then ▷ Too small or overlapping
subproblems

12: ω ← ω1 ∪ · · · ∪ ωQ ▷ Merge subproblems
13: Enqueue ω into Ω
14: else
15: for q = 1 to Q do
16: Enqueue ωq into Ω
17: end for
18: end if
19: Return Ω ▷ Updated subproblem queue

19
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E PSEUDO-CODES FOR ASYNCHRONOUS ORCHESTRATION

Algorithm 2 Asynchronous Orchestration of ViTSP
1: Input: Distance matrix DN , meta-instruction I , subproblems per prompt Q, node cap α,

initializer Finitializer, VLM family (VLM1,VLM2, . . . ), solver Fsolver, max no-improvement steps
K, number of parallel slave solvers P .

2: Π∗ ← Finitializer(DN ) ▷ Sec. 3.2
3: Φ← ∅,Ω← ∅,Ω′ ← ∅ ▷ Selection trajectory, subproblem queue, screened subproblem queue
4: [Parallel: Visual Selection Loop] ▷ Sec. 3.3
5: Fselector(·)← ROULETTE(VLM1,VLM2, . . . )
6: Ω← VISUALSELECTION(Π∗,Φ, I,Ω, Q, α, Fselector) ▷ Alg. 1
7: [Parallel: P Slave Solvers Loop] ▷ Sec. 3.5
8: Dequeue ω from Ω
9: DSTSP ← REFORMULATESUBPROBLEMS(ω)

10: Π← Fsolver(DSTSP )
11: if L(Π∗) > L(Π) then Enqueue ω into Ω′ ▷ Retain promising subproblem
12: [Parallel: One Master Solver Loop] ▷ Sec. 3.5
13: while Counter ≤ K do
14: if Ω′ ̸= ∅ then Dequeue ω from Ω′

15: else Dequeue ω from Ω
16: DSTSP ← REFORMULATESUBPROBLEMS(ω)
17: Π← Fsolver(DSTSP )
18: if L(Π∗) > L(Π) then Π∗ ← Π ▷ Only master updates global solution
19: else Counter← Counter + 1
20: end while
21: Terminate all parallel processes ▷ Stop ViTSP
22: Return Π∗ ▷ Final solution
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F IMPLEMENTATION DETAILS OF VITSP AND BASELINE ALGORITHMS

F.1 CLASSICAL OR APPROACHES

Concorde We used PyConcorde, a Python wrapper for the Concorde solver, to solve the TSP
instances. Concorde provides a timelimit parameter that can be used to constrain its execution
time. The runtime limit for Concorde is set to match the time ViTSP takes to converge on each specific
instance.

LKH-3 The implementation version used in this study is LKH-3.0.13. For LKH-3 (Default), we used
the default parameters as specified in Helsgaun (2016), including RUNS=10, MAX_TRIALS=number
of nodes, and MOVE_TYPE=5 (i.e., 5-opt). For LKH-3 (more RUNS), we incrementally increase the
value of RUNS by 50 until the actual runtime matches that of ViTSP. In the event that the gap is 0%,
we report the runtime to reach this optimality.

LKH-3’s performance is controlled by parameters like RUNS, TRIALS, etc. By default, RUNS is set
to 10, which is used for LKH-3 (default) in our study. TRIALS is always set to be equivalent to the
problem size, e.g., TRIALS=1000 for dsj1000. We extend RUNS ad hoc to ensure LKH-3 runtime
matches with ViTSP, and we report the per-instance settings of RUNS in Table 7.

Table 7: Per-instance setting of RUNS across 33 TSPLIB instances.
dsj1000 pr1002 u1060 vm1084 pcb1173 d1291 rl1304 rl1323 nrw1379 fl1400 u1432
160 910 750 160 660 1600 260 360 760 210 410

fl1577 d1655 vm1748 u1817 rl1889 d2103 u2152 u2319 pr2392 pcb3038 fl3795
60 560 560 650 310 310 760 460 460 460 310

fnl4461 rl5915 rl5934 pla7397 rl11849 usa13509 brd14051 d15112 d18512 pla33810 pla85900
110 130 130 130 44 30 50 70 50 50 18

Farthest insertion (FI) No parameters required for this algorithm.

F.2 END-TO-END CONSTRUCTION APPROACHES

Attention Model (AM) The algorithm was implemented based on RL4CO package (Berto et al.,
2024). We utilized the open-source tsp100 checkpoint as the backbone for the AM (Kool et al., 2019).
Attempts to train a new model for larger instances, like tsp1000, failed due to an out-of-memory
issue. We adopted the greedy decoding strategy since our experiments show it demonstrated superior
performance compared to the sampling strategy. We denoted this algorithm as AM(G).

DIFUSCO (Sun & Yang, 2023) We used the published pre-trained checkpoint tsp10000-categorical
as the backbone for DIFUSCO in this study. All other parameters followed the defaults provided in
the open-source code. Specifically, a sampling-based strategy was implemented with 10 diffusion
steps and 16 samples. Additionally, 2-opt operations with 5,000 steps were applied. The diffusion
type was categorical. We refer to this algorithm as DIFUSCO(S+2-opt).

Invariant Nested View Transformer (INViT) (Fang et al., 2024) We used the open-sourced check-
point for TSP as the backbone in assessing INViT’s performance in this study and followed the
default settings.

Self-Improved Training (SIT) (Luo et al., 2025) We used the open-sourced checkpoint tsp-1k as the
backbone. Random Destroy and Repair (PRC) iterations were performed to improve the solutions
until the runtime hits the limit aligned with ViTSP for each instance.

F.3 LOCAL IMPROVEMENT APPROACHES

DeepACO (Ye et al., 2023) We used an open-sourced checkpoint tsp500. Following the specifications
in the paper, we use the configuration nants = 100, nnodes = 500, ksparse = 100, taco = 100.

Select-and-Optimize (SO) (Cheng et al., 2023) No public codes and checkpoints are available. We
extracted the results reported in the original paper.

Unified Neural Divide-and-Conquer Framework (UDC) (Zheng et al., 2024) We used their pre-
trained checkpoints for partitioning (dividing) and sub-TSP solver (conquering) to evaluate UDC’s
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performance in TSP. We followed the default parameters reported in the paper. We set the runtime to
align with ViTSP’s runtime on each instance.

F.4 LLM-BASED APPROACH

EoH (Liu et al., 2024) We used the open-source LLM4AD platform to run EoH with its default
parameters. For LLM, we used GPT-4.1, the same as in ViTSP. Additionally, iterations are terminated
once the runtime limit, matched to that of ViTSP, is reached.

F.5 VITSP

We used LKH-3 (Default) as the solution initializer. For VLMs, we set the number of subproblems
generated per prompt Q = 2. To reconcile the solving time spent on a single subproblem, we set the
upper bound of the number of selected nodes to α = 1000 for instances N < 10, 000 and α = 2000
for instances N > 10, 000 and we imposed the time limit on Concorde for solving each subproblem
to be Tmax = 10 seconds. The number of slave solvers is set to be P = 8 in the asynchronous
orchestration. For the VLM, a maximum of 100 tokens is set to ensure brief and speedy output.
ViTSP is set to terminate if there are five consecutive solving steps without any improvement in the
global objective value.
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G COMPLETE PLOTS OF OPTIMALITY GAP REDUCTION OVER TIME BETWEEN
VITSP AND LKH-3 (MORE RUNS)
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Figure 5: Optimality gap reduction over time between ViTSP and LKH-3 (more RUNS).
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H IDENTIFIED SUBPROBLEMS BY VLMS THAT CONTRIBUTE TO OPTIMALITY
GAP REDUCTION

In Figure 6, we plot the identified subproblems by VLM. For clarity, the selected box regions without
contributing to optimality gap reductions are omitted.

Besides correcting crisscrossed edges, which is the most visually apparent suboptimality, ViTSP can
also achieve improvements through:

(1) Refining dense regions where small gains can accumulate by transitioning from a locally approxi-
mate solution (initialized by LKH-3) to a locally optimal one, as each subproblem is re-optimized
using an exact solver (Concorde).

(2) Combinatorially selecting neighborhoods whose joint optimization can escape the local optimum
and lead to global improvements, recall that we use Q = 2 to allow two subproblem selections
simultaneously at each step.

As shown in Figure 6, the subregions identified by the VLM often correspond to these two patterns.
Dense areas may contain sub-paths that are locally optimal but globally improvable when viewed
in context. Additionally, as we detailed in Section 3.3, we designed zoom-in reselection so VLMs
always have chances to inspect detailed edge connections in a dense area.
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Figure 6: Visualization of selected box regions by VLMs on TSP instances.

I COMPLETE PLOTS FOR ABLATION STUDIES OF DIFFERENT SELECTION
POLICIES

In Figure 7, we illustrate the optimality gap reduction curves among ViTSP and two random selectors
across 33 TSPLIB instances to demonstrate the effectiveness of VLM in selecting meaningful
subproblems.
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Figure 7: Optimality gap reduction over time among three selection policies.

J LIMITATIONS AND BROADER IMPACTS

We discuss two limitations and additional directions of future work in this section. First, the box-
based subproblem selection guided by VLMs in this study represents just one type of metaheuristic
operation for combinatorial optimization. As ablation studies show, selecting a sequence of nodes
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may also be a helpful metaheuristic operation. Exploring additional operations designed by VLMs
could further unlock the potential of hybridizing machine learning and operations research. Second,
although parallel computing is employed, this study does not explicitly optimize the coordination
between the selector and solver modules. In particular, there is an unexplored trade-off between
solving a single large subproblem with longer runtime versus solving multiple smaller subproblems
within the same time. We leave this investigation for future work. Third, exploring batch-parallel
execution to enable the optimization of multiple instances simultaneously could further improve
overall throughput in practice.

Broadly, the TSP is more than an academic challenge—it is a foundational problem with broad
applications across industries, including transportation, logistics, chip design, and DNA sequencing.
This work creates new opportunities for the machine learning community to develop high-quality
solutions for large-scale TSP and related problems using general-purpose large models. As VLMs
become increasingly accessible and capable of advanced reasoning, they offer scalable solutions
deployable on both cloud and edge devices, paving the way for practical and impactful applications.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors confirm that LLMs were used only for grammar checking and text polishing. They were
not involved in research ideation. Their role in writing was limited, such that they are not considered
contributors.

27


	Introduction
	Related works
	OR approaches
	Learning-based approaches
	LLMs/VLMs-based approaches

	Methods
	Preliminary: Traveling Salesman Problem (TSP)
	Solution initialization
	Visual selection of subproblems by VLMs
	Subproblem optimization
	Reformulating subproblems
	Solving and recovering the solution for the original TSP

	Asynchronous orchestration

	Experiments and results analysis
	Experimental setups
	Main results
	Ablation studies
	Analysis of ViTSP iterations

	Conclusions
	Traveling Salesman Problem (TSP)
	Additional related works
	OR approaches
	Learning-based approaches

	Prompts to VLMs for subproblem visual selection
	Pseudo-codes for Visual Selection Module
	Pseudo-codes for Asynchronous orchestration
	Implementation details of ViTSP and baseline algorithms
	Classical OR approaches
	End-to-end construction approaches
	Local improvement approaches
	LLM-based approach
	ViTSP

	Complete plots of optimality gap reduction over time between ViTSP and LKH-3 (more RUNS)
	Identified subproblems by VLMs that contribute to optimality gap reduction
	Complete plots for ablation studies of different selection policies
	Limitations and broader impacts
	The use of large language models (LLMs)

