

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ViTSP: A VISION LANGUAGE MODELS GUIDED FRAMEWORK FOR LARGE-SCALE TRAVELING SALES- MAN PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Solving Traveling Salesman Problem (TSP) is NP-hard yet fundamental for wide real-world applications. Classical exact methods face challenges in scaling, and heuristic methods often require domain-specific parameter calibration. While learning-based approaches have shown promise, they suffer from poor generalization and limited scalability due to fixed training data. This work proposes *ViTSP*, a novel framework that leverages pre-trained vision language models (VLMs) to visually guide the solution process for large-scale TSPs. The VLMs function to identify promising small-scale subproblems from a visualized TSP instance, which are then efficiently optimized using an off-the-shelf solver to improve the global solution. *ViTSP* bypasses the dedicated model training at the user end while maintaining effectiveness across diverse instances. Experiments on real-world TSP instances ranging from 1k to 88k nodes demonstrate that *ViTSP* consistently achieves solutions with average optimality gaps below 0.2%, outperforming existing learning-based methods. Under the same runtime budget, it surpasses the best-performing heuristic solver, LKH-3, by reducing its gaps by 12% to 100%, particularly on very-large-scale instances with more than 10k nodes. Our framework offers a new perspective in hybridizing pre-trained generative models and operations research solvers in solving combinatorial optimization problems, with practical implications for integration into more complex logistics systems. The code is available at https://anonymous.4open.science/r/ViTSP_codes-6683.

1 INTRODUCTION

The Traveling Salesman Problem (TSP) is a fundamental combinatorial optimization (CO) problem with broad real-world applications, including transportation, logistics, and chip design (Applegate, 2006; Yin et al., 2023). Efficiently solving TSPs not only yields economical and societal benefits across those domains but also informs the development of solution strategies for other CO problems. The operations research (OR) community has developed numerous exact and heuristic algorithms to address this NP-hard problem (Davendra, 2010). However, exact methods often **struggle to produce high-quality solutions as the problem size increases**. Heuristic algorithms offer faster approximate solutions, yet their effectiveness **depends on domain-specific knowledge and careful calibration of instance-specific parameters**.

Advances of machine learning (ML) have led to various learning-based approaches for solving TSPs (referred to as *neural solvers*), including end-to-end models for solution construction (Vaswani et al., 2017; Jin et al., 2023; Sun & Yang, 2023; Li et al., 2024) and learned neural strategies for local improvement (Zong et al., 2022; Cheng et al., 2023; Ye et al., 2023; 2024b; Zheng et al., 2024). These methods are shown to shorten the computation time and maintain good solutions for in-distribution, small-scale instances (nodes < 1,000) (Wu et al., 2024). **However, they suffer from poor generalization and limited scalability as soon as the real-world problem deviates from the training data.**

The surge of pre-trained large language models (LLMs) and vision language models (VLMs) has raised interest in their potential for tackling optimization problems. Their efforts mainly focused on end-to-end construction of text-based solutions (Yang et al., 2023; Elhenawy et al., 2024) or on heuristic designs (Ye et al., 2024a; Liu et al., 2024) that rely solely on textual information of

054 TSP instances. While these studies open new perspectives on using generative models to rethink
 055 optimization, **their approaches fall short of demonstrating reliable performance on large-scale**
 056 **practical TSPs** (Khan & Hamad, 2024)

057 In this study, we reconsider how recent advances of pre-trained generative models can effectively
 058 complement established OR techniques for solving varying large-scale TSP instances to facilitate
 059 broader application domains. We leverage pre-trained VLMs to provide adaptive decomposition
 060 heuristics that integrate directly into the optimization routine. Effective decomposition must account
 061 not only for spatial locality but also for combinatorial neighborhoods that help escape local optima.
 062 VLMs are well-suited for this task, as they can interpret instance-specific spatial structures by treating
 063 TSP instances as 2D images, enabling more informed selection of subproblems. Importantly, unlike
 064 ML approaches that require domain-specific training and graph embeddings, VLMs offer generic
 065 reasoning capabilities that avoid costly data collection or retraining. Furthermore, the subproblems,
 066 being smaller than their original TSP, can be reliably solved by exact solvers, avoiding performance
 067 degradation often experienced in learned neural solvers (Joshi et al., 2022; Wu et al., 2024).

068 We propose *ViTSP*, a Vision-guided framework for solving large-scale TSP. In *ViTSP*, VLMs guide
 069 the optimization process by identifying meaningful subproblems from visualized TSP instances,
 070 while an off-the-shelf solver continuously refines those subproblems. *ViTSP* orchestrates the two
 071 modules asynchronously to accommodate input/output (I/O) intensive VLMs and CPU-intensive
 072 solvers. On unseen TSPLIB (Reinelt, 1991) instances ranging from 1k to 88k, *ViTSP* finds the
 073 global optimum in 11 out of 33 instances and outperforms baseline learning-based methods, whose
 074 performance degrades significantly compared to their reported in-distribution results. Compared to
 075 the best-performing heuristic solver, LKH-3, *ViTSP* converges to superior solutions under the same
 076 time budget and reduces optimality gaps by 12% to 100%. Our key contributions in this study are
 077 summarized below:

- 078 1. We propose a vision-guided solution framework *ViTSP* that **hybridizes VLMs and off-the-**
 079 **shelf solvers to reach strong performance. *ViTSP* is able to adapt to TSP instances with**
 080 **varying compositions.**
- 081 2. Our approach leverages pre-trained VLMs to visually derive decomposition heuristics while
 082 bypassing the costly and time-consuming training and data curation for edge deployment.
- 083 3. We conduct experiments on (very-)large-scale instances to validate the effectiveness of
 084 *ViTSP*. The ablation studies further underpinned *ViTSP*'s ability to perform principled
 085 guidance. To the best of our knowledge, our work presents one of the most comprehensive
 086 evaluations of real-world TSPLIB instances with $N > 1000$, whereas few prior works
 087 reported sufficient results at this scale.

088 2 RELATED WORKS

089 Existing approaches to solving large-scale TSP can be categorized into three primary schemes: (1)
 090 OR approaches, (2) learning-based approaches, and (3) LLM/VLM-based approaches. We briefly
 091 review these works in this section, and we supplement the detailed discussion in the Appendix B.

092 2.1 OR APPROACHES

093 Exact algorithms typically require explicit mathematical formulations and search for exact solutions
 094 via branch and bound procedures (Laporte, 1992; Wolsey, 2020). Off-the-shelf exact solvers, such
 095 as Concorde, Gurobi, and OR-Tools, have the potential to reach global optimality. Among them,
 096 Concorde remains the state-of-the-art (SOTA), using specialized rules to speed up the search process.
 097 However, the computation of exact solvers becomes intractable as the problem size increases.

098 Heuristic algorithms, such as farthest insertion (Rosenkrantz et al., 1974), genetic algorithm (Holland,
 099 1992), and Lin-Kernighan-Helsgaun-3 (LKH-3) (Helsgaun, 2017), iteratively refine solutions based
 100 on hand-crafted rules. LKH-3 is regarded as the SOTA in solving TSPs. However, LKH-3 relies on
 101 tunable parameters, such as the number of total runs and candidate edges. Without domain knowledge
 102 and instance-specific calibration, achieving strong performance is often non-trivial. According to
 103 Adenso-Díaz & Laguna (2006), only about 10% of the effort in developing and testing heuristics or
 104 metaheuristics goes into designing it, with the remaining 90% spent in parameter tuning.

105 2.2 LEARNING-BASED APPROACHES

106 Learning-based approaches for solving CO problems have gained wide attention since the surge
 107 of deep learning. These works commonly employ graph neural networks to embed TSP instances.

108 The networks are trained using either supervised learning, which requires high-quality solutions
 109 from exact or heuristic methods as labels, or reinforcement learning, which relies on extensive
 110 trial-and-error (Fu et al., 2021). Existing works mainly deploy trained networks under two paradigms.
 111

112 **End-to-end construction.** This paradigm seeks to learn a policy to directly construct a solution,
 113 using either autoregressive or non-autoregressive (heatmap-based) schemes. The autoregressive
 114 scheme trains attention-based neural networks (Vaswani et al., 2017; Kwon et al., 2020; Jin et al.,
 115 2023). The network sequentially constructs solutions by outputting one node at a time, with previous
 116 outputs incorporated into the network to guide the generation of subsequent nodes (Deudon et al.,
 117 2018; Kool et al., 2019). In contrast, the non-autoregressive approaches, such as Qiu et al. (2022);
 118 Sun & Yang (2023); Li et al. (2023; 2024), estimate the likelihood of connecting each edge between
 119 nodes and construct the solution in one shot.

120 **Local improvement.** This paradigm iteratively updates solutions using learned policies in two
 121 ways. First, it repeatedly selects partial problems or decomposes the whole problem into separate
 122 subproblems, and reconstructs them using a separate neural solver or an OR solver (Li et al., 2021;
 123 Fu et al., 2021; Zong et al., 2022; Cheng et al., 2023; Pan et al., 2023; Ye et al., 2024b; Zheng et al.,
 124 2024). Second, it learns to predict stepwise searching to assist existing OR algorithms (Xin et al.,
 125 2021; Hudson et al., 2022; Zheng et al., 2022; Wu et al., 2022; Ye et al., 2023; Ma et al., 2023).

126 Despite promising in-distribution performance presented, specialized learning-based approaches
 127 often fall short in handling out-of-distribution (OOD) instances since their neural networks were
 128 trained on fixed datasets (Li & Zhang, 2025). Therefore, they often fail to compete with the reliability
 129 of established OR solvers. Such limitations hinder their applicability at a practical scale. In fact, few
 130 studies have evaluated OOD performance on open-source TSPLIB instances with more than 5,000
 131 nodes (Reinelt, 1991), limiting our understanding of their robustness in real-world scenarios.
 132

2.3 LLMs/VLMs-BASED APPROACHES

133 The surge of pre-trained LLMs/VLMs has drawn wide attention for optimization problems, including
 134 TSP. Yang et al. (2023) treats node coordinates as text input and prompts LLMs to output solutions,
 135 but the resulting solutions exhibit large optimality gaps even on small instances (i.e., $N = 50$). Another
 136 approach in Elhenawy et al. (2024) uses TSP images and relies on the VLMs to read node indices
 137 to construct tours. This design has limited scalability, as densely distributed nodes make it difficult
 138 for the VLMs to correctly recognize node indices. Liu et al. (2024) prompts LLMs for automatic
 139 heuristics design and translates them into code. However, their text-only framework overlooks
 140 instance-specific spatial structure. Consequently, their standalone strategy exhibits large variance in
 141 optimality gaps when applied to varying TSPs, limiting their reliability for practical use.
 142

3 METHODS

143 We reposition VLMs from unreliable end-to-end solvers to practical complements that can be
 144 integrated with established OR tools in building scalable optimization routines. In contrast to graph-
 145 based neural solvers, which demand extensive training and still struggle to generalize, we leverage
 146 the generic multi-modal reasoning of VLMs to process TSP as an image, enabling them to interpret
 147 spatial structures and provide adaptive decompositions without task-specific training.
 148

149 Building on this motivation, we propose the *ViTSP* framework (Figure 1), which integrates VLM
 150 guidance into the optimization pipeline through three key modules: solution initialization, visual
 151 selection, and subproblem optimization. Starting from an initial solution for a given TSP instance
 152 (Sec 3.2 in Figure 1), VLMs identify box coordinates that delineate promising subproblems for further
 153 refinement based on the visualized TSP solution (Sec 3.3 in Figure 1). The exact solver iteratively
 154 optimizes returned subproblems to improve global solutions (Sec 3.4 in Figure 1). Iteratively
 155 solving subproblems allows certain subproblems to be optimized combinatorially under varying
 156 neighborhoods to escape local optima.
 157

158 Since visual selection and subproblem optimization have distinct computational overheads, *ViTSP* co-
 159 ordinates their outputs asynchronously via a shared global solution, trajectory history, and subproblem
 160 queue to minimize the idle time in the subproblem optimization (Sec 3.5 in Figure 1).
 161

The key advantages that ensure the effectiveness and scalability of our approach are threefold:

Figure 1: The vision-guided framework (*ViTSP*) for large-scale TSP, where pre-trained VLMs and off-the-shelf solvers are asynchronously coordinated to identify and optimize subproblems, respectively.

1. We leverage the pre-trained models to provide a decomposition-like heuristic rather than an error-prone end-to-end solution construction. As strong generalists for user-specified tasks, these models eliminate the need for *ad hoc* (re-)training during real-world deployment.
2. Visually guiding the selection of box regions is scalable, as they rely on spatial coordinates that remain consistent even as the TSP instance grows in size.
3. We reformulate the identified subproblems as standard TSPs. This allows us to harness the robust exact solvers, guaranteeing high-quality improvement to the global solution.

3.1 PRELIMINARY: TRAVELING SALESMAN PROBLEM (TSP)

We briefly introduce the TSP in this section and provide detailed notations and descriptions in the Appendix A. A TSP is characterized by a list of nodes and the corresponding coordinate sets or the distance matrix. The goal of TSP is to find an optimal tour Π^* that departs from an initial node, visits each node exactly once, and returns to the starting node, which minimizes the total distance traveled $L(\Pi^*)$. Notably, when the distance between two nodes is identical in both directions, the problem is known as symmetric TSP (**STSP**). In contrast, asymmetric TSP (**ATSP**) allows for different distances between certain node pairs in opposite directions.

3.2 SOLUTION INITIALIZATION

The *ViTSP* is warm-started using heuristic solvers. Critically, to effectively handle OOD instances, *ViTSP* avoids extensive parameter tuning and instead uses the default settings of the solver. This eliminates the dependency on prior domain knowledge that would otherwise hinder *ViTSP*'s adaptability to varying instances.

3.3 VISUAL SELECTION OF SUBPROBLEMS BY VLMs

In the visual selection module $F_{\text{selector}}(\cdot)$, we prompt VLMs to select box regions and then formulate them as subproblems. We provide an overview of multimodal prompts and expected outputs, and defer the detailed example prompts in Appendix C. The pseudocode for the visual selection process is detailed in Algorithm 1 in Appendix D.

Visual prompts. Given a TSP instance, we plot its nodes and their current connections on an image based on their 2D coordinates and the global solution Π . This image is input to VLMs as a visual prompt. An example of such visual input is illustrated in Figure 4 of Appendix C.

Textual prompts. We specify three types of information as textual inputs to an VLM: (1) *meta-instructions I*, detailing the subproblem selection task description and the expected output format; (2) *selection trajectories* $\Phi = \{\phi_1, \phi_2, \dots\}$, served as memory to address the stateless nature of API-based VLM calls. Each trajectory entry ϕ_i includes a selected subproblem, the number of nodes within this subproblem, the solution gain through optimization, and the solver's runtime. The selection trajectories from earlier steps reveal instance-specific structures as the solving progresses, which informs VLMs to make better subsequent selections (Yang et al., 2023; Laskin et al., 2023;

216 Monea et al., 2024; Moeini et al., 2025); (3) *Pending subproblems* $\Omega = \{\omega_1, \omega_2, \dots\}$, indicating
 217 identified yet unsolved subproblems that remain in the queue. This avoids duplicated subproblems
 218 selected by VLMs.

219 **Image-level output.** The VLM is prompted to generate a quadruple $C = (x_{\min}, x_{\max}, y_{\min}, y_{\max})$
 220 as a textual response. This quadruple represents the coordinates of a box region at the image level.
 221 As generative models, VLMs can be flexibly tailored to generate Q coordinate sets C_1, C_2, \dots, C_Q
 222 per response (where $Q \geq 2$). We will leverage these multiple-subproblem outputs during module
 223 orchestration as described in Section 3.5.

224 **Forming a subproblem.** Given the current global solution Π , connections to the covered nodes within
 225 a given box region are removed, leading to a list of free nodes $W = \{w_1, w_2, \dots, w_{|W|}\}$. The remain-
 226 ing connected nodes outside of the box form segments $K = \{(\pi_1^1, \dots, \pi_{c_1}^1), \dots, (\pi_1^{|K|}, \dots, \pi_{c_{|K|}}^{|K|}\}$,
 227 where $(\pi_1^k, \dots, \pi_{c_k}^k)$ denotes the k -th segment containing $|c_k|$ connected nodes; and π_1^k and $\pi_{c_k}^k$
 228 denote the starting and ending nodes in the k -th segment, respectively. As a result, the visual selection
 229 module produces a subproblem $\omega = (W, K)$.

230 **Zoom-in reselection.** *ViTSP* employs a zoom-in reselection to ensure scalability on very large-scale
 231 TSPs. Because such instances often exhibit highly dense node distributions, making connections in
 232 the initial visualization less discernible. To address this, a second round of selection is performed on
 233 the initially identified subregion bounded by C . If the number of nodes $|W|$ covered by the subregion
 234 exceeds a predefined threshold α , the VLM zooms into it to examine the finer-grained pattern and
 235 identify a new quadruple C' .

236 3.4 SUBPROBLEM OPTIMIZATION

237 Rather than training a dedicated neural solver to optimize selected subproblems separately, as in prior
 238 works that adopt the local improvement paradigm (Cheng et al., 2023; Pan et al., 2023; Zheng et al.,
 239 2024), we transform the formulated subproblem $\omega = (W, K)$ into a standard symmetric TSP (STSP).
 240 As existing exact solvers are primarily designed for STSP, this reformulation allows us to leverage
 241 solvers to obtain a globally feasible solution with guaranteed quality.

242 3.4.1 REFORMULATING SUBPROBLEMS

243 During subproblem optimization, free nodes are reconnected either to other free nodes or to existing
 244 segments. Similarly, connections within each segment are preserved from the solution Π , while the
 245 links between the segment’s endpoints and the rest of the segments or free nodes are refined. By
 246 aggregating each segment $(\pi_1^k, \dots, \pi_{c_k}^k)$ into a super node s_k , we construct a new list of nodes of
 247 size $|K| + |W|$, denoted as $\{s_1, \dots, s_{|K|}, w_1, \dots, w_{|W|}\}$. This updated node list leads to a partially
 248 asymmetric TSP (ATSP), characterized by an asymmetric block distance matrix:

$$249 D_{ATSP} = \begin{bmatrix} D_{|K| \times |K|} & D_{|K| \times |W|} \\ D_{|W| \times |K|} & D_{|W| \times |W|} \end{bmatrix}_{(|W|+|K|) \times (|W|+|K|)}$$

250 where $D_{|W| \times |W|}$ contains symmetric distances d_{w_i, w_j} between free nodes. The submatrices
 251 $D_{|W| \times |K|}$, $D_{|K| \times |W|}$, and $D_{|K| \times |K|}$ are the root of asymmetry. $D_{|W| \times |K|}$ contains distances d_{w_i, π_1^k}
 252 from free nodes to the starting nodes of fixed segments, whereas $D_{|K| \times |W|}$ represents distances
 253 $d_{\pi_{c_k}^k, w_i}$ from the ending nodes of fixed segments to free nodes; $D_{|K| \times |K|}$ indicates the distances
 254 $d_{\pi_{c_k}^k, \pi_1^k}$ from the ending nodes of fixed segments to the starting nodes of other segments.

255 We further transform this partially ATSP into a standard STSP to make it compatible with the
 256 solver. Following the approaches in Jonker & Volgenant (1983); Cirasella et al. (2001), the trans-
 257 formation introduces a dummy node s'_k for each node s_k in the ATSP, expanding the node set to
 258 $\{s_1, \dots, s_{|K|}, s'_1, \dots, s'_{|K|}, w_1, \dots, w_{|W|}\}$. The resulting STSP is characterized by a symmetric block
 259 distance matrix:

$$260 D_{STSP} = \begin{bmatrix} \infty & D_{|W| \times |K|}^T & \hat{D}_{|K| \times |K|}^T \\ D_{|W| \times |K|} & D_{|W| \times |W|} & D_{|K| \times |W|}^T \\ \hat{D}_{|K| \times |K|} & D_{|K| \times |W|} & \infty \end{bmatrix}_{(|W|+2|K|) \times (|W|+2|K|)}$$

261 where the diagonal of $\hat{D}_{|K| \times |K|}$ is set to be a small enough value compared to the original $D_{|K| \times |K|}$,
 262 which encourages the super nodes k and their corresponding dummy nodes $k + |W|$ to be adjacently
 263 connected during the optimization.

270 3.4.2 SOLVING AND RECOVERING THE SOLUTION FOR THE ORIGINAL TSP
271

272 The solver optimizes an STSP using its D_{STSP} and produces an optimal solution Π_{STSP}^* . The
273 output solution Π_{STSP}^* is then recovered into the corresponding ATSP solution Π_{ATSP}^* by directly
274 removing all dummy nodes in the solution Π_{STSP}^* . Furthermore, each super node $s_k \in \Pi_{ATSP}^*$ is
275 unfolded into its original segment $(\pi_1^k, \dots, \pi_{c_k}^k)$. This recovery process results in an updated solution
276 for the original TSP conditioned on the identified subproblem ω : $\Pi^* = F_{\text{solver}}(D_{STSP}, T_{\max} \mid \omega)$,
277 where T_{\max} is the runtime limit set for the exact solvers. The time limit T_{\max} forces the solver to
278 stop improving lower bounds and return the best incumbent solutions. This prevents the solver from
279 getting stuck on certain subproblems for an excessively long time. We use the hill-climbing rule in
280 accepting this new solution if it reaches a lower objective value than the current solution.

281 3.5 ASYNCHRONOUS ORCHESTRATION

282 The visual selection module $F_{\text{selector}}(\cdot)$ is I/O intensive, dominated by waiting for responses from
283 the VLM server, whereas the exact solver module $F_{\text{solver}}(\cdot)$ is CPU-intensive. Due to their distinct
284 computational profiles, sequential execution easily leaves solvers idle while waiting for VLM's
285 sections. To address this, *ViTSP* executes the optimization and selection modules asynchronously
286 on multi-core CPU systems, assigning them to separate cores and coordinating through three shared
287 components: global solution Π , trajectory pool Φ , and subproblem queue Ω . These components
288 provide the necessary contextual information required for module execution.

289 To further improve efficiency, *ViTSP* deploys multiple VLMs and solvers. On the selection side, we
290 employ both fast-thinking and reasoning VLMs, leveraging pre-trained models with complementary
291 strengths (Shen et al., 2023; Snell et al., 2024; Kumar et al., 2025). Each single VLM is elicited to
292 generate Q coordinate sets $\{C_1, C_2, \dots, C_Q\}$ per prompt, where $Q \geq 2$.

293 On the optimization side, multiple identical solvers retrieve and optimize subproblems from the
294 shared queue in parallel, ensuring that newly generated subproblems are not left unprocessed. To
295 mitigate conflicts in updating global solutions, *ViTSP* assigns P slave solvers to optimize and screen
296 the retrieved subproblems, while a single master is permitted to update Π . Slave solvers discard
297 subproblems without improvements, while those yielding net gains are forwarded to the master solver
298 for refining Π . The process continues iteratively until no improvement is observed in K consecutive
299 steps. Detailed pseudocode is provided in Algorithm 2 in Appendix E.

300 4 EXPERIMENTS AND RESULTS ANALYSIS
301

302 4.1 EXPERIMENTAL SETUPS

303 **Evaluation datasets.** To comprehensively assess the performance of *ViTSP*, this work used TSP
304 instances from TSPLIB (Reinelt, 1991) and a synthetic TSP-10K dataset with uniformly distributed
305 nodes as primary evaluation datasets. The synthetic dataset contains 16 instances, following (Fang
306 et al., 2024). TSPLIB offers a wide range of real-world instances for TSP, covering diverse distributions
307 and scales. Moreover, Reinelt (2007) provides proven optimality for instances, enabling
308 the measurement of optimality gaps even at very large scales. We chose TSP instances with
309 $N \geq 1,000$ from the dataset to represent (very-)large-scale problems, where exact solvers be-
310 gin to struggle. This results in 33 TSPLIB instances. These instances follow a naming format of
311 [keywords][number of nodes], such as pla85900. Instances with the same keywords are
312 from the same application domain. Notably, since our framework does not require additional training
313 or fine-tuning during implementation, we do not curate any training dataset.

314 None of the TSPLIB instances has been exposed to the baseline learning-based algorithms during their
315 training phase. This ensures a fair evaluation of generalizability and scalability across all baselines.
316 To the best of our knowledge, our work provides one of the most comprehensive evaluations on this
317 real-world benchmark dataset, offering a thorough assessment of the proposed *ViTSP*.

318 **Evaluation metrics.** We used two metrics to measure the performance of algorithms: (1) **Optimality**
319 **gaps (%)**; and (2) **Runtime** (in seconds). We used the reported proven optimal objective values
320 L^* (total distance traveled) for TSPLIB instances in Reinelt (2007) as reference and the gap is
321 calculated as: $\frac{L_{\text{Model}} - L^*}{L^*} \times 100\%$, where L_{Model} is the objective value produced by a baseline model.
322 The recorded wall-clock runtime of *ViTSP* explicitly includes (1) the LKH initialization, (2) all VLM
323 API waiting and latency, and (3) the Concorde solving time for subproblems. Thus, our reported time
reflects the actual end-to-end wall time required by *ViTSP* in real-world settings.

324 **ViTSP setups.** In the initialization module, we used LKH-3 with its default parameter settings to
 325 warm start the *ViTSP*. In the visual selection module, we employed GPT-4.1 (fast thinking VLM) and
 326 o4-mini (reasoning VLM) as the selectors in this study. We set the number of subproblems generated
 327 per prompt $Q = 2$. In the subproblem optimization module, Concorde, the SOTA exact solver, was
 328 utilized as the subproblem solver. *ViTSP* terminates when no improvement is observed in $K = 5$
 329 consecutive steps, and the duration from initialization to termination is recorded as runtime. **We**
 330 **ran *ViTSP* for five runs and obtained the average gaps and runtimes.** For more detailed parameter
 331 configurations, please refer to Section F.5 in Appendix F.

332 **Baselines.** We compared our *ViTSP* against both classical OR approaches and learning-based
 333 approaches. Specifically, we applied the following ten baselines: (1) **Concorde**; (2) **LKH-3 (Default)**;
 334 (3) **LKH-3 (more RUNS)** (4) **FI**; (5) **AM**; (6) **DIFUSCO**; (7) **INViT**; (8) **SIT**; (9) **DeepACO**; (10)
 335 **SO**; (11) **UDC**; (12) **EoH**. Their description and implementation are provided in the Appendix F.

336 The selected learning-based approaches include both end-to-end solution construction methods and
 337 local improvement techniques that match the decomposition heuristics used in this study. They either
 338 provided open-source code and pre-trained checkpoints or reported results on TSPLIB instances
 339 (e.g., SO). The selected EoH produced applicable results on large-scale instances, whereas other
 340 LLM-based approaches, such as Yang et al. (2023); Elhenawy et al. (2024), failed to generate valid
 341 solutions even on small-scale cases and were therefore not included as baselines in this study.

342 We align the runtime across baselines to ensure fair comparison. In addition to using the default
 343 parameter values of LKH-3, we introduce LKH-3 (more RUNS), where the RUNS value is increased
 344 to match LKH-3’s runtime with that of *ViTSP* on each instance. Similarly, Concorde, DeepACO,
 345 UDC, and EoH are run with the same or slightly longer time limit as *ViTSP*. For FI, runtime is
 346 deterministic with respect to instance size. End-to-end methods (AM, DIFUSCO, and INViT) also
 347 have deterministic runtimes, as they perform only a single feedforward inference. **When running**
 348 **synthetic TSP-10K, we set the timelimit as 600 s to compare baselines’ performances.**

349 **Hardware.** We used an AMD EPYC 7443 24-Core CPU and an Nvidia L40 GPU with 48GB memory
 350 to implement our work and baseline algorithms. In *ViTSP*, the VLMs were accessed on demand
 351 online. Their usage did not rely on local GPU resources but was confined by the I/O rate.

353 4.2 MAIN RESULTS

354 Performance comparison results are summarized in Tables 1 and 2, reporting runtime (in seconds) and
 355 optimality gaps with the lowest gaps highlighted. **The results of *ViTSP* are averaged over five runs.**
 356 Since *ViTSP* is warm-started from LKH-3 (Default), we further illustrate the reduction of optimality
 357 gaps over time between *ViTSP* and LKH-3 on selected instances of different scales in Figure 2. This
 358 comparison highlights *ViTSP*’s ability to improve solutions beyond what LKH-3 can achieve given
 359 additional time. We present the complete results for optimality gap reduction over time across all
 360 TSPLIB instances between *ViTSP* and LKH-3 in Appendix G. The selected box regions yielding gap
 361 reductions by VLMs are illustrated in Appendix H.

362 Overall, *ViTSP* achieves an average gap of 0.19% across all instances while LKH-3 (more RUNS) has
 363 an average gap of 0.31%. Surprisingly, *ViTSP* attains the global optimum in 11 out of 33 instances ¹
 364 with $1000 \leq N < 2,500$, despite being an approximate approach. In 6 of these 11 cases ², it reaches
 365 optimality faster than Concorde, which in some cases has not yet reached the optimal solution within
 366 the same time limit.

374 **Figure 2: Optimality gaps over time on selected instances between *ViTSP* and LKH-3 (more RUNS).**

375 ¹These 11 instances are dsj1000, pr1002, u1060, vm1084, rl11323, nrw1379, u1432, and f11577, d1655, r11889, and pr2392.

376 ²These 6 instances are u1060, vm1084, rl11323, u1432, f11577, and r11889.

Table 1: Performance comparison on 33 TSPLIB instances ($1000 \leq n < 4000$).

		dsj1000	pr1002	u1060	vm1084	pcb1173	d1291	rl1304	rl1323	nrw1379	fl1400	u1432
Concorde	Time(s)	46.2	8.3	106.7	57.5	50.2	252.5	25.8	122.3	45.7	115.4	111.8
	Gap	0.00%	0.00%	0.00%	0.00%	0.00%	0.65%	0.00%	0.03%	0.00%	0.24%	0.03%
LKH-3	Time(s)	1.9	2.0	2.0	2.1	2.2	2.5	2.7	2.7	3.4	4.5	3.8
(Default)	Gap	0.17%	0.47%	0.53%	0.12%	1.04%	0.61%	0.55%	0.21%	0.61%	0.19%	0.54%
LKH-3	Time(s)	20.5	95.1	100.4	22.9	93.0	248.8	45.9	64.8	162.4	75.0	95.6
(RUNS)	Gap	0.00%	0.00%	0.01%	0.00%	0.01%	0.00%	0.00%	0.05%	0.01%	0.18%	0.03%
FI	Time(s)	0.4	0.4	0.5	0.4	0.5	0.7	0.6	0.7	0.8	0.8	0.8
	Gap	11.23%	10.30%	12.45%	9.51%	15.27%	21.50%	22.99%	20.78%	11.29%	4.17%	12.71%
AM (G)	Time(s)	0.8	0.7	0.8	0.8	0.9	1.0	1.0	1.1	1.1	1.1	1.1
	Gap	41.43%	40.57%	56.78%	44.05%	41.71%	48.82%	38.22%	42.85%	37.74%	63.15%	37.27%
DIFUSCO	Time(s)	23.6	23.1	23.9	25.8	29.3	31.9	33.1	34.7	36.1	33.1	37.4
(S + 2-opt)	Gap	7.83%	9.04%	7.52%	6.18%	9.26%	9.70%	9.22%	8.23%	9.70%	4.48%	8.84%
INViT	Time(s)	7.6	6.5	6.7	6.5	8.1	8.7	8.3	8.4	10.0	8.7	10.1
	Gap	8.65%	10.55%	9.74%	6.61%	6.85%	8.92%	8.97%	8.33%	6.57%	13.86%	5.09%
SIT	Time(s)	70.1	66.0	57.2	38.9	124.3	169.2	27.4	95.7	104.8	54.1	83.5
	Gap	1.21%	1.13%	1.33%	0.83%	1.54%	4.33%	1.51%	1.35%	1.55%	4.52%	2.28%
DeepACO	Time(s)	165.1	164.1	167.0	171.9	185.5	199.7	200.6	200.8	209.8	215.7	213.4
	Gap	21.51%	20.96%	37.97%	34.59%	20.40%	24.85%	35.00%	29.60%	18.92%	45.59%	14.75%
SO	Time(s)	N/A	N/A	35.0	35.0	38.0	N/A	42.0	42.0	44.0	45.0	N/A
	Gap			2.21%	2.20%	2.87%		6.76%	4.21%	1.63%	1.96%	
UDC	Time(s)	47.0	91.5	65.2	53.2	140.6	242.8	42.1	123.2	148.6	70.2	89.2
	Gap	15.36%	18.75%	32.81%	29.28%	20.70%	25.30%	28.29%	18.01%	18.94%	33.57%	17.33%
EoH	Time(s)	48.1	93.2	62.7	53.8	137.7	245.3	41.9	123.5	146.2	69.8	87.4
	Gap	448.08%	56.86%	596.53%	6.47%	104.29%	18.31%	89.73%	50.14%	94.52%	26.38%	35.39%
ViTSP	Time(s)	69.6	65.0	57.1	38.5	124.3	168.6	27.2	95.6	104.6	53.9	83.2
	Gap	0.02%	0.01%	0.00%	0.00%	0.16%	0.15%	0.14%	0.03%	0.00%	0.18%	0.03%
	fl1577	d1655	vm1748	u1817	rl1889	d2103	u2152	u2319	pr2392	pcb3038	fl3795	
Concorde	Time(s)	262.7	24.4	189.4	199.8	112.3	100.0	314.7	443.9	13.1	390.6	600.0
	Gap	1.52%	0.00%	0.05%	0.34%	0.09%	1.47%	0.25%	0.11%	0.00%	0.11%	0.44%
LKH-3	Time(s)	4.0	4.5	5.3	5.1	6.1	6.1	7.4	10.7	11.4	15.3	25.1
(Default)	Gap	0.25%	0.80%	0.55%	1.11%	0.57%	0.54%	0.95%	0.32%	1.08%	1.20%	1.73%
LKH-3	Time(s)	16.3	150.0	180.0	202.3	118.8	104.5	331.5	316.4	282.1	407.6	527.4
(RUNS)	Gap	0.00%	0.00%	0.12%	0.15%	0.06%	0.00%	0.09%	0.08%	0.03%	0.12%	0.67%
FI	Time(s)	1.0	1.2	1.2	1.3	1.4	1.7	1.8	2.1	2.4	4.0	5.6
	Gap	17.61%	15.41%	11.90%	18.10%	17.63%	23.57%	20.65%	6.54%	13.71%	14.92%	17.57%
AM (G)	Time(s)	1.3	1.4	1.5	1.6	1.7	1.9	2.2	2.1	3.1	4.3	
	Gap	51.92%	61.15%	49.56%	56.51%	49.57%	55.48%	66.28%	29.92%	62.35%	62.33%	84.55%
DIFUSCO	Time(s)	44.3	46.2	53.8	55.9	61.4	77.8	79.1	94.8	111.2	214.1	327.3
(S + 2-opt)	Gap	7.66%	10.33%	8.93%	13.47%	8.53%	12.65%	13.94%	5.72%	10.74%	10.95%	6.98%
INViT	Time(s)	10.7	12.7	11.8	13.4	13.1	15.9	17.1	18.8	20.7	30.0	36.4
	Gap	7.65%	11.54%	8.26%	8.32%	10.03%	7.74%	7.11%	0.93%	8.12%	7.85%	15.13%
SIT	Time(s)	59.0	111.6	163.1	180.3	89.2	84.5	238.5	245.1	187.8	336.6	252.7
	Gap	5.04%	5.36%	1.17%	2.28%	4.01%	5.60%	4.21%	0.22%	1.12%	1.95%	7.55%
DeepACO	Time(s)	236.8	241.7	250.8	262.9	276.3	296.3	299.0	321.1	333.6	418.0	506.7
	Gap	42.74%	25.46%	34.78%	25.78%	42.15%	19.32%	24.52%	11.12%	30.43%	24.71%	103.56%
SO	Time(s)	51.0	53	N/A	N/A	58.0	71.0	66.0	N/A	N/A	93.0	121.0
	Gap	4.42%	3.61%			4.63%	8.32%	4.91%			2.67%	5.49%
UDC	Time(s)	93.2	146.8	178.3	198.5	108.9	95.4	312.5	265.1	248.9	364.5	OOM
	Gap	24.94%	19.55%	33.24%	24.43%	36.28%	15.79%	27.32%	21.52%	28.25%	26.98%	
EoH	Time(s)	92.5	147.2	179.6	198.7	108.3	95.3	311.6	265.7	249.2	365.5	304.1
	Gap	181.75%	26.82%	3.47%	18.07%	51.05%	279.06%	57.30%	50.31%	11.71%	33.82%	59.46%
ViTSP	Time(s)	58.9	111.2	162.8	180.0	89.0	84.0	238.3	244.9	187.6	336.3	252.4
	Gap	0.00%	0.00%	0.05%	0.24%	0.03%	0.39%	0.08%	0.06%	0.09%	0.09%	0.57%

ViTSP outperforms LKH-3 in 20 out of 33 instances under the same time budget. In relative to the optimality gaps of LKH-3, ViTSP further reduced gaps by 12.05% to 100.00%³. The best performance reached by ViTSP are highlighted in yellow in Tables 1 and 2. Figure 2 further illustrates how both methods reduce optimality gaps over time. As the SOTA heuristic, LKH-3 remains highly efficient for instances with $1,000 < N < 3,000$. When given a small amount of additional runtime beyond its default settings, LKH-3 reduces optimality gaps more rapidly than ViTSP in the early phase. However, its improvement quickly plateaus, whereas ViTSP continues to improve and eventually surpasses or matches (both reaching a 0% gap) LKH-3. As the problem size increases beyond 4,000, ViTSP significantly speeds up the reduction of optimality gaps compared to LKH-3.

Learning-based methods struggle to generalize their learned policies to OOD instances, leading to inferior performance compared to ViTSP. Large gaps remain across the baselines, which impair their utilization at a practical scale. For example, despite their claimed speedup, AM and DeepACO even underperform the simple heuristic algorithm FI, demonstrating their brittleness when no model

³A 100% reduction indicates ViTSP has reached the global optimum whereas LKH-3 has not.

432

433

Table 2: Performance comparison on 33 TSPLIB instances ($4000 < n \leq 85900$).

434

		fnl4461	rl5915	rl5934	pla7397	rl11849	usa13509	brd14051	d15112	d18512	pla33810	pla85900
Concorde	Time(s)	305.0	550.0	266.0	671.3	1000.0	960.0	1742.0	2500.0	2941.0	Failed	Failed
	Gap	0.30%	0.67%	0.89%	0.48%	0.85%	0.48%	0.49%	0.44%	0.57%		
LKH-3 (Default)	Time(s)	39.8	63.3	64.0	92.0	311.8	382.9	417.5	524.3	728.2	2079.7	22344.0
	Gap	0.96%	1.96%	1.56%	0.83%	1.75%	1.25%	1.18%	1.22%	1.29%	1.43%	1.31%
LKH-3 (RUNS)	Time(s)	292.9	549.3	548.1	673.5	1014.4	979.3	1908.5	2974.5	3176.2	8237.9	33966.5
	Gap	0.45%	0.73%	0.47%	0.29%	1.06%	0.81%	0.82%	0.84%	0.94%	1.00%	1.13%
FI	Time(s)	8.85	14.96	15.42	22.26	60.50	82.51	89.38	104.11	155.37	462.16	3294.52
	Gap	11.30%	22.15%	20.91%	13.24%	19.39%	12.52%	11.64%	11.67%	11.77%	16.84%	14.46%
AM (G)	Time(s)	5.18	7.97	8.23	11.06	23.51	29.63	31.62	35.46	50.77	153.60	959.18
	Gap	70.93%	79.80%	86.11%	107.17%	104.74%	142.13%	111.99%	105.51%	118.44%	137.11%	175.24%
DIFUSCO (S + 2-opt)	Time(s)	586.0	1321.0	1317.3	1946.9	5097.6	6598.8	7098.5	8226.8	12163.2	OOM	OOM
	Gap	11.03%	11.53%	11.01%	9.32%	52.49%	26.47%	53.80%	61.81%	80.49%		
INViT	Time(s)	55.3	51.4	51.5	73.6	154.0	220.0	232.4	234.3	373.9	1010.4	5910.8
	Gap	6.58%	9.43%	10.84%	7.66%	10.19%	11.94%	9.21%	8.04%	8.38%	7.34%	6.34%
SIT	Time(s)	277.4	386.5	485.7	575.6	785.2	995.5	1725.9	2173.2	2320.1	5759.3	29864.0
	Gap	1.42%	3.46%	5.09%	1.96%	5.01%	12.34%	4.39%	3.30%	3.73%	4.40%	6.60%
DeepACO	Time(s)	594.7	766.9	763.7	1061.7	2513.4	3424.8	3818.8	4560.3	7665.8	33819.5	OOM
	Gap	37.31%	73.03%	77.79%	76.26%	94.37%	130.03%	102.88%	84.05%	100.42%	160.79%	
SO	Time(s)	139.00	194.00	196.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Gap	2.43%	7.99%	6.14%								
UDC	Time(s)	304.1	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM	OOM
	Gap	12.80%										
EoH	Time(s)	305.1	539.2	468.2	739.2	725.6	961.0	1744.5	2501.7	Failed	Failed	Failed
	Gap	3.10%	15.15%	26.68%	23.72%	114.86%	60.94%	70.64%	11.41%			
ViTSP	Time(s)	277.3	386.5	485.5	575.5	785.1	995.2	1725.3	2172.0	2319.0	5758.1	29863.6
	Gap	0.16%	1.13%	0.41%	0.28%	1.03%	0.47%	0.31%	0.22%	0.36%	0.52%	0.83%

452

453

454

Table 3: Performance comparison on uniform instances with $n = 10,000$.

455

	Near-optimality	LKH-3 (more RUNS)	FI	AM(G)	DIFUSCO (S + 2-opt)	INViT	SIT (PRC,1000)	DeepACO	SO	UDC	ViTSP
Obj.	71.78	72.54	80.59	141.68	73.89	76.09	73.08	79.76	N/A	OOM	72.28
Gap	—	1.06%	12.27%	97.38%	2.94%	6.01%	1.81%	11.12%	—	—	0.70%
Time (s)	—	645	55.3	17.5	610	30.9	1020	605.1	—	—	615.7

459

460

reconfiguration or time-consuming retraining is performed. Furthermore, due to their high GPU memory requirements, all learning-based algorithms except AM and INViT fail to scale to `pla85900` and encounter OOM errors. Notably, UDC suffers from OOM when the instance size exceeds 5,000, failing to produce feasible decomposition heuristics for very large-scale TSPs. For LLM-based approaches, EoH shows limited effectiveness in designing heuristics for varying TSP instances, exhibiting high variance in optimality gaps across the 33 TSPLIB instances. These observations highlight the advantage of *ViTSP*, which leverages generative models to visually guide high-quality decomposition heuristics while reducing reliance on local GPU resources and (re-)training.

468

Our experiments suggest that certain TSP structures can make optimization more or less difficult. Although `pr2392` is twice the size of `prc1173`, Concorde uses only 26% of the time required for `prc1173` to reach optimality for `prc1173`. Also, both *ViTSP* and LKH-3 struggle to find high-quality solutions on `fnl1400`, and *ViTSP* shows difficulty in reducing gaps on `d2103` and `r15915`.

472

As shown in Table 3, the results further confirm the effectiveness of our proposed *ViTSP* on very-large-scale synthetic TSP, matching with the superior performance of *ViTSP* in TSPLIB instances with $n > 10,000$. Notably, *ViTSP* outperforms standalone LKH-3 and other learning-based methods. Even though SIT has been trained on TSP-10K, it is still less effective than *ViTSP* at such a scale within the same runtime budget.

477

4.3 ABLATION STUDIES

479

480

The effectiveness of VLMs. To verify that VLMs can conduct principled selection as visual selectors, rather than fruitless permutation, we devise two heuristic selection policies adopted from Li et al. (2021); Cheng et al. (2023): (1) **Random sequence selector**: uniformly and randomly selecting a segment of a given length from the tour. The segment length is set to match the average number of nodes selected per step by *ViTSP*. (2) **Random box selector**: uniformly and randomly selecting rectangular subproblems of random sizes. It chooses $Q = 2$ subproblems at each step as *ViTSP*. We replace the default VLM selector modules with these alternatives in *ViTSP* and execute the same experiments on a given instance, where all scenarios start with solutions initialized using LKH-3.

486

487

Table 4: The optimality gaps achieved by ViTSP using different initialization.

	dsj1000	pr1002	u1060	vm1084	pcb1173	d1291	r11304	r11323	nrw1379	f1400	u1432
Time (s)	69.6	65.0	57.1	38.5	124.3	168.6	27.2	95.6	104.6	53.9	83.2
LKH	0.02%	0.01%	0.00%	0.00%	0.16%	0.15%	0.14%	0.04%	0.00%	0.18%	0.03%
FI	0.50%	0.03%	0.64%	0.67%	0.21%	2.42%	8.01%	0.39%	0.01%	1.30%	1.43%
	f1577	d1655	vm1748	u1817	r11889	d2103	u2152	u2319	pr2392	pcb3038	f13795
Time (s)	58.9	111.2	162.8	180.0	89.0	84.0	238.3	244.9	187.6	336.3	252.4
LKH	0.00%	0.00%	0.05%	0.24%	0.03%	0.39%	0.08%	0.06%	0.09%	0.09%	0.57%
FI	17.61%	6.56%	0.04%	3.16%	0.50%	23.55%	0.98%	0.07%	0.41%	0.34%	3.02%
	fnl4461	rl5915	rl5934	pla7397	r111849	usa13509	brd14051	d15112	d18512	pla33810	pla85900
Time (s)	277.3	386.5	485.5	575.5	785.1	995.2	1725.3	2172.0	2319.0	5758.1	29863.6
LKH	0.16%	1.13%	0.41%	0.28%	1.03%	0.47%	0.31%	0.22%	0.36%	0.52%	0.83%
FI	2.49%	8.42%	6.40%	5.72%	9.36%	8.89%	0.52%	0.24%	0.54%	10.65%	2.81%

498

499

Due to the page limit, we report the optimality gaps over time using different selector policies on selected instances in Figure 3. The full results are illustrated in Appendix I.

501

509

Figure 3: Ablation studies of different selection policies on selected instances.

510

VLMs are capable of performing meaningful, non-random subproblem selection as prompted in the framework *ViTSP*. As shown in Figure 3, *ViTSP* consistently reduces optimality gaps over time and outpaces both random sequence and random box methods. This highlights the effectiveness of visually leveraging instance-specific structures to guide subproblem selection and generalize to (very-) large-scale unseen TSP instances.

516

517

While the two random selection strategies demonstrate some ability to reduce gaps, they consistently converge to local optima. Interestingly, for `pla85900`, the random sequence selection outperforms *ViTSP* in the early stages by reducing the gap more rapidly. This suggests the potential value of alternative operations beyond the box-region selection used in this study.

520

521

The effect of solution initialization. We examine the impact of solution initialization on the overall performance of *ViTSP*. Based on the same runtime budget, we run *ViTSP* using LKH-3 with default parameters and FI, respectively, to initialize the solution. We report the average optimality gaps based on five runs in Table 4. The results show that the *ViTSP* initialized by LKH consistently outperforms the one initialized by FI, since LKH is known for providing higher quality solutions. These results confirm that while initialization affects performance, the VLM-guided decomposition consistently improves over its corresponding initialization baseline.

527

528

4.4 ANALYSIS OF ViTSP ITERATIONS

529

530

Valid subproblem rate. We here report the average valid subproblem rate per instance by VLMs over five runs of *ViTSP*. The valid rate is the subproblems truly contributed to gap reductions after the optimization divided by the total subproblems returned from VLMs during the iteration. As shown in Table 5, the average valid rate ranges between 10% to 50%. These valid rates are achieved without any task-specific training, as the VLMs used are entirely general-purpose. Overall, our results demonstrate that VLMs can generate practically meaningful decomposition heuristics. Parameters such as box size, number of boxes per call, and subregion shape offer additional room for optimization. Future work may also to improve the valid selection rate further selection rate.

537

538

The visual and textual prompts in *ViTSP* play complementary and essential roles in eliciting effective subproblems selection from VLMs. Prior works have shown that relying solely on textual inputs, such as approaches use only coordinate lists Yang et al. (2023); Liu et al. (2024), struggle to produce high-quality solutions. Conversely, multimodal approaches like Elhenawy et al. (2024) attempt to

540 read specific node indices from TSP images through VLMs are unable to scale effectively as visual
 541 clutter and index ambiguity grow rapidly with problem size. Together, these observations highlight
 542 the necessity of carefully designed multimodal prompting to achieve valid and effective performance
 543 throughout the *ViTSP* iterations.

544
 545 **Table 5:** Valid rate of subproblems selected by VLMs across 33 TSPLIB instances.

dsj1000	pr1002	u1060	vm1084	pcb1173	d1291	rl1304	rl1323	nrw1379	fl1400	u1432
41.72%	53.81%	48.14%	35.93%	35.60%	10.42%	41.67%	30.15%	39.40%	33.00%	34.92%
fl1577	d1655	vm1748	u1817	rl1889	d2103	u2152	u2319	pr2392	pcb3038	fl3795
48.91%	25.44%	34.26%	24.75%	31.14%	50.00%	22.64%	12.83%	37.47%	30.66%	20.50%

fnl4461	rl5915	rl5934	pla7397	rl11849	usa13509	brd14051	d15112	d18512	pla33810	pla85900
43.99%	23.06%	37.62%	29.05%	17.02%	25.47%	36.84%	39.22%	35.89%	38.90%	40.37%

550
 551
 552 **Cost of VLM API calls per instance.** In *ViTSP*, the primary cost comes from online VLM API calls.
 553 The cost of an API call depends on the input and output tokens. For GPT-4.1, the pricing is \$2 for
 554 every one million input tokens and \$8 for every one million output tokens, while the pricing is \$1.10
 555 for every one million input tokens and \$4.40 for one million output tokens for o4-mini. Here we
 556 report in Table 6 the per-instance average API cost based on five runs. The remaining components
 557 of the system, including LKH initialization and Concorde subproblem solving, are open-source
 558 CPU-based tools and therefore incur negligible cost relative to VLM inference. The cost of API calls
 559 for individual instances varies due to the number of valid iterations needed to reach the convergence.
 560 From djs1000 to pla85900, the average cost ranges between \$0.12 and \$39.40.

561
 562 **Table 6:** Average API cost per instance.

dsj1000	pr1002	u1060	vm1084	pcb1173	d1291	rl1304	rl1323	nrw1379	fl1400	u1432
\$0.12	\$0.26	\$0.15	\$0.15	\$0.51	\$0.83	\$0.13	\$0.35	\$0.55	\$0.21	\$0.22
fl1577	d1655	vm1748	u1817	rl1889	d2103	u2152	u2319	pr2392	pcb3038	fl3795
\$0.29	\$0.55	\$0.35	\$0.77	\$0.24	\$0.36	\$1.21	\$0.54	\$0.70	\$1.40	\$0.89

fnl4461	rl5915	rl5934	pla7397	rl11849	usa13509	brd14051	d15112	d18512	pla33810	pla85900
\$0.56	\$1.08	\$1.20	\$1.36	\$0.90	\$1.57	\$3.44	\$5.72	\$5.62	\$11.47	\$39.40

563 5 CONCLUSIONS

564 In this study, we proposed a vision-guided framework to effectively solve TSPs with varying scales
 565 and distributions. *ViTSP* hybridizes the strength of pre-trained VLMs and existing OR techniques by
 566 selecting instance-specific subproblems visually and then delegating them to an off-the-shelf solver.
 567 Our proposed *ViTSP* bypasses *ad hoc* training while exhibiting effectiveness and scalability, achieving
 568 lower average optimality gaps than LKH-3 and baseline learning-based approaches. Because TSP
 569 serves as the base case for a wide family of routing problems, the promising results from *ViTSP*
 570 suggest opportunities to expand our framework to other routing problems. While this study validates
 571 the effectiveness of visual guidance, interpreting *how* the decomposition is determined lies beyond
 572 our current scope and remains an important future direction. *Additionally, lightweight fine-tuning of*
 573 *offline VLMs, as well as further exploration of in-context reinforcement learning, represent promising*
 574 *future directions to further enhance performance of VLMs for TSP and broad routing problems.*
 575 Further limitations are discussed in the Appendix J. More broadly, this work highlights the potential
 576 of generative AI to support CO at practical scales, particularly in settings where abundant training
 577 data is unavailable. *Further exploring the adoption to wider routing tasks could improve the expansion*
 578 *of VLM in CO.*

579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593

594 ETHICS STATEMENT
595596 I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR
597 Code of Ethics. To the best of our knowledge, this work does not involve potential violations of the
598 ICLR Code of Ethics.
599600 REPRODUCIBILITY STATEMENT
601602 We have made efforts to ensure the reproducibility of this work. The source code is available at
603 https://anonymous.4open.science/r/ViTSP_codes-6683. Details of the exper-
604 imental setup are provided in Section 4.1 of the main text and in Sections C and F.5 of the Appendix
605 to further support reproducibility. Additionally, the TSPLIB dataset used in this study is publicly
606 available, which ensures the reproducibility of the results.
607608 THE USE OF LARGE LANGUAGE MODELS (LLMs)
609610 The authors confirm that LLMs were used only for grammar checking and text polishing. They were
611 not involved in research ideation. Their role in writing was limited, such that they are not considered
612 contributors.
613614 REFERENCES
615616 Belarmino Adenso-Díaz and Manuel Laguna. Fine-Tuning of Algorithms Using Fractional Ex-
617 perimental Designs and Local Search. *Operations Research*, 54(1):99–114, February 2006.
618 ISSN 0030-364X, 1526-5463. doi: 10.1287/opre.1050.0243. URL <https://pubsonline.informs.org/doi/10.1287/opre.1050.0243>.
619620 David L. Applegate. *The traveling salesman problem: a computational study*, volume 17. Princeton university press, 2006. URL <https://books.google.com/books?hl=en&lr=&id=vhsJbqomDuIC&oi=fnd&pg=PP11&dq=The+traveling+salesman+problem+:+a+computational+study&ots=YLCJVzMU78&sig=-6F9EbUIJ146yILKTkg6CxFIHg>.
621622 Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
623 Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
624 Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter
625 Kool, Zhiguang Cao, Qingfu Zhang, Joungho Kim, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo
626 Ahn, Guojie Song, Changhyun Kwon, Kevin Tierney, Lin Xie, and Jinkyoo Park. RL4CO: an
627 Extensive Reinforcement Learning for Combinatorial Optimization Benchmark, June 2024. URL
628 <http://arxiv.org/abs/2306.17100>. arXiv:2306.17100 [cs].
629630 Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learning
631 to solve large-scale tsp instances. In *International Conference on Artificial Intelligence and Statistics*, pp. 1219–1231. PMLR, 2023. URL <https://proceedings.mlr.press/v206/cheng23a.html>.
632633 Jill Cirasella, David S. Johnson, Lyle A. McGeoch, and Weixiong Zhang. The Asymmetric Traveling
634 Salesman Problem: Algorithms, Instance Generators, and Tests. In Adam L. Buchsbaum and Jack
635 Snoeyink (eds.), *Algorithm Engineering and Experimentation*, pp. 32–59, Berlin, Heidelberg, 2001.
636 Springer. ISBN 978-3-540-44808-2. doi: 10.1007/3-540-44808-X_3.
637638 Donald Davendra (ed.). *Traveling Salesman Problem, Theory and Applications*. InTech, December
639 2010. ISBN 978-953-307-426-9. doi: 10.5772/547.
640641 Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin Rousseau.
642 Learning Heuristics for the TSP by Policy Gradient. In Willem-Jan Van Hoeve (ed.), *Integration
643 of Constraint Programming, Artificial Intelligence, and Operations Research*, volume 10848, pp.
644 170–181. Springer International Publishing, Cham, 2018. ISBN 978-3-319-93030-5 978-3-319-
645 93031-2. doi: 10.1007/978-3-319-93031-2_12. URL https://link.springer.com/10.1007/978-3-319-93031-2_12. Series Title: Lecture Notes in Computer Science.
646

- 648 Mohammed Elhenawy, Ahmad Abutahoun, Taqwa I. Alhadidi, Ahmed Jaber, Huthaifa I. Ashqar,
 649 Shadi Jaradat, Ahmed Abdelhay, Sebastien Glaser, and Andry Rakotonirainy. Visual Reasoning
 650 and Multi-Agent Approach in Multimodal Large Language Models (MLLMs): Solving TSP and
 651 mTSP Combinatorial Challenges, June 2024. URL <http://arxiv.org/abs/2407.00092>.
 652 arXiv:2407.00092.
- 653 Han Fang, Zhihao Song, Paul Weng, and Yutong Ban. INViT: a generalizable routing problem
 654 solver with invariant nested view transformer. In *Proceedings of the 41st International Conference
 655 on Machine Learning*, volume 235 of *ICML'24*, pp. 12973–12992, Vienna, Austria, July 2024.
 656 JMLR.org.
- 658 Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a Small Pre-trained Model to Arbitrarily
 659 Large TSP Instances. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(8):
 660 7474–7482, May 2021. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v35i8.16916. URL
 661 <https://ojs.aaai.org/index.php/AAAI/article/view/16916>.
- 663 Keld Helsgaun. Short description of the parameters to LKH-2.0, March 2016. URL
 664 http://webhotel4.ruc.dk/~keld/research/LKH/LKH-2.0/DOC/LKH-2.0_PARAMETERS.pdf.
- 666 Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
 667 salesman and vehicle routing problems. *Roskilde: Roskilde University*, 12:966–980, 2017. URL
 668 http://akira.ruc.dk/~keld/research/LKH/LKH-3_REPORT.pdf.
- 670 John H. Holland. Genetic algorithms. *Scientific american*, 267(1):66–73, 1992. URL https://www.jstor.org/stable/24939139?casa_token=yaAGwUMBtkAAAAA:yMqqHin9c83M7-AEwddJKRzRE0AmTV8bIaWP\WhNFhzz4WxU1NXQG10AUUSS_\xAF4Pqb3T3Kd3zw96SCD1fM5EJYdh-\cSCyTQ19HoCP9uKu3NE3G6PrQ. Publisher:
 671 JSTOR.
- 675 Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph Neural Network
 676 Guided Local Search for the Traveling Salesperson Problem, April 2022. URL <http://arxiv.org/abs/2110.05291>. arXiv:2110.05291 [cs].
- 679 Yan Jin, Yuandong Ding, Xuanhao Pan, Kun He, Li Zhao, Tao Qin, Lei Song, and Jiang Bian.
 680 Pointerformer: Deep reinforced multi-pointer transformer for the traveling salesman problem. In
 681 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 8132–8140, 2023.
 682 URL <https://ojs.aaai.org/index.php/AAAI/article/view/25982>. Issue: 7.
- 684 Roy Jonker and Ton Volgenant. Transforming asymmetric into symmetric traveling salesman
 685 problems. *Operations Research Letters*, 2(4):161–163, November 1983. ISSN 0167-6377. doi:
 686 10.1016/0167-6377(83)90048-2. URL <https://www.sciencedirect.com/science/article/pii/0167637783900482>.
- 688 Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
 689 Travelling Salesperson Problem Requires Rethinking Generalization, May 2022. URL <http://arxiv.org/abs/2006.07054>. arXiv:2006.07054.
- 692 Muhammad Asif Khan and Layth Hamad. On the Capability of LLMs in Combinatorial Optimization,
 693 November 2024. URL <https://www.techrxiv.org/users/397659/articles/1236430-on-the-capability-of-llms-in-combinatorial-optimization?commit=93c3f663127d5993fd95e409ae9bb389c640556>.
- 696 Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems!,
 697 February 2019. URL <http://arxiv.org/abs/1803.08475>. arXiv:1803.08475 [cs, stat].
- 699 Komal Kumar, Tajamul Ashraf, Omkar Thawakar, Rao Muhammad Anwer, Hisham Cholakkal,
 700 Mubarak Shah, Ming-Hsuan Yang, Phillip H. S. Torr, Salman Khan, and Fahad Shahbaz Khan.
 701 LLM Post-Training: A Deep Dive into Reasoning Large Language Models, February 2025. URL
<http://arxiv.org/abs/2502.21321>. arXiv:2502.21321 [cs].

- 702 Yeong-Dae Kwon, Jinho Choo, Byoungjin Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai
 703 Min. POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. In *Ad-*
 704 *vances in Neural Information Processing Systems*, volume 33, pp. 21188–21198. Curran As-
 705 sociates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/f231f2107df69eab0a3862d50018a9b2\~Abstract.html>.
- 706
 707 Gilbert Laporte. The traveling salesman problem: An overview of exact and approximate algorithms.
 708 *European Journal of Operational Research*, 59(2):231–247, June 1992. ISSN 03772217. doi: 10.
 709 1016/0377-2217(92)90138-Y. URL <https://linkinghub.elsevier.com/retrieve/pii/037722179290138Y>.
- 710
 711 Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
 712 DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, Maxime Gazeau, Himanshu Sahni,
 713 Satinder Singh, and Volodymyr Mnih. IN-CONTEXT REINFORCEMENT LEARNING WITH
 714 ALGORITHM DISTILLATION. 2023.
- 715
 716 Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In *Ad-*
 717 *vances in Neural Information Processing Systems*, volume 34, pp. 26198–26211. Curran As-
 718 sociates, Inc., 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/dc9fa5f217a1e57b8a6adeb065560b38\~Abstract.html>.
- 719
 720 Xiayang Li and Shihua Zhang. Learning-Based TSP-Solvers Tend to Be Overly Greedy, February
 721 2025. URL <http://arxiv.org/abs/2502.00767>. arXiv:2502.00767 [cs].
- 722
 723 Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learn-
 724 ing in training to gradient search in testing for combinatorial optimization. *Ad-*
 725 *vances in Neural Information Processing Systems*, 36:50020–50040, 2023. URL
 726 https://proceedings.neurips.cc/paper_files/paper/2023/hash/9c93b3cd3bc60c0fe7b0c2d74a2da966\~Abstract-Conference.html.
- 727
 728 Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast T2T: Optimization Con-
 729 sistency Speeds Up Diffusion-Based Training-to-Testing Solving for Combinatorial Optimization.
 730 2024.
- 731
 732 Fei Liu, Tong Xialiang, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
 733 Zhang. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large
 734 Language Model. In *Proceedings of the 41st International Conference on Machine Learning*, July
 2024. URL <https://proceedings.mlr.press/v235/liu24bs.html>.
- 735
 736 Fu Luo, Xi Lin, Yaxin Wu, Zhenkun Wang, Tong Xialiang, Mingxuan Yuan, and Qingfu
 737 Zhang. Boosting neural combinatorial optimization for large-scale vehicle routing problems.
 738 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=TbTJJNjumY>.
- 739
 740 Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to Search Feasible and
 741 Infeasible Regions of Routing Problems with Flexible Neural k-Opt. In *Ad-*
 742 *vances in Neural Information Processing Systems*, volume 36, pp. 49555–49578, December
 743 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/hash/9bae70d354793a95fa18751888cea07d\~Abstract-Conference.html.
- 744
 745 Amir Moeini, Jiuqi Wang, Jacob Beck, Ethan Blaser, Shimon Whiteson, Rohan Chandra, and
 746 Shangtong Zhang. A Survey of In-Context Reinforcement Learning, February 2025. URL
 747 <http://arxiv.org/abs/2502.07978>. arXiv:2502.07978 [cs].
- 748
 749 Giovanni Monea, Antoine Bosselut, Kianté Brantley, and Yoav Artzi. LLMs Are In-Context
 750 Reinforcement Learners, October 2024. URL <http://arxiv.org/abs/2410.05362>.
 751 arXiv:2410.05362.
- 752
 753 Xuanhao Pan, Yan Jin, Yuandong Ding, Mingxiao Feng, Li Zhao, Lei Song, and Jiang Bian. H-
 754 TSP: Hierarchically Solving the Large-Scale Traveling Salesman Problem. *Proceedings of the*
 755 *AAAI Conference on Artificial Intelligence*, 37(8):9345–9353, June 2023. ISSN 2374-3468, 2159-
 5399. doi: 10.1609/aaai.v37i8.26120. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26120>.

- 756 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A Differentiable Meta Solver for Combinatorial Optimization Problems, October 2022. URL <http://arxiv.org/abs/2210.04123>.
 757 arXiv:2210.04123.
- 759 Gerhard Reinelt. TSPLIB—A Traveling Salesman Problem Library. *ORSA Journal on Computing*,
 760 3(4):376–384, November 1991. ISSN 0899-1499, 2326-3245. doi: 10.1287/ijoc.3.4.376. URL
 761 <https://pubsonline.informs.org/doi/10.1287/ijoc.3.4.376>.
- 763 Gerhard Reinelt. Optimal solutions for symmetric tsps, May 2007. URL <http://comopt.if.uni-heidelberg.de/software/TSPLIB95/STSP.html>.
- 765 Daniel J. Rosenkrantz, Richard Edwin Stearns, and Philip M. Lewis. Approximate algorithms for the traveling salesperson problem. In *15th Annual Symposium on Switching and Automata Theory (swat 1974)*, pp. 33–42. IEEE, 1974. URL https://ieeexplore.ieee.org/abstract/document/4569756/?casa_token=qTFLUAv6htkAAAAA:R8rgcatI4H46B-\eeegx9JQ5jwikkOIrXkBEOw4hXLU5\LAUOFECEVhK4Vx24AdIfKaLhAAM380.
- 771 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace, April 2023. URL <http://arxiv.org/abs/2303.17580>. arXiv:2303.17580 [cs].
- 774 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM Test-Time Compute
 775 Optimally can be More Effective than Scaling Model Parameters, August 2024. URL <http://arxiv.org/abs/2408.03314>. arXiv:2408.03314 [cs].
- 777 Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization, December 2023. URL <http://arxiv.org/abs/2302.08224>. arXiv:2302.08224.
- 781 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fdb053c1c4a845aa-Abstract.html>.
- 784 Laurence A. Wolsey. *Integer programming*. John Wiley & Sons, 2020. URL
<https://books.google.com/books?hl=en&lr=&id=knH8DwAAQBAJ&oi=fnd&pg=PP1&dq=integer+programming&ots=wlvktKHk9&sig=Xt-9Zc39eRkb6ifGuSpmTcSKDwU>.
- 787 Chen Wu, Yin Song, Verdi March, and Eden Duthie. Learning from Drivers to Tackle the Amazon
 788 Last Mile Routing Research Challenge, May 2022. URL <http://arxiv.org/abs/2205.04001>. arXiv:2205.04001 [cs].
- 791 Xuan Wu, Di Wang, Lijie Wen, Yubin Xiao, Chunguo Wu, Yuesong Wu, Chaoyu Yu, Douglas L
 792 Maskell, and You Zhou. Neural Combinatorial Optimization Algorithms for Solving Vehicle
 793 Routing Problems: A Comprehensive Survey with Perspectives, October 2024. URL <http://arxiv.org/abs/2406.00415>. arXiv:2406.00415 [cs].
- 794 Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. NeuroLKH: Combining Deep Learning
 795 Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem. In
 796 *Advances in Neural Information Processing Systems*, volume 34, pp. 7472–7483. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/hash/3d863b367aa379f71c7afc0c9cdca41d-Abstract.html.
- 797 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun Chen.
 798 Large Language Models as Optimizers, September 2023. URL <http://arxiv.org/abs/2309.03409>. arXiv:2309.03409 [cs].
- 799 Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. DeepACO: Neural-enhanced Ant
 800 Systems for Combinatorial Optimization, November 2023. URL <http://arxiv.org/abs/2309.14032>. arXiv:2309.14032.

- 810 Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
 811 and Guojie Song. ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution.
 812 In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Ad-*
 813 *vances in Neural Information Processing Systems*, volume 37, pp. 43571–43608. Curran Associates,
 814 Inc., 2024a. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/4ced59d480e07d290b6f29fc8798f195-Paper-Conference.pdf.
- 815
- 816 Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learning
 817 Global Partition and Local Construction for Solving Large-scale Routing Problems in Real-time,
 818 July 2024b. URL <http://arxiv.org/abs/2312.08224>. arXiv:2312.08224 [cs].
- 819
- 820 Zhuoli Yin, Zhaoyu Kou, and Hua Cai. A Deep Reinforcement Learning Model for Large-Scale
 821 Dynamic Bike Share Rebalancing with Spatial-Temporal Context. In *The 12th International Work-*
 822 *shop on Urban Computing*, 2023. URL http://urban-computing.com/urbcomp2023/file/UrbComp2023_paper_7.pdf.
- 823
- 824 Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Reinforced Lin-Kernighan-
 825 Helsgaun Algorithms for the Traveling Salesman Problems, July 2022. URL <http://arxiv.org/abs/2207.03876>. arXiv:2207.03876 [cs].
- 826
- 827 Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. UDC: A Unified
 828 Neural Divide-and-Conquer Framework for Large-Scale Combinatorial Optimization Problems,
 829 2024. URL <http://arxiv.org/abs/2407.00312>. arXiv:2407.00312 [cs].
- 830
- 831 Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. RBG: Hierarchically Solving
 832 Large-Scale Routing Problems in Logistic Systems via Reinforcement Learning. In *Proceedings*
 833 *of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD '22, pp.
 834 4648–4658, New York, NY, USA, August 2022. Association for Computing Machinery. ISBN
 835 978-1-4503-9385-0. doi: 10.1145/3534678.3539037. URL <https://dl.acm.org/doi/10.1145/3534678.3539037>.
- 836
- 837
- 838
- 839
- 840
- 841
- 842
- 843
- 844
- 845
- 846
- 847
- 848
- 849
- 850
- 851
- 852
- 853
- 854
- 855
- 856
- 857
- 858
- 859
- 860
- 861
- 862
- 863

864 A TRAVELING SALESMAN PROBLEM (TSP)
865866 A TSP is characterized by a list of nodes $i \in \{1, 2, \dots, N\}$, and the corresponding coordinate sets
867 $\{(x_i, y_i) \mid i = 1, 2, \dots, N\}$ or the 2D Euclidean distance matrix D_N . The 2D Euclidean distance
868 between a node pair is calculated as $d(i, j) = [\sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}]$ and we round the distance
869 to the nearest integer in this study.870 The goal of TSP is to find an optimal tour that departs from an initial node, visits each node exactly
871 once, and returns to the starting node. With loss of generality, the solution Π in this study is
872 represented as a cyclic sequence of nodes $\Pi = [\pi_1, \pi_2, \dots, \pi_N] + [\pi_1]$, where π_n represents the
873 n -th node in this sequence, and π_1 denotes both the starting and ending node of the tour to form a
874 complete cycle. The objective is to minimize the total distance traveled $L(\Pi) = \sum_{i=1}^{N-1} d(\pi_i, \pi_{i+1}) +$
875 $d(\pi_N, \pi_1)$.876 When the distance between two nodes is identical in both directions, i.e., $d(i, j) = d(j, i)$, the
877 problem is known as symmetric TSP (STSP). In contrast, asymmetric TSP (ATSP) allows for
878 different distances between certain node pairs in opposite directions, i.e., $d(i, j) \neq d(j, i)$.880 881 B ADDITIONAL RELATED WORKS
882883 B.1 OR APPROACHES
884885 Many commercial solvers, such as Gurobi, OR-Tools, and CPLEX, are designed for generic optimization
886 purposes. They search for exact optimal solutions using techniques like branch and cut, but these
887 solvers struggle with large-scale optimization problems. Besides these commercial solvers, Concorde
888 is believed to be the SOTA exact solver designed for TSP to obtain optimal solutions. Essentially, it
889 also employs the LKH algorithm—the SOTA heuristic solver—and branch-and-cut techniques to find
890 exact solutions. Concorde has been shown to solve TSPs with more than 80k nodes, but still at the
891 expense of years of computation.892 B.2 LEARNING-BASED APPROACHES
893894 **End-to-end construction.** The autoregressive approach is characterized by an attention-based
895 network architecture, such as the Transformer (Vaswani et al., 2017), or its variants, such as Pointer-
896 former (Jin et al., 2023). AM in Kool et al. (2019) uses the REINFORCE algorithm to sequentially
897 predict the node with the highest probability, while POMO in Kwon et al. (2020) produces multiple
898 solutions in decoding steps to improve the model performance. In contrast, the non-autoregressive
899 approaches estimate the likelihood of connecting each edge between nodes to produce a heatmap.
900 For example, DIMES in Qiu et al. (2022) proposed learning a continuous space to parameterize the
901 solution distribution using an anisotropic graph neural network. DIFUSCO (Sun & Yang, 2023),
902 T2T (Li et al., 2023), and Fast T2T (Li et al., 2024) developed a graph-based diffusion model to
903 generate the solution, which denoises random noise and the problem instance to gradually produce a
904 feasible solution. However, DIFUSCO employs the 2-opt method to further refine the output, which
905 brings a significant performance gain. Its standalone performance to generalize to new instances is
906 questionable. Fang et al. (2024) introduced Invariant Nested View Transformer (INViT) to identify
907 partial nodes with similar distributions as the trained ones to hierarchically handle partial problems.
908 However, since these solvers always generate approximate solutions with an inevitable optimality
909 gap, the overall solution quality can deteriorate significantly in out-of-distribution instances.910 **Local improvement.** Li et al. (2021) trains a backbone to select a promising subproblem and
911 then delegates it to an off-the-shelf solver for further improvement. Zong et al. (2022) developed
912 Rewriting-by-Generating (RBG) to iteratively refine the solution partitioning and infer new local
913 solutions by a trained generator. Similarly, Select-and-Optimize (SO) in Cheng et al. (2023) trained a
914 policy to select promising sequences within the complete tour and used a trained solver to improve
915 the selected sequence iteratively. Intuitively, the subproblem solution quality fully depends on the
916 solver. RBG and SO trained small-scale solvers following the methods in end-to-end construction.
917 Fu et al. (2021) developed a graph convolutional residual neural network with attention mechanisms
918 (AttGCRN) to optimize split subgraphs, and it fuses optimized partial solutions as the complete
919 solution. Similarly, H-TSP (Pan et al., 2023), GLOP (Ye et al., 2024b), and UDC (Zheng et al., 2024)

918 decompose a TSP into open TSPs (instead of standard symmetric TSP) and optimize them using
 919 dedicated trained solvers.
 920

921 C PROMPTS TO VLMS FOR SUBPROBLEM VISUAL SELECTION

922
 923 The meta-text prompt instructing VLMS to select promising TSP subproblems is devised as follows.
 924 ***Italicized text in bold*** denotes placeholders for problem-specific inputs, and Q represents the number
 925 of sub-regions to be selected per query. Δ indicates the margin used to allow selection near the
 926 edge of the instance. It is set to 10% of the spatial boundary of the given TSP instance. We do
 927 not set parameters or rules for exploring, to investigate VLMS' capability to learn from the context
 928 to determine the best selection by itself. Due to the inherent differing execution pace between
 929 modules in asynchronous orchestration, VLMS can generate selections on the same global solutions
 930 before solvers finish current subproblem jobs. To mitigate duplicate selections from VLMS during
 931 asynchronous processes, the real-time subproblem queue Ω is included as part of the input prompts
 932 to VLMS.
 933

934 You are tasked with improving an existing solution to a Traveling Salesman Problem (TSP)
 935 by selecting a sub-region where the routes can be significantly optimized. Carefully consider
 936 the locations of the nodes (in red) and connected routes (in black) in the initial solution on
 937 a map. The boundary of the map is $x_{\min} = \{x_{\min} - \Delta\}$, $x_{\max} = \{x_{\max} + \Delta\}$, $y_{\min} =$
 938 $\{y_{\min} - \Delta\}$, $y_{\max} = \{y_{\max} + \Delta\}$.

939 Please return $\{Q\}$ sub-rectangle(s) that you believe would most reduce total travel distance
 940 from further optimization by a downstream TSP solver. Analyze the problem to do meaningful
 941 selections. Remember, if you don't see significant improvement, try selecting larger areas
 942 that cover more nodes based on your analysis of the prior selection trajectory.

943 Keep your output very brief as in the following template. Don't tell me you cannot view or
 944 analyze the map. I don't want an excuse:

945 $\langle \text{coordinates} \rangle x_{\min}=1,000, x_{\max}=2,000, y_{\min}=1,000, y_{\max}=2,000 \langle / \text{coordinates} \rangle$
 946

947 Avoid selecting the same regions as follows, which are pending optimization: ***{pending***
 948 ***regions}***

949 Below are some previous selection trajectories. Please avoid selecting the same subrectangle:
 950 ***{prior selection trajectory}***

951 where each entry in ***{pending regions}*** is retrieved from up-to-date subproblem queue Ω . Each entry
 952 in the ***prior selection trajectory*** is based on the trajectory pool Φ and formatted as follows:
 953

954 ***{coordinates}***, number of nodes within the subrectangle= ***{number of nodes}***, travel distance
 955 reduction= ***{delta objective improvement}***, computational time for this subproblem= ***{solver***
 956 ***runtime in second}***

957 The visual prompt is an instance-specific image, visualizing the position of nodes and the current
 958 tour based on Π^* . An example visual prompt is shown in Figure 4. In our implementation, all TSP
 959 instances are rendered using a consistent figure size (figsize=(20,20)). The image is gridded based on

960 $\left\lceil \sqrt{\frac{y_{\max} - y_{\min}}{100}} \right\rceil$ to adaptively provide coordinate reference for VLM.
 961

962
 963
 964
 965
 966
 967
 968
 969
 970
 971

972
973
974
975
976
977
978
979
980
981
982
983
984
985

986
987 Figure 4: An example of the visual prompt to VLMs. In this example, nrw1379 is used. The tour is
988 initialized by LKH-3.
989

D PSEUDO-CODES FOR VISUAL SELECTION MODULE

Algorithm 1 Visual Selection Module

```

993 1: Input: Current global solution  $\Pi^*$ , Selection trajectory  $\Phi$ , Meta-instruction  $I$ , Pending subprob-
994 lem queue  $\Omega$ , Number of subproblems per prompt  $Q$ , Maximum number of covered nodes  $\alpha$ ,
995 VLM visual selection  $F_{\text{selector}}$ .
996 2:  $(C_1, \dots, C_Q) \leftarrow F_{\text{selector}}(\Pi^*, \Phi, I, \Omega, Q)$ 
997 3: for  $q = 1$  to  $Q$  do
998 4:   Compute the number of covered nodes  $M$ 
999 5:   while  $M > \alpha$  do
1000 6:      $C_q \leftarrow F_{\text{selector}}(\Pi^*(C_q), \Phi, I, \Omega, 1)$             $\triangleright$  Zoom-in based on current solution within  $C_q$ 
1001 7:     Update  $M$ 
1002 8:   end while
1003 9:    $\omega_q = (W_q, K_q) \leftarrow \text{FORMSUBPROBLEMS}(\Pi^*, C_q)$ 
1004 10: end for
1005 11: if  $\left| \bigcup_{q=1}^Q W_q \right| \leq \alpha$  or  $\exists i \neq j$  such that  $W_i \cap W_j \neq \emptyset$  then            $\triangleright$  Too small or overlapping
1006 12:    $\omega \leftarrow \omega_1 \cup \dots \cup \omega_Q$                                       $\triangleright$  Merge subproblems
1007 13:   Enqueue  $\omega$  into  $\Omega$ 
1008 14: else
1009 15:   for  $q = 1$  to  $Q$  do
1010 16:     Enqueue  $\omega_q$  into  $\Omega$ 
1011 17:   end for
1012 18: end if
1013 19: Return  $\Omega$                                       $\triangleright$  Updated subproblem queue

```

1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 E PSEUDO-CODES FOR ASYNCHRONOUS ORCHESTRATION
10271028 **Algorithm 2** Asynchronous Orchestration of ViTSP

1029 1: **Input:** Distance matrix D_N , meta-instruction I , subproblems per prompt Q , node cap α ,
1030 initializer $F_{\text{initializer}}$, VLM family ($\text{VLM}_1, \text{VLM}_2, \dots$), solver F_{solver} , max no-improvement steps
1031 K , number of parallel slave solvers P .
1032 2: $\Pi^* \leftarrow F_{\text{initializer}}(D_N)$ ▷ Sec. 3.2
1033 3: $\Phi \leftarrow \emptyset, \Omega \leftarrow \emptyset, \Omega' \leftarrow \emptyset$ ▷ Selection trajectory, subproblem queue, screened subproblem queue
1034 4: **[Parallel: Visual Selection Loop]** ▷ Sec. 3.3
1035 5: $F_{\text{selector}}(\cdot) \leftarrow \text{ROULETTE}(\text{VLM}_1, \text{VLM}_2, \dots)$
1036 6: $\Omega \leftarrow \text{VISUALSELECTION}(\Pi^*, \Phi, I, \Omega, Q, \alpha, F_{\text{selector}})$ ▷ Alg. 1
1037 7: **[Parallel: P Slave Solvers Loop]** ▷ Sec. 3.5
1038 8: Dequeue ω from Ω
1039 9: $D_{\text{STSP}} \leftarrow \text{REFORMULATESUBPROBLEMS}(\omega)$
1040 10: $\Pi \leftarrow F_{\text{solver}}(D_{\text{STSP}})$
1041 11: **if** $L(\Pi^*) > L(\Pi)$ **then** Enqueue ω into Ω' ▷ Retain promising subproblem
1042 12: **[Parallel: One Master Solver Loop]** ▷ Sec. 3.5
1043 13: **while** Counter $\leq K$ **do**
1044 14: **if** $\Omega' \neq \emptyset$ **then** Dequeue ω from Ω'
1045 15: **else** Dequeue ω from Ω
1046 16: $D_{\text{STSP}} \leftarrow \text{REFORMULATESUBPROBLEMS}(\omega)$
1047 17: $\Pi \leftarrow F_{\text{solver}}(D_{\text{STSP}})$
1048 18: **if** $L(\Pi^*) > L(\Pi)$ **then** $\Pi^* \leftarrow \Pi$ ▷ Only master updates global solution
1049 19: **else** Counter \leftarrow Counter + 1
20: **end while**
21: **Terminate all parallel processes** ▷ Stop ViTSP
22: **Return** Π^* ▷ Final solution

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080 F IMPLEMENTATION DETAILS OF ViTSP AND BASELINE ALGORITHMS
10811082 F.1 CLASSICAL OR APPROACHES
1083

1084 **Concorde** We used *PyConcorde*, a Python wrapper for the Concorde solver, to solve the TSP
1085 instances. [Concorde provides a `timelimit` parameter that can be used to constrain its execution](#)
1086 [time](#). The runtime limit for Concorde is set to match the time *ViTSP* takes to converge on each specific
1087 instance.

1088 **LKH-3** The implementation version used in this study is *LKH-3.0.13*. For **LKH-3 (Default)**, we used
1089 the default parameters as specified in [Helsgaun \(2016\)](#), including `RUNS=10`, `MAX_TRIALS`=number
1090 of nodes, and `MOVE_TYPE=5` (i.e., 5-opt). For **LKH-3 (more RUNS)**, we incrementally increase the
1091 value of `RUNS` by 50 until the actual runtime matches that of *ViTSP*. In the event that the gap is 0%,
1092 we report the runtime to reach this optimality.

1093 **LKH-3**’s performance is controlled by parameters like `RUNS`, `TRIALS`, etc. By default, `RUNS` is set
1094 to 10, which is used for LKH-3 (default) in our study. `TRIALS` is always set to be equivalent to the
1095 problem size, e.g., `TRIALS=1000` for *dsj1000*. We extend `RUNS` ad hoc to ensure LKH-3 runtime
1096 matches with *ViTSP*, and we report the per-instance settings of `RUNS` in Table 7.

1097
1098 Table 7: Per-instance setting of `RUNS` across 33 TSPLIB instances.

dsj1000	pr1002	u1060	vm1084	pcb1173	d1291	rl1304	rl1323	nrw1379	fl1400	u1432
160	910	750	160	660	1600	260	360	760	210	410
fl1577	d1655	vm1748	u1817	rl1889	d2103	u2152	u2319	pr2392	pcb3038	fl3795
60	560	560	650	310	310	760	460	460	310	
fnl4461	rl5915	rl5934	pla7397	rl11849	usa13509	brd14051	d15112	d18512	pla33810	pla85900
110	130	130	130	44	30	50	70	50	50	18

1099 **Farthest insertion (FI)** No parameters required for this algorithm.

1100 F.2 END-TO-END CONSTRUCTION APPROACHES
1101

1102 **Attention Model (AM)** The algorithm was implemented based on RL4CO package ([Berto et al., 2024](#)). We utilized the open-source *tsp100* checkpoint as the backbone for the AM ([Kool et al., 2019](#)).
1103 Attempts to train a new model for larger instances, like *tsp1000*, failed due to an out-of-memory
1104 issue. We adopted the *greedy* decoding strategy since our experiments show it demonstrated superior
1105 performance compared to the *sampling* strategy. We denoted this algorithm as *AM(G)*.

1106 **DIFUSCO** ([Sun & Yang, 2023](#)) We used the published pre-trained checkpoint *tsp10000-categorical*
1107 as the backbone for DIFUSCO in this study. All other parameters followed the defaults provided in
1108 the open-source code. Specifically, a sampling-based strategy was implemented with 10 diffusion
1109 steps and 16 samples. Additionally, 2-opt operations with 5,000 steps were applied. The diffusion
1110 type was categorical. We refer to this algorithm as *DIFUSCO(S+2-opt)*.

1111 **Invariant Nested View Transformer (INViT)** ([Fang et al., 2024](#)) We used the open-sourced check-
1112 point for TSP as the backbone in assessing INViT’s performance in this study and followed the
1113 default settings.

1114 **Self-Improved Training (SIT)** ([Luo et al., 2025](#)) We used the open-sourced checkpoint *tsp-1k* as the
1115 backbone. Random Destroy and Repair (PRC) iterations were performed to improve the solutions
1116 until the runtime hits the limit aligned with *ViTSP* for each instance.

1117 F.3 LOCAL IMPROVEMENT APPROACHES
1118

1119 **DeepACO** ([Ye et al., 2023](#)) We used an open-sourced checkpoint *tsp500*. Following the specifications
1120 in the paper, we use the configuration $n_{ants} = 100$, $n_{nodes} = 500$, $k_{sparse} = 100$, $t_{aco} = 100$.

1121 **Select-and-Optimize (SO)** ([Cheng et al., 2023](#)) No public codes and checkpoints are available. We
1122 extracted the results reported in the original paper.

1123 **Unified Neural Divide-and-Conquer Framework (UDC)** ([Zheng et al., 2024](#)) We used their pre-
1124 trained checkpoints for partitioning (dividing) and sub-TSP solver (conquering) to evaluate UDC’s

1134 performance in TSP. We followed the default parameters reported in the paper. We set the runtime to
 1135 align with *ViTSP*'s runtime on each instance.
 1136

1137 **F.4 LLM-BASED APPROACH**

1138 **EoH** (Liu et al., 2024) We used the open-source LLM4AD platform to run EoH with its default
 1139 parameters. For LLM, we used GPT-4.1, the same as in *ViTSP*. Additionally, iterations are terminated
 1140 once the runtime limit, matched to that of *ViTSP*, is reached.
 1141

1142 **F.5 ViTSP**

1143 We used LKH-3 (Default) as the solution initializer. For VLMs, we set the number of subproblems
 1144 generated per prompt $Q = 2$. To reconcile the solving time spent on a single subproblem, we set the
 1145 upper bound of the number of selected nodes to $\alpha = 1000$ for instances $N < 10,000$ and $\alpha = 2000$
 1146 for instances $N > 10,000$ and we imposed the time limit on Concorde for solving each subproblem
 1147 to be $T_{\max} = 10$ seconds. The number of slave solvers is set to be $P = 8$ in the asynchronous
 1148 orchestration. For the VLM, a maximum of 100 tokens is set to ensure brief and speedy output.
 1149 *ViTSP* is set to terminate if there are five consecutive solving steps without any improvement in the
 1150 global objective value.
 1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188 **G COMPLETE PLOTS OF OPTIMALITY GAP REDUCTION OVER TIME BETWEEN**
 1189 **ViTSP AND LKH-3 (MORE RUNS)**

1238 **Figure 5: Optimality gap reduction over time between ViTSP and LKH-3 (more RUNS).**
 1239
 1240
 1241

1242 **H IDENTIFIED SUBPROBLEMS BY VLMs THAT CONTRIBUTE TO OPTIMALITY**
1243 **GAP REDUCTION**
1244

1245 In Figure 6, we plot the identified subproblems by VLM. For clarity, the selected box regions without
1246 contributing to optimality gap reductions are omitted.
1247

1248 Besides correcting crisscrossed edges, which is the most visually apparent suboptimality, *ViTSP* can
1249 also achieve improvements through:

1250 (1) Refining dense regions where small gains can accumulate by transitioning from a locally approxi-
1251 mate solution (initialized by LKH-3) to a locally optimal one, as each subproblem is re-optimized
1252 using an exact solver (Concorde).

1253 (2) Combinatorially selecting neighborhoods whose joint optimization can escape the local optimum
1254 and lead to global improvements, recall that we use $Q = 2$ to allow two subproblem selections
1255 simultaneously at each step.

1256 As shown in Figure 6, the subregions identified by the VLM often correspond to these two patterns.
1257 Dense areas may contain sub-paths that are locally optimal but globally improvable when viewed
1258 in context. Additionally, as we detailed in Section 3.3, we designed zoom-in reselection so VLMs
1259 always have chances to inspect detailed edge connections in a dense area.

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Figure 6: Visualization of selected box regions by VLMs on TSP instances.

I COMPLETE PLOTS FOR ABLATION STUDIES OF DIFFERENT SELECTION POLICIES

In Figure 7, we illustrate the optimality gap reduction curves among *ViTSP* and two random selectors across 33 TSPLIB instances to demonstrate the effectiveness of VLM in selecting meaningful subproblems.

Figure 7: Optimality gap reduction over time among three selection policies.

J LIMITATIONS AND BROADER IMPACTS

We discuss two limitations and [additional](#) directions of future work in this section. First, the box-based subproblem selection guided by VLMs in this study represents just one type of metaheuristic operation for combinatorial optimization. As ablation studies show, selecting a sequence of nodes

1404 may also be a helpful metaheuristic operation. Exploring additional operations designed by VLMs
1405 could further unlock the potential of hybridizing machine learning and operations research. Second,
1406 although parallel computing is employed, this study does not explicitly optimize the coordination
1407 between the selector and solver modules. In particular, there is an unexplored trade-off between
1408 solving a single large subproblem with longer runtime versus solving multiple smaller subproblems
1409 within the same time. We leave this investigation for future work. **Third, exploring batch-parallel
1410 execution to enable the optimization of multiple instances simultaneously could further improve
1411 overall throughput in practice.**

1412 Broadly, the TSP is more than an academic challenge—it is a foundational problem with broad
1413 applications across industries, including transportation, logistics, chip design, and DNA sequencing.
1414 This work creates new opportunities for the machine learning community to develop high-quality
1415 solutions for large-scale TSP and related problems using general-purpose large models. As VLMs
1416 become increasingly accessible and capable of advanced reasoning, they offer scalable solutions
1417 deployable on both cloud and edge devices, paving the way for practical and impactful applications.

1419 K THE USE OF LARGE LANGUAGE MODELS (LLMs)

1420
1421 The authors confirm that LLMs were used only for grammar checking and text polishing. They were
1422 not involved in research ideation. Their role in writing was limited, such that they are not considered
1423 contributors.

1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457