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ABSTRACT

Grid world environments expose core challenges in sequential decision-making,
including planning under partial observability and achieving sample-efficient gen-
eralization. Current Deep Reinforcement Learning methods often require millions
of interactions in these structured domains, struggling to capture causal depen-
dencies critical for efficient adaptation. We present a novel experiential learning
agent with causally-informed intrinsic reward that is capable of learning sequen-
tial and causal dependencies in a robust and data-efficient way within grid world
environments. After reflecting on state-of-the-art Deep Reinforcement Learning
algorithms, we provide a relevant discussion of common techniques as well as our
own systematic comparison within multiple grid world environments. We also
investigate the conditions and mechanisms leading to data-efficient learning and
analyze relevant inductive biases that our agent utilizes to effectively learn causal
knowledge and to plan for rewarding future states of greatest expected return.

1 INTRODUCTION

Grid world environments come in many forms and have been studied extensively in the history of
Artificial Intelligence, with some notable examples such as Wumpus World (Bryce, 2011), Mini-
grid (Chevalier-Boisvert et al., 2024), and Tileworld (Pollack & Ringuette, 1990). However, the
creation of intelligent grid world agents capable of learning effectively and in a data-efficient way
has posed significant challenges. Current Reinforcement Learning (RL) agents struggle in some
instances due to sequential dependencies, partial observability (Wang et al., 2023a), continual learn-
ing (primacy bias Kim et al. (2024), stability-plasticity dilemma Anand & Precup (2024)), relatively
high-dimensional state spaces and non-deterministic effects of actions.

Sequential dependencies usually raise the training data demand exponentially depending on the
combinatorics, and, ultimately, the number of arising options, unless the agent is capable of learning
causal representations that transfer well. Partial observability, on the other hand, may require the
model to have access to information from prior states, which typically corresponds to the previously
observed values in a grid world outside the agent’s current field of view. In terms of input dimension-
ality, there is a trade-off between the observation window being too small for learning an effective
policy and the agent’s observation window being more high-dimensional, thereby demanding more
training data.If the agent can represent values beyond its observation window, a learned policy must
account for both the window itself and how it spatially relates to remembered information outside it.

With these considerations in mind, we introduce Non-Axiomatic Causal Explorer (NACE), a novel
experiential learning agent, which leverages causal reasoning and intrinsic reward signals to enable
more efficient learning as well as possesses learning mechanisms with the involved inductive biases.
NACE is designed to induce causal rules from temporal and spatial local changes in the grid, it
utilizes these rules to plan for and reach future states of maximum uncertainty to effectively learn
more about the environment, thus improving predictability-based intrinsic reward formulations.

To illustrate the effectiveness of our approach, we provide a comprehensive discussion of state-of-
the-art Deep Reinforcement Learning (DRL) techniques as well as our own systematic comparison
within multiple grid worlds showing remarkable improvement in data efficiency, achieving similar
performance with about 1000 samples versus DRL’s requirement of 1 million samples. We examine
the conditions under which learning in grid worlds attains greater data efficiency, with particular
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emphasis on inductive biases facilitating close-to-optimal learning speeds without predefined inter-
action rules but having the inductive biases to build them. Lastly, we analyze useful inductive biases
that generalize across diverse grid worlds to enhance data efficiency in learning.

Therefore, our main contributions are:

• We propose NACE, a learning agent that induces causal rules from experience and uses
them to plan and explore.

• We demonstrate that incorporating causal inductive biases can improve sample efficiency.
• We show that NACE achieves up to a 1000-fold reduction in environment interactions

against a range of baselines.
• We analyze NACE’s limitations and outline pathways for scaling to complex environments.

2 RELATED WORK

Current RL techniques, like value-based (DQN (Mnih et al., 2013)) and policy gradient-based (PPO
(Schulman et al., 2017)), require millions of training steps to succeed in grid-worlds (Zhang et al.,
2020), struggling to capture causal dependencies necessary for efficient planning and transferability.

Exploration improvements, such as intrinsic rewards based on information gain (Zhao et al., 2023),
prediction errors (Burda et al., 2018), or visitation counts (Zheng et al., 2021; Wang et al., 2023b),
enhance sample efficiency but lack structured reasoning for generalization. In contrast, Tsividis et al.
(2021) propose Theory-Based RL, exemplified by EMPA, which integrates Bayesian causal mod-
eling, structured exploration, and heuristic planning to generalize efficiently with minimal training.
Similarly, GALOIS (Cao et al., 2022) addresses generalization by synthesizing interpretable, hier-
archical programs with strict cause-effect logic, though its reliance on predefined program sketches
limits flexibility in semi-structured environments. As a model-based RL, DreamerV3 (Hafner et al.,
2023) learns latent state dynamics and improves behavior through imagination, enabling generaliza-
tion across diverse tasks with little domain-specific adjustments. However, its reliance on learning
latent representations and their dynamics reduces sample efficiency compared to methods that as-
sume predefined representations.

Symbolic approaches such as STRIPS or Behavior Trees (BTs) (Guo et al., 2023; Colledanchise &
Ögren, 2018) handle human-defined causal knowledge but lack lacking adaptive learning. POMDPs
(Spaan, 2012) emphasize probability updates over causal discovery, while causal networks (Pearl,
1995) and structure-learning methods (Zheng et al., 2018) struggle with ambiguity and scalability.

DRL often struggles with sample efficiency, requiring substantial interactions with environments.
This paper examines foundational algorithms, scalable architectures, and exploration-focused meth-
ods that address these challenges.

Foundational methods include DQN Mnih et al. (2015), which combines deep neural networks with
Q-learning to handle large state spaces but struggles with sparse rewards; A2C Mnih et al. (2016),
which reduces variance in updates through synchronized parallel actors but is limited by its on-
policy nature; TRPO Schulman et al. (2015), which ensures stable policy updates with trust region
constraints but is computationally intensive; and PPO Schulman et al. (2017), which refines TRPO
with clipped objectives for improved data utilization and computational efficiency.

Scalable architectures such as IMPALA Espeholt et al. (2018) address multi-task learning by lever-
aging distributed architectures with off-policy corrections, offering scalability but facing synchro-
nization challenges, whereby exploration-focused methods aim to address sparse rewards and com-
plex state spaces. COUNT Bellemare et al. (2016) uses pseudo-counts for better exploration but
is computationally demanding in large state spaces. RND Burda et al. (2018) stimulates novelty
through prediction errors. However, it depends on high-quality state representations. CURIOSITY
Pathak et al. (2017) rewards prediction errors of action outcomes, promoting intrinsic motivation,
while RIDE Raileanu & Rocktäschel (2020) focuses on impactful actions but may struggle with
ambiguous state changes. AMIGO Campero et al. (2021) generates adversarial goals to guide ex-
ploration, requiring effective goal-generation mechanisms.

Model-based RL techniques can learn environment models and improve behavior through imagined
future scenarios Sekar et al. (2020). DreamerV3 Hafner et al. (2023) follows this principle, using
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latent state dynamics for broad applicability with minimal tuning. However, the added complexity
of learning latent space representations along with their dynamics leads to less sample efficiency
compared to when representations are already present, leaving only the dynamics to be learned.

3 NON-AXIOMATIC CAUSAL EXPLORER

NACE is our proposed experiential learning technique with causality-informed intrinsic reward and
strong inductive biases for grid worlds to boost sample efficiency. Here, we provide formal descrip-
tions of NACE. For a comprehensive list of symbols see Appendix C.

3.1 STATES AND RULE REPRESENTATION

State in NACE is a tuple s = (sspatial, sinternal) consisting of a two-dimensional value array sspatial ∈
Nm×n and a one-dimensional value array sinternal ∈ Nk, as shown in Figure 1. The two-dimensional
array reflects the spatial structure in the grid world, including remembered cells beyond the current
view, while the one-dimensional array is used for internal values, such as inventory items.

o o

o x

2D Spatial Array

Key

Ball

1D Internal Array

Figure 1: State components

Learned rules have the form of (preconditions, action) ⇒ consequence where the precondition
holds a conjunction of cell value constraints spatially relative to the cell value of the consequence,
and the consequence predicts one particular cell’s value as well as the values of the one-dimensional
array at the next timestep as depicted in Figure 2.

c
1
t−1 (e.g. consequence cell = empty)

c
2
t−1 (e.g. right of consequence cell = agent )

c
k
t−1 (cell k value constraint, e.g. omitted)

vt−1 (value array constraint, e.g. holding key)

at−1 (taken action constraint, e.g. move left)

ct (e.g. consequence cell = agent)

vt (e.g. still holding key)

R(r) (reward predicted by rule, e.g. 0)

Figure 2: Rule schema: preconditions with an action and consequence

Each rule tracks evidence using counters for w+ and w−, similar to (Wang, 2013), which measure
the accuracy of the rule’s predictions. Positive evidence (w+) is accumulated whenever a perfectly
matching rule predicts correctly, while negative evidence (w−) increases with incorrect predictions.
Tracking of evidence helps the agent refine its causal knowledge by prioritizing more reliable rules.
Examples of created rules are provided in Appendix G.

3.2 INDUCTIVE BIASES

It is well-known that favorable inductive biases can enhance sample efficiency. Below are inductive
biases that are incorporated in NACE and relevant for grid world environments:

1. Temporal Locality: NACE constructs rules based solely on the current and previous state,
modeling relevant dependencies locally in time.

2. Causal Representation: NACE’s knowledge representation is centered around the causal
rules, which can be chained and are independent of the objective.
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3. Spatial Equivariance: Ability to model causal dependencies between grid cells indepen-
dently of the specific location of the cells considered in the dependency, meaning learned
rules are applied at any location.

4. State Tracking: Ability to effectively track states outside of the field of view of the agent
based on the recorded or estimated locations. NACE explicitly keeps track of a bird’s-eye
view map by recording observations and updating the values that are within its observability
window.

5. Attentional Bias: Relevant dependencies tend to involve values that have either observ-
ably changed or a different value than predicted. Only rules that show a change from the
previous to the current timestep, or differ from the predicted value, are considered for rule
formation, evidence updating, and prediction.

Additional discussions on inductive biases as well as ablation studies can be found in Appendix B.

3.3 CURIOSITY MODEL

Curiosity model outlines the mechanism that helps NACE systematically acquire missing causal
knowledge about the environment. The key principle is realized by making the agent plan to reach a
state that it is most unfamiliar with. The familiarity is judged by whether existing rules match well
with the situation, whereby matching is a matter of degree dependent on how many rule conditions
match the cells in the known state. This motivates the following formalism:

• Match value of a rule r is evaluated relative to consequence cell c:

M(r, c) = Number of matched preconditions
Total number of preconditions

• Cell match value of a cell c dependent on all m existing rule match values:

C(c) = max(0,M(r1, c), . . . ,M(rm, c))

• State match value S(s) of a state s is the maximum C(c) value of its cells, whereby a
value smaller than 1 indicates uncertainty from imperfect rule matches. This value is the
secondary “explorative” objective in the planning process that guides the agent’s decisions:

S(s) = max(C(c1), . . . , C(cm))

3.4 NACE ARCHITECTURE

Figure 3 illustrates the high-level architecture of NACE, which consists of several interconnected
components working together to enable learning and decision-making. The related pseudocode is
provided in Appendix D.

1. Observer: Its role is to update a bird’s-eye view map via values from the partial observa-
tion 2D array, then to find changes in input, as well as prediction-observation mismatches
(prediction failures). Formally, this corresponds to determining the sets:

• Set of changes in observations: M change
t = {cobservation

t,x,y | cobservation
t,x,y ̸= cobservation

t−1,x,y }
This set captures all grid cells cx,y where the observed value has changed between
timesteps t− 1 and t, highlighting areas that have been updated or modified.

• Set of observation mismatches: M observation
mismatched,t = {cobservation

t,x,y | cprediction
t,x,y ̸= cobservation

t,x,y }
This set includes all grid cells where the observed value differs from the predicted
value at time t, indicating potential prediction failures.

• Set of prediction mismatches: M prediction
mismatched,t = {c

prediction
t,x,y | cprediction

t,x,y ̸= cobservation
t,x,y }

This set identifies all grid cells where the predicted value does not match the observed
value at time t, from the perspective of predictions.

These sets enable the Observer to track state changes and prediction failures, ensuring
an accurate understanding of the environment and supporting the system’s adaptive and
predictive capabilities.
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Actual world:
A discrete 2D grid with partial observability

Observer:
1. Update bird’s-eye view map

2. Register changes and prediction failures

Hypothesizer:
Create, revise and choose rules

Planner:
1. Search for argmaxπV

π(s) > 0
2. Search for argminπS(sn) < 1

3. Random action

Predictor:
Predicts next state based on action

Actual world represents the real simulated 2D grid environment
(Minigrid) with a cell-granular partial observability model. In
each frame, the field-of-view local to the agent is passed on to
the observer.

Observer takes the field-of-view 2D array as input and detects
changes in values as well as identifies prediction failures from
rules that predict incorrectly.

Hypothesizer creates and updates rules based on whether their
predictions align with observations, whereby only changed-cells
and prediction-mismatch cells as reported by Observer are
considered.

Planner searches for optimal actions that lead to greater-than-
zero expected return, and if none such is found, searches for
actions that lead to a state of lowest state match value greater
than zero. Finally, in case such also does not exist, a random
action is chosen

Predictor forecasts the next state from the current state and the
taken action, utilizing individual rules to predict a state transi-
tion of the entire state, whereby for each cell its predicted value
comes from the rule with the highest M(r, c).

Figure 3: Flow diagram of the system

2. Hypothesizer: Associating positive and negative evidence based on prediction success, as
well as creating new rules when positive evidence is initially found.
Formally, for each rule r = ((c1t−1 ∧ ... ∧ ckt−1 ∧ vt−1 ∧ at−1)⇒ (ct ∧ vt ∧R(r))),
c := (cr = c) indicates that the value in the rule precondition aligns with the actual cell
value, value array in case of v, and taken action in case of a.
The rule preconditions are met when all equality constraints c1t−1, ..., c

k
t−1, vt−1, at−1 hold.

Positive evidence is attributed when the equality constraints of the postcondition ct, vt are
met as well and the predicted reward aligns with the observed reward (Rt = R(r)). To
increase computational efficiency, only cells that changed value or have a different value
than predicted are considered. Formally, this is being defined as:

w+(r) =

{
w+(r) + 1 if {c1t−1, ..., c

k
t−1, ct} ⊆M

w+(r) otherwise

where M = (M change
t ∪M observation

mismatchedt)

Negative evidence is assigned when any of the postcondition equality constraints are unmet:

w−(r) =

{
w−(r) + 1 if ct ∈M prediction

mismatchedt
w−(r) otherwise

Finally, rules r for which w−(r) > w+(r) become inactive, and for two rules r1, r2 if their
preconditions match (including the action) but the postconditions are different, only the
rule with the higher truth expectation Texp(r) is selected, which is calculated according to:

w(r) = w−(r) + w+(r), frequency(r) = w+(r)
w(r) , confidence(r) = w(r)

w(r)+1

Texp(r) = (frequency(r)− 1
2 ) ∗ confidence(r) +

1
2

This not only allows the system to find the relevant preconditions under which a conse-
quence happens when the action is utilized, but also gives the system tolerance to non-
deterministic effects and enables accounting for uncertainty. More details in Appendix A.

3. Planner: NACE makes use of a depth- and width-bounded Breadth-First-Search algorithm
with a combined search objective consisting of two components: it searches for states
resulting from the different action sequences for futures that lead to the max. Expected
return or, if not existing, the lowest state match value. Hence, it applies a key RL principle
to maximize the expected long-term return (Sutton et al., 1999), with the policy determined
by the considered action sequence: π(t) = at for t = 1, 2, . . . , n whereby n is smaller-
or-equal (dependent on where the optimum is found) to the maximum planning horizon:
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π(t) =

{
argmaxπ V

π(s0) if V π(s0) = Rexp

argminπ S(sn) < 1 otherwise
where Rexp = E [

∑n
t=0 γ

tR(st) | s0 = s, π] > 0

According to this definition, if no return greater than zero can be obtained for any consid-
ered action sequence, the system instead plans for a future state of lowest state match value,
while maintaining the “uncertainty-at-the-last-step” condition:

(∀t : (0 ≤ t < n)→ S(st) = 1) ∧ S(sn) < 1

meaning the action sequence is constrained to be planned in such a way that the state
match value is 1 except for the last action, where it is minimized for the resulting state.
Such constraint maximizes the agent’s chance to reach the state of minimum state match
while ensuring this low match value is not a consequence of predicting from states where
the knowledge was not fully utilized.
Due to the number of possible options, the planning algorithm dominates the asymptotics
of NACE. It has the computational complexity of O(|V | + |E|) where V and E are the
sets of nodes and edges of the search graph. Constant-bounded search depth and width can
be achieved by pruning of branches by expected return and state match value, however,
bounded search depth can negatively affect performance, as analyzed in Appendix A.

4. Predictor: When the planner queries for the predicted state from a given state and an
action, the role of the predictor is to construct the predicted state by applying all knowledge
to the given state in the following way: initializing with the cell values from the given state,
where for each cell we utilize only the rule r with M(r, c) = 1 and maximum Texp(r),
meaning the rule preconditions match perfectly to the given state, the action that has been
considered, and r has the highest truth expectation among the rule candidates.
In this case, the postcondition cell value of the rule is applied to the corresponding cell at
position (x, y) in the predicted state, while else the cell keeps the value from the previous
state. Hence, for utilized rules r∗ = ((c1t ∧ ... ∧ ckt ∧ vt ∧ at)⇒ (ct+1 ∧ vt+1 ∧ R(r∗))),
where ct+1 and vt+1 constrains the cell value and value array of the consequence:

ct+1,x,y =

ct+1 if r∗ = argmax
r|M(r,ct,x,y)=1

Texp(r)

ct,x,y otherwise

Now, while st+1 is a composition of the cells at all locations at time t + 1, the reward
associated with st+1 is the average reward of each of the N utilized rules:

R(st+1) =
1
N

∑N
i=1 R(r∗i )

4 EXPERIMENTS IN MINIGRID

To evaluate the effectiveness of NACE compared to other DRL techniques, we conducted a series
of experiments in Minigrid Chevalier-Boisvert et al. (2024), a 2D grid world environment featuring
diverse and procedurally generated scenarios (Hardware setup including test environments are found
in Appendices F and H). We focus on Minigrid levels that feature partial observability, challenging
the agent to operate with limited information about its surroundings. The selected environments are
categorized based on their specific characteristics as static (fixed start & goal locations), dynamic
(random positions of start, goal, and obstacle), and dynamic with sequential dependencies (tasks
requiring specific action sequences such as a door that needs a key).

In each environment, we recorded the average reward, episode length, and standard deviation every
100 timesteps, whereby each timestep incorporates the observed state, action taken, and obtained
reward. Below we present results for each category, using the selected RL techniques from Section
2 with Behavior Trees (BTs) and hard-coded policies employed as performance upper bounds.

Hyperparameter Choices: NACE used a planning horizon of 100 steps and a truth expectation
threshold of 0.5 for rule filtering. For DRL baselines, we used Stable Baselines3 (for PPO, TRPO,
A2C, DQN) and Torchbeast (for IMPALA and intrinsic reward methods), all configured for consis-
tent observation processing. Baselines shared a 4-layer CNN with 2×2 kernels, 16–128 filters, and
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ReLU activations. PPO employed a learning rate of 3×10−4, batch size 64, 10 epochs per update, and
2048 rollout steps. TRPO adopted a learning rate of 10−3 and a KL-divergence constraint 0.01. A2C
ran with five rollout steps and a learning rate of 7×10−4. DQN operated with a buffer size of 1M,
soft target update every 10k steps, and learning rate 10−4. Exploration-based methods (e.g., RIDE,
RND, AMIGO) used a 3-layer CNN (3×3 kernels), an LSTM, and an intrinsic reward coefficient of
0.1. COUNT relied on 128-bit pseudo-count hashes and reset probability 0.001. DreamerV3 fol-
lowed the official implementation with default settings, matching the action repeat and frame stack
to our environment. Similarly, the BTs were configured with access to the true shortest path, serving
as upper-bound reference policies. All agents applied a discount factor γ = 0.99, gradient clipping,
and default settings from their respective frameworks. Additional details are found in Appendix E.

4.1 STATIONARY ENVIRONMENTS

In this category, because the start and goal locations are fixed, the primary challenge for the agent is
to consistently learn and optimize navigation strategies over repeated episodes.

Techn. Avg. reward S. dev.

TRPO 0.383 0.469
PPO 0.763 0.381
A2C 0.000 0.000
DQN 0.961 0.000
IMPALA 0.245 0.027
COUNT 0.243 0.025
RIDE 0.245 0.036
CURIOSITY 0.245 0.041
RND 0.245 0.049
AMIGO 0.778 0.203
DreamerV3 0.961 0.000
NACE 0.932 0.011

Figure 4: Learning curves and performance metrics for the MiniGrid-DistShift2-v0

MiniGrid-DistShift2-v0: In this environment the fixed start and goal locations are accompanied
by stationary lava obstacles, which the agent must navigate around to reach the goal. DQN and
DreamerV3 perform well, achieving a near-optimal policy with an average reward of 0.96, closely
mirroring the performance of the BT. NACE reached a lower value of 0.93, while it was three orders
of magnitude more sample-efficient. The next-best policies were found by AMIGO and PPO with
an average reward of 0.78 and 0.76, while the others were below 0.5 and less sample-efficient.

4.2 DYNAMIC ENVIRONMENTS

Given that the start and goal locations, along with obstacle positions, are randomized in each episode,
these environments require the agent to continuously adapt to new and unpredictable conditions.

Techn. Avg. reward S. dev.

TRPO 0.187 0.375
PPO 0.838 0.309
A2C 0.000 0.000
DQN 0.114 0.309
IMPALA 0.521 0.064
COUNT 0.543 0.067
RIDE 0.535 0.070
CURIOSITY 0.531 0.103
RND 0.551 0.111
AMIGO 0.690 0.151
DreamerV3 0.952 0.005
NACE 0.922 0.013

Figure 5: Learning curves and performance metrics for MiniGrid-LavaGapS7-v0

MiniGrid-LavaGapS7-v0: Here, the agent must navigate around randomly placed lava obstacles
to reach a fixed goal, requiring adaptability due to the varying paths between episodes. The 5x5 free
space - mostly covered by the agent’s observation window - is complicated by dynamically spawning
lava. From Figure 5, DreamerV3 emerges as the most effective, closely followed by NACE, whereby
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NACE takes about 103 timesteps compared to DreamerV3 taking 3× 105 to reach a mean reward of
around 0.8. BT’s optimal policies are similar in performance to DreamerV3, while PPO (reaching
0.838) shows instability in learning and greater sensitivity to initialization, as indicated by a higher
standard deviation. Others performed poorly, despite the level is nearly fully observable.

Techn. Avg. reward S. dev.

TRPO 0.381 0.467
PPO 0.000 0.000
A2C 0.000 0.000
DQN 0.000 0.000
IMPALA 0.958 0.238
COUNT 0.960 0.168
RIDE 0.959 0.170
CURIOSITY 0.958 0.261
RND 0.958 0.222
AMIGO 0.778 0.203
DreamerV3 0.954 0.008
NACE 0.943 0.005

Figure 6: Learning curves and performance metrics for MiniGrid-SimpleCrossingS11N5-v0

MiniGrid-SimpleCrossingS11N5-v0: Here the agent faces a large grid with multiple intersections
and potential dead ends. The randomized layout in each episode forces the agent to develop a robust
exploration strategy. As Figure 6 shows, DreamerV3, IMPALA, COUNT, RIDE, CURIOSITY,
RND and NACE achieved near-optimal policies since their intrinsic reward mechanisms seem to
be particularly helpful in the environments where the observable window covers only a small part.
AMIGO found reasonable policies with a reward of 0.78, while the others scored below 0.5.

4.3 DYNAMIC ENVIRONMENTS WITH SEQUENTIAL DEPENDENCIES

In these environments, the need to perform actions in a specific sequence adds complexity and tests
the agent’s ability to plan and execute multi-step strategies.

Techn. Avg. reward S. dev.

TRPO 0.577 0.471
PPO 0.890 0.263
A2C 0.000 0.000
DQN 0.000 0.000
IMPALA 0.964 0.162
COUNT 0.949 0.185
RIDE 0.775 0.188
CURIOSITY 0.051 0.016
RND 0.181 0.046
AMIGO 0.932 0.388
DreamerV3 0.967 0.003
NACE 0.909 0.028

Figure 7: Learning curves and performance metrics for MiniGrid-Unlock-v0

MiniGrid-Unlock-v0: In this scenario, the agent must first locate and pick up a key before un-
locking a door to reach the goal and obtain the reward. This sequential dependency adds a layer of
complexity that challenges the agent’s ability to plan ahead. Even though it is a single sequential
dependency, the DRL techniques that learned the fastest initially, DreamerV3 and PPO, demands
almost a million timesteps to converge to a similarly effective policy as NACE, which achieves this
within just 103 steps (Figure 7). While PPO scored 0.89 and showed more instability in learning,
it is far less chaotic than AMIGO. IMPALA reached the optimal policy after about 2 million steps,
performing similarly well to COUNT and AMIGO in the end. Also, in our runs, TRPO did not
exceed a mean episode reward of 0.6, while A2C and DQN failed to learn any effective policy.

MiniGrid-DoorKey-8x8-v0: This environment introduces an additional layer of sequential depen-
dency by requiring the agent to navigate through an unlocked door to reach a goal in a separate
room. While passing through the door adds complexity, the primary challenge lies in the sparse
reward structure, as no reward is given for merely using the door, since only reaching the final goal
is rewarded. DreamerV3 and COUNT nearly achieved the optimal policy with a reward of 0.975
and 0.96 (Figure 8). AMIGO reached 0.87 within 107 timesteps, which is below the average reward

8
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Techn. Avg. reward S. dev.

TRPO 0.000 0.000
PPO 0.156 0.357
A2C 0.000 0.000
DQN 0.000 0.000
IMPALA 0.000 0.000
COUNT 0.960 0.308
RIDE 0.354 0.126
CURIOSITY 0.000 0.000
RND 0.000 0.001
AMIGO 0.868 0.241
DreamerV3 0.977 0.004
NACE 0.922 0.012

Figure 8: Learning curves and performance metrics for MiniGrid-DoorKey-8x8-v0

of NACE requiring only 104 steps. Overall, the results suggest poor combinatorial scaling of the in-
volved DRL techniques, while NACE needed a similar number of steps as for MiniGrid-Unlock-v0
to learn an effective policy.

5 DISCUSSION

Sample Efficiency and Generality: The observed sample efficiency of NACE originates from
explicitly exploiting the cell-based grid world state observations to create transition rules. While
the inductive biases are favourable for grid world environments, they make NACE less generic than
DreamerV3 and demand the application of various feature extraction techniques (variants of Seman-
tic Simultaneous Localization and Mapping Qi et al. (2020), to generate semantic gridmaps) to be
applied outside of the grid world environments. However, DreamerV3 is not designed to be directly
applicable to real-world applications either, but has been showcased exclusively in game-like sce-
narios with a sample efficiency insufficient for real-time learning outside of simulation. Additional
discussions, such as about NACE’s near-optimal performance characteristics and representational
limitations, can be found in Appendix A.

Inductive Bias Ablation Study: We evaluated the contribution of NACE’s inductive biases through
targeted ablations, detailed in Appendix B. Removing temporal locality led to an exponential growth
in rule candidates, severely degrading performance. Without the attentional bias, which restricts rule
creation to changed or mismatched cells, rule learning became inefficient, overfitting to irrelevant
input. Eliminating spatial equivariance prevented generalization across grid locations, reducing
sample efficiency by more than an order of magnitude. Disabling state tracking caused the agent to
loop or revisit known areas, lacking the memory needed to navigate efficiently. Lastly, the causal
representation, NACE’s condition-action-effect rule formalism, defines its core reasoning and is not
ablatable. Together, these results show that each bias is essential for tractable and generalizable
causal learning, and further analysis of the contribution of each can be found in Appendix B.

6 CONCLUSION

We introduced NACE, an experiential learning agent designed to enhance data efficiency in grid
world environments by leveraging causally-informed intrinsic rewards and strong inductive biases.
We compared NACE with state-of-the-art DRL techniques, demonstrating that while these tech-
niques are able to eventually achieve near-optimal policies, they often require significantly more
data, especially as task complexity increases due to factors such as sequential dependencies. NACE,
by contrast, extends the RL framework to empirically support causal relations, enabling effective
learning and decision-making even in low-data settings without relying on pre-defined causal mod-
els. Our causality-informed curiosity model, combined with the outlined inductive biases, facilitates
systematic exploration and learning requiring significantly fewer timesteps. We hope that future
work in the field will strike new compromises regarding the inclusion of inductive biases, leading
to highly sample-efficient DRL that retains the ability to converge to optimal policies. Moving for-
ward, we plan to generalize NACE to handle three-dimensional and continuous spaces, as well as
explore neural implementations of NACE, further advancing the capabilities of learning agents.
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REPRODUCIBILITY STATEMENT

• We utilized open-source implementations of the selected DRL algorithms from public
repositories (not including our technique):

– AMIGO was from here: https://github.com/facebookresearch/
adversarially-motivated-intrinsic-goals

– BT is here: https://github.com/andreneco/minigrid_bt
– DQN, A2C, TRPO, and PPO were established on Stable Baselines3 (SB3)’s

baselines repository (Raffin et al., 2021): https://stable-baselines3.
readthedocs.io/

– DreamerV3 was from here: https://github.com/qxcv/dreamerv3
– All the other were from here: https://github.com/sparisi/cbet

• We used the the Minigrid package for the environments in our comparison, which is avail-
able here: https://github.com/Farama-Foundation/Minigrid

• For NACE we provide a stand-alone zip archive for reviewers to reproduce our results,
which is runnable on a regular computer with Python interpreter. It includes a README.txt
in the NACE folder, as well as scripts to generate the tables and the plots present in the
paper.
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APPENDIX A ADDITIONAL STUDIES AND DISCUSSIONS

To analyze the factors that lead NACE to finding close-to-optimal policies, as well as factors which
can, in some circumstances, hamper it from learning such, we present contributing factors from
a conceptual perspective, examine the impact of hyperparameter choices, and assess robustness to
non-determinism arising from random action consequences.

• Representational Limitations: NACE’s rule-based framework captures only spatially rel-
ative dependencies from one timestep to the next. It does not exploit the inherent struc-
tural statistics of environment generation, which are leveraged by various DRL techniques.
While these structural dependencies are most apparent in static environments where loca-
tions remain constant, they are also present in dynamic environments. For example, the
goal location consistently appears in the bottom-right corner not only in MiniGrid-Empty
levels but also in MiniGrid-SimpleCrossingS11N5-v0. NACE’s inability to utilize these
broader environmental patterns could limit its performance compared to methods that can,
even though in Minigrid, this issue was less prevalent.
Additionally, NACE’s rules are tied to an action, meaning agent-external changes that are
not caused by NACE need to be learned for each action separately, considerably lowering
its sample efficiency by a factor of the number of actions. The mechanism could be ex-
tended to incorporate learning of rules without an action as a precondition, leaving it to
evidence collection whether the action is considered dependent on the truth expectation of
the alternative rules.

• Study of Reduced Planning Horizon: NACE’s estimation of expected returns relies heav-
ily on its planning horizon. Short planning horizons can significantly reduce performance,
especially in tasks requiring long-term planning. To quantify this effect, we examine two
cases: MiniGrid-DoorKey-8x8-v0, which demands longer-horizon planning, and MiniGrid-
DoorKey-6x6-v0, which is less demanding in this regard. As shown in Table 1, running
NACE with a planning horizon of only eight steps in MiniGrid-DoorKey-8x8-v0 results
in convergence to an average return of 0.48, whereas extending the horizon to 100 steps
improves the average reward to 0.92. In contrast, in MiniGrid-DoorKey-6x6-v0, NACE
maintains an average reward of 0.93 regardless of the planning horizon. A similar pattern
is observed in MiniGrid-Empty-16x16-v0, where the average reward drops from 0.91 to
0.41 when the planning horizon is reduced from 100 to 8 steps. These results highlight
NACE’s dependence on adequate planning horizons for effective rule chaining and the sig-
nificant performance degradation that occurs when the planning horizon is too short.
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Environment Planning Horizon, Average Reward
MiniGrid-DoorKey-6x6-v0 8 steps, 0.93
MiniGrid-DoorKey-6x6-v0 100 steps, 0.93
MiniGrid-DoorKey-8x8-v0 8 steps, 0.48
MiniGrid-DoorKey-8x8-v0 100 steps, 0.92
MiniGrid-Empty-16x16-v0 8 steps, 0.41
MiniGrid-Empty-16x16-v0 100 steps, 0.91

Table 1: NACE Performance with different planning horizons

• Robustness to Non-Determinism: NACE’s rule representation incorporates uncertainty
handling through evidence counters, enabling it to cope with non-deterministic state tran-
sitions. To assess this capability, we modify the environment to invoke unintended actions
with certain probabilities. In MiniGrid-Empty-16x16-v0, when 10% of actions result in
unintended outcomes, NACE still achieves an average reward above 0.9, demonstrating
basic tolerance to non-determinism. However, when the probability of unintended actions
increases to 20%, NACE fails to complete the task within the maximum allowed time in all
episodes. Higher tolerance to non-determinism can be achieved by increasing the default
truth expectation threshold for rule usage above the default value of 0.5. However, this
adjustment reduces sample efficiency, as it requires the agent to confirm each rule multiple
times before utilizing it.

APPENDIX B ABLATION STUDY: EFFECTS OF OMITTING KEY INDUCTIVE
BIASES IN NACE, AND INDUCTIVE BIASES IN DRL

B.1 ESSENTIAL INDUCTIVE BIASES IN NACE

To ensure tractability and generalization, NACE incorporates five key inductive biases, each critical
for data-efficient causal learning discussed below.

Inductive Bias Role in NACE Failure Mode if Omitted
Temporal Locality Rules only from consecutive

timesteps
Rule explosion from consider-
ing longer histories

Attentional Bias Considers only changed or mis-
matched cells

Inefficient rule learning over un-
changed areas

Spatial Equivariance Applies rules at any grid loca-
tion

Must relearn rules per location
(× grid size)

State Tracking Maintains memory of previ-
ously seen tiles

Agent loops or re-explores
known areas

Causal Representation Models condition-action-effect
rules

Not ablatable, foundational to
NACE

Table 2: Essential inductive biases in NACE and consequences of omitting them.

B.2 CAUSAL RULE REPRESENTATION

The causal rule representation is foundational to NACE’s operation and cannot be omitted. However,
we analyze the effects of reducing the planning horizon, which limits the depth of chaining, in
Appendix A.

B.3 TEMPORAL LOCALITY AND ATTENTIONAL BIAS

Omitting these biases with larger environment sizes is infeasible due to the combinatorial explosion
of potential rules, as we will now analyze.

• For an environment of size w × h, the number of possible rule preconditions for a single
timestep is 2w·h, as each particular cell can either be considered or not be considered in the
precondition of a rule.
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• For a time window of duration d, this expands to 2w·h·d, leading to
18446744073709551616 possible rule preconditions for an 8 × 8 grid within a sin-
gle timestep.

• NACE is tied to the Markov Assumption, particularly within the observational window, as
all rule construction and updating consider only the previous and current state. However,
its bird-view map representation also contains values from observations of previous time
steps, which are currently out of view of the agent, which brings us to the next point, state
tracking.

B.4 STATE TRACKING

Without state tracking, NACE lacks memory of prior observations and memory of observations that
are outside of its field of view. This results in oscillatory behavior caused by the exploration strategy
of the agent, as it can only utilize the visible information.

• In our experiments across 10 runs in MiniGrid-Empty-8x8-v0, this led the agent to turn
indefinitely due to the curiosity model assigning low match values to previously visited
areas (due to the lack of state tracking they are always considered to be of unknown value)
which are now outside of the field-of-view of the agent. The closest such cell is immediately
behind the agent with the default partial observation model in Minigrid, which explains the
behavior.

• State Tracking plays a critical role in ensuring purposeful exploration and decision-making,
for the agent to know which places have been visited and what it has been observing at the
particular locations, as well as which locations have yet to be observed.

• Sequential dependencies often depend on state tracking. An example of this is when a door
has to be opened with a key, where the key and the door are too far apart to be observed
concurrently, demanding some form of spatial memory. Another form of state tracking lies
in the observable inventory array, which, when absent, would need the modeling of long-
range temporal dependencies (e.g., did the agent already pick up the key?), which would
demand a suitable model structure to be learnable by the agent.

B.5 SPATIAL EQUIVARIANCE

The absence of spatial equivariance significantly impacts sample efficiency.

• Each rule must be learned independently for every location, meaning in an 8x8 grid, the
agent has to learn 64 times the same set of rules. However, since particular arrangements of
cell values will not re-appear through the environment generation, it can take significantly
longer to learn the relevant knowledge without this bias.

• Hence for the general case with an environment of size w × h, this increases the required
sample count at least by a factor of w ·h, harming significantly the sample efficiency of the
technique.

• Conceptually, we also would like to point out that the rule learning mechanisms do not
allow to learn spatial equivariance retrospectively either, while some DRL techniques, de-
pendent on the model structure, could potentially acquire it.

These results highlight the necessity of each inductive bias in ensuring the scalability, efficiency, and
functionality of NACE.

B.6 WHICH INDUCTIVE BIASES ARE PRESENT IN THE DRL TECHNIQUES

In the main paper, we outlined the inductive biases of NACE. However, we would like to point
out that some of them are also inherent in the DRL techniques, complementing our discussion on
inductive biases in DRL and NACE:

• Temporal Locality: The DRL methods perform best when the Markov Assumption is met,
despite LSTM allowing to cope with partial observability, the need to capture long-range
temporal dependencies makes sample-efficient learning more difficult.
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• Causal Representation: While not explicitly stated as a set of cause-effect relations,
DreamerV3’s learned dynamics model can predict the consequence states of actions, which
is not the case for the model-free DRL methods. Such modeling is to some extent inde-
pendent from the objective (what is rewarding), and allows an agent to train itself from
simulated experience by predicting novel states, and to reach novel goals.

• Spatial Equivariance: Clearly the DRL techniques do not have an explicit rule represen-
tation, however the Convolution layers in the DRL policies allow for learned features to be
identified at different locations, improving generalization.

• State Tracking: Is not explicitly handled by the DRL techniques as a separate point, in-
stead it is handled in the same way as non-local temporal dependencies in the LSTM-
including policies, while NACE builds a bird view map explicitly, which can be considered
to be a form of spatial memory.

• Attentional Bias: While NACE has a strong prior for which cells to consider based on
observably changed values and prediction mismatches, the DRL policies with Convolution
layers are more flexible and allow an agent to learn which values are relevant in relation to
each other.

APPENDIX C NOTATION AND SYMBOLS

Symbol Description

s State, represented as a combination of a 2D grid (sgrid) and a 1D array (sarray)
a Action taken by the agent
r Causal rule in the form (preconditions, action) ⇒ consequence
ct,x,y Cell value at position (x, y) in the 2D grid at time t
c Equality constraint on a cell value (e.g., cr = c)
vt Value array at time t
v Equality constraint on value array (e.g., vr = v)
M(r, c) Match value of a rule r for cell c, based on the fraction of preconditions satisfied
C(c) Cell match value for cell c, derived from the maximum match value across all rules
S(s) State match value for state s, calculated as the average C(c) for cells with C(c) > 0
w+(r) Positive evidence counter for rule r, incremented when predictions align with observations
w−(r) Negative evidence counter for rule r, incremented when predictions differ from observations
w(r) Total evidence count for rule r, defined as w(r) = w+(r) + w−(r)

frequency(r) Fraction of positive evidence for rule r, defined as f(r) = w+(r)

w(r)

confidence(r) Confidence factor for rule r, defined as c(r) = w(r)
w(r)+1

fexp(r) Expected truth value for rule r, calculated as fexp(r) = (f(r)− 1
2
) · c(r) + 1

2

M change
t Set of cells with changes in observed values between timesteps t− 1 and t

M observation
mismatched,t Set of cells where observed values differ from predicted values at timestep t

M prediction
mismatched,t Set of cells where predictions differ from observations at timestep t

R(r) Reward associated with rule r
R(s) Reward associated with a state s, defined as the average reward of rules applied to generate s
V (s) Value of state s, used in planning for maximizing long-term returns
π(t) Planned action sequence or policy at timestep t
γ Discount factor for future rewards

APPENDIX D PSEUDOCODE

The system can be described by the pseudocode:
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Algorithm 1: Pseudocode of NACE

• Actual World: perceived array = perceive partial(world)
• Observer:

st = update bird view(st−1, perceived array)
calculate(Mchange,M

observation
mismatched,M

prediction
mismatched)

• Hypothesizer:
Create new rules for which w+(r) = 1.
Update rule evidences according to w+(r) and w−(r).
Choose rules r1 with w+(r1) > w−(r1) for which there does not exist a rule r2 with
same precondition and action, but different postcondition with Texp(r2) > Texp(r1).

• Planner utilizing Predictor:

a1, ..., an = BFS with Predictor(V (s) > 0)
a∗1, ..., a

∗
n = BFS with Predictor(min(S(s)) < 1)

//whereby BFS with Predictor is bounded breadth first search with Predictor as state
transition function
If found(a1, ..., an):, return a1, ..., an
If found(a∗1, ..., a

∗
n):, return a∗1, ..., a

∗
n

Else, perform a random action

APPENDIX E HYPERPARAMETER DETAILS

E.1 FOUNDATIONAL ALGORITHMS

E.1.1 CORE MODELS AND THEIR MECHANISMS

• Deep Q-Network (DQN): DQN integrates deep neural networks with classical Q-learning,
making it effective for handling large state spaces. To stabilize training, DQN uses experi-
ence replay and a separate target network. The Q-value update in DQN follows:

Q(s, a)← Q(s, a) + α
(
R(s) + γmax

a′
Q(s′, a′)−Q(s, a)

)
where:

– s, a: current state and action,
– s′, a′: next state and action,
– R(s): reward received,
– γ: discount factor for future rewards,
– α: learning rate.

• Advantage Actor-Critic (A2C): A2C builds on the actor-critic framework, synchronizing
multiple parallel learners to reduce variance in policy updates. It calculates an advan-
tage function to evaluate actions relative to the current policy’s value estimate, stabilizing
training but requiring frequent environmental interactions due to its on-policy nature.
Advantage Function:

A(s, a) = Q(s, a)− V (s)

Policy Update: The policy is updated using the gradient:

θ ← θ + α∇θ log πθ(a|s)A(s, a)

where:
– Q(s, a): action-value function,
– V (s): state-value function,
– πθ(a|s): policy parameterized by θ,
– α: learning rate.
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• Trust Region Policy Optimization (TRPO): TRPO addresses stability in policy updates
by enforcing a trust region constraint, ensuring small policy changes during optimization.
This constraint is implemented via a KL-divergence bound, preventing drastic shifts in
behavior but requiring computationally expensive second-order optimization.
Objective Function:

max
θ

Es∼πθold

[
πθ(a|s)
πθold(a|s)

A(s, a)

]
Constraint:

Es∼πθold
[DKL(πθold ||πθ)] ≤ δ

where:

– πθ(a|s): new policy,
– πθold(a|s): previous policy,
– A(s, a): advantage function,
– DKL: KL-divergence,
– δ: trust region size.

• Proximal Policy Optimization (PPO): PPO refines TRPO by introducing a clipped sur-
rogate objective, which simplifies computation and allows for multiple updates per batch.
This approach improves data utilization while maintaining policy stability.
Clipped Surrogate Objective:

max
θ

Es,a

[
min

(
πθ(a|s)
πθold(a|s)

A(s, a), clip
(

πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ

)
A(s, a)

)]
where:

– πθ(a|s): new policy,
– πθold(a|s): old policy,
– A(s, a): advantage function,
– ϵ: clipping threshold.

E.1.2 HYPERPARAMETER CONFIGURATION FOR FOUNDATIONAL ALGORITHMS

We utilize the Stable Baselines3 framework (Raffin et al., 2021) to train and evaluate foundational
algorithms, leveraging its pre-implemented models and customizable configurations. All algorithms
use the same convolutional neural network architecture to process observations, ensuring consis-
tency across experiments. The hyperparameters for each algorithm were selected based on achiev-
ing the best average performance across all tasks, rather than optimizing for a single task, to ensure
generalizability. The details of the network architecture and training setup for each algorithm are
outlined below.

Network Architecture: Observations (7 × 7 × 3) from the Minigrid environment are processed
through four convolutional layers. Each layer is configured as follows:

• Kernel size: 2× 2

• Activation: ReLU

• Increasing number of filters: 16, 32, 64, and 128

The output of the final convolutional layer is flattened and passed to a fully connected layer with:

• Output dimension: 128

• Activation: ReLU

Training Configurations:
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Parameter DQN
Learning rate 0.0001
Buffer size 1,000,000
Learning starts 100
Batch size 32
Soft update coefficient 1
Discount factor 0.99
Train frequency 4
Gradient steps 1
Target update interval 10,000
Exploration fraction 0.1
Initial exploration epsilon 1.0
Final exploration epsilon 0.05
Max gradient norm 10.0

Parameter A2C
Learning rate 0.0007
Number of steps 5
Discount factor 0.99
Entropy coefficient 0.0
Value function coefficient 0.5
Max gradient norm 0.5

Table 3: DQN and A2C Training Parameters

Parameter TRPO
Learning rate 0.001
Number of steps 2048
Batch size 128
Discount factor 0.99
Conjugate gradient max steps 15
Conjugate gradient damping 0.1
Line search shrinking factor 0.8
Line search max iterations 10
Number of critic updates 10
Target KL divergence 0.01

Parameter PPO
Learning rate 0.0003
Number of steps 2048
Batch size 64
Number of epochs 10
Discount factor 0.99
Clip range 0.2
Entropy coefficient 0.0
Value function coefficient 0.5
Max gradient norm 0.5

Table 4: TRPO and PPO Training Parameters

E.2 MODEL-BASED ALGORITHM: DREAMERV3

DreamerV3 is a model-based RL algorithm designed to enhance sample efficiency by learning a
latent world model of the environment. It optimizes both the world model and the policy within the
latent space, reducing the computational demands of interacting with the environment.

World Model: The latent dynamics model predicts future latent states z based on prior latent state
zt−1, action at−1, and reward Rt−1. This model facilitates long-term planning without requiring
explicit rollouts in the actual environment.

Policy Optimization: The policy maximizes expected rewards in the learned latent space by lever-
aging the dynamics model to simulate trajectories. Policy updates use gradient-based methods in-
formed by imagined rollouts.

Loss Function:
LDreamerV3 = LReconstruction + LDynamics + LPolicy

where:

• LReconstruction: Measures the accuracy of reconstructing environment observations,

• LDynamics: Captures consistency in latent state transitions,

• LPolicy: Maximizes imagined rewards.

Hyperparameter Configuration for DreamerV3: The hyperparameter configuration has been
chosen to match the settings provided in https://github.com/qxcv/dreamerv3. To avoid
redundancy and maintain brevity, we do not include the full configuration here due to its extensive
nature.
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E.3 MODEL-FREE EXPLORATION AND SCALABILITY EXTENSIONS

All experiments for the other model-free methods are based on the Torchbeast implementation of
IMPALA (Espeholt et al., 2018), which has been modified to support intrinsic reward algorithms as
described in Raileanu & Rocktäschel (2020) and Campero et al. (2021). The hyperparameters were
selected following the configurations used in these references. For clarity, we first list the values
shared across all algorithms, followed by the specific details unique to each one.

E.3.1 SHARED HYPERPARAMETERS

• Network Architecture: Observations (7×7×3 for Minigrid) are processed through three
convolutional layers:

– Number of filters: 32 per layer
– Kernel size: 3× 3
– Stride: 2
– Padding: 1
– Activation: Exponential Linear Unit (ELU)

The output of the convolutional layers is passed to:
– An LSTM layer to address partial observability by maintaining temporal dependencies

and encoding sequences of observations.
– A fully connected layer for computing:

* Policy logits: Unnormalized scores for each action, converted to probabilities us-
ing a softmax function.

* Value estimates: Predictions of expected future returns, used in actor-critic meth-
ods.

• Training Setup:
– Number of actors: 40
– Number of buffers: 80
– Unroll length: 100
– Number of learner threads: 4
– Batch size: 32
– Discount factor: 0.99
– Learning rate: 0.0001
– Policy entropy loss: 0.0005
– Gradient clipping: Norm of 40
– Save interval: Every 20 minutes

• Special Parameters (Only When Applicable):
– Count reset probability: 0.001 (COUNT, RIDE)
– Hash bits: 128 (COUNT)

E.3.2 INTRINSIC REWARDS AND COEFFICIENTS

Intrinsic rewards address sparse rewards and inefficient exploration. Each algorithm applies scal-
ing coefficients to normalize its intrinsic rewards. Additionally, all techniques incorporate policies
enhanced with LSTMs to address partial observability by maintaining memory of past observations
and actions.

• IMPALA: No intrinsic reward (ri = 0.0).
• COUNT: ri = 0.005.
• RIDE: ri = 0.1.
• CURIOSITY: ri = 0.1.
• RND: ri = 0.1.
• AMIGO: ri = 0.1 (applies to the teacher’s intrinsic rewards).

The formal definitions of the intrinsic rewards are:
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COUNT: The intrinsic reward is based on state visitation counts, encouraging exploration of less-
visited states:

ri =
1

N(s0)
,

where N(s0) is the (pseudo)count of visits to state s0. Counts are never reset during training.

RIDE (Rewarding Impact-Driven Exploration): The intrinsic reward combines state novelty
and state-change impact:

ri = ∥ϕ(s)− ϕ(s0)∥2 ·
1

N(s0)
,

where ϕ is trained to minimize both forward and inverse dynamics prediction errors. Counts N(s0)
are reset at the beginning of each episode.

CURIOSITY: The intrinsic reward comes from the prediction error of a forward dynamics model
f , which predicts the next state embedding ϕ(s0) from the current embedding ϕ(s) and action a:

ri = ∥f(ϕ(s), a)− ϕ(s0)∥2.

RND (Random Network Distillation): The intrinsic reward is computed as the prediction error
of a trainable network ϕ attempting to match the output of a fixed random network ϕ̂:

ri = ∥ϕ(s0)− ϕ̂(s0)∥2.

AMIGO: The teacher policy generates goals g for the agent, with rewards given as:

ri = v(st, g) =

{
+1 if st satisfies g,
0 otherwise.

The total reward is a weighted sum of intrinsic and extrinsic rewards:

rt = βri + αre, with β = 0.3, α = 0.7.

Algorithm-Specific Hyperparameters and Architectures:

Algorithm Details
IMPALA Intrinsic reward: None.
(Baseline) Loss: Policy gradient, baseline, entropy.
COUNT Intrinsic reward: State visitation counts.

Count reset probability: p = 0.001.
CURIOSITY Intrinsic reward: Forward prediction error.

State embedding: 256-dimensional.
The Forward model predicts the next state.

Inverse model predicts actions.
Loss weights: Forward 10.0, Inverse 0.1.

RIDE Intrinsic reward: Counts × norm of state change.
Modules: Same as CURIOSITY.

RND Intrinsic reward: Prediction error.
Target net: Fixed embeddings.

Predictor: Trained for target match.
Loss weight: 0.1.

AMIGO Intrinsic reward: Teacher-generated.
Reward coefficients:

Intrinsic β = 0.3, Extrinsic α = 0.7.
Batch size: 150.

Entropy cost: 0.05.
Threshold: −0.5.
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APPENDIX F HARDWARE AND RUNTIME

In this section, we describe the hardware setup used to run the techniques and provide runtime
characteristics, including the duration of 5000 representative timesteps for each technique. While
we report this information for reproducibility, we emphasize that the focus of our analysis is not on
computational cost, but rather on sample efficiency.

• CPU: Intel Core i7-9750H with 32GB RAM

• GPU: Geforce GTX-1660 Ti with 6GB RAM

Algorithm Empty-16x16 DistShift2 LavaGapS7 SimpleCrossingS11N5 Unlock DoorKey-8x8 Average

TRPO 751.46 84.89 84.05 374.76 241.70 489.37 337.04
PPO 745.70 149.06 128.53 384.06 240.66 493.73 357.29
A2C 625.22 181.67 157.37 323.45 207.82 413.42 318.83
DQN 593.23 130.77 122.55 284.60 156.81 321.42 268.90
IMPALA 268.98 282.99 274.11 262.70 267.95 249.48 267.70
COUNT 357.52 403.85 281.94 332.05 257.58 273.81 317.13
RIDE 361.53 354.95 288.58 377.65 338.89 265.41 331.17
CURIOSITY 392.20 299.62 329.57 358.67 323.51 296.38 333.66
RND 357.41 298.23 308.14 378.99 317.51 373.73 339.67
AMIGo 49.32 77.84 68.38 47.68 59.88 44.30 57.90
DreamerV3 102.38 78.67 84.39 76.01 73.38 78.62 82.91
NACE 314.12 301.93 302.06 301.58 302.24 360.11 313.67

Table 5: Runtime (in seconds) for different algorithms across MiniGrid v0 environments.

APPENDIX G EXAMPLE ENVIRONMENT WITH LEARNED RULES

Figure 9: Illustration of Minigrid-Empty-8x8

The following are all the rules NACE learns in the Minigrid-Empty-8x8 environment as illustrated
in Figure 9:

Agent interacting with goal location:
<(v=[1], c[ 0, 0 ]=’x’, c[ 0, 1 ]=’H’, ˆdown ) =/> (v=[0], c[ 0, 0 ]=’.’, R(r)=1)>.
<(v=[1], c[-1, 0 ]=’H’, c[ 0, 0 ]=’x’, ˆleft ) =/> (v=[0], c[ 0, 0 ]=’.’, R(r)=1)>.
<(v=[1], c[ 0,-1 ]=’H’, c[ 0, 0 ]=’x’, ˆup ) =/> (v=[0], c[ 0, 0 ]=’.’, R(r)=1)>.
<(v=[1], c[ 0, 0 ]=’x’, c[ 1, 0 ]=’H’, ˆright) =/> (v=[0], c[ 0, 0 ]=’.’, R(r)=1)>.
Goal location interacting with agent:
<(v=[1], c[ 0,-1 ]=’x’, c[ 0, 0 ]=’H’, ˆdown ) =/> (v=[0], c[ 0, 0 ]=’.’, R(r)=1)>.
<(v=[1], c[ 0, 0 ]=’H’, c[ 1, 0 ]=’x’, ˆleft ) =/> (v=[0], c[ 0, 0 ]=’.’, R(r)=1)>.
<(v=[1], c[ 0, 0 ]=’H’, c[ 0, 1 ]=’x’, ˆup ) =/> (v=[0], c[ 0, 0 ]=’.’, R(r)=1)>.
<(v=[1], c[-1, 0 ]=’x’, c[ 0, 0 ]=’H’, ˆright) =/> (v=[0], c[ 0, 0 ]=’.’, R(r)=1)>.
Agent interacting with empty space:
<(v=[1], c[ 0, 0 ]=’ ’, c[ 0, 1 ]=’x’, ˆup ) =/> (v=[1], c[ 0, 0 ]=’x’, R(r)=0)>.
<(v=[1], c[-1, 0 ]=’x’, c[ 0, 0 ]=’ ’, ˆright) =/> (v=[1], c[ 0, 0 ]=’x’, R(r)=0)>.
<(v=[1], c[ 0,-1 ]=’x’, c[ 0, 0 ]=’ ’, ˆdown ) =/> (v=[1], c[ 0, 0 ]=’x’, R(r)=0)>.
<(v=[1], c[ 0, 0 ]=’ ’, c[ 1, 0 ]=’x’, ˆleft ) =/> (v=[1], c[ 0, 0 ]=’x’, R(r)=0)>.
Empty space interacting with agent:
<(v=[1], c[ 0,-1 ]=’ ’, c[ 0, 0 ]=’x’, ˆup ) =/> (v=[1], c[ 0, 0 ]=’ ’, R(r)=0)>.
<(v=[1], c[ 0, 0 ]=’x’, c[ 1, 0 ]=’ ’, ˆright) =/> (v=[1], c[ 0, 0 ]=’ ’, R(r)=0)>.
<(v=[1], c[ 0, 0 ]=’x’, c[ 0, 1 ]=’ ’, ˆdown ) =/> (v=[1], c[ 0, 0 ]=’ ’, R(r)=0)>.
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<(v=[1], c[-1, 0 ]=’ ’, c[ 0, 0 ]=’x’, ˆleft ) =/> (v=[1], c[ 0, 0 ]=’ ’, R(r)=0)>.
Agent interacting with wall:
<(v=[1], c[ 0,-1 ]=’o’, c[ 0, 0 ]=’x’, ˆup ) =/> (v=[1], c[ 0, 0 ]=’x’, R(r)=0)>.
<(v=[1], c[ 0, 0 ]=’x’, c[ 1, 0 ]=’o’, ˆright) =/> (v=[1], c[ 0, 0 ]=’x’, R(r)=0)>.
<(v=[1], c[ 0, 0 ]=’x’, c[ 0, 1 ]=’o’, ˆdown ) =/> (v=[1], c[ 0, 0 ]=’x’, R(r)=0)>.
<(v=[1], c[-1, 0 ]=’o’, c[ 0, 0 ]=’x’, ˆleft ) =/> (v=[1], c[ 0, 0 ]=’x’, R(r)=0)>.
Wall interacting with agent:
<(v=[1], c[ 0, 0 ]=’o’, c[ 1, 0 ]=’x’, ˆleft ) =/> (v=[1], c[ 0, 0 ]=’o’, R(r)=0)>.
<(v=[1], c[ 0, 0 ]=’o’, c[ 0, 1 ]=’x’, ˆup ) =/> (v=[1], c[ 0, 0 ]=’o’, R(r)=0)>.
<(v=[1], c[-1, 0 ]=’x’, c[ 0, 0 ]=’o’, ˆright) =/> (v=[1], c[ 0, 0 ]=’o’, R(r)=0)>.
<(v=[1], c[ 0,-1 ]=’x’, c[ 0, 0 ]=’o’, ˆdown ) =/> (v=[1], c[ 0, 0 ]=’o’, R(r)=0)>.

The number of learned rules required to deal with the Minigrid environments typically varies be-
tween 16 (minimum with walls and free space) and usually less than 100, depending on the number
of cell types, whereby for two cell types to interact with m actions, at least 2 ∗m additional rules
are learned.

APPENDIX H TEST ENVIRONMENTS

Prior to moving to Minigrid, NACE was first tested with internal levels:

•
Level 1: Food collection. In this level,
as depicted in Figure 10, the agent needs
to collect food while avoiding walls.

Figure 10: Food collection with walls

•

Level 2: Doors and keys. In this level,
as depicted in Figure 11, the agent needs
to open doors with keys in order to col-
lect batteries.

Figure 11: Battery collection level
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•

Level 3: A pong game in a grid world as
illustrated in Figure 12, where the agent
can only move vertically and needs to
catch the ball by predicting its move-
ment.

Figure 12: Pong game

•
Level 4: Egg delivery. In this level, as
depicted in Figure 13, the agent needs
to deliver eggs to the chicken.

Figure 13: Egg collection level

•
Level 5: Soccer level. In this level, as
depicted in Figure 14, the agent needs
to learn to shoot balls into the goal.

Figure 14: Soccer level
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•

Level 6: Food collection while avoiding
electric fences. In this level, as depicted
in Figure 15, the agent needs to collect
food while avoiding electric fences.

Figure 15: Food collection electric fence

•

Level 7: Sokoban-like puzzle world
(Dor & Zwick, 1999). In this level, as
depicted in Figure 16, the agent needs
to utilize the interaction properties of
many different object types to success-
fully collect batteries:

Figure 16: Sokoban-like level
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