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Abstract

Machine unlearning (MU) aims to remove the influence of specific “forget” data
from a trained model while preserving its knowledge of the remaining “retain” data.
Existing MU methods based on label manipulation or model weight perturbations
often achieve limited unlearning effectiveness. To address this, we introduce CoUn,
a novel MU framework inspired by the observation that a model retrained from
scratch using only retain data classifies forget data based on their semantic sim-
ilarity to the retain data. CoUn emulates this behavior by adjusting learned data
representations through contrastive learning (CL) and supervised learning, applied
exclusively to retain data. Specifically, CoUn (1) leverages semantic similarity
between data samples to indirectly adjust forget representations using CL, and (2)
maintains retain representations within their respective clusters through supervised
learning. Extensive experiments across various datasets and model architectures
show that CoUn consistently outperforms state-of-the-art MU baselines in unlearn-
ing effectiveness. Additionally, integrating our CL module into existing baselines
empowers their unlearning effectiveness.

1 Introduction

The widespread adoption of machine learning (ML) has raised concerns regarding data privacy and
regulatory compliance, such as the General Data Protection Regulation (GDPR) [1} 2]. Machine
unlearning (MU) [33} 4} [5] addresses these concerns by removing the influence of specific training data
(i.e., forget data) from a trained model, termed the Original model, while preserving the knowledge
of the remaining data (i.e., retain data). Retraining the model from scratch on retain data is considered
exact unlearning [0, 7], termed the gold-standard Retrain model. While exact unlearning is effective,
it is computationally inefficient. Alternatively, approximate unlearning aims to efficiently achieve an
unlearned model that performs approximately the same as the Retrain model [8} 9} [10].

To develop an effective approximate unlearning algorithm, we first analyze how the Retrain
model classifies forget data. Figure (1] illustrates the representation space of two Retrain mod-
els: one trained without ‘truck’ class samples (i.e., class-wise forgetting) and another trained
without 10% randomly selected samples (i.e., random forgetting). Our analysis reveals that
the Retrain model classifies forget samples into clusters of retain samples that exhibit the high-
est semantic similarity to them. For instance, in class-wise forgetting, forget ‘truck’ sam-
ples are mostly misclassified as semantically similar clusters, like ‘automobile’ (69.32%), ‘air-
plane’ (13.47%), and ‘ship’ (12.60%), with no correct classifications due to the absence of a
‘truck’ cluster. In random forgetting, 97.42% of forget ‘truck’ samples are correctly classified
as ‘truck’ due to their semantic similarity with ‘truck’ samples in the retain data, while most
of the others are misclassified as ‘automobile’ (1.23%), ‘airplane’ (0.38%), and ‘ship’ (0.4%).
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inal clusters of the forget samples. samples (right). Small dots represent retain samples from
different clusters, while larger dots indicate forget sam-

Existing MU methods [8, 9,10, [11,[12] attempt  ples classified into clusters of retain samples that exhibit
to close the performance gap between approx- the highest semantic similarity to them.

imate and exact unlearning, focusing on three

criteria: @ good forget quality (evaluating misclassification of forget data and success in membership
inference attacks [9} [11} [13]]), ® high utility (maintaining high accuracy on retain data and generaliz-
ing well to test data), and @ efficiency. Prior methods [14}[9} 15| [16] often rely on label manipulation,
assigning forget samples to semantically inconsistent or random clusters to increase misclassification.
However, this strategy can degrade the performance on retain data, thereby reducing utility. Moreover,
these methods require access to forget data, which may not always be available—particularly in
federated unlearning settings where clients may leave the network after requesting unlearning [[17, [8]].
Recent methods focus on model weight perturbations [8,[10], and eliminate the need for forget data.
Yet, excessive perturbations can compromise utility by erasing important knowledge, while weak
perturbations degrade forget quality. Thus, inadequate perturbations limit unlearning effectiveness.

In light of the above, we propose CoUn (Contrastive learning for empowering Unlearning), a novel
MU framework that leverages contrastive learning (CL) and supervised learning, applied exclusively
to retain data. CoUn exploits the fact that the learned representations of the Original model has already
captured the semantic similarities among samples. Consequently, adjusting the retain representations
during unlearning indirectly influences the forget representations. In CoUn, the CL module (Figure[2)
pulls together representations of augmented views of the same retain samples (positives) while
pushing apart representations of different retain samples (negatives) [18} 19} 20, [21]]. However, false
negatives, which are samples that belong to the same cluster as positives but are treated as negatives,
can cause clusters to overlap. This phenomenon is known as cluster collision [21} 122, 23]]. As a result,
forget representations are indirectly pushed toward clusters of other retrain samples that exhibit the
highest semantic similarity to them, thereby improving forget quality. Additionally, CoUn preserves
high utility by mitigating cluster collision among retain representations through supervised learning.
This adjustment of forget representations toward semantically similar retain representations, while
maintaining the separation of retain clusters, enables effective unlearning. Our key contributions are:

e We introduce CoUn, a novel MU framework that achieves effective unlearning by adjusting learned
data representations based on semantic similarity using CL and supervised learning on retain data.

e We provide empirical insights into how CoUn effectively unlearns by pushing forget representations
into clusters of semantically similar retain representations. We also present a theoretical analysis
showing that CoUn induces a higher misclassification rate on forget data while maintaining low
misclassification rate on retain data, thereby contributing to better forget quality and utility.

e We validate CoUn across different datasets, model architectures, and forgetting scenarios, showing
a reduced performance gap with exact unlearning compared to MU baselines. We also demonstrate
that integrating our CL module into existing baselines empowers their unlearning effectiveness.

2 Related Work

Label Manipulation. Existing MU methods attempt to unlearn by manipulating labels of forget
data, thereby misleading the model into learning incorrect labels. NegGrad [24} 25]] achieves this
by applying gradient ascent on the forget data. NegGrad+ [14] combines fine-tuning (minimizing
loss with respect to retain data) and gradient ascent (maximizing loss with respect to forget data).
Both NegGrad and NegGrad+ exemplify label manipulation strategies by modifying the model’s



output distribution of the forget data through targeted gradient-based adjustments. Amnesiac [[15]
and SalUn [9] randomly relabel the forget data and then apply joint optimization on both retain and
forget data. BadT [16] uses knowledge distillation from two teacher models (Original and Random
models) into the unlearned model, while SCRUB [14]] extends BadT by incorporating NegGrad+.
Both BadT and SCRUB manipulate the model’s output distributions of forget data by using a random
teacher, effectively altering the perceived labels of the forget data. However, such methods that assign
forget samples to semantically inconsistent or random classes to increase misclassification rates often
degrade performance on retain data, resulting in lower utility. Moreover, as shown in Figure[I] exact
unlearning does not aim to misclassify all forget samples, as some can be correctly classified.

Model Weight Perturbation. Recent methods perturb the model’s weights to achieve unlearning.
£1-sparse [10] introduces an ¢; regularization term in the objective function, inspired by model
pruning [26,27]]. In addition to random labeling, SalUn [9] adjusts model weight parameters using
gradient-based saliency masks. SSD [28] uses the Fisher information matrix to identify and dampen
weight parameters critical to forget data. NoT [8]] negates layer-wise weights to support unlearning.
However, inadequate perturbations reduce unlearning effectiveness. Excessive perturbations degrade
utility by erasing essential knowledge, while insufficient perturbations fail to properly eliminate the
influence of forget data, thereby compromising forget quality.

Contrastive Learning. The goal of CL is to maximize similarity between augmented views of
the same sample while minimizing similarity between different samples [[18] 19,20} 29, 30} 131} 32].
CL’s ability to adjust representations aligns with the objective of MU, which seeks to disrupt the
representations of forget data. This work focuses on CL with the InfoNCE loss, as used in SimCLR
[20]. One method that applies CL for unlearning pushes forget samples away from retain samples of
the same class and pulls them closer to retain samples of different classes [33]]. However, this method
harms the model’s utility by pushing forget samples away from their original clusters, resulting
in high misclassification rates. CoUn differs from [33] by utilizing semantic similarity and cluster
collision for effective unlearning, instead of forcing forget samples to be misclassified. Similar to
exact unlearning, CoUn yields a higher misclassification rate for forget data while maintaining low
misclassification rate on retain data. Further discussion is provided in Appendix

3 Methodology

We begin by formulating the MU problem in Section[3.1] Section [3.2]then introduces our proposed
MU framework, CoUn. Section [3.3|follows with empirical insights demonstrating how CL and super-
vised learning adjusts the representation space to facilitate effective unlearning. Finally, Section [3.4]
provides theoretical insights.

3.1 Machine Unlearning: Background

Given a dataset D, partitioned into forget data D,, and retain data D,. = D \ D,,, the goal of MU
is to transform an Original model 6, trained on D, into an unlearned model 8,, that effectively
removes the influence of D,,. We define the forget data ratio as: |D,|/|D| x 100.

In exact unlearning, 0,, is obtained by training a randomly initialized model only on D,., yielding
the gold-standard Retrain model. While this ensures precise unlearning, it incurs significant
computational cost. In contrast, approximate unlearning methods aim to obtain 6,, more efficiently,
often at the expense of reduced effectiveness, resulting in a performance gap relative to the Retrain
model. In approximate unlearning, 8,, is initialized with the parameters of 6,,.

3.2 CoUn Overview

CoUn is a CL-based MU framework designed to adjust the learned representation space of both retain
and forget data for effective unlearning. The framework of CoUn incorporates two key components:
@ contrastive learning and @ supervised learning. The overall architecture of CoUn is illustrated
in Figure[2} In CoUn, CL is applied on retain data via a CL module to adjust their representations by
pulling the representations of two augmented views of the same sample (positives) closer together,
while pushing representations of different samples (negatives) further apart [[18} 19} 20, 21]].
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views, X = (I) and X' = t/(I) are gener- Figure 2: CoUn framework. Two augmented views are

generated from a batch of retain image samples I. These

. . . Lo views are processed by the feature extractor fo,,, yielding
tively, where 7 is a transformation distribution retain representations (Z, Z’). A CL module adjusts the

combining multiple image augmentations (e.g. representations, while supervised learning applied via the

random Cropping,.ran'dom horizontal flipping,  cassifier head hg, enforces their cluster separation.
and color normalization). These augmented

views are encoded by the feature extractor fg , producing representations Z = fp (X) and
Z' = fo,(X') € RV*P where D is the representation dimension. The representations are com-
pared using cosine similarity, a commonly employed measure in CL to assess the similarity between
normalized vectors. The cosine similarity between two normalized vectors w and v is computed
asw - v = wlv. Let z, and z], denote the n-th row of the representation matrices Z and Z’,
respectively. For a given representation z,, corresponding to image %,,, the CL loss for the positive
pair of representations (z,, z,,) is calculated as:

ated using transformations ¢,t’ ~ T, respec-

exp(zy, - 20, /T)

S exp(z, - 2/7)

l(zn) = —log (D

where 7 is a temperature constant. Each representation z;- # z!, in the batch is considered a negative
for z,. This CL loss encourages positive pairs of representations to be closer in the representation
space while pushing them away from negative representations. Following SimCLR [20]], we employ
a symmetric formulation for the overall CL loss, defined as:

N
La(Z,2) = 3 (=) +1(2)). ®)
n=1

Since CoUn samples a random batch, it does not explicitly select negatives. Consequently, false
negatives, which are negative image samples sharing the same class label as the positive image sample,
may be present. Specifically, for each image sample %,,, images ¢; in the batch (with j # n) are
false negatives if y; = y,. Including false negatives in CL introduces the cluster collision problem
(214122} 23], where samples from the same cluster are pushed apart, potentially bringing them closer
to semantically similar samples from other clusters, thus causing cluster overlap. However, false
negatives that are more semantically similar with other samples within their own clusters will remain
in their original clusters. In other words, not all false negatives will leave their original clusters.

Moreover, since the Original model is trained on both retain and forget data, which share semantic
information, this information is captured in the model’s weights and reflected in its learned rep-
resentations. Arora et al. [34] provide theoretical and empirical evidence showing that learned
representations connect similarity in the training data to the semantic information that is implicitly
present in downstream tasks. Their work also establishes provable guarantees on the performance
of such representations in downstream settings. This supports the observation that the Retrain
model—trained solely on retain data—classifies forget samples based on semantic similarity, and this
explains why in random forgetting it can correctly classify some of the forget data. From the Retrain
model’s perspective, retain data serve as the training set, and forget data act as the downstream task.
Consequently, any adjustment to retain representations will indirectly influence forget representations.

Building on this principle, when the learned retain representations are adjusted using CL, forget
representations are indirectly pushed toward clusters of other retain samples that exhibit the highest
semantic similarity to them. In random forgetting scenario, these retain samples may belong to
clusters that are either the same as or different from the original clusters of the forget samples. In
contrast, in class-wise forgetting scenario, they necessarily belong to different clusters. As a result,
the CL module in CoUn can induce cluster collisions among both retain and forget representations.
While this improves forget quality, it also degrades model’s utility. To address this, CoUn mitigates
the impact of cluster collision on retain representations by applying supervised learning to the retain



data. This ensures that retain representations are preserved within their respective clusters, thereby

maintaining high model utility.

Let Y € RV*K represent the model predictions. We have Y = he, (Z), where the classifier head

he,, takes representations Z as input to produce predictions Y. Cross-entropy (CE) loss is used in
CoUn for supervised learning to maintain cluster separation for retain samples, and is defined as:

1

ECE(Y7Y) = N

N K

Z Yn o 108(Gn,k)-

n=1k=1

Therefore, the final loss function combines CE and CL losses, weighted by a scaling factor A:
L=Lcg+ ML
Appendix [B] presents the pseudo-code and the PyTorch implementation of CoUn.

3.3 Empirical Analysis

Figure [3] visualizes the representation space
of four 6,, models produced by the fine-tune
(FT) and CoUn unlearning methods under class-
wise and random forgetting scenarios. All four
0, models are initialized from 6,, which is
trained on the entire CIFAR-10 training data
using ResNet-18. FT reduces the influence
of D,, through catastrophic forgetting by fine-
tuning 6, on D,.. Although the CL module in
CoUn is applied only to retain data, the visu-
alization shows that the forget representations
are affected—they are pushed toward clusters
of other retain samples that exhibit the highest
semantic similarity to them. Additionally, we
can see that for random forgetting these clus-
ters may either be the same as or different from
the original clusters of the forget samples; and
for class-wise forgetting, they are necessarily
different. Meanwhile, retain representations re-
main well-clustered due to supervised learning.
Notably, under class-wise forgetting setting, FT
performs comparably to Retrain (Figure[T), due
to the relatively low entanglement between D,
and D,, in this setting, making it a simpler un-
learning task than random forgetting [11].

Table [ further confirms that CoUn
more effectively classifies forget samples
based on semantic similarity than FT,
achieving performance closer to that of
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Figure 3: Representation space of FT and CoUn un-
learned models (rows). Columns correspond to two for-
getting scenarios: class-wise (‘truck’) and random (10%
forget ratio). The Original model is trained on CIFAR-10
using ResNet-18. Small dots represent retain samples
from different clusters, while larger dots indicate forget
samples classified into the corresponding clusters. To
achieve effective unlearning, CoUn adjusts representations
based on semantic similarity, pushing forget representa-
tions into clusters of other retain samples with the highest
semantic similarity to them, and preserving retain repre-
sentations within their clusters.

Table 1: Predictions of forget ‘truck’ samples based on most
semantically similar classes. Experiments are conducted using
CIFAR-10 and ResNet-18. The difference (A) and the (best) av-
erage difference between each method and Retrain are reported.

the Retrain model in both class-wise and

Forgetting Method Predictions (%) - (A |) Avg.

random forgetting scenarios. In particu- ~ Seenario Truck  Automobile _ Airplane snip  Diff-{
foo ) Retrain  0.00 (0.00)  69.32(0.00) 13.47 (0.00) 12.60 (0.00) 0.00
I?r’ CoUn produces forget S amp l,e predic ([Crchblf) 0.00(0.00) 7029 (0.97) 1238 (1.09) 13.12(052) 0.65
tions that more closely align with those Coln  0.00(0.00) 69.60(0.28) 13.96(0.49) 13.13(0.53) 033
. s - Retrain__ 97.42 (0.00) 1.23(0.00) _ 0.38 (0.00) _ 0.40 (0.00) __ 0.00
of the .Retra1.n m(?del. F urther experi R(j‘})‘f}j;" 98.12(0.70) 0.75(0.48)  0.36(0.02) 032 (0.08) 032
ments 1S prov1ded in Appendlx Ig ) ColUn 97.84(0.42) 0.99(0.24)  0.32(0.06)  0.42(0.02)  0.19

3.4 Theoretical Analysis

In this section, we provide a theoretical analysis showing that CoUn yields a higher misclassification
rate on forget data compared to retain data. Achieving a higher misclassification rate for forget data
while maintaining a low misclassification rate for retain data contributes to both good forget quality
and high model utility. Recall that K" denotes the number of classes in the dataset. In particular, each



data sample belongs to one of classes C, Ca, ..., Ck. For a given transformation distribution 7, let
dr (i1, 32) = Milg, c4(s,), st (45) ]| €1 — T2 || denote the augmented distance between two images
1 and 9, where t, t' ~ T. We consider that a (o, §)-augmentation is being used. That is, for
each class Cy, there exists a subset CY C Cj, such that both P[i € CY] > o P[i € Cj] and
Sup;, s,eco d7 (21, 42) < 0 hold, where o € (0, 1]. Let p, denote the center of class Cx. We have

tr = Eiec, Exct(s)[ fo, ()] Let Re] denote the probability that, when a sample is drawn from the
dataset, the distance between the encoder representations of its two augmented views exceeds €, with
a small value of R[e] indicating good alignment in the representation space. We have

K
Rl =Plic|]C sup | fe.(x) — fo. (@)l > €| . Q)
k=1 z=t(1), z' €t'(3)
t,t'~T

The following theorem shows the generalization ability of CL by providing an upper bound for the
misclassification rate:

Theorem 1. For an L-Lipschitz feature extractor fg,, given a (o, §)-augmentation used in CL, if

1 : max .
i i < g minls | — 0 (0,0,€) — /2755, ©)

holds for any pair of (I,k) with | # k, then the misclassification rate of classifier head hg, is

Err(hg,) < (1—0)+ R[], where p"™(0,6,¢) = 2(1—0)+ ﬁ[ge% +0(Ld + 2¢). Note that
better alignment (i.e., smaller R[¢c]) and sharper concentration of augmented samples (i.e., larger o

for a given ) result in a lower value of p"* (o, 0, €).
Proof. Refer to Theorem 1 in [335]. O

In an unlearning problem, the training data is divided into retain and forget data. In CoUn, the
feature extractor fg, and the classifier head hg, are trained solely based on the samples in the retain
data. From Theorem |1} it can be inferred that o, §, €, L are not dependent on the samples in the
retain and forget data. Furthermore, in a random forgetting scenario, g, k € {1,..., K} would be
relatively similar for the forget and retain data. Thus, the only parameter that may have different
values for retain and forget data is Rle]. Let R,.[¢] and R, [e] characterize R]e| for retain and forget
data, respectively. We have the following lemma:

Lemma 1. Considering a feature extractor fg, which is trained by both CL and supervised learning
only on the retain data, we have R,[e] < Ry[e].

Proof. See Appendix O

From Theorem |1} we can see that the misclassification rate of classifier head hg, in CoUn is obtained
as follows: Err(he,) < (1 — o) + R, [e]. From Lemmal[l} we can see that R, [¢] < Ry[e]. Thus, the
upper-bound on the misclassification rate of classifier hg, cannot be met for the forget data. This
implies that CoUn provides a higher misclassification rate on the forget data compared to the retain
data. The misclassification rate on retain data remains low because supervised learning is applied to
fo,, using only retain data. Our experiments also confirm this.

4 Experiments

4.1 Experimental Setup

Datasets and Model Architectures. We evaluate CoUn on three datasets: CIFAR-10/100 [36] and
TinyImageNet [37]], using three model architectures: ResNet-18 [38], VGG-16 [39]], and ViT [40].
Additional details regarding the model architectures are provided in Appendix [E.T]

Baselines. We compare CoUn with the following baselines: @ Retrain: Training from scratch on
retain data D,.; ® FT: Fine-tuning the Original model 8, on D,.; ® NegGrad+ [(NeurIPS, 2023); @
£1-sparse (NeurIPS, 2023); ® SalUn (ICLR, 2024); and ® NoT (CVPR, 2025).



Table 2: Performance comparison of CoUn to the baseline methods with 10% random data removal. The
gap (A) and the (best) average gap between each method and the Retrain model are reported.

Dataset Method Accuracy (%) Efficacy (%) Avg.  Comp. Cost
& Model Retain (A |)  Unlearn (A |) Test (A ) MIA (A )  Gapl (PFLOPs)|
Retrain 100.004000(0.00)  4.814027(0.00)  94.67+02¢(0.00) 11.02+05(0.00) 0.00  27.37
FT 99.99+ 000 (0.01) 3.76+031(1.05) 94.770+014(0.03)  9.5T+x02s(1.51) 0.65 6.32

NegGrad+ 99.95+002(0.05)  4.824024(0.01)  94.324023(0.35) 9.094030(1.93) 058  6.02

IR 10 fissparse 99974001(0.03)  540:00(0.59)  9381:021(0.86) 10.97+055(0.05) 038 692
SalUn  99.10:035(090)  431:00(0.50)  93.84+02(0.83) 11.15:20(0.13) 059  8.66
NoT 99.99:00(0.01)  4.19£025(0.62)  94.65£02(0.02) 10452051(0.57) 030  7.52
Coln 9999+ 000(0.01)  4.124031(0.69)  94.574024(0.10) 10.81c031(021) 025  8.02
Retrain _ 99.98-000(0.00) 2426205 (0.00) 7536202 (0.00) 48.4420(0.00) 000  27.37
FT 99.97+000(0.01)  16.390w(7.87)  76.75+05(L.19) 44.06105:(4.38) 336 722

NegGrad+ 99.96+001(0.02)  30.09+041(5.83)  75.46+036(0.10)  47.72+032(0.72) 1.67 7.62

AL fi-sparse 99.95:001(0.03)  2394400(0.32)  T495:02(0.61) 428lr0ss(5.63) 165 7.2
SalUn 08551015 (143) 2035+ 151(391)  72.024015(3.54) 52.3741:(2.93) 295  5.69
NoT 99.97:001(0.01)  17.99:040(627)  76.27+02(0.71) 4428505 (4.16) 279 722
Coln 99.971000(0.01)  22.012044(225)  72.88405(2.68) 47.82+0%(0.62) 139  9.63
Retrain  99.982000(0.00)  36.16205(0.00) 63.82020(0.00) 63.73£02(000) 000 21898
FT 99.982 0w (0.00)  32.76505:(3.40)  64.65-0(0.83) 3569310 (6.80) 276  60.16
TinylmageNet  NegOradt  9998:00(0.00)  380100(185)  64.68:0(0.86) 5784s0w(589) 215 8021
e 8™ fisparse 99.96:0m0(0.02)  3696:037(080)  6262:019(120) 56.74506(699) 225 60.16
SalUn 085210 (146)  34.03:100(2.13)  61212057(2.61) 67.72+12(3.99) 2.55  51.08
NoT 99.98+000(0.00)  35.64+071(052)  63.66-01(0.16) 56.08+055(7.65) 208  80.21
CoUn 99.95:001(0.03)  35.102050(1.06)  63272012(0.55) 57.57+017(6.16) 195 8021
Rewain  99.752007(0.00)  33.2320w(0.00) 67.072057(0.00) 40.69200(0.00) 0.00 1558
FT 9926200 (049) 26,022 05 (721) 6842202 (135) 355100(.18) 356 342
ClEAR.00  NeGradt 9492:041(483)  3544502(220)  65.5kron(153) 4067:00(0.02) 215 342
Vool fi-sparse  9927:00s(048)  26.96:066(627) 6801057 (0.94) 3531r0s0(538) 327 342
SalUn 9265204 (7.10)  33.00-085(023)  64.045053(3.03) 42.850145(2.16) 313 279
NoT 96.172425(3.58)  30.11230(3.12)  66.75617(032) 3647=11s(422) 281 428
Coln 09.82:001(0.07)  32.37:04(0.86)  63.802055(327) 39.64105(1.05) 131 571
Retrain  99.97-000(0.00)  38.73200(0.00) 61.89200(0.00) 61.75205(000) 000 86383
FT 99782001 (0.19)  T0.83x 001 (27.90) 611250 (0.77) 3150200 (3025) 1478 5.79
ClFAR.00  NesGradt  9988:0:(0.09) 4526104 (653)  5933:06(256) 5500:0w(675) 398 1158
ViT {1-sparse 99.324004(0.65) 31.71+052(7.02) 63.33+1032(1.44) 46.49+052(15.26) 6.09 14.47
SalUn 99.18:013(0.79)  38.01:25(0.72)  54782052(7.11) 69245 192(7.49) 403  5.10
NoT 09.80:002(0.08)  20.20% 105 (18.44) 61.824020(0.07) 43.55:136(18.20) 920  8.68
CoUn 99.91200:(0.06)  36.812108(1.92)  56.49=055(5.40) 53.92+04(7.83) 380  19.29

Evaluation Metrics. Following [8l 9} [10], we evaluate the unlearning effectiveness and efficiency
of CoUn using the following empirical metrics: @ Retain Accuracy (RA): Accuracy of the unlearned
model 8., on retain data D,.. @ Unlearn Accuracy (UA): Measured as 1—FA, where Forget Accuracy
(FA) is the accuracy of 6,, on forget data D,,. ® Test Accuracy (TA): Generalization performance of
6., on test data. @ Membership Inference Attack (MIA): The efficacy of unlearning, evaluated using a
confidence-based MIA predictor [9} (11} [10} [13]] applied to 8,, on D,,. The MIA success rate reflects
how effectively forget data is excluded from training. ® Computation Cost: Efficiency measured
by the number of floating-point operations (FLOPs) required to generate 8,,. The model’s utility is
assessed using RA and TA, while its forget quality is evaluated using both UA and MIA metrics. A
higher value in any individual metric (e.g., RA, UA, TA, or MIA) does not necessarily indicate better
performance. An effective unlearning method minimizes the performance gap with the gold-standard
Retrain model. Therefore, the performance (i.e., unlearning effectiveness) of an MU method is
measured by the average gap:

Avg. Gap = Y/4(|RA — RA*|+ [UA — UA*|+ |[TA - TA*|+ |[MIA - MIA*]), (7

where * denotes metrics for the Retrain model.

Implementation Details. For training the Original and Retrain models: we follow prior work
[8, 9} [10] by using an initial learning rate of 0.1, which is reduced by a factor of 10 at 50% and
75% of the total 182 training epochs. The batch size is set to 256. For unlearning: all MU methods
are applied to 6, for 50 epochs, using a cosine learning rate scheduler with a minimum learning
rate of 10~%. All reported results are averaged over 10 trials. Additional details can be found in

Appendix[E2]



Table 3: Performance comparison of CoUn to the baseline methods with 50% random data removal. The
gap (A) and the (best) average gap between each method and the Retrain model are reported.

Dataset Method Accuracy (%) Efficacy (%) Avg.  Comp. Cost
& Model Retain (A ])  Unlearn (A |) Test (A 1) MIA (A )  Gapl (PFLOPs)|
Retrain 100.00+ 000 (0.00)  7.294036(0.00)  92.284023(0.00)  17.33406:(0.00)  0.00  15.24
FT 9938:02:(0.62)  632:04(097) 910101 (037) 1264205 (3.69) 1.66 251
CIFAR-10 NegGrad+  100.00+000(0.00)  4.06+ 0.20(0.75) 93.81+023(0.86) 9.05+022(1.97) 0.90 5.58
ResNet-18 {y-sparse 99.77+003(0.23) 9.02+016(1.73) 90.66+024(1.62) 16.05+029(1.28) 1.22 4.19
SalUn 98.70+ 029 (1.30) 3.74+032(3.55) 92.37+036(0.09) 16.40+1.14(0.93) 1.47 7.82
NoT 99.98+ 001 (0.02) 5.95+018(1.34) 92.84+0.15(0.56) 13.90+037(3.43) 1.34 3.35
CoUn 99.97400:(0.03)  6.192030(1.10)  92.36+026(0.08)  16.94+04(0.39) 040  3.35
Retrain 99.98+001(0.00)  31.41+040(0.00)  68.41+034(0.00)  58.35+053(0.00)  0.00 15.24
FT 99.98+ 0.01 (0.00) 17.36+019(14.05)  74.16+039(5.75) 50.60+ 042 (7.75) 6.89 4.19
CIFAR-100 NegGrad+  99.98+ 0.01 (0.00) 26.32+021(5.09) 71.98+030(3.57) 52.32+036(6.03) 3.67 5.36
RecNoL 18 fr-sparse 99.94+002(0.04)  32.26+023(0.85)  67.66+035(0.75)  51.54+0.(6.81) 211  4.19
SalUn 95614061 (437)  2543:1:2(5.98)  60.35:052(8.06)  57.14+10(1.21) 491  1.95
NoT 08.644043(1.34)  26431075(4.98)  67.97+05:(0.44)  43.82+00(1453) 532 2.0l
CoUn 99.98+001(0.00)  31.43+175(0.02)  65.60+071(2.81)  55.99+1.15(2.36) 1.30 5.58
Retrain 99.99+ 0.00 (0.00) 43.01+020(0.00) 57.28+043(0.00) 71.22+0.17(0.00) 0.00 121.93
FT 99.99+ 00 (0.00)  36.78+015(6.23)  60.59%0s(331) 6628+ 0 (4.94)  3.62  33.50
TinylmageNet NegGrads  99.99:0m(0.00)  47.62:025(461)  5885:012(157)  664310:(479) 274 3350
N yg  Gsparse 99.99:0m(0.00)  38.83:0m(418)  60.25:00(297)  65.82402(540) 314 3350
SalUn 93.59+ 055 (6.40) 44744111 (1.73) 45.53+001(11.75)  70.41+1.05(0.81) 5.17 25.01
NoT 99.99-+ 0.00 (0.00) 40.94+043(2.07) 58.27+039(0.99) 66.23+036(4.99) 2.01 33.50
CoUn 99.98+ 001 (0.01) 43.21+157(0.20) 55.75+134(1.53) 66.59+ 041 (4.63) 1.59 44.66
Retrain_ 99.652015(0.00)  42.85%05:(0.00)  57.702047(0.00) _ 50.19+053(0.00) _ 0.00 _ 8.67
FT 97.71+025(1.94) 29.82+055(13.03)  63.72+043(6.02) 39.98+062(10.2T)  7.80 1.43
CIFAR-100 NegGrad+ 95.54+056(4.11) 43.42+035(0.57) 58.52+044(0.82) 43.51+036(6.68) 3.04 3.18
VGG-16 {y-sparse 98.25+ 153 (1.40) 34.24+157(8.61) 62.76+ 1,65 (5.06) 42.12+055(8.07) 5.79 1.91
SalUn 91.98+075(7.67) 37.60+352(5.25) 57.30+ 033 (0.40) 53.84+595(3.65) 4.24 245
NoT 0423570:(5.42)  34.64+705(821) 615845 (3.88)  39.84+1:2(10.35) 696  2.38
CoUn 99.884002(0.23)  42.37+080(0.48)  55.19+06s(251)  50.00+06:(0.19) 0.85  3.18
Retrain 99.98+ 0.01 (0.00) 48.07+033(0.00) 52.40+ 058 (0.00) 69.54+ 029 (0.00) 0.00 48.35
FT 98.71+030(1.27) 1091+ 096(37.16)  56.79+073(4.39) 28.18+093(41.36) 21.05 1.61
CIFAR-100 NegGrad+  99.30+0.13(0.68) 45.35+043(2.72) 50.82+047(1.58) 55.07+033(14.47) 4.86 6.45
Vit fr-sparse 71184057 (28.80) 47.304026(0.77)  53.324052(0.92)  44.224208(2532) 13.95  8.06
SalUn 98.93+ 029 (1.05) 45.644299(2.43) 39.46+082(12.94)  76.49+192(6.95) 5.84 12.03
NoT 97.86+171(2.12)  31.81+205(16.26) 55.51+115(3.11)  48.85+245(20.69) 10.55 3.22
CoUn 99.71+062(0.27) 45.954370(2.12) 49.45+215(2.95) 59.24.+£145(10.30) 3.91 10.74

4.2 Results

Comparison with Baselines.

We begin by presenting results for the /0% random forget data ratio.

As shown in Table 2] CoUn consistently outperforms state-of-the-art baselines, with computational
costs that are either comparable or slightly higher. Key observations from Table 2] include the
following: FT exhibits the highest average gap, indicating weakest performance. SalUn shows limited
performance compared to other baselines, as the random labeling of forget data reduces the model’s
utility. While NegGrad+, ¢1-sparse and NoT achieve the most competitive results, CoUn demonstrates
superior performance across different datasets and model architectures. For example, using ResNet-
18, CoUn outperforms the best baseline by 16.7% on CIFAR-10, 15.8% on CIFAR-100, and 6.3%
on TinyImageNet. Similarly, with VGG-16 and ViT on CIFAR-100, CoUn achieves performance
improvements of 53.4% and 4.5%, respectively. Even under a 50% random forget data ratio, CoUn
still outperforms the baselines (Table [3). Comparisons with additional baselines and class-wise
forgetting are provided in Appendix [F.1]and Appendix [F2] respectively.

Integration of CoUn’s CL Module into Baselines. To evaluate whether our proposed CL module
empowers baseline methods, we conduct experiments integrating CoUn’s CL module with competitive
baselines. Figure @ presents the average gap comparisons, with percentage improvements, across
various datasets and model architectures for 10% and 50% forget data ratios. Detailed results can
be found in Appendix [F-3] Our results demonstrate a substantial performance boost achieved by
incorporating our CL module into the baselines. For example, using CIFAR-10 with ResNet-18,
integrating our CL module with NegGrad+, ¢;-sparse and NoT results in percentage improvements
of 44.8%, 42.1%, and 43.3%, respectively, under a 10% forget data ratio; while for a 50% forget
ratio, improvements of 50.0%, 87.7%, and 73.1% are achieved. Although the CL module introduces
a slight increase in computational cost due to the additional model inference required for obtaining
representations of the second sample view, Figure[5]shows that the performance enhancements remain
significant even when the computation budgets are matched.



Sequential Unlearning. Figure [6] presents
results for scenarios where 10% of random
data is sequentially removed every 10 epochs,
up to 50 epochs. CoUn consistently outper-
forms baseline methods across all five stages,
with varying forget ratios. Additionally, inte-
grating CoUn’s CL module into baseline meth-
ods further empowers their unlearning effec-
tiveness.

4.3 Ablation Study

All ablation experiments are conducted using
CIFAR-100, ResNet-18, and a forget ratio of
50%.

Effect of Scaling Factor. The scaling factor
A, defined in Equation (EI), controls the relative
contribution of the CE and CL losses. Fig-
ure [7] demonstrates the substantial impact of
A on CoUn’s performance. Improper tuning
can lead to suboptimal results, emphasizing
the importance of careful hyperparameter se-
lection. For example, a high A reduces the
influence of supervised learning in the objec-
tive, causing retain representations to be less
constrained within their respective clusters and
more susceptible to cluster collisions. This, in
turn, degrades model utility and compromises
unlearning effectiveness.

Effect of CL. Temperature. Similar to Sim-
CLR [20]], we investigate the influence of the
CL temperature 7, defined in Equation (]I[),
on unlearning effectiveness. Figure[§|demon-
strates that decreasing 7 generally improves
the effectiveness of CL, and reduces the aver-
age gap with the Retrain model. Nevertheless,
excessively low 7 values can negatively impact
performance. As shown in Figure[8] optimal
performance is observed at 7 = 0.1, with per-
formance deteriorating as 7 deviates from this
value. In line with previously reported find-
ings from SimCLR, the results confirm that the
best performance emerges at low 7, whereas
performance gradually declines as 7 increases
beyond the optimal value.

Effect of CL Transformation Distribution.

CIFAR-10, ResNet-18
Forget Ratio: 10% Forget Ratio: 50%

1.50 4
= Without CL
| == with CL

H
i
&

=)
3

e
3
&

Average Gap (4)

e e
N
& S

o
o
3

NegGrad+ I NoT FT NegGrad+ I
Method Method

CIFAR-100, ResNet-18

7.00 Forget Ratio: 10% Forget Ratio: 50%

6.00
= Without CL

5.00 1 EEE With CL

)

4.00

Average Gap

FT NegGrad+ I, NoT FT NegGrad+ [
Method Method
TinylmageNet, ResNet-18
Forget Ratio: 10% ] Forget Ratio: 50%
[ Without CL
3.00 | EEE With CL

3.50 1

Average Gap (1)

FT  NegGrad+ I NoT FT NegGrad+ [,
Method Method

CIFAR-100, VGG-16
8.00 Forget Ratio: 10% A Forget Ratio: 50%

= Without CL

6:001 mm with cL

Average Gap (1)

FT NegGrad+ I

NegGrad+ 1 NoT
Method Method

CIFAR-100, ViT

Forget Ratio: 10%
= Without CL
I With CL

Forget Ratio: 50%

Average Gap (4)

FT  NegGrad+ b NoT FT  NegGrad+ I
Method Method

Figure 4: Percentage improvement from integrating
CoUn’s CL module into baseline methods. Incorporating
our CL module consistently improves baseline unlearning
performance compared to the original MU methods (with-
out CL). The performance improvements further increase
with a 50% forget ratio.

To isolate the impact of CL transformation distribu-

tions Tcr, we fix the supervised learning transformation 7¢cg to CHN, consistent with the transfor-
mation used in the Retrain model. The details of the augmentation operations C, H, J, G, and N are
provided in Appendix[E.3] Figure[]demonstrates that employing stronger transformations for CL (e.g.,
CHIJGN), compared to those used for supervised learning, can degrade performance. This degradation
arises primarily from the formation of tighter clustering of forget representations, along with slower
convergence caused by the additional complexity introduced by stronger transformations. On the other
hand, overly simple transformations (e.g., CN) may not sufficiently adjust the forget representations,
which in turn result in suboptimal performance. Our experiments show that the best performance
is achieved when 7 = T¢cg = TcL, i.e., when 7 = CHN. This configuration also enables shared
use of representations from a single augmented image between CL and supervised learning, thereby



Forget Ratio: 10%

Forget Ratio: 50%

71 1
®FT % FT+CL (CoUn) 20.0 1
61 @ NegGrad+ * NegGrad+CL —~
=~ 2 17.51
2 54 £1-sparse £;-sparse+CL o
§ NoT NoT+CL & 15.04
o 41 [}
| e L] 2 12.5 1
g 31 ]
z ° Z 10.0
24 Fn, 1
............. * 7.5 4
w0 | [ -
14 e * e i
S S S ——— >0
8 9 10 11 12 4.0 4.5 5.0 5.5 6.0 6.5
Computation Cost (PFLOPs) Computation Cost (PFLOPs)
Figure 5: Performance comparison of MU methods on CIFAR-

100 with ResNet-18, where 10% (left) and 50% (right) of training
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of each method is reported. CoUn

and integrating its CL module empowers baseline performance.
Although CL increases computational cost, the performance im-
provement persists even with the same computational budget.
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outperforms all baselines,

Average Gap ()

Average Gap ()

——- FT
—@®- CoUn
T T

T
4

T
3

[SE

Figure 7: Effect of scaling con-
stant A. Properly tuning A in Equa-
tion (@) is essential for optimizing
CoUn’s performance.

reducing computational cost. The impact of strong ver-

sus simple CL transformations on
is further illustrated in Appendix

Effect of Batch Size Batch size impacts the perfor-
mance of CoUn. Figure [I0] presents results for varying
batch sizes, with the batch size for the Retrain model

016
Figure 8: Effect of CL tempera-
ture 7. Properly tuning 7 in Equa-
tion () is essential for optimizing
CoUn’s performance.
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fixed at 256. Our findings indicate that the best per-

formance for CoUn is achieved with a batch size of 256,
which matches the batch size used for the Retrain model.

5 Conclusion
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Figure 6: Sequential data removal. Ex-
periments with CIFAR-100, ResNet-18, and
up to 50% random forget data (10% of data
is removed every 10 epochs). CoUn consis-
tently outperforms baselines, and can fur-
ther empower baselines’ performance when
CoUn’s CL module is integrated into them.
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Figure 9: Effect of CL transfor-
mation 7 cr. Strong 7c.. degrades
performance, while simple 7cr, fails
to sufficiently push representations.
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Figure 10: Effect of batch size n. Different

n for CoUn, results in varying performance. Re-
train batch size is set to 256.

We presented CoUn, a novel CL-based MU framework that enables effective unlearning by adjusting
learned data representations based on semantic similarity. CoUn applies a CL module on retain data
to adjust their representations and leverages the cluster collision issue to promote cluster overlap.
Due to semantic similarity between retain and forget samples, forget representations are indirectly
influenced in the same manner; thereby enhancing forget quality. To preserve utility, CoUn applies
supervised learning to retain data to mitigate cluster collision for retain representations. Our results
showed that CoUn consistently outperforms state-of-the-art MU baselines, and that integrating its CL
module into existing baselines empowers their unlearning effectiveness.
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We provide more details and results about our work in the appendices. Here are the contents:

* Appendix[A} More discussion on related work.

* Appendix B} Pseudo-Code and PyTorch implementation of CoUn.

* Appendix[C} Additional empirical analysis.

* Appendix D} Proof of LemmalT]

* Appendix [E} More details about experimental and implementation settings.
* Appendix[F} Additional experiment results.

* Appendix G} Broader impacts of our proposed method.

» Appendix [H} Limitations of our proposed method.

A Related Work: Further Details

Contrastive Learning. Zhang et al. [33]] applies supervised CL [41] to push forget samples away
from retain samples of the same cluster and pull them closer to retain samples of different clusters.
Essentially, [33] pushes representations away from positive samples and toward negative ones. This
approach requires that forget and retain samples from the same cluster to be included in each batch.
Moreover, under this definition there are no positive samples in class-wise unlearning, thus [33]
modifies the objective to only pull forget samples toward retain samples from different clusters.
However, this approach aims to push forget samples outside their clusters, potentially harming model
utility. As shown in Figure[I] the goal of unlearning is not to misclassify forget samples as some can
be correctly classified to maintain model performance. Additionally, [33]] requires access to forget
data.

In contrast, CoUn follows the way how Retrain model classifies forget data, which is based on
semantic similarity. CoUn utilizes self-supervised CL 18|19} 20} 29,130,131 132]] to achieve the same
goal. Self-supervised CL uses augmentations to generate positive views, instead of using samples
from different clusters as the positive views. The use of augmented samples as positives and the
remaining as negatives allows three advantages: @ access to class labels is not required during CL, &
we do not need to guarantee that samples from different clusters need to exist in the batch, and @ it
does not force samples out of their original clusters. Lastly, CoUn does not require access to forget
data.

B CoUn Algorithm

B.1 Pseudo-Code

Algorithm[T] details our proposed unlearning method, which leverages CL and supervised learning.

Algorithm 1 CoUn Algorithm

Input: Original model 8, transformation distribution 7, and retain data D,
Hyper-parameter: Learning rate 7, temperature 7, and scaling factor A
Output: Unlearned model 6,

1: 0, < 0,

2: forepoche =1,2,..., F do

3 for each batch (I,Y) € D, do

4: Sample transformations ¢, ¢ ~ T

5: X, X' =¢I),t'(I)

6: Z,7" = fp,(X), fo.(X')

7 Y =he,(2)

8: Lcy is obtained from Equation (2) using Z, Z’
9: Lk is obtained from Equation (3) using Y, Y
10: ou — gu - eru (‘CCE + A‘CCL)
11: end for
12: end for

13: return 0,

14
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B.2 PyTorch Code

This section provides the PyTorch implementation of CoUn.

import torch
from torch import nn

from torch.nn import functional as F

features = None

hook_fn = lambda module, _, output:
output)

def coun(model, layer, optimizer,
lambda_scale, temp):

retain_loader,

globals () .__setitem__(’features’,

transform,

22 Apply contrastive learning for unlearning using only retain

data

Args:
model :
layer:
optimizer:
retain_loader
transform:
lambda_scale:
temp:

returns

penultimate layer
for images,
batch_size

’unlearned model’

The original model that needs to be unlearned
The penultimate layer for extracting embeddings
The optimizer to train the model

: The dataloader containing retain data

The transformation to be applied to input images

A scaling constant for the CL loss

P

targets in retain_loader:

int (images.shape [0])

# Create two views of images

imagesli,

images2

transform(images),

The temperature to be applied in the CL loss

layer .register_forward_hook (hook_fn) # Attach hook at

# Load retain data

transform(images)

# Get model outputs and extract embeddings for imagesi

outputs
featuresil

£

# Extract emb

features?2

£

# Compute sup
supervised_1lo

model (images1)

model (images2)

eatures.view(batch_size, -1)
eddings for images2
eatures.view(batch_size, -1)

ervised
ss nn.

learning loss for imagesl
CrossEntropyLoss () (outputs,

targets)

# Compute contrastive learning using the two views of

embeddings
target
intra_mask

cos_sim_1ij
features2 [None,:,
cos_sim_ij
log_prob_ij
sum (1,
mean_log_prob
intra_mask.sum (1)

cos_sim_ji

21 5

(torch.eq(target,

torch.arange (batch_size) .unsqueeze (0)
target.T).float ())

F.cosine_similarity(featuresl[:,None,:],

dim=-1)
torch.div(cos_sim_ij,
cos_sim_ij

keepdim=True))

_pos_ij

temp)

- torch.log((torch.exp(cos_sim_ij)).

(intra_mask * log_prob_ij).sum(1l) /

F.cosine_similarity(features2[:,None,:],

featuresi[None,:,:], dim=-1)

cos_sim_ji = torch.div(cos_sim_ji, temp)

log_prob_ji = cos_sim_ji - torch.log((torch.exp(cos_sim_ji)).
sum (1, keepdim=True))

mean_log_prob
intra_mask.sum (1)

_pos_ji
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constrastive_loss = - (mean_log_prob_pos_ij.mean() +
mean_log_prob_pos_ji.mean())

loss = supervised_loss + lambda_scale*constrastive_loss

optimizer.zero_grad ()
loss.backward ()
optimizer.step ()

return model

C Further Details on Empirical Analysis

Representation Space of Original Model. Figure|l 1|illustrates the representation space of the
Original model trained on CIFAR-10 using ResNet-18. Since it is trained on both retain and forget
data, the model achieves perfect accuracy on both.

Statistical Comparisons. ~We provide Table 4: L2 distances of forget ‘truck’ to retain centroids.

a statlstlcal. comparison between forget The most semantically similar clusters to ‘truck’ samples are
representations and retain clusters, We ,recented. Experiments conducted using CIFAR-10 and ResNet-
grouped the forget samples by their true |8, The difference (A) and the (best) average difference between
class labels and, for each group, com- each method and Retrain are reported.

puted the average Euclidean distance  Forgetting Method L2-(A D) Avg.
. . . etho .
(L2) from its samples to all retain class ~ Scenario Automobile  Airplane Ship  Diff-4
centroids. This yi.elded a per-class dis- Original  0.93 0.97 096
tance profile showing how far forget rep- Class Retrain _ 0.90 (0.00)  0.96 (0.00) 0.95 (0.00) 0.00
(‘truck’)  FT 0.86(0.04)  0.94(0.02) 091 (0.04) 0.033

resentations lie from each retain cluster.
To enable comparison across different
models, we then applied normalization
on each group’s averaged distances. Table |4 summarizes the results for CIFAR-10, ResNet-18, and
the statistics for ‘truck’ forget samples in a 10% random forgetting (same setup as Table[I). The
findings show that forget representations in CoUn are consistently closer to semantically similar retain
clusters, and more importantly, CoUn achieves distance statistics that are closer to those of the Retrain
model compared to other baselines. The smaller the distance means higher semantic similarity. From
Table [d] we can see that ‘truck’” samples have the highest semantic similarity with ‘automobile’.

CoUn 0.87(0.03)  0.96 (0.00) 0.93(0.02) 0.017

Prediction-Level Results. Tables[5]and [6| present additional prediction-level results for a single
forget class across different baselines and datasets. The Original model has 100% accuracy on
the forget ‘truck’ samples since these samples are part of its training data. Furthermore, baselines
based on label manipulation or weight perturbation produce predictions somewhat similar to Retrain,
but their misclassifications are less concentrated on semantically related classes. By comparison,
CoUn more effectively redirects forget samples toward semantically similar clusters, thereby yielding
prediction distributions that are closer to those of the Retrain model.

D Proof of Lemma 1

We have
I fo.(z) — fo.(x")|| < Lllz — 2|, ®)
sup | fo,(x) = fo (&) <L  sup |z -2, ©)
z=t(i), ' €t' (1) x=t(3), z'€t’ (3)
tt'~T t,t' ~T

where inequality (8) is obtained due to the L-Lipschitz assumption for feature extractor fg, and
inequality (9) is obtained by taking supremum from both sides of inequality (8.

Training fp, on the retain data tends to converge to flat minima, i.e., regions in parameter space
where the loss landscape is broad and has low curvature [42]. Consequently, flat minima correspond
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Figure 11: Representation space of the Original model. The Original model is trained on the entire CIFAR-10
training data (i.e., union of retain and forget data) using ResNet-18. There are no misclassifications for either
retain or forget samples since the model was trained on them. A single visualization of the Original’s model
representation space is shown for both class-wise and random scenarios, as this model serves as the checkpoint
for both scenarios. Dots denote training samples, where each being correctly clustered into the corresponding
class.

to functions whose outputs vary only gently under small perturbations around the training points (i.e.,
they have a low local Lipschitz constant at those points). However, there is no guarantee that, at these
flat minima, the loss landscape remains flat with respect to the forget data. Therefore, in general, after
convergence we have

L, <L,<L, (10)
where L, and L,, denote the Lipschitz constants evaluated on the retain and forget data, respectively.

Based on Equation (3)) and inequality (9), we have

K
R.le]=P |i€e UCk ND, sup |lx—a'|| >€¢/L,|, (11)
E—1 z=t(1), ' €t’(3)
L tt' ~T
and
[ K
R,le)]=P |i€e (U Ck> N D, sup le —a'|| >¢/L.| . (12)
k1 w=t(i),m/7€_t/(i)
L t,t'~

In particular, Equation (TI) computes the probability that, for images in the retain data,
SUDg—t (i), x' et () | — ®'|| exceeds ¢/ L,., while Equation (I2) computes the probability that, for
tt'~T
images in the forget data, Sup,,_(;) o'cs'(s) | — 2'|| exceeds €/ L,,. Considering inequality (I0), we
t,t' ~T
have €/L,, < €/L,. Since in random forgetting the samples are drawn LLD., we have R, [e] < R,[e].
This follows because the threshold €/L,, used to compute R, €] is lower than the threshold €/ L,
used to compute R, [¢].

E Further Implementation Details

E.1 Model Architectures

For VGG-16 [39]], we use a 1024-dimensional encoder head. For the ViT [40] model, we adopt a
patch size of 4 x 4, an embedding dimension of 512, an MLP hidden dimension of 1024, 12 attention
heads of size 64, and a depth of 6 transformer layers. Both dropout and embedding dropout are set to
0.1.
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Table 5: Predictions of forget ‘truck’ samples based on most semantically similar classes. The experiments
are conducted using CIFAR-10 and ResNet-18. The difference (A) and the (best) average difference between
each method and Retrain are reported.

Forgetting Predictions (%) - (A |) Avg.
Scenario Method . . . Diff. |
Truck Automobile Airplane Ship :
Original 100.00 (0.00)  0.00 (0.00) 0.00 (0.00)  0.00(0.00)  0.00
Retrain 0.00 (0.00) 69.32 (0.00)  13.47 (0.00) 12.60 (0.00) 0.00
FT 0.00 (0.00) 70.29 (0.97) 12.38 (1.09) 13.12(0.52) 0.65
Class NegGrad+ 0.00 (0.00) 43.56 (25.76) 16.03 (2.56) 17.58 (4.98) 8.32
(‘truck’) {i-sparse  0.00 (0.00) 65.70 (3.62)  9.84 (3.63)  18.25(5.65) 3.23
SalUn 0.00 (0.00) 66.05 (3.27) 16.67 (3.20) 16.71 (4.11) 2.65
NoT 0.00 (0.00) 68.12 (1.20) 12.43(1.04) 15.03 (2.43) 1.17
CoUn 0.00 (0.00) 69.60 (0.28)  13.96 (0.49) 13.13(0.53) 0.33
Original 100.00 (0.00)  0.00 (0.00) 0.00 (0.00)  0.00 (0.00)  0.00
Retrain 97.42 (0.00)  1.23 (0.00) 0.38 (0.00)  0.40(0.00)  0.00
FT 98.12 (0.70)  0.75(0.48) 0.36 (0.02) 0.32(0.08) 0.32
Random NegGrad+ 97.86 (0.44)  0.97 (0.26) 0.42(0.04) 0.30(0.100 0.21
(10%) {i-sparse  98.06 (0.64)  0.85(0.38) 0.30(0.08)  0.38(0.02) 0.28
SalUn 96.76 (0.66)  0.88 (0.35) 0.34 (0.04)  0.34(0.06) 0.28
NoT 97.98 (0.56)  0.89 (0.34) 0.40(0.02)  0.32(0.08) 0.25
CoUn 97.84 (0.42)  0.99 (0.24) 0.32 (0.06) 0.42(0.02) 0.19

Table 6: Predictions of forget ‘man’ samples based on most semantically similar classes. The experiment is
conducted using CIFAR-100 and VGG-16. The difference (A) and the (best) average difference between each
method and Retrain are reported.

Forgettin icti - Avg.

- egnariog Method Predictions (%) - (A |) Diffg¢
Man Woman Boy Baby :
Original 100.00 (0.00) 0.00 (0.00)  0.00(0.00)  0.00 (0.00) 0.00
Retrain 49.53 (0.00) 15.18 (0.00) 10.06 (0.00) 3.42(0.00) 0.00
FT 60.53 (11.00) 9.11 (6.07) 9.68 (0.38) 3.61(0.19) 441
Random NegGrad+ 41.94 (7.59) 13.47 (1.71) 12.71 (2.65) 4.74(1.32) 3.32
(10%) {1-sparse  57.69 (8.16) 13.47 (1.71) 10.06 (0.00) 2.85(0.57) 2.61
SalUn 55.16 (5.63) 13.52 (1.66) 9.68 (0.38)  2.63(0.79) 2.12
NoT 51.23 (1.70) 14.61 (0.57) 9.68 (0.38) 3.61(0.19) 0.71
CoUn 50.15 (0.62) 14.67 (0.51) 10.09 (0.03) 3.28 (0.14) 0.33

E.2 Training and Unlearning Configurations

Original Model 8, Training. Following [8.9}[10]], we train original models for all different datasets
and model architectures for a total of 182 epochs. The batch size is set to 256. An SGD optimizer
is used with an initial learning rate of 0.1 and a multi-step learning rate scheduler that reduces the
learning rate by a factor of 10 at 50% and 75% of the training epochs. Momentum is set to 0.9,
and weight decay is set to 5 x 10~%. The transformation distribution used for data augmentation is
described in Appendix [E.3] For VGG-16, we use a linear warmup phase for the first 75 epochs.

Unlearned Model 6,, Training. For unlearning, all methods are run for 50 epochs. We used the
SGD optimizer with a learning rate tuned within the range of [0.01, 0.1] for each MU method. A
cosine annealing learning rate scheduler is used with a minimum learning rate set to 1 x 1074,
Momentum is set to 0.9, and weight decay is set to 5 x 10~%. The transformation distribution used
for data augmentation is described in Appendix [E.3] Additional details for each MU method are
listed as follows:

e BadT: The temperature is set to 1.

* SSD: The weight selection is tuned in the interval [0.1, 100], while the dampening constant
is tuned in the interval [0.1, 5].
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* NegGrad+: The 3 hyperparameter is tuned in the interval [0.95, 0.9999].

* SCRUB: The temperature is set to 1. The number of maximization steps is tuned in the
interval [1, 10]. Both v and « are tuned in the interval [0.1, 3].

* CU: The contrastive scaling constant is tuned within the interval [0.1, 2] and the temperature
is tuned within the interval of (0, 0.2]. The constant w is tuned within the interval [1, 5].

* £,-sparse: The {; regularization parameter is tuned in the interval [10~4, 107']. ¢,
regularization is applied for 4 epochs, except for sequential forgetting experiments, where it
is applied for 2 epochs and then reapplied every 10 epochs for a total of 50 epochs.

¢ SalUn: The mask threshold is tuned within the interval of [0.1, 1.0].

* NoT: For all model architectures, the first CNN layer (index: 0) is negated. For ViT [40]],
the positional representations and the second patch representation layer are negated (indices:
0 and 4).

* CoUn: The scaling constant ) is tuned within the interval [0.1, 6], and the CL temperature 7
is tuned within the interval of (0, 0.3].

All experiments are implemented using the PyTorch platform [43] and run using NVIDIA Tesla V100
GPUs.

E.3 Data Augmentation
In our experiments, the following operations are applied sequentially to augment images:

* Random cropping (C): Output image size of 32 x 32 for CIFAR-10/100 and 64 x 64 for
TinyImageNet, with a padding of 4 on each image border.

* Random horizontal flip (H): Applied with a probability of 0.5.

* Color normalization (N): Applied using mean values (0.4914, 0.4822, 0.4465) and standard
deviations (0.2023, 0.1994, 0.2010).

However, in some ablation experiments, the following operations are added between horizontal flip
and color normalization to augment images:

* Random color jitter (J): Applied with a probability of 0.8. Brightness, contrast, saturation,
and hue are set to 0.8, 0.8, 0.8, and 0.2, respectively.

* Random grayscale (G): Applied with a probability of 0.2.

F Further Results

F.1 Random Forgetting: Forget Ratio 10% (Additional Baselines)

Tablepresents comparisons of CoUn with additional baseline methods: BadT (AAAI, 2023), SSD
(AAALI 2024), SCRUB |(NeurIPS, 2023), and CU [33] using random data forgetting with a 10%
forget ratio. CoUn consistently achieves superior performance compared to all baselines. Since BadT,
SSD, SCRUB, and CU do not perform better than other baselines, we did not include them under
different settings. Further, BadT and SCRUB demand higher computational resources due to their
reliance on two teacher models (Original and Random) to guide the unlearned model.

F.2 Class-wise Forgetting

Table [§] presents the results for class-wise forgetting. All baselines, including FT, exhibit minimal
performance gaps with the Retrain model, suggesting that class-wise forgetting is relatively easy and
can be effectively addressed using just FT (i.e., through catastrophic forgetting). This observation
aligns with the findings from [11]], which shows that lower entanglement between retain and forget
data simplifies the unlearning task, making class-wise forgetting easier than random forgetting. This
trend is further illustrated by the similarity between the representations of FT and CoUn in Figure 3|
and those of the Retrain model in Figure|l| Nevertheless, CoUn achieves competitive results across
all baselines. In this paper, the majority of our experiments focus on the more challenging unlearning
scenarios (i.e., random forgetting).
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Table 7: Performance comparison of CoUn to additional baseline methods with 10% random data removal.

The gap (A) and the (best) average gap between each method and the Retrain model are reported.

Dataset Method Accuracy (%) Efficacy (%) Avg.  Comp. Cost
& Model Retain (A |)  Unlearn (A ) Test(A |) MIA (A ])  Gapl (PFLOPs)|
Retrain 100.00+000(0.00)  4.81+027(0.00) 94.67+024(0.00) 11.02+058(0.00) 0.00 27.37
FT 99.99+ 0.00 (0.0T) 3.76+031(1.05)  94.70+014(0.03) 9.5T+02s8(1.51) 0.65 6.32
BadT 09.944003(0.06)  0.07=005(4.74) 94.05+015(0.62) 10.10+235(0.92) 1.58  9.89
SSD 100.00+000(0.00)  0.02+000(4.79)  94.80+000(0.13)  0.62+000(10.40) 3.83 0.06
CIFAR-10 NegGrad+ 99.95+002(0.05) 4.82+024(0.01)  94.324023(0.35)  9.09+030(1.93) 0.58 6.02
ResNet-18  SCRUB ~ 99.97:001(0.03)  3.93+023(0.88) 94.61+017(0.06) 9.53+034(1.49) 062  8.93
CU 99.324006(0.68)  5.48+016(0.67) 94.18+022(0.49) 11.63+072(0.61) 0.61 3.36
{-sparse 99.97+ 001 (0.03) 5.404040(0.59)  93.81+021(0.86) 10.97+035(0.05) 0.38 6.92
SalUn 09.104035(0.90)  4.31:04(0.50) 93.84+027(0.83) 11.15:204(0.13) 059  8.66
NoT 99.99+ 000 (0.01) 4.19+025(0.62)  94.65+024(0.02) 10.45+051(0.57) 0.30 7.52
CoUn 99.994000(0.01)  4.124031(0.69) 94.57+024(0.10) 10.81+031(0.21) 0.25 8.02

Table 8: Performance comparison of CoUn to the baseline methods with class-wise ‘truck’ samples removal.

The gap (A) and the (best) average gap between each method and the Retrain model are reported.

Dataset Method Accuracy (%) Efficacy (%) Avg.  Comp. Cost
& Model Retain (A |)  Unlearn (A |) Test (A 1) MIA (A ])  Gapl (PFLOPs)|
Retrain 100.00+ 000 (0.00)  100.00+ 0.00(0.00)  95.14+0.15(0.00)  100.00+ 0.00 (0.00)  0.00 27.37
FT 99.97+ 001 (0.03) 100.00+000(0.00)  94.99+0.19(0.15)  100.00+ 0.00(0.00) ~ 0.04 6.02
CIFAR-10 NegGrad+  99.98+0.02(0.02) 100.00+000(0.00)  95.10+015(0.04)  100.00+000(0.00)  0.02 9.03
ResNet:18 {1 -sparse 100.00+000(0.00)  100.00+0.00(0.00)  95.10+0.14(0.04)  100.00+ 0.00(0.00)  0.01 4.51
SalUn 100.00+ 000 (0.00)  100.00+000(0.00)  95.11+0.11(0.03)  100.00+ 0.00(0.00)  0.01 8.66
NoT 100.00+0.00(0.00)  100.00+000(0.00)  95.144+013(0.00)  100.00+000(0.00)  0.00 6.02
CoUn 100.00+000(0.00)  100.00+000(0.00)  95.18+020(0.04)  100.00+0.00(0.00) 0.01 9.03

F.3 Integration of CoUn’s CL Module with Baselines: Detailed Results

Tables 9] and [10] provide detailed results for integrating CoUn’s CL module with existing baselines
for 10% and 50% random data forgetting, respectively. Results show that adding our CL module
significantly empowers the performance of existing MU methods, as measured by the average gap.

F.4 Effect of CL Transformation on Representation Space

Huang et al. [35] provides a theoretical framework for understanding the generalization ability of CL,
emphasizing the role of data augmentation and representation properties. They show that stronger
transformation{] in CL yield more compact and well-separated clusters in the representation space.
These insights are particularly relevant to our observations on the effect of transformation strength in
the context of MU.

In MU, the goal of CL is not to enhance clustering, but rather to weaken the clustering of forget
data. Looser clustering allows their representations to be pushed toward clusters of other retain
representations that are semantically similar to the forget representations, even if those clusters
are different from the original ones of the forget data. Therefore, strong augmentations reduce the
likelihood of cluster overlap, even in the presence of false negative samples.

As illustrated in Figure[9] weaker transformations lead to more effective unlearning. This is because
they result in less tightly clustered representations, allowing forget data to overlap with retain data
from other classes, particularity in the absence of supervised signals for forget data. Figure [12]
further shows that stronger CL transformations (e.g., 7cr, = CHIGN) produce tighter clusters of
forget data compared to weaker ones (e.g., Tc. = CHN), consistent with the findings of [35]].
However, from an MU perspective, such tight clustering impedes unlearning. Hence, using simpler
CL transformations generally enhances unlearning effectiveness. This inverse relationship between
representation compactness and unlearning efficacy is reinforced by the results in Figure[9]

'Transformations drawn from a distribution combining multiple data augmentations.
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CoUn (7ce = CHN & 7¢. = CHN) CoUn (7ce = CHN & 7¢. = CHJGN)

@ Airplane ® Bird ® Deer Frog Ship

© Automobile ® Cat ® Dog ©® Horse ® Truck
Figure 12: Effect of CL transformation on forget data representations. t-SNE visualizations of forget data
representations extracted from the penultimate layer of 6, on CIFAR-10 with ResNet-18 under a 50% forget data
ratio. Left: CoUn with a simple CL transformation (7ci. = CHN). Right: CoUn with a strong CL transformation
(7cL. = CHIGN). The transformation for supervised learning is fixed at 7cg = CHN. The CHIGN transformation
applies a sequence of operations: crop, horizontal flip, color jitter, grayscale, and color normalization. Stronger
transformations lead to tighter clustering of forget data representations, reducing unlearning effectiveness.
Additionally, tighter clustering leads to less cluster overlap compared to weaker clustering (from simpler 7ct).

Table 9: Performance comparison when CoUn’s contrastive learning (CL) module is integrated into
baselines under 10% random data forgetting. The gap (A) and the (best) average gap between each method
and the Retrain model are reported.

Dataset Method CL Accuracy (%) Efficacy (%) Avg.  Comp. Cost
& Model Retain (A |)  Unlearn (A |) Test (A 1) MIA (A )  Gapl (PFLOPs)|
Retrain - 100.00+ 000 (0.00)  4.81+027(0.00) 94.67+024(0.00)  11.02+058(0.00) 0.00 27.37
FT X 99.99+000(0.01) 3.76+031(1.05) 94.70+0.14(0.03)  9.51+028(1.51) 0.65 6.32
v 99.99+000(0.01) 4.12+031(0.69) 94.57+024(0.10)  10.81+031(0.21) 0.25 8.02
. X 99.95:+002(0.05)  4.82+024(0.01) 94.32+023(0.35)  9.09+030(1.93) 0.58 6.02
Egﬁgﬁg NegGradt ' 09084001 (0.02)  5214029(040)  94.55:016(0.12) 1030404(0.72) 032 7.52
0, -sparse X 99.97+001(0.03) 5.40+040(0.59) 93.81+021(0.86) 10.97+035(0.05) 0.38 6.92
1-spars v 100.004000(0.00) 4.35:019(0.46)  94.48+01(0.19) 10.80+00(0.22) 022  7.62
NoT X 99.99+000(0.01) 4.19+025(0.62) 94.65+024(0.02) 10.45+051(0.57) 0.30 7.52
v 100.00+000(0.00)  4.20+024(0.61) 94.65+017(0.02)  11.08+ 035 (0.06) 0.17 7.52
Retrain ~ 99.08:0w(0.00)  24.26+053(0.00)  75.56+026(0.00) 48.4420:(0.00) 0.00 2737
FT X 99.97+000(0.01) 16.39+ 0.60 (7.87) 76.75+025(1.19)  44.06+ 058 (4.38) 3.36 7.22
vV 99.974000(0.01)  22.01404(2.25)  72.88+01(2.68) 47.82+096(0.62) 139  9.63
X 99.96+001(0.02) 30.09+ 041 (5.83) 75.46+036(0.10)  47.72+032(0.72) 1.67 7.62
%;%%;}Pg NegGrad+ ' 0908, 000(0.00)  22.48+0s6(1.78)  T4.524056(1.04) 4832:0s4(0.12) 074  12.53
£, -sparse X 99.95+001(0.03) 23.94+050(0.32) 74.95+032(0.61) 42.81+056(5.63) 1.65 7.22
175p v 99.96+001(0.02) 24.57+033(0.31) 74.46+020(1.10)  44.62+ 061 (3.82) 1.31 9.63
NoT X 99.97+00(0.01) 17.99+ 040 (6.27) 76.27+024(0.71) 44.28+057(4.16) 2.79 7.22
° vV 99.97+000(0.01) 21.53+053(2.73) 73.61+039(1.95)  46.84+ 030 (1.60) 1.57 9.63
Retrain - 99.98+ 0.00 (0.00) 36.16+ 035 (0.00) 63.82+020(0.00)  63.73+042(0.00) 0.00 218.98
FT X 99.98+ 000 (0.00) 32.76+042(3.40) 64.65+020(0.83)  56.93+059(6.80) 2.76 60.16
v 99.95+001(0.03) 35.10+030(1.06) 63.27+012(0.55) 57.57+017(6.16) 1.95 80.21
. . X 99.98+ 000 (0.00) 38.01+032(1.85) 64.68+026(0.86) 57.84+047(5.89) 2.15 80.21
T‘Eﬁgiﬁ‘“‘g‘“‘t NegGrad+ 0 9906, 001(0.02)  36.681013(0.52)  63.73+017(0.09) 57.87=01(5.86) 162 10027
0, -sparse X 99.96+000(0.02) 36.96+037(0.80) 62.62+039(1.20) 56.74+046(6.99) 2.25 60.16
1-5P! vV 99.97+000(0.01) 36.33+041(0.17) 63.27+032(0.55)  56.96+033(6.77) 1.88 80.21
NoT X 99.98+000(0.00) 35.64+071(0.52) 63.66+070(0.16) 56.08+ 093 (7.65) 2.08 80.21
V' 99.941001(0.04) 36.19+047(0.03) 63.06+033(0.76)  56.70+0.41(7.03) 1.97 80.21
Retrain - 99.75+ 0.07(0.00) 33.234 035 (0.00) 67.07+057(0.00)  40.69+ 040 (0.00) 0.00 15.58
FT X 99.26+005(0.49) 26.02+055(7.21) 68.42+032(1.35) 3551+062(5.18) 3.56 342
v 99.82+001(0.07) 32.37+ 046 (0.86) 63.80+035(3.27)  39.64+025(1.05) 1.31 5.71
] X 94924041 (4.83) 35.44+062(2.2T) 65.54+039(1.53)  40.67+060(0.02) 2.15 3.42
C{fégjllgo NegGrad+ 0 9843, 0u(132) 34654001 (142) 6598051 (1.09) 39.12+125(1.57) 135 571
0+ -sparse X 99.27+004(0.48) 26.96+ 066 (6.27) 68.01+£037(0.94) 35.3T+050(5.38) 3.27 3.42
15D v 98.94+005(0.81) 29.70+055(3.53) 66.12+£028(0.95) 37.28+060(3.41) 2.17 5.71
NoT X 96.17+428(3.58) 30.11+302(3.12) 66.75+£173(0.32)  36.47+1.15(4.22) 2.81 428
v 98.72+043(1.03) 35.25+ 196 (2.02) 61.90+139(5.17)  40.51+094(0.18) 2.10 4.57
Retrain - 99.97 £ 0.00 (0.00) 38.73+ 069 (0.00) 61.89+062(0.00) 61.75+033(0.00) 0.00 86.83
FT X 99.78+004(0.19) 10.83+041(27.90) 61.12+045(0.77) 31.50+042(30.25) 1478 5.79
v 99.91+003(0.06) 36.81+108(1.92) 56.49+055(5.40)  53.92+042(7.83) 3.80 19.29
X 99.88+003(0.09) 4526+ 041 (6.53) 59.33+£064(2.56)  55.00+040(6.75) 3.98 11.58
CIFAR-I00 NegGradt ' 99961001 (0.01)  38.71504(0.02)  59.07:05 (282) 5238205(937) 305 2412
0+ -sparse X 99.32+004(0.65) 31.71+052(7.02) 63.33+032(1.44) 46.49+052(15.26) 6.09 14.47
1-5P! v 99.63+003(0.34) 39.07+053(0.34) 58.18+039(3.71)  50.26+024(11.49) 3.97 19.29
NoT X 99.89+002(0.08) 20.29+193(18.44)  61.82+029(0.07) 43.55+136(18.20) 9.20 8.68
V' 99.93+001(0.04) 37.90+072(0.83) 58.85+035(3.04)  56.50+077(5.25) 2.29 19.29
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Table 10: Performance comparison when CoUn’s contrastive learning (CL) module is integrated into
baselines under 50% random data forgetting. The gap (A) and the (best) average gap between each method
and the Retrain model are reported.

Dataset Method CL Accuracy (%) Efficacy (%) Avg.  Comp. Cost
& Model Retain (A |)  Unlearn (A }) Test (A ]) MIA (A )  Gapl (PFLOPs)|
Retrain ~ 100.0020w(0.00) 7.2920%(0.00)  92.28202(0.00) 17.3320e:(0.00) 000  15.24
- X 9938:02(0.62)  63220m(097)  91.0Tz0a(037) T12.64:051(3.69) 166 251
v 99.97:00(0.03)  6194030(1.10)  9236+026(0.08) 1694+01(0.39) 040 335
X 100.0020w(0.00) 406202(0.75)  93.81202(0.86) 9.05202(1.97) 090 5.8
CIFAR-10 NegGrad+ 1001004 000(0.00) 4.65+025(0.16)  93.45:024(1.22) 11.45:035(0.43) 045 558
e K 977on(023)  902:06(173)  906650:(1.62) 160550n(128) 122 419
15 V' 100.00:000(0.00) 6.914053(038)  9230:019(0.02) 17.142052(0.19)  0.15 447
NoT X 9998100 (0.02)  5.95z05(1.34)  92.84-01(056) 1390:0w(343) 134 335
V99991001 (0.01)  6.84+121(045)  91.64+073(0.64) 17.004146(0.33) 036  5.58
Retrain ~ 0008500 (0.00) 3141:00(0.00) 684105 (0.00) 5835:05:(000) 000  15.24
- X 9998500 (0.00)  17.365015(14.05) T416109(5.75) 50.60:02(7.75) 689  4.19
V99981001 (0.00)  3143:155(0.02)  65.600m (2.81) 55.99:115(2.36) 130 558
X 9998500 (0.00)  26.325021(5.09)  T1.98100(357) 52.32:0(6.03) 367 536
QRARID0 NegGradt ' 99.984001(0.00)  31.55:09(0.14)  68.34:030(0.07) 56342052.01) 055 670
ome K 990%0m(004)  3226:0m(085) 67665055075 SISAron(680) 21T 419
15! V 99.98:00(0.00) 29932027 (1.48)  6835:0%(0.06) 5484-0s5(3.51) 126 558
NoT X 0864100 (1.3%)  2643:03(@98)  67.0710w(044) A3820w(1453) 532 201
/99981001 (0.00)  2601-00(540)  69.01+04(0.60) 5430-05(4.05) 251 558
Retrain ~ 90995 000(0.00)  43.01:020(0.00) 57.28:05(0.00) 71.22:017(0.00) 000  121.93
- X 99.995000(0.00)  36.785015(623)  60.59-0m(331) 66.28=0m(@94) 362 3350
V9998100 (0.01)  4321415(0.20)  55.75+131(1.53) 66.59-0m (4.63) 159 44.66
. , X 99995000 (0.00)  47.625055(3.61)  588550m(157) 66430m(@.79) 274 3350
T‘Eﬂ'ﬁaﬁ?\s{et NegGrad+ /' 9908, 401 (0.01)  45.781019(277)  56.682036(0.60) 66.77202s(445) 196 5583
esNe e X 999950m(0.00)  3883:0n(A18)  6025:0:(297) 6582101(540) 304 33.50
USPATSC 90 044 001(0.05)  42.11402(090)  57.02205(0.26) 65.92+02(5.30)  1.63  44.66
NoT X 99.995000(0.00)  40.94505:(2.07) 582720 (0.99) 66.2320:(4.99) 201 3350
/ 99.99:000(0.00)  42.11202(0.90) 5715205 (0.13) 6591-019(5.31) 158  44.66
Retrain — 00.65:015(0.00)  42.85:05:(0.00)  57.70-05(0.00) 50.19205:(0.00) 000 _ 8.67
T X 07.715055(1.9%)  29.82:055(13.03) 63.72201(6.02) 39.98=0e(1021) 780 143
V 99.88100(023)  4237-050(048)  55.19:06s(2.51) 50.00-06s(0.19) 085  3.18
, X 0554105 @ 1)  43425055(057)  58.5220m(082) 435120:(6.68) 304  3.18
CFAR-I00 NegGradt /' 96702000(2.95)  42.92:0m(0.07)  59.145000(144) 4661200(3.58) 201  3.18
e K WI50is(1A0) 34245 1w (861) 62765 16(5.06) 4212505807 579 191
1-spars v 99.34+023(0.31) 42.78+033(0.07) 55.06+039(2.64)  46.41+050(3.78) 1.70 3.18
NoT X 04231751 5.42)  34.64:0(821)  61.58-10(3.85) 3984=1(1035) 696 238
V 9955:00(0.10)  42782271(0.07)  55.17+17(2.53) 48.88x1::(1.31) 100  3.18
Retrain 0008500 (0.00)  48.07405:(0.00) 524005 (0.00) 69.54:05(0.00) 000 _ 4835
T X 08.7Tx0w(1.27)  109140s(37.16) 567907 (3.39) 28.18-0ss(41.36) 21.05 T.61
Vo 9971400(027)  45.95:37(2.12)  49.45:215(2.95) 5924+ 145(1030) 391 10.74
. X 99.30+013(0.68) 45.35+048(2.72) 50.82+047(1.58) 55.07+033(14.47) 4.86 6.45
CIFAR-I00 NegGradt ' 99142013(0.84)  45.78205(229)  50.93:03(147) 57.962050(11.57) 404 537
ome K TLIBr05(2880) 4730500(077)  5332:052(092) M 22ram(3532) 1395 806
ASPASE 0583, 465 (4.15)  49.36+019(129)  50.87+0s:(1.53) 53.66+075(15.88) 571 10.74
NoT X 07861 (212)  31.81220(1626) 55512 15(3.11) 48.85:25(20.69) 1055 3.2
o V9993100 (0.05)  5021c06(2.14)  49.50-00(2.90) 65.8004(3.74) 221 10.74

G Broader Impacts

Research in machine unlearning holds significant societal value by empowering users to request the
removal of their data from models and enhancing model safety and fairness through the elimination
of harmful or outdated information. This work is exploratory in nature—we propose an approximate
unlearning framework that uses contrastive learning to push forget representations into clusters of
other retain samples that are semantically similar to the forget samples. Due to cluster collision, these
retain samples may belong to clusters different from the original clusters of the forget samples. Given
the nature of our approach, we do not foresee any direct negative societal impacts stemming from
this work.

H Limitations and Future Work

While CoUn marks a step forward in leveraging CL for unlearning, its evaluation is currently limited to
vision-based classification tasks on relatively small datasets (CIFAR-10/100 [36] and TinyImageNet
[37]). Future work could explore its scalability to larger datasets such as ImageNet [44] and its
applicability to other domains, including natural language processing. Additionally, although CoUn
uses InfoNCE as the contrastive loss, investigating alternative self-supervised objectives, such as
cross-correlation-based losses [31,|32]], on unlearning performance presents an interesting direction
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for future research. Moreover, like prior methods [8} 19, [10]], CoUn relies heavily on access to retain
data for effective unlearning. Investigating performance of approximate unlearning methods under
partial access to retain data would be an important direction for future research. Finally, while CL
introduces additional computational overhead due to augmented data and extra forward passes, CoUn
consistently outperforms baselines even when computational budgets are matched. Future work could
explore strategies to reduce this cost without sacrificing performance.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we first introduce the relevant concepts of
machine unlearning and summarize existing methods, analyzing their shortcomings. Notably,
existing methods manipulate labels or perturb model weights for unlearning. Most methods
also require access to forget data. We focus on addressing the machine unlearning problem
by studying how a retrained model behaves with respect to forget data. Our proposed
method CoUn, which employs contrastive learning and supervised learning, aims to close the
performance gap with retraining from scratch. Additionally, we analyze CoUn’s effectiveness
across various scenarios including theoretical and experimental evaluation.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Appendix [H]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Please see Section[3.4]and Appendix
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Appendix [E.2] for information on reproducing the main experi-
mental results of the paper including the baselines.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We uploaded CoUn code in the supplementary material and will be made
publicly available. All data used in this study are publicly available. The baseline methods
compared in the paper are open source and results can be reproduced directly after following
the implementation details provided in Appendix [E.2}

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please see Section[4.T]and Appendix [E.2]for more experimental setting/details,
along with the submitted code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations of the results obtained after 10 independent runs
(see Tables[2} B} [7 [8] O] and [I0).

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: Please see Appendix[E] Also, the compute cost for all experiments are provided
in Tables 2} B} [71 Bl O] and [0}

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and confirm that the paper complies.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see Appendix
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11.

12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cited the original paper that produced datasets see Section {.1]
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets in our paper
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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