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ABSTRACT

Attribute correlations in the training data will compromise the ability of a deep
generative model (DGM) to synthesize images with under-represented attribute
combinations (i.e., minority samples). Existing approaches mitigate this by data
re-sampling to remove attribute correlations seen by the DGM, using a classifier
to provide pseudo-supervision on generated counterfactual samples, or incorpo-
rating inductive bias to explicitly decompose the generation into independent sub-
mechanisms. We present ProReGen, a progressive residual generation approach
inspired by the classical Robinson’s transformation, to partial out from an image
attribute x2 its component m(x1) that is predictable by other image attributes x1,
and the residual γ = x2 − m(x1) that is not. This simplifies the problem of
learning a DGM g(x1,x2) conditioned on correlated inputs, to learning g̃(x1, γ)
conditioned on orthogonal inputs. It further allows us to progressively learn g̃ by
first shifting the burden to abundant majority samples to learn g̃(x1, γ = 0), and
then expanding it with additional layers gres to resolve its difference to g̃(x1, γ) us-
ing residual attribute γ on limited minority samples. On three benchmark datasets
with varying strengths of attribute correlations, we demonstrate that ProReGen—
with input orthogonalizaton and progressive residual learning—improved the cor-
rectness of minority generations compared to existing strategies.

1 INTRODUCTION

Attribute correlations are not uncommon in observed image datasets. Some may be a natural man-
ifestation of underlying causal relations, e.g., the object in an image determining the background
(Sagawa et al., 2019). Some may reflect bias in data curation, e.g., collecting patient data from
those who already received treatment (Wang et al., 2017). Regardless of the mechanisms, attribute
correlations can induce unintended consequences in deep neural networks (DNN) training.

In the context of discriminative (e.g., classification) DNNs, this phenomenon is widely discussed,
often under the concept of spurious correlations or short-cut learning (Ye et al., 2024). In the con-
text of deep generative models (DGM), such discussion is comparatively less structured and scatters
across a variety of topics. On one hand, DGMs are used in many domains to synthesize under-
represented image examples—those with image attributes that do not comply with the observed
correlation, e.g., for explaining whether a DNN classifier has captured correlated features for deci-
sion making (Rodrı́guez et al., 2021), or for augmenting training data to mitigate correlations (Kim
et al., 2021). On the other hand, several evaluation studies (Träuble et al., 2021; Bose et al., 2022)
have shown that naively-trained DGMs would capture latent attribute correlations from training data
(Träuble et al., 2021; Bose et al., 2022). How does this impact the synthesis of under-represented
samples, and to what extent could it be mitigated? Answers to these questions remain open.

Consider two sets of image attributes x1 and x2 (both can be multi-dimensional) that exhibit a
correlation in observed data. Consider the goal of learning a DGM g conditioned on these attributes
to generate an image y as y = g(x1,x2). For the function g to generate with different combinations
of x1 and x2 values, it is important for g to correctly model the mechanisms, g1 and g2, through
which x1 and x2 influences y separately. Unfortunately, due to the observed x1-x2 correlation, g1
and g2 can only be separately observed in the small number of samples where such correlation does
not hold. We stress this as a fundamental challenge for learning a DGM under attribute correlations.
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Figure 1: A-C: Overview of the Robinson’s partialling-out approach in motivating learning
g(x1,x2) as g̃(x1, γ). D: Conceptual illustration of ProReGen to realize function g̃(x1, γ) by
progressively learning gmjr(x1) := g̃(x1, γ = 0) from majority samples, followed by learning
gres(hmjr(x1),x1, γ) on minority samples to resolve the difference to g̃(x1, γ) with γ.

Existing strategies to address this challenge are limited. Re-sampling is a simple approach to balance
training samples (Monteiro et al., 2022), essentially up-weighting under-represented samples where
g1 and g2 can be separately observed. Alternatively, inductive bias has been introduced to explicitly
decompose g into independent mechanisms g1 and g2, which requires prior knowledge about how x1

and x2 may influence y differently (e.g., object shape vs. texture vs. background) (Sauer & Geiger,
2020). Finally, to go beyond the limits of factual under-represented samples, pseudo-supervision
on generated counterfactual images has been presented, typically realized by using a classifier to
recognize feature attributes in the generated images (Kocaoglu et al., 2017; Ribeiro et al., 2023; He
et al., 2019). However, since the classifier is trained under the same attribute correlations, its ability
to correctly recognize these attributes is likely compromised – how does this impact its validity to
supervise the generation of under-represented counterfactual images has not been well understood.

In this paper, we take a fundamentally different perspective to address the challenge of modeling
g(x1,x2) under attribute correlations, inspired by the classical Robinson’s partialling-out trans-
formation (Robinson, 1988). While details of this concept will be introduced in Section 3, Fig. 1
illustrates its core concept in the context of modeling g(x1,x2). Consider the causal graph in Fig. 1A
with a causal direction assumed between x1 and x2. Instead of attempting to model the independent
causal mechanisms g1 and g2 in the presence of such correlations, we decompose x2 into E[x2|x1]
that can be predicted by x1, along with a residual γ that cannot, i.e., x2 = E[x2|x1] + γ (Fig. 1B).
With this, instead of modeling y = g(x1,x2) as a composition of g1 and g2 as in Fig. 1A, we model
it as y = g̃(x1, γ) as in Fig. 1C: the effect of x1 on y now absorbs the effect from E[x2|x1], the
component of x2 that can be predicted from x1; – we referred to this as correlated effect; as such,
the effect of γ on y—the part of x2’s influence on y that cannot be explained by x1—is partialled
out: we refer to this as residual effect. In this new causal graph (Fig. 1C), instead of attempting to
recover two independent mechanisms from correlated inputs x1 and x2, we transform the problem
into learning independent correlated and residual effects from two independent inputs x1 and γ.

To design a DGM based on Fig. 1C, we note that g̃(x1, γ) at γ = 0, i.e., E[y|x1, γ = 0], can be
estimated from abundant samples whose attribute values meet the observed correlations (henceforth
referred to as majority samples). g̃(x1, γ) at γ ̸= 0, on the other hand, can only be estimated from
a limited number of samples where such correlation does not hold (henceforth referred to as minor-
ity samples). To shift the primary burden of learning g̃ to majority samples, therefore, we further
decompose the learning of g̃(x1, γ) into the learning of g̃(x1, 0) at γ = 0 using majority samples,
and use minority samples to make up the difference between g̃(x1, 0) to g̃(x1, γ). This results in
our progressive residual effect generator (ProReGen) that is progressively learned in two stages as
outlined in Fig. 1D. ProReGen as described is expected to have two major benefits. First, the or-
thogonalization of the inputs x1 and γ helps separate the learning of their independent effects on y.
Second, with the progressive expansion from gmjr to gres, the challenge of learning to generate under
attribute correlations is reduced to learning the residual between g̃(x1, γ = 0) and g̃(x1, γ). We
instantiate the concept of ProReGan in conditional-VAEs, -GANs, and -diffusion models (DMs).
On three benchmark datasets with varying strengths of attribute correlations and one dataset with
natural attribute correlations, we experimentally demonstrate the improved performance of ProRe-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Gen in generating correct minority samples compared to naive DGMs or those strengthened with
re-weighting of factual samples or pseudo-supervision of generated samples.

2 RELATED WORKS

Several domains find uses for synthesizing minority images. For instance, to explain if a classifier
has captured attribute correlations from its training data, one can test if it is able to guide a pre-trained
DGM to generate minority images (Rodrı́guez et al., 2021; Jeanneret et al., 2022). In addition to
explaining, synthesized minority images can also be used for augmenting and removing attribute
correlations in training data (Goel et al., 2020; Kim et al., 2021). While naively-trained DGMs have
been used for such syntheses (Rodrı́guez et al., 2021; Jeanneret et al., 2022), there is an increasing
attention on the impact of attribute correlations on DGM training and potential mitigation solutions.

Re-weighting of factual samples: The concept of simulated intervention was presented in Monteiro
et al. (2022) to re-sample data according to the marginal distribution of image attributes, to effec-
tively remove attribute correlations seen by the DGM. This is essentially similar to re-weighting,
where minority samples are up-weighted in their contribution to the training signals. This approach
is ultimately affected by the quantity and diversity of factual minority samples.

Pseudo-labeling of counterfactual generations: Instead of relying on factual minority samples, an
alternative is to provide some pseudo-supervision to encourage the DGM to generate counterfactual
images with intended feature attributes. This is often achieved by leveraging another DNN classifier,
often trained from the same data as the DGM, to provide supervisory signals by recognizing the
attributes of generated images (Kocaoglu et al., 2017; Ribeiro et al., 2023; He et al., 2019). However,
because the DNN classifier is also subject to attribute correlations in the training data, their reliability
in correctly recognizing these attributes is questionable. How does this affect the supervisory signal
it provides to the DGM’s counterfactual generations has not been systematically investigated.

Inductive bias to decompose generation mechanisms: An entirely different approach is to incor-
porate inductive bias about the mechanisms under which different attributes contribute to generated
images (Sauer & Geiger, 2020; Park et al., 2020) In (Sauer & Geiger, 2020), for instance, the image
generation process is decomposed into independent shape, texture, and background mechanisms.
While this approach tends to be highly successful when assumptions of the underlying generation
mechanisms are met, it does require prior knowledge for the design of such inductive bias.

Disentanglement under attribute correlations: More broadly, several evaluation studies have
shown that naively-trained DGMs would capture attribute correlations in entangled representations
(Träuble et al., 2021) and even inherit the associated causal directions (Bose et al., 2022). To learn
disentangled represenations from correlated attributes, existing works in VAEs e.g., encourage pair-
wise factorized support by minimizing a hausdorf distance (Roth et al., 2023), minimize conditional
mutual information between subspaces with respect to categorical variables (Funke et al., 2021), or
extend property-controllable VAEs to disentangle groups of properties while allowing correlations
within the group. Similarly, in GANs, works exist to navigate GAN’s latent space to disentangle
otherwise entangled attributes, e.g., by latent optimization (Li et al., 2020) or leveraging gradien
information (Chen et al., 2022). In general, these works focus on disentangled representations or
image manipulation, rather than generation of minority samples as ProReGen.

Generative modeling under attribute imbalance: Finally, ProReGen is related to generative mod-
eling under attribute imbalance (Georgopoulos et al., 2020; Zhao et al., 2018; Haider et al., 2025)
although the challenges they tackle differ: while imbalance presents a general generalization chal-
lenge for the model to represent rare attributes, correlated attributes require methods to explicitly
handle dependence among co-occurring attributes as a specific form of distribution shift.

ProReGen represents a completely different approach to these existing works. Inspired by the clas-
sical Robinson’s partialling out approach, ProReGen tackles the challenge of attribute correlations
at its core by first recasting the DGM from being conditioned on correlated attributes to orthogo-
nal attributes. By a progressive expansion design, it further leverages majority training samples to
reduce the problem of learning minority generation to learning its residual to majority generation.
The latter concept is related image translation models that transform a factual majority sample to a
minority counterfactual (Kim et al., 2021; Goel et al., 2020; An et al., 2022). Because these models
are intended only for translating factual samples, they are out of the scope of our consideration.
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3 PRELIMINARY: ROBINSON’S PARTIALLING-OUT TRANSFORMATION

Consider a partial linear equation E[y|x1, x2] = θ(x1) + βx2, where x2 = m(x1) + u, Robinson’s
transformation in (Robinson, 1988) decomposes the original equation into:

E[y|x1, x2] = θ(x1) + β ∗ (m(x1) + u) = E[y|x1] + β ∗ (x2 −m(x1)) (1)
where E[y|x1] = θ(x1)+β∗m(x1). Effectively, instead of describing the separate effect of x1 and
x2 on y as dictated the original equation, their effect is decomposed into two orthogonal components:
1) E[y|x1] that describes the combined effect of x1 and m(x1) on y—the latter absorbing the effect
of x2 on y that can be predicted by x1; and 2) the residual effect of β ∗ (x2 − m(x1)) from x2 −
m(x1)—the effect on y from the residual of x2 that cannot be predicted from x1.

In the original paper (Robinson, 1988), the goal of this decomposition is to estimate parameter
β, which arrives at the classical residual-on-residual least-square fitting of β via: E[y|x1, x2] −
E[y|x1] = β ∗ (x2 − E[x2|x1]). The resulting estimator for β can further be shown to meet the
Neyman’s orthogonality condition such that it is insensitive to perturbations in the estimator for
E[y|x1] or E[x2|x1] (Robinson, 1988; Chernozhukov et al., 2018). This decomposition has also
served as the basis for the R-learner (R for Robinson) that extended the approach to estimating the
function β(x1) instead of the low-dimensional parameter β (Nie & Wager, 2021).

In contrast, we use this transformation as the foundation inspiring the design of an image-generating
DGM, where y is high-dimensional and its relation with x1 and x2 is highly nonlinear. Note that,
in the original formulation, the causal direction x1 → x2 depends on the target parameter β; in our
setting where y as a function of g remains the primary interest, the assumed causal direction will
influence the decomposition, but not the general modeling strategy. The difficulty of the residual
generation task however may change with this direction, which we will empirically examine in
Section 5.5. Below we continue our discussion with x1 → x2 without loss of generality.

4 METHODOLOGY

4.1 PROREGEN: PROGRESSIVE RESIDUAL GENERATION

Consider a conditional-DGM y = g(z,x1,x2) underlying observed image data, where a correlation
exists between image attributes x1 and x2, and z represents latent variables not included in x1

and x2. Built on Robinson’s partialling-out approach, as illustrated in Fig. 1A-C, we first cast the
problem of learning y = g(z,x1,x2) with correlated inputs, to learning y = g̃(z,x1, γ) with
independent inputs where γ = x2 −m(x1) represents the residual in x2 that cannot be predicted by
x1. Because g̃(z,x1, γ = 0) is described by majority samples vs. g̃(z,x1, γ) at γ ̸= 0 by a small
number of minority samples, we further design a progressive learning strategy to shift the burden
of learning g̃ mostly to the learning of g̃(z,x1, γ = 0) using majority samples, and using minority
samples to only resolve its difference to g̃(z,x1, γ) with γ. This gives the foundation of ProReGen:

y = g̃(z,x1, γ) ≈ gres(hmjr(x1),x1, γ), where γ = x2 −m(x1) (2)
where hmjr is the feature map of gmjr := g̃(z,x1, γ = 0) before the final activation layer. Equation
(2) includes three main components progressively learned in two stages, as illustrated in Fig. 1D:
• In stage-I, from a large number of majority samples, we learn an attribute predict function x2 =
m(x1) to approximate E[x2|x1], and a generative model gmjr(x1) to approximate g̃(x1, γ = 0),
the latter effectively describing the generation when x2 = m(x1), i.e., for a majority sample.

• In stage-II, using available minority samples, we expand the generator with additional layers, gres,
to resolve the residual between g̃(x1, γ) and gmjr(x1) with the residual γ partialled out from x2.
Effectively, we approximate g̃(x1, γ) by gres(hmjr(x1),x1, γ), with hmjr defined above.

This takes form of a progressive-DGM, where a backbone gmjr is first learned on majority samples
and then expanded on minority samples. This concept is agnostic to the type of DGMs: below, we
describe its instantiations on conditional-VAEs (c-VAEs), -GANs (c-GANs), and -DMs (c-DMs).

4.2 PROREGEN-VAE

Stage I: To learn gmjr(z,x1) as a c-VAE, we define a decoder network Gθmjr(z,x1) that parameter-
izes the likelihood pθmjr(y|z,x1), and its corresponding encoder network Eϕmjr(y,x1) that parame-
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terizes the approximate posterior qϕmjr(z|y,x1), both conditioned on attribute labels x1. They are
trained on majority samples by maximizing the standard ELBO loss. A function x2 = m̂(x1) is
estimated on attribute values from majority samples.

Stage II: To leverage the learned gmjr(z,x1), we now expand the decoder Gθmjr with several addi-
tional layers before the final activation layer σ, which we denote as Gθmjr\σ . We denote this expanded
portion of the decoder as Gθres(Gθmjr\σ,x1, γ), conditioned on γ = x2 − m̂(x1). As illustrated in
Fig. 6A, we expand the encoder network with additional layers Eϕres in a mirror of the expanded
decoder network as Eϕres(ymnr, γ), to produce output that will serve as the input to the first-stage
encoder. The expanded networks are trained on minority samples by maximizing the ELBO loss
below, where we keep the stage-I weights θmjr and ϕmjr frozen:

max
θres,ϕres

{Ez∼Eϕmjr (Eϕres (ymnr,γ),x1)

[
∥ymnr − ŷmnr∥22

]
+ β DKL

(
Eϕmjr(Eϕres(ymnr, γ),x1) ∥ p(z)

)︸ ︷︷ ︸
KL Divergence

} (3)

where ŷmnr = Gθres(Gθmjr\σ(z,x1),x1, γ), z ∼ Eϕmjr(Eϕres(ymnr, γ),x1) (4)

While Equation (4) represents a general formulation for residual generation, on simpler datasets,
an additive residula can be considered such that ŷmnr = Gθmjr(z,x1) + Gθres(Gθmjr\h(z,x1)), γ).
With Equation (4), Gθres leverages the feature map of the stage-I generator Gθmjr and the residual γ
to resolve the difference between majority and minority generations. Intuitively, because Gθmjr and
Eϕmjr are trained in stage-I to generate and encode from majority samples, the expanded Gθres will be
encouraged to learn to modify a majority-image feature map to include features corresponding to the
residual partialled-out from x2, while the expanded Eθres will be encouraged to alter such features to
generate an output feature map acceptable to Eϕmjr (i.e., compliant with feature map seen by Eϕmjr in
stage-I). With this, we shift the burden of learning the c-VAE mainly to majority samples, and allow
the use of limited minority samples for learning the necessary reisdual changes only.

4.3 PROREGEN-GAN

Stage-I: To learn gmjr(z,x1) as a c-GAN, we define a generator Gθmjr(z,x1) and discriminator
Dϕmjr(y,x1), both conditioned on attribute x1. They are trained on majority samples using standard
adversarial loss. A function x2 = m̂(x1) is estimated on attribute values from majority samples.

Stage II: Similar to the setting of c-VAE, we now expand the generator Gθmjr with several additional
layers, denoted as Gθres , starting with the feature map produced by Gθmjr before the final activation
layer. As illustrated in Fig. 6B, we expand the discriminator with additional layers Dϕres in a mirrored
fashion. Both Gθres and Dθres are conditioned on γ = x2−m̂(x1). The expanded networks are trained
on minority samples using the adversarial loss while freezing Stage-I network weights θmjr and ϕmjr:

min
θres

max
ϕres

{Eymjr,x1,γ∼pdata

[
logDϕmjr(Dϕres(ymnr, γ),x1)

]
+ Ez∼p(z),x1,γ∼pdata

[
log

(
1−Dϕmjr

(
Dϕres(ŷmnr, γ),x1)

)]
} (5)

where ŷmnr = Gθres(Gθmjr\σ(z,x1),x1, γ), z ∼ N (0, I) (6)
Similarly, with Equation (6), the expanded Gθres learns to use the residual attribute γ to change the
distribution of generated majority samples to one that aligns with the distribution of real minor-
ity images ymnr. At the same time, the expanded discriminator Dϕres is encouraged to change the
residual features on the real/generated minority sample in order to leverage the stage-I discriminator
Dϕmjr that has learned to work with the distribution of majority samples.

One difference between Equation (4) for ProReGen-VAE and Equation (6) for ProReGen-GAN is
the distribution over which the sample z is taken. This is inherently determined by the training loss
of the two models, where the likelihood loss of VAE is calculated over the posterior distribution of
z conditioned on an observed image (emphasizing instance-level reconstruction) vs. the adversarial
loss in GAN is calculated over the prior density of z (emphasizing distribution-level distance).

4.4 PROREGEN-DM

Stage I: We follow the standard denoising diffusion probabilistic model (DDPM) (Ho et al., 2020)
to learn c-DM that capture attribute correlation. We noise the majority samples ymjr0 ∈ RC×H×W
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using the closed form noising expression in Equation (7) derived from the forward noising process
q(ymjrt | ymjrt−1

) := N (ymjrt ;
√
1− βt ymjrt−1

, βtI), where {βt}Tt=1 follows a linear noise sched-
ule. To obtain gmjr(z,x1), we learn the reverse denoising process parameterized by ϵθmjr(ymjrt , t,x1),
conditioned on attribute label x1, using the loss function in Equation (8).

yt =
√
ᾱt y0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I), ᾱt =

t∏
s=1

αs, αt = 1− βt (7)

LMSE(θ) = Ey0,t,c,ϵ

[
∥ϵ− ϵθ(yt, t, c)∥2

]
where c = x1 (Stage-I) or γ (Stage-II) (8)

Stage II: Given the unique design of DM, we cannot simply expand the learned denoising process
in stage-I with additional denoising steps. Instead, as illustrated in Fig. 6C, we introduce a trainable
stage-II network ϵθmnr(ymnrt , t, γ) conditioned on the residual attribute γ, trained with only minority
samples using Equations (7-8), but injected with features learned by the stage-I ϵθmjr(ymjrt , t,x1)
– this is inspired by the design of control-net (Zhang et al., 2023), but distinct in that we use the
fronzen stage-I network to provide features for the stage-II network. We consider ymjrt input of ϵθmjr

as a corresponding majority version of ymnrt with all aspects except the residual feature identical.
We inject stage-I features in the input and middle blocks of the U-Net (Ronneberger et al., 2015),
excluding injection in decoder block as we empirically observed better quality without it. We use
the same variance schedule, diffusion steps, and architecture design in stage-II network so that the
features coming from stage-I are aligned to the particular diffusion step of stage-II being processed.

5 EXPERIMENTS AND RESULTS

Data: For quantitative evaluations that require an oracle classifier trained on balanced attributes,
we consider Colored-MNIST (Lee et al., 2021), MNIST-Correlation (Mu & Gilmer, 2019), and
Corrupted-CIFAR10 (Hendrycks & Dietterich, 2019). We assume known labels of the attributes
that are correlated. For the two MNIST datasets, we curated high levels of correlation strengths
at 95%, 98%, 99%, and 99.5%, where the % represents the percentage of majority training sam-
ples in the training data. For Corrupted-CIFAR10 derived from natural images, we considered a
wider range of correlation strengths of 70%, 80%, 90%, and 99%. For each dataset, we included
a balanced version without any attribute correlations to both establish oracle attribute classifiers
and establish a reference performance for all models considered. To test on datasets with natural
attribute correlations, we considered CelebA for qualitative evaluation (due to the lack of an oracle
classifier). Details of the dataset are described in their respective sections below. Test accuracies of
their oracle classifiers are in Appendix B and their training data distribution in Appendix C.

Baselines: We considered c-VAE, c-GAN, and c-DM baselines with the following strategies for
mitigating attribute correlations: 1) naive, 2) re-weighting, achieved with upsampling minority sam-
ples using the weighted random sampler and 3) pseudo-supervision on counterfactual generations,
represented by causal-cHVAE (Ribeiro et al., 2023) where a classifier is used to finetune the model
in an optional second-stage of counterfactual generation, and causal-GAN (Kocaoglu et al., 2017)
where the attribute classifier is incorporated in the end-to-end adversarial training. We could not
identify causal formulations of DMs that accommodate multiple correlated attributes. We present
the architectural details and parameter counts of all baselines and ProReGen in Appendix D.

Evaluation: We evaluated the performance of all DGMs in generating both majority and minority
samples. To generate with the trained DGMs, we sampled from z ∼ N (0, I) and generated a total
of 25,000 samples, with equal number of samples for each unique attribute combination, per dataset.
We evaluated generated samples using: 1) correctness, measuring the ratio of generations in which
the attributes evaluated by the oracle classifier match the intended attributes; 2) Fréchet Inception
Distance (FID) (Heusel et al., 2017), measuring the quality and diversity of generations by compar-
ing the representations (retrieved from InceptionV3 network) of the generated samples against a test
set of diverse real samples; and 3) coverage & density (Naeem et al., 2020), measuring the diversity
and fidelity, respectively, of generations compared with a test set of diverse real samples.

5.1 EXPERIMENTS & RESULTS ON COLORED-MNIST

Settings of Attribute Correlations: Colored-CMNIST (Lee et al., 2021) is a commonly-used
benchmark for synthesizing attribute correlations in the training data. It is an MNIST-variant with a
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Figure 2: A: Correctness and Coverage of majority and minority generations from ProReGen vs.
baselines for Colored-MNIST. B: Visual examples of minority generations at 99.5% correlation.

distinct majority color for each of the 10 digits. This creates a correlation between digit and color
attributes, both discrete but non-binary. All baselines as described were considered in this dataset,
with the exception of causal-GAN which was designed to work with binary labels (Kocaoglu et al.,
2017). We considered digit → color as the causal direction x1 → x2 for our experiments.

Results and Analysis: We present some representative quantitative metrics and visual examples on
Colored-MNIST in Fig. 2. Complete results are included in Appendix K.1. As shown, ProReGen
(green) in general improved the correctness of minority generations in comparison to the naively
trained baseline (blue, significantly more in c-GAN and c-DM), at comparable quality metrics. In
comparison, while causal-cHVAE (red, the baseline that leverages pseudo-supervision) also im-
proved the correctness of minority generations, this improvement was obtained at the expense of
degraded correctness in majority generations, suggesting that the use of pseudo-supervision has
introduced trade-off in the correctness of majority vs. minority generations at higher correlation
strengths. ProReGen, in comparison, was relatively stable across correlation strengths for majority
generations. Note that the relatively strong quality metrics of causal-cHAVE may be due to its base
hierarchical VAE architecture that was different from the rest of the VAE models.

Re-weighting resulted in comparable correctness metrics in both majority and minority generations
in comparison to ProReGen. However, in all models, signs of overfitting could be observed in
minority generations hence limited diversity, as shown in the rapidly-degrading Coverage metrics
as the correlation strength increased in Fig. 2A and the lack of diversity in the visual examples in
Fig. 2B. In re-weighted c-VAE, the higher coverage of minority generations in comparison to ProRe-
Gen can seem counterintuitive. A potential reason was that generations from learned distribution in
ProReGen were comparatively more blurred compared to memorization of training samples.

5.2 EXPERIMENTS & RESULTS ON MNIST-CORRELATION

Settings of Attribute Correlations: MNIST-Correlation (Mu & Gilmer, 2019) is another MNIST
variant where most of the even digits are clean and most of the odd digits include zigzag, hence
resulting in a correlation between attributes x1 = {even, odd} and x2 = {clean, zigzag}. We sim-
ilarly created correlation strengths at 95%, 98%, 99%, and 99.5% following (Goel et al., 2020).
Along with the information on presence / absence of zigzag, we also added the coordinates of
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Figure 3: A: Correctness and FID of majority and minority generations from ProReGen vs. baselines
for MNIST-Correlation. B: Visual comparison of minority generations at 99.5% correlation ratio.
In each image grid, the intended generation is zigzag-even on the top, and clean-odd for the bottom.

the end points of zigzag (mid-point of image in case of clean image) as additional feature at-
tributes in x2 to represent residual attributes that cannot be predicted from x1 but will contribute
to the generation of images. Additional details on this are included in Appendix D. We consider
even / odd → presence / absence of zigzag as the causal direction for our experiments.

Results and Analysis: We present quantitative results and visual examples for MNIST-Correlation
in Fig. 3, with complete results in Appendix K.2. c-DMs were not included because the highest level
of correlation strengths did not induce a bias in its naive version. Compared to naive c-VAE (blue),
ProReGen-VAE (green) improved the correctness of minority generations, at some degradation in
the correctness of majority generations and similar or slightly worsened quality metrics. In compar-
ison, causal-cHVAE (red) was inconsistent in improving the correctness of minority generation at
more significance deterioration of both majority correctness and FID metrics. Re-weighting (purple)
delivered similar correctness in minority generations and quality metrics in majority generations, but
better majority correctness and worsened FID (reflecting diversity issue) in minority generations.

Compared to naive c-GAN (blue), ProReGen-GAN (green) significantly improved the correctness
of minority generations along with significantly improved FID in both generations with moderate
degradation of correctness in majority generations. Causal-GAN (red) was not successful in im-
proving the correctness of minority generations, with FID metrics similar to the naive baseline.
Reweighting (purple) improved correctness of minority generations with slight compromise in the
correctness of majority generations, but also worsened FID metrics.

5.3 EXPERIMENTS & RESULTS ON CORRUPTED-CIFAR10

Settings of Attribute Correlations: We adopted CIFAR10 (Krizhevsky et al., 2009) and cu-
rated it following the practice in (Hendrycks & Dietterich, 2019) to create a correlation be-
tween object classes and image corruption types. More specifically, we considered five differ-
ent object classes, x1 = {car, bird, dog, horse, ship}, and applied a unique type of corruption,
x2 = {gaussian noise, shot noise, impulse noise, contrast, brightness}, respectively, to the majority
of the training samples per object class. The minority samples have remaining corruptions uniformly
sampled at random. We considered correlation strengths at the level of 70% and 80% for GAN-based
models and 90% and 99% for DM-based models because they were the levels at which bias was in-
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Figure 4: A: Correctness and Coverage of generations on Corrupted-CIFAR10. B: Visual examples
of minority generations at 80% correlation for c-GAN and 99% correlation for c-DM. In each image
grid, the intended generation is: top – {car, impulse noise}; bottom – {horse, brightness}.

Figure 5: Visual examples of minority generations on CelebA under natural correlations.

duced in the respective naive versions of these models. We did not test VAE-based models due to
their quality issues in generation (blurring of corruption details) on these natural images.

Results and Analysis: Representative results in Fig. 4 showed that both naive c-GAN and c-
DM (blue) suffered from increasing correlation strengths, especially in the correctness of minority
generation. Re-weighting (purple) sometimes addressed this issue (in re-weighted c-DM), but at
the expense of decreasing diversity (c-DM) and deteriorated majority correctness (c-DM and c-
GAN). In comparison, ProReGen (green) improved the correctness of minority generations, without
compromising majority generations and with limited degradation of image qualities.

5.4 EXPERIMENTS & RESULTS ON CELEBA

Settings of Attribute Correlations: We considered multi-attribute face dataset CelebA (Liu et al.,
2015) and the natural correlation between x1 = Gender and x2 = Hair Color; most blond-haired
individuals are Females (22.9K) with only around 1.3K blond-haired males in the entire training
dataset of size 162K. We considered four subgroups (Male/Female, Blond/Black Hair) with the
naturally existing correlation in the dataset. Additionally, we experimented with reducing the count
of {Female-Black Hair} subgroup to be close to that of {Male-Blond Hair}. We tested only DM-
based models here given their stronger performance in previous experiments.

Results and Analysis: Fig. 5 provide examples of minority generations for models trained under
natural correlation, with additional results provided in Appendix K.4. Visually, naive c-DMs suf-
fered evidently in the generation of minority images both in attribute correctness and generation
quality. ProReGen-DM was able to consistently generate realistic minority images with correct
attribute combinations. While it is difficult to pinpoint its performance over reweighting without
further quantitative analysis (due to the lack of a good oracle classifier), these results demonstrated
the utility of ProReGen in realistic image datasts with natural attribute correlations.
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Table 1: A comparison of progressive two-stage training vs. simultaneous training of gmjr and gres in
ProReGen-GAN for 95% correlation strength in Colored-MNIST

Correctness FID Coverage Density

Two-Staged Training Majority 0.9592 ± 0.004 16.9488 ± 2.3446 0.9003 ± 0.0275 0.7628 ± 0.0386

Minority 0.9256 ± 0.0257 17.2562 ± 7.8816 0.7519 ± 0.0903 0.6089 ± 0.1216

Single-Staged Training Majority 0.9289 ± 0.0369 29.0843 ± 6.3397 0.7636 ± 0.0216 0.5585 ± 0.0114

Minority 0.3557 ± 0.1689 65.0227 ± 12.3787 0.0432 ± 0.0335 0.0320 ± 0.0220

5.5 ADDITIONAL ABLATION STUDIES

Effects of Progressive training: To demonstrate the benefit of the progressive two-stage training,
we performed an ablation of ProReGeN where the model architecture remained the same but gmjr
and gres were optimized simultaneous vs. progressively in two stages. As shown in Table 1, without
progress training, there was minimal to no effect on the correctness of majority generations but some
impact on its quality (e.g., a drop of 27% in density). The generation of minority samples however
was significantly worsened (e.g., a drop of 62% in correctness and nearly three times worse in FID).
We further demonstrate this with sample minority generations in Fig. 7 in Appendix.

Sensitivity to errors in m(x1): To understand the sensitivity of ProReGen to errors in the estimation
of m(x1), we perturbed x1 to x̂1 via uniform random shift, within the valid domain, to simulate a
wrong estimation of m(x1). We experimented with three levels of perturbation with increasing
percentage of samples induced with random shifting in attribute x1 per training epoch. We present
our observation in Table 12 in Appendix G for ProReGen-GAN trained on Colored-MNIST with
95% correlation strength. The correctness of ProReGen-GAN dropped as expected with the increase
in the level of perturbation, although not rapidly and still improved over the naive model at 80% of
errors. A closer inspection showed that the drop resulted from inaccuracy in color generation, which
is as expected since γ dictates the color residual between majority and minority samples.

Computation cost and additional training details: We present the computation cost, convergence
plots, and a small analysis of sensitivity to residual sub-networks in Appendix H – K.

Effect of assumed causal directions between attributes: We examined the effect of the assumption
of causal directions between attributes by inverting the causal direction digit → color to color →
digit for Colored-MNIST. We considered ProReGen-GAN for our analysis. We observed that the
performance with the inverted causal direction color → digit was suboptimal, with only 0.0811 ±
0.0127 correctness, on average, of minority generations vs. 0.9256 ± 0.0257, on average, with
digit → color. The correctness of majority generations was similar. This indicated that learning
the residual for digit conversion was much more difficult. We present the generation samples along
with additional results in Appendix F. This suggests that the difficulty, and hence performance of
residual generation task, is influenced by the causal direction assumed and should be used to design
the attribute causal direction for ProReGen in practice (unless the true causal direction is known).

6 CONCLUSIONS & DISCUSSIONS

We present ProReGen, a novel DGM-design that employs progressive training and leverages ma-
jority training samples to learn most part of the generation task while employing minority training
samples to only learn the residual information. We demonstrate its benefit in improving generation
correctness against the baselines using synthetic and natural images at different correlation ratios.
Limitation: ProReGen-VAE and -GAN perform residual operation at the image level. While
ProReGen-DM leveraged feature injection, the base DDPM considered performs diffusion at the
pixel space. Future works will investigate extending the concept of ProReGen to realize the effect of
residual γ on image generation through the latent space. ProReGen as presented assumes the ability
to separate samples into discrete subgroups; future work will extend it to settings with continuous
attributes and use attribute residual to modulate sample importance in stage I vs. II learning instead.
Evaluation of minority generation remains a significant challenge: since it is not possible to have
a perfect oracle classifier due to reasons such as natural attribute imbalance, future works should
assess the uncertainty of these correctness metrics. Finally, the challenge of attribute correlation can
be expected to persist and even amplify in text-to-image models due to the sparsity and heavy-tailed
nature of the problem space, leaving an exciting avenue for future explorations.
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REPRODUCIBILITY STATEMENT

We present the design of network architectures and training details used in our proposed method in
Appendix D. Moreover, we provide reference to the official code repositories employed for exper-
imentation with two of our baselines in the same section. Additionally, we share the training data
distribution of the datasets used to present our results in Appendix C.
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A ILLUSTRATION OF PROREGEN

Fig. 6 illustrates the outline of the instantiations of ProReGen on c-VAE (A), c-GAN (B), and c-DM
(C).

Figure 6: Illustration of ProReGen-VAE (A), ProReGen-GAN (B), and ProReGen-DM (C) .
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B ORACLE PERFORMANCE FOR EACH DATASET

We present the performance oracle classifiers for Colored-MNIST, MNIST-Correlation, and
Corrupted-CIFAR10 in Table 2.

Table 2: Test Accuracy of Oracle Classifiers for Colored-MNIST, MNIST-Correlation, and
Corrupted-CIFAR10

Oracle Classifier For Average Test Accuracy

Colored-MNIST Digit 0.958

Color 1.0

MNIST-Correlation Even/Odd Digit Type 0.965

Presence/Absence of Zigzag 1.0

Corrupted-CIFAR10 Object Type 0.849

Corruption Type 0.99

C TRAINING DATA DISTRIBUTION FOR EACH DATASET

We present the count of majority and minority training samples employed across each correlation
ratio for Colored-MNIST in Table 3, for MNIST-Correlation in Table 6, and for Corrupted-CIFAR10
in Table 5.

Table 3: Counts of Majority and Minority Samples Across Varying Levels of Correlation Strengths
Explored for Colored-MNIST. For the Balanced setting, we consider equal number of samples per
(digit, color) combination, i.e., around 550 samples per combination. The total number of unique
combinations is 100.

Correlation Strength Minority Majority
95% 2450 52552

98% 986 54014

99% 492 54510

99.5% 249 54751
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Table 4: Counts of Majority and Minority Samples Across Varying Levels of Correlation Strengths
Explored for MNIST-Correlation. For the Balanced setting, we consider equal number of samples
per attribute combination, i.e., around 20,000 samples per combination. The total number of unique
combinations is 4.

Correlation Strength Minority Majority
95% 2104 40000

98% 816 40000

99% 404 40000

99.5% 200 40000

Table 5: Counts of Majority and Minority Samples Across Varying Levels of Correlation Strengths
Explored for Corrupted-CIFAR10. For the Balanced setting, we consider equal number of samples
per attribute combination, i.e., around 800 samples per combination. The total number of unique
combinations is 25.

Correlation Strength Minority Majority
70% 6000 14000

80% 4000 16000

Table 6: Counts of Majority and Minority Samples in natural and 99% Correlation Strengths Ex-
plored for CelebA. The counts for Majority and Minority are such that (Male, Blond) and (Female,
Black) are considered in Minority, while (Male, Black) and (Female, Blond) in Majority.

Correlation Strength Minority Majority
Natural 20170 43001

99% 2774 43001

D IMPLEMENTATION DETAILS

Expanded Network Architecture. We employ a stack of convolution and transposed convolution
layers to implement the c-VAE (Sohn et al., 2015) and follow DCGAN-like architectural setup for
c-GAN (Radford et al., 2015). For causal-cHVAE and causal-GAN, we follow their official code
repositories: Ribeiro et al. (2023) for causal-cHVAE and Kocaoglu et al. (2017) for causal-GAN.

In both c-VAE and c-GAN, since the residual effect generator only requires adjusting residual fea-
tures on images for which most of the generative factors have already been produced by the majority
DGM, the expanded layers are lightweight, comprising relatively low parameter count than the ma-
jority DGMs. Moreover, they are also designed such that they maintain the spatial dimension of the
input image (e.g., using convolutional operations with kernel = 3, stride = 1, padding = 1). We
present the details of their network architecture in Table 7-10.

Conditional Information γ. Residual (orthogonal) attribute γ = x2 − m(x1) is broadcasted to
match spatial size of the input and concatenated as additional channels to provide it as conditional
information to the expanded layers. When we have high-dimensional attribute x2, where only part of
it is predictable from x1, we predict the predictable dimensions by m(x1) to get γ. As implementa-
tion choice, we can then either keep the additional (unpredictable) dimensions as additional channels
or use them to manipulate (e.g., mask) predictable dimensions. We employ the latter approach for
MNIST-Correlation for ProReGen, where we mask the γ information using the information of line
joining the two end-points of zigzag. We employ the same approach in the encoder of naively-trained
conditional-VAE and its re-weighted version. However, employing such masking in naively-trained
conditional-GAN led to the model ignoring the even/odd label information, potentially due to the
discriminator relying on the now easier feature, zigzag (due to its masking). Therefore, we appended
the coordinate information as additional channels during conditioning for conditional-GAN.
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Table 7: The architecture of the expanded portion of generator network for Colored-MNIST. The
architecture of the expanded portion of discriminator or encoder is a mirror of it. Here Cimg denotes
the number of image channels and dt is the dimension of γ.

Part Output Shape Layer Information
Input (B, Cimg + dt, H, W) –

Conv Block 1 (B, 64, H, W) Conv2d(Cimg + dt, 64, 3, 1, 1), GroupNorm(8, 64), ReLU
Conv Block 2 (B, 32, H, W) Conv2d(64, 32, 3, 1, 1), GroupNorm(8, 32), ReLU
Output Layer (B, Cimg, H, W) Conv2d(32, Cimg, 3, 1, 1)

Table 8: The architecture of the expanded portion of decoder network for MNIST-Correlation in
ProReGen-VAE. The architecture of the expanded portion of encoder is a mirror of it. Here Cimg

denotes the number of image channels and dt is the dimension of γ.
Part Output Shape Layer Information
Input (B, Cimg + dt, H, W) –

Conv Block 1 (B, 64, H, W) Conv2d(Cimg + dt, 64, 3, 1, 1)
Conv Block 2 (B, 64, H, W) Conv2d(64, 64, 3, 1, 1), ReLU, Conv2d(64, 64, 3, 1, 1)
Conv Block 3 (B, 64, H, W) Conv2d(64, 64, 3, 1, 1), ReLU, Conv2d(64, 64, 3, 1, 1)
Output Layer (B, Cimg, H, W) Conv2d(64, Cimg, 3, 1, 1)

E EFFECT OF TWO-STAGE TRAINING

Two-stage training of gmjr and gres instead of single-stage training is beneficial for the quality of
majority generations and overall success (correctness, FID, coverage, and density) of minority gen-
erations. We present visual examples of generations in Fig. 7.

Figure 7: Sample majority and minority generations with two-stage training of gmjr and gres vs.
single-stage training for 95% correlation ratio in Colored-MNIST.
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Table 9: The architecture of the expanded portion of generator network for MNIST-Correlation in
ProReGen-GAN . The architecture of the expanded portion of discriminator is a mirror of it. Here
Cimg denotes the number of image channels and dt is the dimension of γ. This is similar to the
architecture employed in ProReGen-VAE, shown in Table D, with a light extension to the design
and the addition of normalization layers to enhance the training stability.

Part Output Shape Layer Information
Input (B, Cimg + dt, H, W) –

Conv Block 1 (B, 64, H, W) Conv2d(Cimg + dt, 64, 3, 1, 1), GroupNorm(8, 64), ReLU
Conv Block 2 (B, 64, H, W) Conv2d(64, 64, 3, 1, 1), GroupNorm(8, 64)
Conv Block 3 (B, 32, H, W) Conv2d(64, 32, 3, 1, 1), GroupNorm(8, 32), ReLU
Conv Block 4 (B, 32, H, W) Conv2d(32, 32, 3, 1, 1), GroupNorm(8, 32)
Output Layer (B, Cimg, H, W) Conv2d(32, Cimg, 3, 1, 1)

Table 10: The architecture of the expanded portion of generator network for Corrupted-CIFAR10.
The architecture of the expanded portion of discriminator is a mirror of it. Here, Cimg denotes the
number of image channels and dt denotes the dimension of γ and x1.

Part Output Shape Layer Information

Residual Block 1 (B, Cmid, H, W)

Concatenate hmjr, γ,x1 along channel dim
Conv2d(Cimg + 2dt, Cmid, 3, 1, 1), GroupNorm(8, Cmid), ReLU
Conv2d(Cmid, Cmid, 3, 1, 1), GroupNorm(8, Cmid)
Skip connection: Conv2d(Cimg, Cmid, 1, 1, 0) (or Identity if channels match)
Element-wise addition (residual connection)

Residual Block 2 (B, Cmid2, H, W)

Concatenate Residual Block 1 output, γ,x1 along channel dim
Conv2d(Cmid + 2dt, Cmid2, 3, 1, 1), GroupNorm(8, Cmid2), ReLU
Conv2d(Cmid2, Cmid2, 3, 1, 1), GroupNorm(8, Cmid2)
Skip connection: Conv2d(Cmid, Cmid2, 1, 1, 0) (or Identity if channels match)
Element-wise addition (residual connection)

Output Layer (B, Cimg, H, W) Conv2d(Cmid2, Cimg, 3, 1, 1)

F EFFECT OF ASSUMPTION OF CAUSAL DIRECTION

We present the comparison of generated majority and corresponding minority samples when con-
sidering causal direction x1 → x2 vs. x2 → x1 in Fig. 8. We consider ProReGen-GAN to present
our analysis.

In Fig. 8-B, we simply invert the causal direction, while employing the same additive formulation
for ymnr as in our main experiments and keeping the network architecture style for gres consistent.

We further experiment with the general formulation ymnr = gres(hmjr(x1),x1, γ) using: 1) the same
network architecture design for gres as in Fig. 8-B, and 2) ResNet-style architecture design for gres
such that the residual operation occurs implicitly within the network, to assess their potential benefit
for the residual generation task with the inverted causal direction color → digit. However, no
noticeable improvement was observed as shown in Fig. 8C-D.
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Table 11: Parameter counts of Stage-I and Stage-II of ProReGen for different models and datasets
Datasets Models Stage-I Stage-I Ratio of Stage-II

to Stage-IEncoder /
Discriminator

Decoder /
Generator Total Encoder /

Discriminator
Decoder /
Generator Total

Colored-MNIST
c-VAE 8.6M 1.6M 10.2M 24.2k 27.1k 51k 0.005

c-GAN 674.0k 2.5M 3.2M 24.1k 27.1k 51k 0.016

c-DM - 5.1M 5.1M - 5.1M 5.1M 1.000

MNIST-
Correlation

c-VAE 8.6M 1.6M 10.2M 150k 150k 300.2K 0.030

c-GAN 663.7k 2.3M 3M 67k 67k 133.6K 0.044

c-DM 5.1M 5.1M - 5.1M 5.1M 1.000

Corrupted-
CIFAR10

c-GAN 668.9k 239.5k 3.1M 78.6k 78.7k 157.2k 0.051

c-DM - 9.9M 9.9M - 9.9M 9.9M 1.000

CelebA c-DM - 23M 23M - 23M 23M 1.000

Figure 8: Examination of the effect of causal direction on the residual generation task for ProReGen-
GAN, considering 95% correlation ratio in Colored-MNIST. Real minority samples used for training
gres are shown in left with corresponding majority (middle) and minority (right) generation samples.
We employ the causal direction digit → color for Colored-MNIST in our main experiments and
present the sample results in A. We explore the effect of inverting the causal direction to color →
digit in B, C, and D, where the roles of x1 and x2 are reversed.

G EFFECT OF ERROR IN ESTIMATION OF m(x1)

We present the sensitivity of ProReGen to errors in estimation of m(x1) for GAN trained on
Colored-MNIST with 95% correlation ratio in Table 12. As described in the main text, we exper-
imented with three levels of perturbation with increasing percentage of samples induced with ran-
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Table 12: Sensitivity of ProReGen to errors in estimation of m(x1) for GAN trained on Colored-
MNIST with 95% correlation ratio

Perturbation Level Overall Correctness Digit Correctness Color Correctness FID Coverage Density
0% 0.9256 ± 0.0257 0.9490 ± 0.0053 0.9718 ± 0.0228 17.2562 ± 7.8816 0.7519 ± 0.0903 0.6089 ± 0.1216

50% 0.8909 ± 0.0124 0.9579 ± 0.0009 0.9291 ± 0.0124 13.6764 ± 3.7443 0.8341 ± 0.0344 0.6292 ± 0.0468

80% 0.8589 ± 0.0139 0.9541 ± 0.0007 0.8974 ± 0.0117 13.4902 ± 1.4889 0.8349 ± 0.0252 0.6237 ± 0.0089

dom shifting in attribute x1 per training epoch. As shown, for ProReGen-GAN trained on Colored-
MNIST with 95% correlation strength, the correctness of ProReGen-GAN dropped as expected with
the increase in the level of perturbation, although not rapidly and still improved over the naive model
at 80% of errors.
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H COMPUTATION COST

Table 13 lists the training time on Colored-MNIST with 98% correlation strength by naive, reweight-
ing, and ProReGen models for c-VAE, -GAN, -DM. It highlights the benefit inherent in the design
choice of ProReGen: the minimal overhead of computation of stage-II training in comparison to
stage-I and naive models (∼ 2% for all models) .

Table 13: Seconds per epoch for c-VAE, c-GAN, and c-DM for training on Colored-MNIST at 98%
correlation strength. The experiments were performed on a single NVIDIA RTX 2080 Ti GPU with
10.75 GB VRAM and batch size 32.

Naive Naive ReWt Stage I Stage II
c-VAE 8.9442 ± 0.1116 8.94325 ± 0.0610 8.6888 ± 0.0102 0.1863 ± 0.0003

c-GAN 16.58945 ± 0.0142 16.6545 ± 0.0479 13.4155 ± 0.0379 0.2676 ± 0.0013

c-DM 121.9143 ± 5.6574 125.2077 ± 1.4170 125.77 ± 0.0962 2.9127 ± 0.01159
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I CONVERGENCE RESULTS

Fig. 9 provide examples of loss curves for ProReGen-VAE, -GAN, and -DM when trained on
Colored-MNIST at correlation strength of 95%, showing stable convergence that were typical of
the experiments we observed.

Figure 9: Examples of loss curves for ProReGen-VAE, -GAN, -DM.

J PERFORMANCE SENSITIVITY TO THE SIZE OF RESIDUAL SUB-NETWORK

We present a small example illustrating the sensitivity of ProReGen to the number of convolution-
blocks in residual sub-net in Table 14. We can observe that both the correctness and quality of
generations are worse when limiting the size of the residual sub-network to a single convolution-
block. Visual examples in Fig. 10 further demonstrate the issue.

Table 14: An example from ProReGen-GAN trained on 95% correlation strength in Colored-MNIST
illustrating the sensitivity of performance to the size of the residual sub-network

Correctness FID Coverage Density
Two Convolution Blocks 0.9256 ± 0.0257 17.2562 ± 7.8816 0.7519 ± 0.0903 0.6089 ± 0.1216

Single Convolution Block 0.6476 ± 0.0536 20.6536 ± 1.6247 0.6787 ± 0.0323 0.4399 ± 0.0476
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Figure 10: Visual demonstration of the sensitivity of ProReGen to the number of convolution-blocks
in residual sub-net. The generations were obtained from ProReGen-GAN trained on Colored-
MNIST at 95% correlation ratio and were intended to yield uniform color per column, however
we can observe greater number of error cases when employing a single convolution-block.

K ADDITIONAL RESULTS

K.1 COLORED-MNIST

We present the comparison of FID and density metric values of ProReGen against the baselines in
Fig. 11, Fig. 12, and Fig. 13.

Figure 11: Comparison of FID and density metric values of ProReGen-VAE against the baselines
for Colored-MNIST dataset.
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Figure 12: Comparison of FID and density metric values of ProReGen-GAN against the baselines
for Colored-MNIST dataset.

Figure 13: Comparison of FID and density metric values of ProReGen-DM against the baselines for
Colored-MNIST dataset.
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K.2 MNIST-CORRELATION

We present the comparison of coverage and density metric values of ProReGen against the baselines
for MNIST-Correlation in Fig. 14 and Fig. 15.

Figure 14: Comparison of coverage and density metric values of ProReGen-VAE against the base-
lines for MNIST-Correlation dataset.
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Figure 15: Comparison of coverage and density metric values of ProReGen-GAN against the base-
lines for MNIST-Correlation dataset.

K.3 CORRUPTED-CIFAR10

We present the comparison of FID and density metric value of ProReGen against the baselines for
Corrupted-CIFAR10 in Fig. 16 and Fig. 17.

Figure 16: Comparison of density metric value of ProReGen-GAN against the baselines for
Corrupted-CIFAR10 dataset.

K.4 CELEBA

We present additional visual results of minority image generations on CelebA with natural correla-
tion (Fig. 18) and reduced proportion of female with non-blond hair color to match that of male with
blond hair color (Fig. 19).
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Figure 17: Comparison of FID and density metric value of ProReGen-DM against the baselines for
Corrupted-CIFAR10 dataset.

L LLM USAGE

We used the LLM tool, ChatGPT, at limited capacity. ChatGPT was leveraged for improving the
quality of sentences to provide better readability and for grammatical corrections. Moreover, we
utilized it to generate some portions of the graph creation scripts.
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Figure 18: Comparison of naive c-DM, reweighting, and ProReGen-DM on minority image gener-
ation on CelebA with natural correlations between gender and hair color
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Figure 19: Comparison of naive c-DM, reweighting, and ProReGen-DM on minority image gener-
ation on CelebA with 99% correlations between gender and hair color
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