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ABSTRACT

Attribute correlations in the training data will compromise the ability of a deep
generative model (DGM) to synthesize images with under-represented attribute
combinations (i.e., minority samples). Existing approaches mitigate this by data
re-sampling to remove attribute correlations seen by the DGM, using a classifier
to provide pseudo-supervision on generated counterfactual samples, or incorpo-
rating inductive bias to explicitly decompose the generation into independent sub-
mechanisms. We present ProReGen, a progressive residual generation approach
inspired by the classical Robinson’s transformation, to partial out from an image
attribute x2 its component m(x1) that is predictable by other image attributes x1,
and the residual γ = x2 − m(x1) that is not. This simplifies the problem of
learning a DGM g(x1,x2) conditioned on correlated inputs, to learning g̃(x1, γ)
conditioned on orthogonal inputs. It further allows us to progressively learn g̃ by
first shifting the burden to abundant majority samples to learn g̃(x1, γ = 0), and
then expanding it with additional layers gres to resolve its difference to g̃(x1, γ) us-
ing residual attribute γ on limited minority samples. On three benchmark datasets
with varying strengths of attribute correlations, we demonstrate that ProReGen—
with input orthogonalizaton and progressive residual learning—improved the cor-
rectness of minority generations compared to existing strategies.

1 INTRODUCTION

Attribute correlations are not uncommon in observed image datasets. Some may be a natural man-
ifestation of underlying causal relations, e.g., the object in an image determining the background
(Sagawa et al., 2019). Some may reflect bias in data curation, e.g., collecting patient data from
those who already received treatment (Wang et al., 2017). Regardless of the mechanisms, attribute
correlations can induce unintended consequences in deep neural networks (DNN) training.

In the context of discriminative (e.g., classification) DNNs, this phenomenon has been widely dis-
cussed, often under the concept of spurious correlations or short-cut learning (Ye et al., 2024). In
the context of deep generative models (DGM), such discussion is comparatively less structured and
scatters across a variety of topics. On one hand, the importance for a DGM to properly synthe-
size under-represented image examples—those with image attributes that do not comply with the
observed correlation—are appreciated in many domains, e.g., for explaining whether a DNN classi-
fier has captured correlated features for decision making (Rodrı́guez et al., 2021), or for augmenting
training data to mitigate correlations (Kim et al., 2021). On the other hand, several evaluation studies
(Träuble et al., 2021; Bose et al., 2022) have shown that naively-trained DGMs would capture latent
attribute correlations from training data (Träuble et al., 2021) and even reveal the associated causal
directions (Bose et al., 2022). How does this impact the synthesis of under-represented samples, and
to what extent could it be mitigated? Answers to these questions remain largely open.

Consider two sets of image attributes x1 and x2 (both can be multi-dimensional) that exhibit a
correlation in observed data. Consider the goal of learning a DGM g conditioned on these attributes
to generate an image y as y = g(x1,x2). For the function g to generate with different combinations
of x1 and x2 values, it is important for g to correctly model the mechanisms, g1 and g2, through
which x1 and x2 influences y separately. Unfortunately, due to the observed x1-x2 correlation, g1
and g2 can only be separately observed in the small number of samples where such correlation does
not hold. We stress this as a fundamental challenge for learning a DGM under attribute correlations.
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Figure 1: A-C: Overview of the Robinson’s partialling-out approach in motivating learning
g(x1,x2) as g̃(x1, γ). D: Illustration of ProReGen to realize function g̃(x1, γ) by progressively
learning gmjr(x1) := g̃(x1, γ = 0) from majority samples, followed by learning gres(hmjr(x1),x1, γ)
on minority samples to resolve the difference to g̃(x1, γ) with γ.

Existing strategies to address this challenge are limited. Re-sampling is a simple approach to balance
training samples (Monteiro et al., 2022), essentially up-weighting under-represented samples where
g1 and g2 can be separately observed. Alternatively, inductive bias has been introduced to explicitly
decompose g into independent mechanisms g1 and g2, which requires prior knowledge about how x1

and x2 may influence y differently (e.g., object shape vs. texture vs. background) (Sauer & Geiger,
2020). Finally, to go beyond the limits of factual under-represented samples, pseudo-supervision
on generated counterfactual images has been presented, typically realized by using a classifier to
recognize feature attributes in the generated images (Kocaoglu et al., 2017; Ribeiro et al., 2023; He
et al., 2019). However, since the classifier is trained under the same attribute correlations, its ability
to correctly recognize these attributes is likely compromised – how does this impact its validity to
supervise the generation of under-represented counterfactual images has not been well understood.

In this paper, we take a fundamentally different perspective to address the challenge of modeling
g(x1,x2) under attribute correlations, inspired by the classical Robinson’s partialling-out trans-
formation (Robinson, 1988). While details of this concept will be introduced in Section 3, Fig. 1
illustrates its core concept in the context of modeling g(x1,x2). Consider the causal graph in Fig. 1A
with a causal direction assumed between x1 and x2. Instead of attempting to model the independent
causal mechanisms g1 and g2 in the presence of such correlations, we decompose x2 into E[x2|x1]
that can be predicted by x1, along with a residual γ that cannot, i.e., x2 = E[x2|x1] + γ (Fig. 1B).
With this, instead of modeling y = g(x1,x2) as a composition of g1 and g2 as in Fig. 1A, we model
it as y = g̃(x1, γ) as in Fig. 1C: the effect of x1 on y now absorbs the effect from E[x2|x1], the
component of x2 that can be predicted from x1 – we referred to this as correlated effect; as such,
the effect of γ on y—the part of x2’s influence on y that cannot be explained by x1—is partialled
out: we refer to this as residual effect. In this new causal graph (Fig. 1C), instead of attempting to
recover two independent mechanisms from correlated inputs x1 and x2, we transform the problem
into learning independent correlated and residual effects from two independent inputs x1 and γ.

To design a DGM based on Fig. 1C, we note that g̃(x1, γ) at γ = 0, i.e., E[y|x1, γ = 0], can be
estimated from abundant samples whose attribute values meet the observed correlations (henceforth
referred to as majority samples). g̃(x1, γ) at γ ̸= 0, on the other hand, can only be estimated from a
limited number of samples where such correlation does not hold (henceforth referred to as minority
samples). To shift the primary burden of learning g̃ to majority samples, therefore, we further de-
compose the learning of g̃(x1, γ) into the learning of g̃(x1, 0) at γ = 0 using majority samples, and
use minority samples to make up the difference between g̃(x1, 0) to g̃(x1, γ). This results in our pro-
gressive residual effect generator (ProReGen) that is progressively learned in two stages as outlined
in Fig. 1D. ProReGen as described is expected to have two major benefits. First, the orthogonaliza-
tion of the inputs x1 and γ helps separate the learning of their independent effects on y. Second,
with the progressive expansion from gmjr to gres, the challenge of learning to generate under attribute
correlations is reduced to learning the residual between g̃(x1, γ = 0) and g̃(x1, γ). We instanti-
ate the concept of ProReGan in conditional-VAEs and -GANs and, on three benchmark datasets
with varying strengths of attribute correlations, we experimentally demonstrate the improved per-
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formance of ProReGen in generating correct minority samples compared to naive DGMs or those
strengthened with re-weighting of factual samples or pseudo-supervision on generated samples.

2 RELATED WORKS

Several domains find uses for synthesizing minority images. For instance, to explain if a classifier
has captured attribute correlations from its training data, one can test if it is able to guide a pre-trained
DGM to generate minority images (Rodrı́guez et al., 2021; Jeanneret et al., 2022). In addition to
explaining, synthesized minority images can also be used for augmenting and removing attribute
correlations in training data (Goel et al., 2020; Kim et al., 2021). While naively-trained DGMs have
been used for such syntheses (Rodrı́guez et al., 2021; Jeanneret et al., 2022), there is an increasing
attention on the impact of attribute correlations on DGM training and potential mitigation solutions.

Re-weighting of factual samples: The concept of simulated intervention was presented in Monteiro
et al. (2022) to re-sample data according to the marginal distribution of image attributes, to effec-
tively remove attribute correlations seen by the DGM. This is essentially similar to re-weighting,
where minority samples are up-weighted in their contribution to the training signals. This approach
is ultimately affected by the quantity and diversity of factual minority samples.

Pseudo-labeling of counterfactual generations: Instead of relying on factual minority samples, an
alternative is to provide some pseudo-supervision to encourage the DGM to generate counterfactual
images with intended feature attributes. This is often achieved by leveraging another DNN classifier,
often trained from the same data as the DGM, to provide supervisory signals by recognizing the
attributes of generated images (Kocaoglu et al., 2017; Ribeiro et al., 2023; He et al., 2019). However,
because the DNN classifier is also subject to attribute correlations in the training data, their reliability
in correctly recognizing these attributes is questionable. How does this affect the supervisory signal
it provides to the DGM’s counterfactual generations has not been systematically investigated.

Inductive bias to decompose generation mechanisms: An entirely different approach is to incor-
porate inductive bias about the mechanisms under which different attributes contribute to generated
images (Sauer & Geiger, 2020; Park et al., 2020) In (Sauer & Geiger, 2020), for instance, the image
generation process is decomposed into independent shape, texture, and background mechanisms.
While this approach tends to be highly successful when assumptions of the underlying generation
mechanisms are met, it does require prior knowledge for the design of such inductive bias.

ProReGen represents a completely different approach to these existing works. Inspired by the clas-
sical Robinson’s partialling out approach, ProReGen tackles the challenge of attribute correlations
at its core by first recasting the DGM from being conditioned on correlated attributes to orthogonal
attributes. By a progressive expansion design, it further leverages majority training samples to re-
duce the problem of learning minority generation to learning its residual to majority generation. The
latter concept is related to existing works in data augmentation, where image translation models are
used to transform a factual majority sample to a minority counterfactual. Examples include the use
of swapping-autoencoder (Kim et al., 2021), CycleGAN (Goel et al., 2020), and few-shot adaptation
of GANs (An et al., 2022). Because these models are intended only for translating factual samples
but not general image generations, they are out of the scope of our consideration.

3 PRELIMINARY: ROBINSON’S PARTIALLING-OUT TRANSFORMATION

Consider a partial linear equation E[y|x1, x2] = θ(x1) + βx2, where x2 = m(x1) + u, Robinson’s
transformation in (Robinson, 1988) decomposes the original equation into:

E[y|x1, x2] = θ(x1) + β ∗ (m(x1) + u) = E[y|x1] + β ∗ (x2 −m(x1)) (1)

where E[y|x1] = θ(x1)+β∗m(x1). Effectively, instead of describing the separate effect of x1 and
x2 on y as dictated the original equation, we decompose their effect into two orthogonal components:
1) E[y|x1] that describes the combined effect of x1 and m(x1) on y—the latter absorbing the effect
of x2 on y that can be predicted by x1; and 2) the residual effect of β ∗ (x2 − m(x1)) from x2 −
m(x1)—the effect on y from the residual of x2 that cannot be predicted from x1.

In the original paper (Robinson, 1988), the goal of this decomposition is to estimate parameter
β, which arrives at the classical residual-on-residual least-square fitting of β via: E[y|x1, x2] −
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E[y|x1] = β ∗ (x2 − E[x2|x1]). The resulting estimator for β can further be shown to meet the
Neyman’s orthogonality condition such that it is insensitive to perturbations in the estimator for
E[y|x1] or E[x2|x1] (Robinson, 1988; Chernozhukov et al., 2018). This decomposition has also
served as the basis for the R-learner (R for Robinson) that extended the approach to estimating the
function β(x1) instead of the low-dimensional parameter β (Nie & Wager, 2021).

In contrast, we use this transformation as the foundation inspiring the design of an image-generating
DGM, where y is high-dimensional and its relation with x1 and x2 is highly nonlinear. Note that
the causal direction x1 → x2 depends on the target parameter β in the original formulation: in our
setting where y as a function of g remains the primary interest, the assumed causal direction will
influence the decomposition, but not the general modeling strategy. The difficulty of the residual
generation task however may change with this direction, which we will empirically examine in
Section 5.4. Below we continue our discussion with x1 → x2 without loss of generality.

4 METHODOLOGY

4.1 PROREGEN: PROGRESSIVE RESIDUAL GENERATION

Consider a conditional-DGM y = g(z,x1,x2) underlying observed image data, where a correlation
exists between image attributes x1 and x2, and z represents latent variables not included in x1

and x2. Built on Robinson’s partialling-out approach, as illustrated in Fig. 1A-C, we first cast the
problem of learning y = g(z,x1,x2) with correlated inputs, to learning y = g̃(z,x1, γ) with
independent inputs where γ = x2 −m(x1) represents the residual in x2 that cannot be predicted by
x1. Because g̃(z,x1, γ = 0) is described by majority samples vs. g̃(z,x1, γ) at γ ̸= 0 by a small
number of minority samples, we further design a progressive learning strategy to shift the burden
of learning g̃ mostly to the learning of g̃(z,x1, γ = 0) using majority samples, and using minority
samples to only resolve its difference to g̃(z,x1, γ) with γ. This gives the foundation of ProReGen:

y = g̃(z,x1, γ) ≈ gres(hmjr(x1),x1, γ), where γ = x2 −m(x1) (2)

where hmjr is the feature map of gmjr := g̃(z,x1, γ = 0) before the final activation layer. Equation
(2) includes three main components progressively learned in two stages, as illustrated in Fig. 1D:

• In stage-I, from a large number of majority samples, we learn an attribute predict function x2 =
m(x1) to approximate E[x2|x1], and a generative model gmjr(x1) to approximate g̃(x1, γ = 0),
the latter effectively describing the generation when x2 = m(x1), i.e., for a majority sample.

• In stage-II, using available minority samples, we expand the generator with additional layers, gres,
to resolve the residual between g̃(x1, γ) and gmjr(x1) with the residual γ partialled out from x2.
Effectively, we approximate g̃(x1, γ) by gres(hmjr(x1),x1, γ), with hmjr defined above.

This learning process takes form of a progressive-DGM, where a backbone gmjr is first learned on
majority samples and then expanded on minority samples. This concept is agnostic to the type of
DGMs: below, we describe its instantiations on conditional-VAEs (c-VAEs) and -GANs (c-GANs).

4.2 PROREGEN-VAE

Stage I: Learning a c-VAE that captures attribute correlations: To learn gmjr(z,x1) as a c-
VAE, we define a decoder network Gθmjr(z,x1) that parameterizes the likelihood pθmjr(y | z,x1),
and its corresponding encoder network Eϕmjr(y,x1) that parameterizes the approximate posterior
qϕmjr(z | y,x1), both conditioned on attribute labels x1. They are trained on majority samples by
maximizing the standard ELBO loss:

max
θmjr,ϕmjr

{Ez∼Eϕmjr (ymjr,x1)

[
− ∥ymjr −Gθmjr(z,x1)∥22

]︸ ︷︷ ︸
Reconstruction Loss

−β DKL

(
Eϕmjr(ymjr,x1) ∥ p(z)

)︸ ︷︷ ︸
KL Divergence

} (3)

where p(z) is defined as the standard isotropic Gaussian prior N (z;0, I), and hyperparameter β > 0
adjusts the KL-regularization strength. While only conditioned on x1, Gθmjr is expected to absorb the
effect of m(x1), the portion of x2 predictable by x1, due to their natural correlation as observed.At
the same time, a function x2 = m̂(x1) is estimated on the attribute values from majority samples.
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Figure 2: Illustration of ProReGen-VAE (left) and ProReGen-GAN (right)

Stage II: Learning the residual by expanding the c-VAE: To leverage the learned gmjr(z,x1), we
now expand the decoder Gθmjr with several additional layers at the last layer of Gθmjr before the final
activation layer σ, which we denote as Gθmjr\σ . We denote these expanded portion of the decoder as
Gθres(Gθmjr\σ,x1, γ), conditioned on γ = x2 − m̂(x1) that represents the residual in x2 that cannot
be predicted by x1. As illustrated in Fig. 2A, we expand the encoder network with additional layers
Eϕres in a mirror of the expanded decoder network as Eϕres(ymnr, γ), to produce output that will serve
as the input to the first-stage encoder. The expanded networks are trained on minority samples by
maximizing the ELBO loss below, where we keep the stage-I weights θmjr and ϕmjr frozen:

max
θres,ϕres

{Ez∼Eϕmjr (Eϕres (ymnr,γ),x1)

[
∥ymnr − ŷmnr∥22

]
+ β DKL

(
Eϕmjr(Eϕres(ymnr, γ),x1) ∥ p(z)

)︸ ︷︷ ︸
KL Divergence

} (4)

where ŷmnr = Gθres(Gθmjr\σ(z,x1),x1, γ), z ∼ Eϕmjr(Eϕres(ymnr, γ),x1) (5)

While Equation (5) represents a general formulation for residual generation, on simpler datasets,
an additive residula can be considered such that ŷmnr = Gθmjr(z,x1) + Gθres(Gθmjr\h(z,x1)), γ).
With Equation (5), Gθres leverages the feature map of the stage-I generator Gθmjr and the residual γ
to resolve the difference between majority and minority generations. Intuitively, because Gθmjr and
Eϕmjr are trained in stage-I to generate and encode from majority samples, the expanded Gθres will be
encouraged to learn to modify a majority-image feature map to include features corresponding to the
residual partialled-out from x2, while the expanded Eθres will be encouraged to alter such features to
generate an output feature map acceptable to Eϕmjr (i.e., compliant with feature map seen by Eϕmjr in
stage-I). With this, we shift the burden of learning the c-VAE mainly to majority samples, and allow
the use of limited minority samples for learning the necessary reisdual changes only.

4.3 PROREGEN-GAN

Stage-I: Learning a c-GAN that captures attribute correlations: To learn gmjr(z,x1) as a c-
GAN, we define a generator Gθmjr(z,x1) and its discriminator Dϕmjr(y,x1), both conditioned on
attribute labels x1. They are trained on majority samples using standard adversarial loss:

min
θmjr

max
ϕmjr

{Eymjr,x1∼pdata

[
logDϕmjr(ymjr,x1)

]
+Ez∼p(z),x1∼pdata

[
log

(
1−Dϕmjr(Gθmjr(z,x1),x1)

)]
} (6)

where Dϕmjr is trained to maximize the probability of correctly distinguishing the real ymjr vs. sam-
ples generated by Gθmjr(z,x1); while the generator Gθmjr is trained to fool the discriminator. Similar
to ProReGen-VAE, while only conditioned on x1, the generator Gθmjr is expected to absorb the effect
of m(x1) and generate samples representative of the majority samples in the observed data. In the
meantime, a function x2 = m̂(x1) is estimated on the attribute values from majority samples.

Stage II: Learning the residual by expanding the c-GAN: Similar to the setting of c-VAE, we
now expand the generator Gθmjr with several additional layers, denoted as Gθres , starting with the
feature map produced by Gθmjr before the final activation layer. As illustrated in Fig. 2B, we expand
the discriminator with additional layers Dϕres in a mirror of the expanded generator network. Both
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Gθres and Dθres are conditioned on the residual γ = x2 − m̂(x1). The expanded networks are trained
on minority samples using the adversarial loss while freezing Stage-I network weights θmjr and ϕmjr:

min
θres

max
ϕres

{Eymjr,x1,γ∼pdata

[
logDϕmjr(Dϕres(ymnr, γ),x1)

]
+ Ez∼p(z),x1,γ∼pdata

[
log

(
1−Dϕmjr

(
Dϕres(ŷmnr, γ),x1)

)]
} (7)

where ŷmnr = Gθres(Gθmjr\σ(z,x1),x1, γ), z ∼ N (0, I) (8)
Similarly, with Equation (8), the expanded Gθres learns to use the residual attribute γ to change the
distribution of generated majority samples to one that aligns with the distribution of real minor-
ity images ymnr. At the same time, the expanded discriminator Dϕres is encouraged to change the
residual features on the real/generated minority sample in order to leverage the stage-I discriminator
Dϕmjr that has learned to work with the distribution of majority samples.

One difference between Equation (5) for ProReGen-VAE and Equation (8) for ProReGen-GAN is
the distribution over which the sample z is taken. This is inherently determined by the training loss
of the two models, where the likelihood loss of VAE is calculated over the posterior distribution of
z conditioned on an observed image (emphasizing instance-level reconstruction) vs. the adversarial
loss in GAN is calculated over the prior density of z (emphasizing distribution-level distance).

5 EXPERIMENTS AND RESULTS

Data: We consider Colored-MNIST (Lee et al., 2021), MNIST-Correlation (Mu & Gilmer, 2019),
and Corrupted-CIFAR10 (Hendrycks & Dietterich, 2019). We assume known labels of the attributes
that are correlated. For the two MNIST datasets, we curated high levels of correlation strengths at
95%, 98%, 99%, and 99.5%, where the % represents the percentage of majority training samples in
the training data. For Corrupted-CIFAR10 derived from natural images, we considered less extreme
correlation strengths of 70% and 80%. For each dataset, we included a balanced version without
any attribute correlations to both establish oracle attribute classifiers and establish a reference perfor-
mance for all models considered. Details of the dataset will be described in their respective sections
below, and test accuracies of the oracle classifiers for each dataset are presented in Appendix A.
Moreover, we present the training data distribution for each dataset in Appendix B.

Baselines: We considered c-VAE and c-GAN baselines with the following strategies for mitigating
attribute correlations: 1) naive, 2) re-weighting, achieved with upsampling minority samples using
the weighted random sampler and 3) pseudo-supervision on counterfactual generations, represented
by causal-cHVAE (Ribeiro et al., 2023) where a classifier is used to finetune the model in an op-
tional second-stage of counterfactual generation, and causal-GAN (Kocaoglu et al., 2017) where the
attribute classifier is incoporated in the end-to-end adversarial training. We present the architectural
details of all baselines and ProReGen in Appendix C.

Evaluation: We evaluated the performance of all DGMs in generating both majority and minority
samples. To generate with the trained DGMs, we sampled from z ∼ N (0, I) and generated a total
of 25,000 samples, with equal number of samples for each unique attribute combination, per dataset.
We evaluated generated samples using: 1) correctness, measuring the ratio of generations in which
the attributes evaluated by the oracle classifier match the intended attributes; 2) Fréchet Inception
Distance (FID) (Heusel et al., 2017), measuring the quality and diversity of generations by compar-
ing the representations (retrieved from InceptionV3 network) of the generated samples against a test
set of diverse real samples; and 3) coverage & density (Naeem et al., 2020), measuring the diversity
and fidelity, respectively, of generations compared with a test set of diverse real samples.

5.1 EXPERIMENTS & RESULTS ON COLORED-MNIST

Settings of Attribute Correlations: Colored-CMNIST (Lee et al., 2021) is a commonly-used
benchmark for synthesizing attribute correlations in the training data. It is an MNIST-variant with
a distinct majority color for each of the 10 digits (e.g., orange as a majority color for digit 1). This
creates a correlation between digit and color attributes, both discrete but non-binary. All baselines
as described in were considered in this dataset, with the exception of causal-GAN which was de-
signed to work with binary labels only in the original paper Kocaoglu et al. (2017). We consider
digit → color as the causal direction x1 → x2 for our experiments.
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Figure 3: A: Correctness and FID of majority and minority generations from ProReGen vs. baselines
for Colored-MNIST. B: Visual examples of minority generations at 99.5% correlation ratio.

Results and Analysis: We present some representative quantitative metrics and visual examples on
Colored-MNIST in Fig. 3. Complete results are included in Appendix F.1. As shown, ProReGen
(green) in general improved the correctness of minority generations in comparison to the naively
trained baseline (blue, significantly more in c-GAN), at comparable or slightly worsened quality
metrics. In comparison, while causal-cHVAE (red, the baseline that leverages pseudo-supervision)
also improved the correctness of minority generations, this improvement was obtained at the expense
of degraded correctness in majority generations, suggesting that the use of pseudo-supervision has
introduced trade-off in the correctness of majority vs. minority generations at higher correlation
strengths. ProReGen, in comparison, was relatively stable across correlation strengths for majority
generations. Note that the relatively strong quality metrics of causal-cHAVE may be due to its base
hierarchical VAE architecture that was different from the rest of the VAE models considered.

Re-weighting resulted in comparable correctness metrics in both majority and minority generations
in comparison to ProReGen. However, in both c-VAE and c-GAN, signs of overfitting could be
observed in minority generations in the re-weighted baseline (Fig. 3), and hence limited diversity
of its generations. In re-weighted c-VAE, the higher coverage of minority generations (Fig. 8 in
Appendix F.1) in comparison to ProReGen can seem counterintuitive. A potential reason for it was
overfitting to the limited training minority samples and hence being closer to the real data (and
sharper in perceptual quality) in re-weighted c-VAE, than the generations from learned distribution
in our approach, which were comparatively blur; thus, the coverage value, which was calculated
using nearest-neighborhood, resulted in higher value for re-weighted baseline. In re-weighted c-
GAN, this led to significant degradation in generation quality, and hence resulting in worse FID,
coverage, and density values, with a significant drop, as correlation increase (Fig. 3).

5.2 EXPERIMENTS & RESULTS ON MNIST-CORRELATION

Settings of Attribute Correlations: MNIST-Correlation (Mu & Gilmer, 2019) is another MNIST
variant where most of the even digits are clean and most of the odd digits include zigzag, hence
resulting in a correlation between attributes x1 = {even, odd} and x2 = {clean, zigzag}. We sim-
ilarly created correlation strengths at 95%, 98%, 99%, and 99.5% following (Goel et al., 2020).
Along with the information on presence / absence of zigzag, we also added the coordinates of
the end points of zigzag (mid-point of image in case of clean image) as additional feature at-
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Figure 4: A: Correctness and FID of majority and minority generations from ProReGen vs. baselines
for MNIST-Correlation. B: Visual comparison of minority generations at 99.5% correlation ratio.
In each image grid, the intended generation is zigzag-even on the top, and clean-odd for the bottom.

tributes in x2 to represent residual attributes that cannot be predicted from x1 but will contribute
to the generation of images. Additional details on this are included in Appendix C. We consider
even / odd → presence / absence of zigzag as the causal direction for our experiments.

Results and Analysis: We present quantitative results and visual examples for MNIST-Correlation
in Fig. 4, with complete results in Appendix F.2. Compared to naive c-VAE (blue), ProReGen-VAE
(green) was able to improve the correctness of minority generations, at some degradation in the cor-
rectness of majority generations and similar or slightly worsened quality metrics. In comparison,
causal-cHVAE (red) was inconsistent in improving the correctness of minority generation at more
significance deterioration of both majority correctness and FID metrics. Re-weighting (purple) de-
livered similar correctness in minority generations and quality metrics in majority generations, but
better majority correctness and worsened FID (reflecting diversity issue) in minority generations.

Compared to naively trained c-GAN (blue), ProReGen-GAN (green) significantly improved the
correctness of minority generations along with significantly improved FID in both generations with
moderate degradation of correctness in majority generations. Causal-GAN (red) was not successful
in improving the correctness of minority generations, with FID metrics similar to the naive baseline.
Reweighting (purple) improved correctness of minority generations with slight compromise in the
correctness of majority generations, but also worsened FID metrics.

5.3 EXPERIMENTS & RESULTS ON CORRUPTED-CIFAR10

Settings of Attribute Correlations: Finally, we adopted CIFAR10 (Krizhevsky et al., 2009) and
curated it following the practice in Hendrycks & Dietterich (2019) to create a correlation be-
tween object classes and image corruption types. More specifically, we considered five differ-
ent object classes, x1 = {car, bird, dog, horse, ship}, and applied a unique type of corruption,
x2 = {gaussian noise, shot noise, impulse noise, contrast, brightness}, respectively, to the majority
of the training samples per object class. The minority samples have remaining corruptions uniformly
sampled at random. We considered less extreme correlation strengths at the level of 70% and 80%.

Results and Analysis: We tested only ProReGen-GAN on this dataset due to quality issue (blurring
of corruption details) of VAE-based models on these natural images. Representative results in Fig.

8
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Figure 5: A: Correctness and density of generated images on Corrupted-CIFAR10. B: Visual exam-
ples of minority generations at 80% correlation ratio. In each image grid, the intended generation is
{car, impulse noise} on the top, and {horse, brightness} for the bottom.

Table 1: A comparison of progressive two-stage training vs. simultaneous training of gmjr and gres in
ProReGen-GAN for 95% correlation strength in Colored-MNIST

Correctness FID Coverage Density

Two-Staged Training Majority 0.9592 ± 0.004 16.9488 ± 2.3446 0.9003 ± 0.0275 0.7628 ± 0.0386

Minority 0.9256 ± 0.0257 17.2562 ± 7.8816 0.7519 ± 0.0903 0.6089 ± 0.1216

Single-Staged Training Majority 0.9289 ± 0.0369 29.0843 ± 6.3397 0.7636 ± 0.0216 0.5585 ± 0.0114

Minority 0.3557 ± 0.1689 65.0227 ± 12.3787 0.0432 ± 0.0335 0.0320 ± 0.0220

5 showed that ProReGen-GAN was able to improve the correctness of both minority and majority
generations, although at the expense of degration of image generation qualities.

5.4 ADDITIONAL ABLATION STUDIES

Effects of Progressive training: To demonstrate the benefit of the progressive two-stage training,
we performed an ablation of ProReGEN where the model architecture remained the same but gmjr
and gres were optimized simultaneous vs. progressively in two stages. As shown in Table 1, without
progress training, there was minimal to no effect on the correctness of majority generations but some
impact on its quality (e.g., a drop of 27% in density). The generation of minority samples however
was significantly worsened (e.g., a drop of 62% in correctness and nearly three times worse in FID).
We further demonstrate this with sample minority generations in Fig. 6 in Appendix.

Effect of assumed causal directions between attributes: We examined the effect of the assumption
of causal directions between attributes by inverting the causal direction digit → color to color →
digit for Colored-MNIST. We considered ProReGen-GAN for our analysis. We observed that the
performance with the inverted causal direction color → digit was suboptimal, with only 0.0811 ±
0.0127 correctness, on average, of minority generations vs. 0.9256 ± 0.0257, on average, with
digit → color. The correctness of majority generations was similar. This indicated that learning
the residual for digit conversion was much more difficult. We present the generation samples along
with additional results in Appendix E. This suggests that the difficulty, and hence performance of
residual generation task, is influenced by the causal direction assumed and should be used to design
the attribute causal direction for ProReGen in practice (unless the true causal direction is known).

6 CONCLUSION

We present ProReGen, a novel DGM-design that employs progressive training and leverages ma-
jority training samples to learn most part of the generation task while employing minority training
samples to only learn the residual information. We demonstrate its benefit in improving generation
correctness against the baselines using synthetic and natural images at different correlation ratios.
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REPRODUCIBILITY STATEMENT

We present the design of network architectures and training details used in our proposed method
in Appendix C. Moreover, we provide reference to the official code repositories employed for ex-
perimentation with two of our baselines in the same section. Moreover, we share the training data
distribution of the datasets used to present our results in Appendix B.
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Table 2: Test Accuracy of Oracle Classifiers for Colored-MNIST, MNIST-Correlation, and
Corrupted-CIFAR10

Oracle Classifier For Average Test Accuracy

Colored-MNIST Digit 0.958

Color 1.0

MNIST-Correlation Even/Odd Digit Type 0.965

Presence/Absence of Zigzag 1.0

Corrupted-CIFAR10 Object Type 0.849

Corruption Type 0.99

Table 3: Counts of Majority and Minority Samples Across Varying Levels of Correlation Strengths
Explored for Colored-MNIST. For the Balanced setting, we consider equal number of samples per
(digit, color) combination, i.e., around 550 samples per combination. The total number of unique
combinations is 100.

Correlation Strength Minority Majority
95% 2450 52552

98% 986 54014

99% 492 54510

99.5% 249 54751

Table 4: Counts of Majority and Minority Samples Across Varying Levels of Correlation Strengths
Explored for MNIST-Correlation. For the Balanced setting, we consider equal number of samples
per attribute combination, i.e., around 20,000 samples per combination. The total number of unique
combinations is 4.

Correlation Strength Minority Majority
95% 2104 40000

98% 816 40000

99% 404 40000

99.5% 200 40000

Table 5: Counts of Majority and Minority Samples Across Varying Levels of Correlation Strengths
Explored for Corrupted-CIFAR10. For the Balanced setting, we consider equal number of samples
per attribute combination, i.e., around 800 samples per combination. The total number of unique
combinations is 25.

Correlation Strength Minority Majority
70% 6000 14000

80% 4000 16000

A ORACLE PERFORMANCE FOR EACH DATASET

We present the performance oracle classifiers for Colored-MNIST, MNIST-Correlation, and
Corrupted-CIFAR10 in Table 2.

B TRAINING DATA DISTRIBUTION FOR EACH DATASET

We present the count of majority and minority training samples employed across each correlation
ratio for Colored-MNIST in Table 3, for MNIST-Correlation in Table 4, and for Corrupted-CIFAR10
in Table 5.
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Table 6: The architecture of expanded generator network for Colored-MNIST. Encoder or discrimi-
nator is a mirror of it. Here Cimg denotes the number of image channels and dt is the dimension of
γ.

Part Output Shape Layer Information
Input (B, Cimg + dt, H, W) –

Conv Block 1 (B, 64, H, W) Conv2d(Cimg + dt, 64, 3, 1, 1), GroupNorm(8, 64), ReLU
Conv Block 2 (B, 32, H, W) Conv2d(64, 32, 3, 1, 1), GroupNorm(8, 32), ReLU
Output Layer (B, Cimg, H, W) Conv2d(32, Cimg, 3, 1, 1)

Table 7: The architecture of expanded generator network for MNIST-Correlation. Encoder or dis-
criminator is a mirror of it. Here Cimg denotes the number of image channels and dt is the dimension
of γ.

Part Output Shape Layer Information
Input (B, Cimg + dt, H, W) –

Conv Block 1 (B, 64, H, W) Conv2d(Cimg + dt, 64, 3, 1, 1), GroupNorm(8, 64), ReLU
Conv Block 2 (B, 64, H, W) Conv2d(64, 64, 3, 1, 1), GroupNorm(8, 64)
Conv Block 3 (B, 32, H, W) Conv2d(64, 32, 3, 1, 1), GroupNorm(8, 32), ReLU
Conv Block 4 (B, 32, H, W) Conv2d(32, 32, 3, 1, 1), GroupNorm(8, 32)
Output Layer (B, Cimg, H, W) Conv2d(32, Cimg, 3, 1, 1)

C IMPLEMENTATION DETAILS

Expanded Network Architecture. We employ a stack of convolution and transposed convolution
layers to implement the c-VAE (Sohn et al., 2015) and follow DCGAN-like architectural setup for
c-GAN (Radford et al., 2015). For causal-cHVAE and causal-GAN, we follow their official code
repositories: Ribeiro et al. (2023) for causal-cHVAE and Kocaoglu et al. (2017) for causal-GAN.

In both c-VAE and c-GAN, since the residual effect generator only requires adjusting residual fea-
tures on images for which most of the generative factors have already been produced by the majority
DGM, the expanded layers are lightweight, comprising relatively low parameter count than the ma-
jority DGMs. Moreover, they are also designed such that they maintain the spatial dimension of the
input image (e.g., using convolutional operations with kernel = 3, stride = 1, padding = 1). We
present the details of their network architecture in Table 6-8.

Conditional Information γ. Residual (orthogonal) attribute γ = x2 − m(x1) is broadcasted to
match spatial size of the input and concatenated as additional channels to provide it as conditional
information to the expanded layers. When we have high-dimensional attribute x2, where only part of
it is predictable from x1, we predict the predictable dimensions by m(x1) to get γ. As implementa-
tion choice, we can then either keep the additional (unpredictable) dimensions as additional channels
or use them to manipulate (e.g., mask) predictable dimensions. We employ the latter approach for
MNIST-Correlation for ProReGen, where we mask the γ information using the information of line
joining the two end-points of zigzag. We employ the same approach in the encoder of naively-trained
conditional-VAE and its re-weighted version. However, employing such masking in naively-trained
conditional-GAN led to the model ignoring the even/odd label information, potentially due to the
discriminator relying on the now easier feature, zigzag (due to its masking). Therefore, we appended
the coordinate information as additional channels during conditioning in conditional-GAN.
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Table 8: The architecture of expanded generator network for Corrupted-CIFAR10. The discrimina-
tor network is a mirror of it. Here Cimg denotes the number of image channels and dt denotes the
dimension of γ and x1, which are the same value.

Part Output Shape Layer Information

Residual Block 1 (B, Cmid, H, W)

Concatenate hmjr, γ,x1 along channel dim
Conv2d(Cimg + 2dt, Cmid, 3, 1, 1), GroupNorm(8, Cmid), ReLU
Conv2d(Cmid, Cmid, 3, 1, 1), GroupNorm(8, Cmid)
Skip connection: Conv2d(Cimg, Cmid, 1, 1, 0) (or Identity if channels match)
Element-wise addition (residual connection)

Residual Block 2 (B, Cmid2, H, W)

Concatenate Residual Block 1 output, γ,x1 along channel dim
Conv2d(Cmid + 2dt, Cmid2, 3, 1, 1), GroupNorm(8, Cmid2), ReLU
Conv2d(Cmid2, Cmid2, 3, 1, 1), GroupNorm(8, Cmid2)
Skip connection: Conv2d(Cmid, Cmid2, 1, 1, 0) (or Identity if channels match)
Element-wise addition (residual connection)

Output Layer (B, Cimg, H, W) Conv2d(Cmid2, Cimg, 3, 1, 1)

Figure 6: Sample majority and minority generations with two-stage training of gmjr and gres vs.
single-stage training for 95% correlation ratio in Colored-MNIST.

D EFFECT OF TWO-STAGE TRAINING

Two-stage training of gmjr and gres instead of single-stage training is beneficial for the quality of
majority generations and overall success (correctness, FID, coverage, and density) of minority gen-
erations. We present visual examples of generations in Fig. 6.
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Figure 7: Examination of the effect of causal direction on the residual generation task for ProReGen-
GAN, considering 95% correlation ratio in Colored-MNIST. Real minority samples used for training
gres are shown in left with corresponding majority (middle) and minority (right) generation samples.
We employ the causal direction digit → color for Colored-MNIST in our main experiments and
present the sample results in A. We explore the effect of inverting the causal direction to color →
digit in B, C, and D, where the roles of x1 and x2 are reversed.

E EFFECT OF ASSUMPTION OF CAUSAL DIRECTION

We present the comparison of generated majority and corresponding minority samples when con-
sidering causal direction x1 → x2 vs. x2 → x1 in Fig. 7. We consider ProReGen-GAN to present
our analysis.

In Fig. 7-B, we simply invert the causal direction, while employing the same additive formulation
for ymnr as in our main experiments and keeping the network architecture style for gres consistent.

We further experiment with the general formulation ymnr = gres(hmjr(x1),x1, γ) using: 1) the same
network architecture design for gres as in Fig. 7-B, and 2) ResNet-style architecture design for gres
such that the residual operation occurs implicitly within the network, to assess their potential benefit
for the residual generation task with the inverted causal direction color → digit. However, no
noticeable improvement was observed as shown in Fig. 7C-D.
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Figure 8: Comparison of coverage and density metric values of ProReGen-VAE against the baselines
for Colored-MNIST dataset.

F ADDITIONAL RESULTS

F.1 COLORED-MNIST

We present the comparison of coverage and density metric values of ProReGen against the baselines
in Fig. 8 and Fig. 9.

F.2 MNIST-CORRELATION

We present the comparison of coverage and density metric values of ProReGen against the baselines
for MNIST-Correlation in Fig. 10 and Fig. 11.

F.3 CORRUPTED-CIFAR10

We present the comparison of coverage metric value of ProReGen against the baselines for
Corrupted-CIFAR10 in Fig. 12.

G LLM USAGE

We used the LLM tool, ChatGPT, at limited capacity. ChatGPT was leveraged for improving the
quality of sentences to provide better readability and for grammatical corrections. Moreover, we
utilized it to generate some portions of the graph creation scripts.
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Figure 9: Comparison of coverage and density metric values of ProReGen-GAN against the base-
lines for Colored-MNIST dataset.

Figure 10: Comparison of coverage and density metric values of ProReGen-VAE against the base-
lines for MNIST-Correlation dataset.
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Figure 11: Comparison of coverage and density metric values of ProReGen-GAN against the base-
lines for MNIST-Correlation dataset.

Figure 12: Comparison of coverage metric value of ProReGen-GAN against the baselines for
Corrupted-CIFAR10 dataset.
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