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Abstract001

Text-to-image generation models have attracted002
a lot of attention because of their ability to cre-003
ate images from text prompts. However, nat-004
ural language prompts are often concise and005
ambiguous, making it difficult to consistently006
produce high-quality images that meet user ex-007
pectations. In this work, we investigate the008
capabilities of large language models in image009
generation and introduce a method, Prompt Op-010
timizer, which utilizes large language models011
for prompt augmentation. Using the Pick-a-Pic012
and CoCo datasets, our experiments employ013
an improved aesthetic predictor and PickScore014
as evaluation metrics to evaluate image quality015
and text-image relevance. Compared to direct016
generation and other text-to-image prompt gen-017
eration methods, our method has seen signifi-018
cant improvements in relevance and generation019
quality.020

1 Introduction021

In recent years, with the continuous advancement022

of text-to-image generation models and natural lan-023

guage processing technologies, models such as Sta-024

ble Diffusion (Rombach et al., 2022) and DALL-025

E (Ramesh et al., 2022) have demonstrated the026

ability to generate rich and diverse images from027

user-provided text prompts. This development not028

only lowers the cost of artistic creation but also029

offers large-scale, high-quality datasets for down-030

stream scientific research tasks (e.g., (Kirstain et al.,031

2023)), particularly in the field of computer vision.032

In the image generation process, users first pro-033

vide text prompts to describe the image they wish034

to create. They then adjust model hyperparameters035

and obtain different outputs by modifying random036

seeds. However, the inherent ambiguity of natu-037

ral language can make it challenging, especially038

for novice users, to craft effective prompts that039

guide the model in generating the desired images.040

Finding the right keywords often requires extensive041

trial and error to achieve high-quality results. To 042

address this, previous studies have offered guide- 043

lines for text-to-image generation models (Liu and 044

Chilton, 2022), emphasizing the importance of fo- 045

cusing on the main content of the prompts. 046

Previous studies have introduced various tools to 047

assist users in generating prompts, including auto- 048

matic prompting techniques (Wang et al., 2023) and 049

systems like PromptMagician (Feng et al., 2023). 050

However, these methods often require users to per- 051

form additional steps, which inevitably increases 052

the learning curve and the overall complexity for 053

users. 054

To assist users in generating more effective 055

prompts, we proposed Prompt Optimizer, a text 056

prompt generation method that aligns with the 057

guidelines for text-to-image generation. This ap- 058

proach focuses on the core content of the prompts. 059

First, a large language model is employed to ex- 060

pand upon content that is either vaguely expressed 061

or omitted when users provide natural language 062

input. Then, the key elements are extracted using 063

a content extraction technique. Our method is in- 064

spired by the Chain-of-Thought framework of large 065

language models (Wei et al., 2022). By utilizing a 066

series of intermediate reasoning steps, we leverage 067

the prior knowledge of the model to enhance both 068

the accuracy and effectiveness of the generated 069

prompts. Our contributions are as follows: 070

• We analyzed the correlation between prompt 071

words and natural language elements re- 072

quired by image generation models, identi- 073

fying which components of natural language 074

provide the most significant support for image 075

generation tasks. 076

• We proposed a prompt optimization method 077

for image generation models based on LLMs, 078

enabling the automatic refinement of original 079

prompts, including natural language elements. 080
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Figure 1: Optimization process of the prompt using our method, where missing contents were supplemented.

2 Related Work081

Chain-of-thought The original Chain-of-Thought082

approach aims to enhance the performance of tasks083

related to arithmetic, common sense, and sym-084

bolic reasoning (Wei et al., 2022). Building on085

this, the Tree of Thoughts model (Yao et al., 2024)086

introduces various reasoning pathways and self-087

evaluation mechanisms, further improving perfor-088

mance in more complex tasks that demand global089

backtracking. Additionally, Sparks of Artificial090

General Intelligence (Bubeck et al., 2023) (Feng091

et al., 2024)highlights GPT-4’s ability to excel not092

only in language but also in solving novel, challeng-093

ing tasks across diverse domains such as mathemat-094

ics, coding, vision, medicine, law, and psychol-095

ogy—without requiring any specialized prompts.096

Remarkably, GPT-4’s performance in these areas097

approaches human-level capabilities.(Achiam et al.,098

2023) This suggests that it is feasible to generate099

prompts using the GPT-4 model with the Chain-of-100

Thought approach.101

Prompt Optimization In PromptMagician(Feng102

et al., 2023), the authors propose an interactive sys-103

tem to assist users in optimizing input prompts104

for text-to-image generation models. The system105

retrieves similar images and prompt words from106

a large-scale dataset, DiffusionDB(Wang et al.,107

2022), and identifies important keywords. How-108

ever, in practical use, this method does not fully109

simplify the image generation process, as it still110

requires continuous human-system interaction to111

optimize the generated results.112

RePrompt(Wang et al., 2023) introduces an au-113

tomatic method that similarly retrieves images and 114

prompt words from DiffusionDB and identifies 115

relevant keywords. However, this approach fo- 116

cuses primarily on the emotional expression within 117

prompts and does not emphasize the key concepts 118

highlighted in the Design Guidelines for Prompt 119

Engineering in Text-to-Image Generative Models. 120

In our approach, we place significant emphasis 121

on automated generation and refinement of key- 122

words to optimize the quality of generated images. 123

Our method automates the identification and en- 124

hancement of essential keywords, allowing the 125

prompt construction process to be both efficient 126

and user-friendly. 127

3 Methodology 128

We begin by outlining our research content and the 129

overarching methodology that guides our approach. 130

Following this, we present a detailed introduction 131

to our studies and the technical methods used our 132

work. 133

3.1 Research Content 134

This study explores the potential of leveraging large 135

language models to optimize and enhance text-to- 136

image generation, addressing key challenges in pro- 137

ducing high-quality images based on natural lan- 138

guage prompts. Our research encompasses several 139

main areas: 140

First, we analyze the limitations of current text 141

prompts in image generation, highlighting how 142

overly concise or incomplete prompts can affect 143

the quality, relevance, and consistency of gener- 144
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ated images. This analysis lays the groundwork for145

developing an optimization framework. Based on146

these insights, we propose the Prompt Optimizer147

method, which uses the reasoning capabilities of148

large language models to automatically supplement149

and refine prompts. This method decomposes the150

prompt optimization process into multiple subtasks,151

including key information extraction, missing con-152

tent completion, and structured prompt generation,153

to achieve progressive improvement of prompts.154

To verify the versatility of Prompt Optimizer,155

we applied this method across different text-to-156

image generation models (e.g. Stable Diffusion157

and DALL-E 2) to examine its adaptability and ro-158

bustness. These multi-model experiments confirm159

the method’s wide applicability and demonstrate160

its effectiveness across various architectures. Ad-161

ditionally, we conducted systematic experiments162

using the Pick-a-Pic dataset, quantifying the im-163

pact of Prompt Optimizer on image aesthetics and164

text-image relevance using evaluation metrics such165

as Improved Aesthetic Predictor and PickScore.166

Finally, we explored the potential applications167

of Prompt Optimizer in areas such as digital art,168

content creation, and virtual environment design,169

and discussed future research directions, including170

further improvements in adaptability and testing171

across broader datasets and generation models.172

3.2 Methodology173

In response to the first question, previous studies174

have highlighted that the subject and style of the im-175

age are the keywords with the most significant im-176

pact on the quality of the generated images(Liu and177

Chilton, 2022). These keywords not only influence178

the visual characteristics of the output, but also179

determine whether the generated image accurately180

reflects the user’s intent. However, a potential chal-181

lenge arises when users, especially those without182

domain-specific knowledge, attempt to generate183

images using natural language. Due to the inherent184

ambiguity and variability of natural language(Beck185

et al., 2020), the prompts often contain only a sub-186

set of the essential keywords, which can result in187

the omission of critical information necessary for188

high-quality generation.Previous experiments fre-189

quently relied on users to evaluate the quality of190

the generated images and provide feedback, which191

was then used to refine and improve the subsequent192

prompts.193

To describe our method, we divided the prompt194

optimization task into the following tasks:195

In the Task 1, Our method processes the original 196

prompt in this step, yielding two outputs: the first is 197

the extracted original content, denoted as R′
j , and 198

the second is a vector, η, which indicates whether 199

the original prompt includes the corresponding ele- 200

ments.: 201

(R′
j , η) = E(Pj , IP ) (1) 202

In this formula, E represents the extraction pro- 203

cess. The input consists of the j-th original prompt 204

P from the dataset and the task-specific prompt 205

IP . The extraction process yields two outputs: a 206

4-dimensional vector η, where a value of 0 in any 207

dimension indicates that the corresponding content 208

was not extracted, and the extracted textual content 209

R′
j , representing the refined result. 210

In addition, we instruct the LLM to process and 211

introduce the extracted content. The response gen- 212

erated by the large model at this stage is not directly 213

included in the final optimized prompt. Instead, the 214

Chain-of-Thought method is employed to leverage 215

the contextual and prior knowledge of the large 216

model. The corresponding formula is as follows: 217

Y = LLM(X,C) = argmax
y∈Y

P (y | X,C) (2) 218

The equation describes how a large language 219

model (LLM) leverages both the input X and the 220

context C to generate the output Y . Specifically, 221

the model seeks to maximize the conditional proba- 222

bility P (y | X,C) over all possible outputs y ∈ Y . 223

Here, X represents the current input, C denotes the 224

contextual information, and Y is the set of all po- 225

tential outputs. The final output Y is determined as 226

the one that achieves the highest conditional prob- 227

ability, showcasing the model’s ability to utilize 228

prior knowledge and contextual understanding for 229

effective generation. 230

In the Task 2, we instruct the LLM to supple- 231

ment any potentially missing content based on the 232

previously extracted information. The correspond- 233

ing formula is as follows: 234

Rj = R′
j + LLM(IP + η(Pj)) (3) 235

Among them, R′
j represents the extracted con- 236

tent, while η is a 4-dimensional vector indicating 237

whether each component has been successfully ex- 238

tracted. If any component is missing, the large 239

language model will generate the missing content 240

based on the designed prompt IP , and combine it 241
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with the originally extracted content R′
j to produce242

the response Rj .243

In the Task 3, We extract the response Rj gener-244

ated in the previous step and derive the prompt Pj ,245

which is used for image generation:246

Pj = E(Rj , IP ) (4)247

Figure 2 illustrates the process by which our248

method supplements and optimizes the original249

prompt to produce a more comprehensive and ef-250

fective input for image generation. In the initial251

state, the prompt provided by the user often con-252

tains only a brief description of the main subject of253

the image, lacking details about other important as-254

pects that contribute to the image’s overall quality255

and relevance.256

To address these limitations, our approach uti-257

lizes a large language model to automatically an-258

alyze and enrich the prompt by identifying and259

incorporating missing elements. Liu et al.(Liu and260

Chilton, 2022) suggest that when generating an im-261

age, it is important to focus on key aspects such as262

the subject, theme, style, and other relevant details.263

Regarding the determination of the impact of264

each component of the prompt on the quality of the265

final generated image, we propose the following266

formula:267

Q∗ = argmaxwQ(S, F,B,A) (5)268

Among them, Q represents the quality score of269

the generated image, while S, F , B, and A denote270

the impact of prompt components related to the271

subject, features, background, and artistic style, re-272

spectively, on the quality of the generated image.273

The variable w is a 4-dimensional vector represent-274

ing the selection strategy for the prompt compo-275

nents. By maximizing Q, we determine whether276

to retain the corresponding content in the gener-277

ated prompt. The definition of w is given by the278

following formula:279

w = [ws, wf , wb, wa], wi ∈ {0, 1} (6)280

The value of wi is either 0 or 1, representing281

whether this component is retained in the final se-282

lection strategy.283

After defining the task and the selection strategy,284

we proceed to the experimental section to validate285

our approach and determine the specific values of286

the selection strategy.287

4 Experiment 288

4.1 Setup 289

Dataset. In this study, we selected the Pick-a-Pic, 290

COCO 2014, and COCO 2017 datasets for exper- 291

imentation. The Pick-a-Pic dataset is specifically 292

designed to evaluate text-to-image generation mod- 293

els, providing pairs of descriptive text prompts and 294

corresponding images across various categories. 295

Additionally, it includes a scoring system called 296

PickScore, which enables objective comparison 297

of the quality of generated images and their rele- 298

vance to the provided prompts. The COCO 2014 299

and COCO 2017 datasets are extensively used in 300

computer vision research, containing over 200,000 301

diverse images across multiple categories, includ- 302

ing people, animals, scenery, and transportation. 303

These datasets offer a wide range of scene and ob- 304

ject types, which are essential for improving the 305

generalization ability of image generation models. 306

Text-to-image model. We chose Stable Dif- 307

fusion 3.0 (SD 3.0) as the generative model for 308

this study. SD 3.0, an advanced diffusion model, 309

demonstrates strong generative capabilities, pro- 310

ducing high-quality and detailed images, particu- 311

larly in handling complex scenes and fine textures. 312

The model supports multimodal inputs, including 313

text, images, and labels, enabling efficient condi- 314

tional image generation. This makes it well-suited 315

for tasks such as text-to-image generation. Ad- 316

ditionally, its open-source nature allows for cus- 317

tomization and optimization according to specific 318

requirements, offering high flexibility and scalabil- 319

ity. 320

The entire experiment was conducted using the 321

Stable Diffusion 3.0 model. For all generated im- 322

ages, we maintained consistent parameters, includ- 323

ing the same random seed, iteration count, and 324

CFG ratio, while generating images at a resolu- 325

tion of 1024x1024. This approach ensures that the 326

prompt is the sole variable in the image generation 327

process. 328

In parallel, we also selected SD 2.0 and DALL-E 329

models for small-scale experiments to assess the ro- 330

bustness of our method across different generative 331

models. 332

4.2 Result 333

For this study, we selected three key evaluation 334

metrics to assess the quality and relevance of the 335

images generated. The first metric, PickScore, is 336

included in the Pick-a-Pic dataset and serves as 337
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1

Origin Prompt

Bill Gates swim in the 
Yellow River 

User Input01 LLM03

Bill 
Gates

Swim

Subject

Feature

BackgroundYellow 
River

Bill Gates: Tech innovator, Microsoft co-
founder, philanthropist, billionaire

Yellow River: China's second-longest river, 
source of civilization, fertile, powerful

02

02
 Bill Gates, swims 

joyfully, Yellow River,  
scene,  adventurous  

lively, river, flows 
calmly, reflecting the 

end of summer, 
background,mountai
ns, clear blue skies

Output04

 Determine the subject, feature, 
and background...

Have a brief introduction..

Other Tasks02

Figure 2: This figure illustrates how we leverage a large language model to optimize the original prompt. The
original prompt contains only partial information. The "Introduce" task involves applying the Chain-of-Thought
approach, after which the prior knowledge embedded in the large language model is used to supplement and refine
the original prompt, enhancing its completeness and relevance.

an objective measure of both image quality and338

relevance to input prompts. PickScore allows for339

a standardized assessment of how well the gener-340

ated images align with the expectations set by the341

prompt, making it an ideal metric for evaluating342

prompt-guided image generation models.343

The second metric that we used is the improved344

aesthetic predictor(Dhar et al., 2011), which is345

specifically designed to evaluate the aesthetic qual-346

ity of the generated images. Unlike purely objec-347

tive measures, this predictor focuses on subjective348

aspects of image quality that are often crucial to349

human visual perception. By considering these fac-350

tors, the Improved Aesthetic Predictor provides a351

nuanced understanding of the aesthetic appeal of352

generated images, making it a valuable tool in the353

context of text-to-image generation.354

We chose Inception Score(Barratt and Sharma,355

2018)as the scoring criterion primarily because it356

is concise and effective. The IS score evaluates357

the quality and diversity of generated images by358

calculating their classification probabilities in a pre-359

trained Inception network. A higher IS value indi-360

cates that the generated image has strong category361

information and clarity.362

The first step of the experiment is to identify363

the specific keywords that need to be emphasized364

when using a large language model for prompt 365

completion. For example, consider the formula we 366

provided earlier: 367

Q∗ = argmaxwQ(S, F,B,A) (7) 368

In the above equation, to determine the content 369

that should be included in the optimal prompt, we 370

need to systematically remove the subject, features, 371

background, and artistic style information from the 372

prompt. This allows us to test the impact of each 373

content component on the quality of the generated 374

image. To achieve this, we conducted a small-scale 375

experiment, selecting 500 random prompts from 376

the Pickapic dataset for comparative analysis. The 377

results are shown in Table 1: 378

As can be seen in the table 1, the different prompt 379

words included in the prompt have a noticeable im- 380

pact on the generated results. Based on our scoring 381

criteria, we define the quality of the image genera- 382

tion results from three perspectives: the correlation 383

with the original prompt, represented by Pickscore; 384

the overall quality of the image generation, repre- 385

sented by the average values of IPA and IS; and the 386

stability of image generation, represented by the 387

variance of the IPA and IS scores. 388

From this column of results, it can be seen that 389

in the Pickscore (representing the first column), 390
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Table 1: This table represents the impact of different contents in the prompt on the quality of image generation,
where S, F, B, and A represent the subject, features, background, and artistic style, respectively.

Datasets Methods Scores
Pickscore IPA Ave IS Ave IPA Var IS Var Q Value

PickaPic Origin / 15.1924 10.4584 103.2728 32.7592 /
F+B+A 0.4759 19.2023 10.5711 121.9197 35.0822 6.65
S+B+A 0.4758 19.2949 10.5845 117.5262 31.1142 7.14
S+F+A 0.4845 18.2441 9.8058 125.6750 31.8859 5.89
S+F+B 0.4296 18.8345 11.4459 93.2812 36.5210 7.26
S+F+B+A 0.4887 18.5619 10.3748 131.6659 32.7690 5.99

prompts without background-related content show391

a relative decrease of about 10% in relevance com-392

pared to prompts with other content. However,393

the stability of the generated content has improved394

significantly. Specifically, the variance of IPA in395

the S+F+B+A prompt, which includes all content,396

decreased from 131.66 to 93.28 after removing397

background-related content, representing a reduc-398

tion of approximately 29%.399

To comprehensively consider these factors, we400

propose a combined evaluation metric for image401

generation quality.402

Q = P (IPA+ IS − α (V ar(IPA) + V ar(IS)))
(8)403

This formula allows us to evaluate the optimal404

generation method by considering the prompt rele-405

vance, image quality, and stability of the generation406

process.407

Here, we aim to balance the quality and stabil-408

ity of image generation. To achieve this, we set409

the weight α to 0.1, which allows a rough balance410

between these parameters of the same order of mag-411

nitude, ensuring that the weight values of quality412

and stability are appropriately balanced in the for-413

mula.414

The last column of the table 1 represents the415

result of the calculation Q of the formula. From416

the value Q, we can determine the comprehensive417

evaluation of the impact of each relevant content418

in the prompt on the generated image. After con-419

sidering the quality, stability, and relevance of the420

generation, we have concluded that the method421

of automatically completing prompts by removing422

artistic style-related content, namely the S+F+B423

prompts, is the most effective.424

The results of our experiments on the three425

datasets, PickaPic, COCO2014, and COCO2017,426

are shown in Table 2:427

The following results in table 2 are worth noting: 428

Using the previously defined formula, we com- 429

prehensively evaluate the correlation and aesthetic 430

quality of the generated images, with the results 431

presented in the final column, Q. Since Pickscore 432

requires two images and a prompt as input parame- 433

ters, it is not possible to obtain a rating when using 434

the original image and prompt as inputs. There- 435

fore, no Pickscore score is available for the original 436

prompt, and correspondingly, the Q value is also 437

unavailable for the original prompt, as it requires a 438

Pickscore for correlation evaluation. Regarding the 439

evaluation metric Q, our method significantly out- 440

performs traditional model training methods, such 441

as PromptMagician, across three different datasets. 442

The difference between the two ranges from 6.36 to 443

7.43 on the PickaPic dataset used for image gener- 444

ation, representing a 16% improvement. The effect 445

is even more pronounced on the COCO2014 and 446

COCO2017 datasets, with the mean Q increasing 447

from 2.58 to 7.92. 448

In Figure 3, we ran several experiments with a 449

single prompt, and the results show that while some 450

of the images generated by the Prompt Optimizer 451

still had negative IAP scores, the overall area of the 452

score was still better than the original method. 453

Regarding the quality of image generation, it can 454

be observed from the IPA dataset that our genera- 455

tion method significantly outperforms the original 456

dataset. The improvement in aesthetic predictor 457

scores for the three datasets were 23%, 18%, and 458

19%, respectively. Although the PromptMagician 459

generation method achieves higher IPA scores, its 460

average Pickscore is only 43% of our method’s 461

average. This suggests that PromptMagician is con- 462

strained by the Diffusion DB dataset used for train- 463

ing, and after optimizing the original prompt, the re- 464

sulting content may deviate considerably from the 465

original prompt.This trend is particularly evident 466
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Table 2: This table compares the performance of our method with other prompt generation methods and raw prompts
across multiple datasets.

Datasets Methods Scores
Pickscore IPA Ave IS Ave IPA Var IS Var Q Value

PickaPic Origin / 15.1924 10.4584 103.2728 32.7592 /
PromptMagician 0.2618 28.5341 9.7634 111.3139 26.6703 6.36
PromptOptimizer 0.4296 18.8345 11.4459 93.2812 36.5210 7.43

CoCo2014 Origin / 9.5477 18.9431 49.2601 88.7491 /
PromptMagician 0.1736 25.2156 15.1639 91.8183 77.3831 2.28
PromptOptimizer 0.4517 11.2882 19.1551 44.3437 88.3283 7.72

CoCo2017 Origin / 10.4565 18.1300 46.2994 77.1154 /
PromptMagician 0.1395 24.4401 14.0787 94.0516 76.2918 2.78
PromptOptimizer 0.4434 12.4577 18.1022 45.4382 75.2305 8.13

Figure 3: Comparison of Improved Aesthetic Predictor
scores between the two methods, with all images ranked
in ascending order of score.

across different datasets. Although the datasets we467

selected provide both images and annotated text,468

there is a fundamental difference between the Pick-469

aPic, COCO2014, and COCO2017 datasets.470

The underlying reasons for this phenomenon471

may include several factors. First, the elevated472

average aesthetic score suggests an improvement473

in the perceived quality of individual images; how-474

ever, the substantial increase in variance signals a475

loss in generation stability. This instability is likely476

due to the addition of generic or imprecise style477

prompts that may not perfectly align with the con-478

tent and context of every original prompt. Such479

prompts, while enhancing aesthetic appeal in some480

cases, may conflict with the intended subject or481

theme, leading to unpredictable outcomes.482

Additionally, the decline in PickScore points483

to a potential reduction in correlation between484

the generated images and their original prompts.485

This reduction may be a result of “priority interfer- 486

ence,” where the focus on stylistic elements over- 487

shadows or dilutes the content-specific guidance 488

intended by the user. Since these artistic style 489

prompts are automatically generated by the large 490

language model—rather than being tailored by the 491

user—their influence can sometimes dominate over 492

the original content, creating a dissonance between 493

the image and prompt. As a result, although the 494

generated image might be visually appealing, it 495

may not accurately reflect the user’s original inten- 496

tion, leading to a lower PickScore. 497

Another contributing factor could be the inherent 498

subjectivity associated with artistic styles. Artis- 499

tic styles often encompass broad interpretations, 500

making it challenging for the model to apply a 501

style uniformly across different content types with- 502

out specific guidelines. When the model applies a 503

certain style automatically, it may accentuate par- 504

ticular visual aspects that do not necessarily align 505

with the user’s intended message, further impact- 506

ing prompt-image alignment. This subjective ap- 507

plication of style could explain the fluctuation in 508

aesthetic scores and the decreased consistency in 509

image generation. 510

In summary, while artistic style prompts can 511

enrich the aesthetic appeal of generated images, 512

they introduce challenges regarding consistency 513

and prompt fidelity. The high aesthetic scores ac- 514

companied by increased variance and decreased 515

PickScore highlight a trade-off between achieving 516

visual quality and maintaining prompt alignment. 517

These results suggest that when using automati- 518

cally generated artistic styles, careful consideration 519

is needed to balance aesthetic enhancement with 520

the retention of core prompt content, ensuring that 521
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Table 3: This table compares the performance of our method with other prompt generation methods and raw prompts
across multiple datasets.

Datasets Methods Scores
Pickscore IPA Ave IS Ave IPA Var IS Var Q Value

PickaPic Origin / 10.1653 10.0045 105.9577 33.2099 /
PromptMagician 0.2360 21.2009 8.5963 105.2533 28.1316 /
PromptOptimizer 0.3837 14.9215 11.0820 83.3579 33.4278 /

CoCo2014 Origin / 8.5712 17.9607 31.9323 88.0926 /
PromptMagician 0.1499 18.3210 12.4703 76.6914 68.1638 /
PromptOptimizer 0.4455 10.7920 17.2218 35.7865 85.0113 /

the generated image remains true to the user’s orig-522

inal intention.523

4.3 Robustness Experiment524

To further verify the robustness of the Prompt Op-525

timizer, we conducted small-scale experiments on526

DALL-E 2. The experimental results are shown527

in Table 3. It can be seen from the results that528

although there are differences in the image genera-529

tion mechanisms of these models, the Prompt Opti-530

mizer can always improve the generation quality of531

each model. The IAP scores have been significantly532

improved compared with the original prompts in533

both generation methods using two datasets, and534

the IS scores also have certain improvements on535

the Pickapic dataset. This multi-model adaptability536

demonstrates that the optimization strategy of the537

Prompt Optimizer does not rely on any specific gen-538

eration model but can be effective across various539

architectures.540

Prompt Optimizer demonstrates strong perfor-541

mance in terms of generation consistency and sta-542

bility. We conducted variance analysis on the im-543

ages generated by each experimental group to as-544

sess fluctuations in generation quality. The results545

indicate that the variance in image scores is signifi-546

cantly reduced following optimization with Prompt547

Optimizer, resulting in more stable outputs across548

various generation tasks. This implies that Prompt549

Optimizer not only optimizes image quality but550

also enhances the stability of the generation results,551

ensuring more consistent outcomes when generat-552

ing images from the same prompt multiple times.553

Although our method performs well in terms of554

scoring, it still sometimes achieves lower scores,555

which may be due to the following reasons. Due556

to constraints in training data, no current method557

can fully determine whether a generated image A558

is definitively superior to image B. Image detection559

algorithms can compare image quality by analyzing560

key factors such as distortion and gradient. 561

5 Conclusion 562

This paper proposes a new method Prompt Opti- 563

mizer that leverages the reasoning capabilities of 564

large language models to optimize user prompts. 565

This includes extracting the information provided 566

by the user and supplementing any missing parts 567

of the prompt based on relevance. We randomly 568

selected a subset of the Pick-a-Pic dataset to evalu- 569

ate our method, using two metrics: PickScore and 570

the Improved Aesthetic Predictor, to assess both 571

effectiveness and stability. The results demonstrate 572

that our method can effectively and consistently 573

optimize the original prompts provided by users, 574

while also validating the reasoning abilities of large 575

language models in the context of image generation. 576

This provides new insights into the application of 577

large language models in the field of computer vi- 578

sion. 579

6 Limitation 580

Due to the limited availability of diverse datasets 581

and standardized evaluation metrics in the field of 582

image generation, verifying the robustness of our 583

method across various datasets remains challeng- 584

ing. The existing datasets often lack the breadth 585

and variety necessary to test how well the method 586

generalizes to different types of prompts, content, 587

and styles. Although the subset we used for eval- 588

uation is derived from the original dataset’s train- 589

ing set, there is a potential bias introduced by the 590

specific image generation techniques and stylis- 591

tic choices within this dataset. Such biases may 592

impact the generalizability of the evaluation met- 593

rics, limiting our ability to conclusively measure 594

the robustness of our method across unseen data 595

distributions. 596
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