Environment Inference for Learning Generalizable
Dynamical System

Shixuan Liu' Yue He?* Haotian Wang! Wenjing Yang! Yunfei Wang?
Peng Cui**  Zhong Liu®
LCollege of Computer Science and Technology, National University of Defense Technology
2School of Information, Renmin University of China
3College of Systems Engineering, National University of Defense Technology
4Department of Computer Science and Technology, Tsinghua University
SLaboratory for Big Data and Decision, National University of Defense Technology
szftandy@hotmail.com, hy865865Q@gmail . com
{wanghaotianl3,wenjing.yang,wangyunfei,liuzhong}®Onudt.edu.cn
cuip@tsinghua.edu.cn

Abstract

Data-driven methods offer efficient and robust solutions for analyzing complex
dynamical systems but rely on the assumption of L.I.D. data, driving the develop-
ment of generalization techniques for handling environmental differences. These
techniques, however, are limited by their dependence on environment labels, which
are often unavailable during training due to data acquisition challenges, privacy
concerns, and environmental variability, particularly in large public datasets and
privacy-sensitive domains. In response, we propose Dynalnfer, a novel method that
infers environment specifications by analyzing prediction errors from fixed neural
networks within each training round, enabling environment assignments directly
from data. We prove our algorithm effectively solves the alternating optimization
problem in unlabeled scenarios and validate it through extensive experiments across
diverse dynamical systems. Results show that Dynalnfer outperforms existing envi-
ronment assignment techniques, converges rapidly to true labels, and even achieves
superior performance when environment labels are available.

1 Introduction

Data-driven approaches, especially neural networks, offer a powerful alternative or complement
to traditional physics-based methods for understanding complex dynamical systems [4]]. Neural
network-based emulators are particularly valuable for their ability to provide fast, cost-effective
approximations of complex simulations [9, [22]], making them especially useful in scenarios where
the underlying physics are poorly understood or misinterpreted, or where external disturbances are
difficult to model [43.[34]. These emulators are adept at handling large sets of variables and solving
problems that are challenging for conventional solvers. Recent advancements in deep learning, along
with innovative methods for modeling temporal and spatio-temporal systems, have led to a significant
increase in applications across various fields, ranging from simple Hamiltonian dynamics to more
complex areas like fluid dynamics and climatology [32,[7].

While recent advancements have shown promising results, they often rely on the assumption that
abundant, static data are available to satisfy the independent and identically distributed (IID) hypothe-
sis. However, this assumption is frequently violated in practice due to challenges in data collection,
associated costs, and environmental changes driven by exogenous factors [24} 26]]. Recent work

*Corresponding authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



in dynamical systems addresses this by introducing a multi-environment setting, where trajectories
follow distinct dynamics across environments. These studies developed generalization methods that
learn a shared global component while accounting for environment-specific variations, avoiding the
limitations of underperforming averaged models [43}[17].
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Figure 1: Environment labels, required by current generalization methods, are often unavailable.

Nevertheless, a key limitation of many generalization techniques is their reliance on partitioning
datasets across distinct domains or environments, which are assumed to capture underlying variations.
These environment labels enable algorithms to identify and exploit both similarities and differences
across environments. However, obtaining such environment labels during training is often challenging
due to data acquisition difficulties or privacy constraints. For example, in scientific research, data
may be collected over time under uncontrolled or unknown conditions [42]. In ecological studies,
critical environmental parameters such as temperature or rainfall may vary unpredictably or remain
unrecorded. [2]]. Similarly, when aggregating data from multiple sources, environment labels are
frequently lost or omitted, a common issue in large public datasets [35]]. Furthermore, in privacy-
sensitive domains like healthcare, finance, or social networking, access to environment-specific
information is often restricted [18]]. These limitations highlight the need for generalization methods
that do not depend on explicit environment labels.

To address the challenge of unknown environment labels, we propose a novel approach that infers
environment specifications by leveraging the key insight that trajectories within the same environment
share consistent dynamics and exhibit similar prediction losses under the same neural network. This
inherent consistency enables us to automatically derive meaningful environment assignments directly
from the training data. We introduce an environment inference objective designed for dynamical
systems, which minimizes environment-specific prediction losses. Using fixed neural networks, we
first infer environments and then iteratively refine these networks with the inferred environments,
ultimately learning a generalizable dynamical system.

Our model identifies environment labels directly from mixed trajectories of dynamical systems,
facilitating the training of off-the-shelf generalization algorithms in scenarios where such labels are
absent. Importantly, our findings demonstrate that inferring environments from mixed sequence data
can improve the performance of generalization strategies, even compared to cases where environments
are manually assigned.

Our main contributions are as follows:

» We present the first investigation into the challenge of unlabeled environment conditions in
the context of learning generalizable dynamical systems, and propose a general framework
named Dynalnfer that utilizes the prediction loss to accurately infer latent environment
labels from mixed sequence dat

* We theoretically establish that our algorithm effectively solves the alternating optimiza-
tion problem without requiring environment labels, demonstrating its capacity to discern
heterogeneous environments and infer generalizable mechanisms.

* We examine the efficacy of Dynalnfer through experiments in both in-domain settings and
adaptation scenarios using three representative dynamical systems. Results confirm that the
environment labels assigned by Dynalnfer converge rapidly to the true labels.

2Code is available at https://github. com/shixuanliu-andy/Dynalnfer
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The remainder of this paper is structured as follows. Section 2 clarifies the problem definition.
Section 3 introduces our framework and provides the theoretical underpinnings. Section 4 details the
experimental setup and discusses the results. Related work is reviewed in Section 5, and Section 6
concludes the paper.

2 Problem Definition

2.1 Dynamical Systems

We examine dynamical systems determined by unidentified differential equations evolving over time,
expressed as,

L M

where ¢ € R is the time index within a time 1nterva1 I =[0,T], and z; is a time-variant state within a
bounded set A. The evolution function f : A — T'A maps z; to its temporal derivative in the tangent
space T'.A and belongs to a class of vector fields F.

In this paper, we consider both ordinary differential equation (ODE) and partial differential equation
(PDE). For ODEs, A c RY; for PDEs, A represents a d’-dimensional vector field within a bounded
spatial domain (such as 2D or 3D Euclidean space) denoted as .S C R? . The function f characterizes
the data distribution of trajectories 7. Trajectories initiated from xg ~ p(Xy) are computed by

integrating the derivatives: x; = zg + fot f(zy)du,Vt € 1.

2.2 Multi-Environment Dynamical Systems Learning

In contrast to the standard expected risk minimization (ERM) framework, which assumes i.i.d.
trajectories, the multi-environment learning problem involves learning trajectories from M different
environments. In each environment e € [M] = {1,2,..., M}, the trajectories are governed
by umque dlfferentlal equations described by functlon fe Specifically, consider N trajectories
{z%,22,..., 2N}, where each trajectory z* is associated with an environment e¢; € [M]. The
dynamlcs of each trajectory z* are thus modeled by the differential equation dz?/dt = f..(x!). The
set of environments for all trajectories is denoted by e = {e1, ea,...,enx} € [M]Y

In multi-environment learning, the goal is to enhance traditional ERM methods by exploiting both the
commonalities and disparities across diverse environments. To this end, the dynamics is decomposed
into two components: a global component shared across all environments, parameterized by 6,
and an environment-specific component, parameterized by ¢, for each environment e. The set of
environment-specific parameters is denoted by ¢ = {¢. }cec[as). Consequently, the dynamics of each

trajectory x* are parameterized by both the universal and environment-specific parameters,

dw!
dt

=h (mi;@,cﬁe) .

This parametrization entails a decomposition that can be implemented either functionally or paramet-
rically. The functional decomposition, expressed as h (z%; 6, ¢ ) = fo(zi) + g4, (x}), distinguishes
between a shared function fy and an environment-specific function g4, [43]. Alternatively, the
parametric decomposition integrates the environment-specific parameters directly, formulated as
h (xff, 0, (be) = foto,(2}) [17]. Intuitively, the key ingredient for multi-environment learning is
that 6 should encapsulate the maximal shared dynamics, whereas ¢. should exclusively reflect the
unique characteristics of each environment e not described by . However, directly optimizing
both parameters poses an ill-posed problem, often resulting in trivial solutions where the global
component learns nothing meaningful. To counteract this, the regularization term (¢, ) is introduced
to effectively penalize ¢., thereby facilitating learning in the global component. Consequently, with

the information about the environments e = {e1, ea, ..., en}, the loss function is given by,
dui 2 M
(0, ¢) = Z/ L h (240,60, || dt+ 2> Qee). ©)
2 e=1




The first term evaluates the regression precision of the parameterized function h(+; 0, ¢.). The ground
truth vector field (VF) is not explicitly known and derived from trajectory data. Using the learned
VF, a simulated trajectory is generated and used to calculate the regression loss by referring to real
trajectories during training. The term $2(¢. ) serves as a regularization term for ¢., with A controlling
the intensity of the regularization.

2.3 Environment Inference for Multi-Environment Learning

In many real-world scenarios, the environment label for a trajectory sample is unknown. We aim to
infer an environment assignment for each sample that maximizes the model’s generalization ability
across different environments. To achieve this goal, we reformulate the learning objective into an
optimization problem contingent on a specific environment assignment e. Specifically, our aim is to

learn the environment assignment & = {é!,é2,... eV} € [M]N for each trajectory to effectively
optimize Equation (Z). The overall objective is defined as follows:
e", 0", ¢" = argmin Rs (0, ¢). 3)
é,0,¢

In this paper, we explore a particularly challenging scenario where the total number of training
environments ) is also unknown. We investigate the development of a practical model that maintains
favourable performance even when the exact number of true environments is unknown.

3 The Dynalnfer Framework

In this section, we introduce our framework that operates on field functions without prior domain
knowledge, proving especially effective in dynamical systems where exogenous factors are unob-
served and in situations where relevant environmental information is unclear or absent. While some
clustering methods infer labels for CV data, they operate on finite-dimensional vectors in Euclidean
space, which drastically differs from field functions, making them inapplicable.

The optimization challenge in Equation (3) is primarily due to the inherently discrete nature of the
environment assignments &, which take values in the set [M/]. This discrete categorization impedes the
direct application of traditional gradient descent methods, which are typically designed for continuous
parameter spaces. To effectively address this challenge, we develop a dual iterative strategy that
concurrently updates the environment assignments € and the model parameters 6, ¢. The first step
in our approach centers on inferring environment labels by analyzing the prediction errors of the
trajectories output by the neural network during the current training round. This analysis serves
as a diagnostic tool to uncover critical discrepancies that signify distinct dynamical environments.
Following this, the second step entails refining the neural network parameters based on the newly
inferred environment assignments in an unbiased manner, enabling the neural network to precisely
adapt to the unique characteristics of each identified environment. Through this adaptive refinement,
our model progressively enhances its accuracy and generalization capability across different dynamic
settings. The complete method is detailed in Algorithm T]and is visually depicted in Figure 2]

Algorithm 1 Dynalnfer framework Mixed

Trajectories

1: Input: Randomly initialized 0, ¢ = {¢c }ce[ns], assumed

number of environments M, total rounds 7T;. Step 1: Infer Fixed NNs(" -

6, d,(O) —0,¢ |

forr < 1to T, do :
Update &) based on Equation @ Step 2: Optimize | i
Update ("), ¢(") based on Equation (3) __ Update !

end for

Output: 6, ¢.

AR AN

Figure 2: Model Framework.

3.1 Bias-aware Environment Assignment

The environment inference step receives a single dataset as input and generates a partition of the data
into multiple environments. Intuitively, trajectories originating from the same environment adhere to



consistent dynamics. Employing the same neural network to model these trajectories should yield
similar estimation error across them, reflecting a coherence in their dynamic parameters.

Upon examination, we observe that the optimization framework defined in Equation (2] shares
conceptual similarities with classical centroid-based clustering methodologies, although the latter
generally operate in Euclidean space. In K-means clustering, the primary goal is to minimize the
within-cluster sum of squares, often referred to as cluster inertia [37]. This minimization effort
concentrates on reducing the distances between the points within each cluster and their corresponding
centroid, which typically converges to a local optimum. This characteristic enables K-means to
efficiently delineate distinct and compact clusters, capturing the core essence of data distribution with
respect to spatial proximity.

This insight prompts us to explore a conceptual analogy wherein the neural network that minimizes
the loss most effectively operates analogously to a "centroid" for a cluster of trajectories within the
same dynamic environment. We characterise the distance between a trajectory (data point) and the
network (centroid) by the regression loss of the trajectory using the network. Initially, with a randomly
initialized network—analogous to a randomly initialized centroid in K-means clustering—we assign
each trajectory a label based on the minimal prediction loss calculated from all available networks.
Subsequently, we refine this "centroid" by optimizing it to minimize the loss as specified in Equation
(2). Through this iterative optimization process, we can achieve the objective stated in Equation (3)).

More specifically, at round r, given the fixed network parameters from the previous iteration
(r)

6(r—1), q.’)(r_l), the environment assignment é; ’ is updated through the following process,

é(r) = arg mi /
, = argmin
ee[M] Jtel

If multiple solutions exist for Equation (@) and é

next round, i.e., éﬁ” = éf-r_l). This approach ensures the validity of a constant loss reduction (to be

stated in Proposition /.

2
dt. )

% _ h (x:g’ 9(7-_1)7 ¢£7-_1))
2

dt

(r—1)

9

minimizes it, we retain this assignment for the

3.2 Assignment-driven Optimization

After assigning trajectories to specific clusters, we proceed to update the conceptual centroid by
optimizing network parameters. In the K-means algorithm, centroids are recalculated by averaging
the positions of all points within each cluster. Similarly, our method updates network parameters
by considering the mean estimation error over trajectories within a cluster, ensuring unbiased
contributions from each trajectory. This approach not only improves the representational accuracy
of each cluster but also enables the network to dynamically adapt to the underlying structure of
the trajectories, thereby enhancing the efficacy and reliability of our learning process in unlabeled

scenarios. Therefore, the parameters 8(") and (]b(r) are given by:

0(7‘)’ d)(r) = arg min Ré(r) (07 ¢)) (5)
0,9

3.3 Theoretical Property

We begin by demonstrating that Algorithm I]effectively optimizes Equation (3).
Proposition 3.1. For all rounds 1 < r < T, we must have

Rotoin) (e(r-ﬁ-l)’d)(r—i—l)) < Ry (Q(r)’(z)(r)).
Furthermore, suppose the space of arg ming , Re (0, @) is finite for all & € [M |N. Then there exists
a constant C > 0 such that if v > 1 and R4y (07D, DY < Ry (0, $)), we must have
Rycr) (9(r+1),¢(r+1)) < Rg» (Q(T),Qb(r)) -C.

Remark 3.1. Given the assumptions made in prior works [43] [17]] that i(-; 8, ¢. ) is linear with respect
to 6 and ¢, and that (¢, ) is strictly convex with respect to ¢., it follows logically that the space
of argming , Re(0, @) is finite for all & € [M]"V, as is evident from Equation (2). The proof is
provided in Appendix [A]



This proposition demonstrates that, as long as the loss in consecutive rounds of Algorithm|I]decreases,
the loss must decrease by a constant C' > 0.

4 Experiments

Our experiments investigate three dynamical systems governed by specific differential equations:
an ODE for biological modeling, PDEs for reaction-diffusion in chemistry, and the Navier-Stokes
equations for incompressible fluid dynamics. These complex, nonlinear systems test our method’s
ability to classify spatio-temporal patterns and physical laws across diverse environments.

4.1 Environment Specification

We provide a basic introduction to the datasets here, with detailed descriptions in Appendix |[El Lotka-
Volterra (LV) [23]] The system models the dynamics between a prey-predator pair in an ecosystem,
captured by the following ODE:

dm/dt = am — fmn,dn/dt = dmn — yn

where m and n represent the population densities of the prey and predator, respectively, and «, (3, 4,
and +y are the interaction parameters between the two species.

Gray-Scott (GS) [28] The model uses simple reaction-diffusion equations to effectively study
complex pattern formation in chemical and biological systems, following underlying PDE dynamics:

om/ot = D,y Am — mn? + F(1 —m),
on /ot = D,An —mn® — (F + k)n.

where m and n represent the concentrations of two chemical components in the spatial domain .S
with periodic boundary conditions; D,,, and D,, are their constant diffusion coefficients; and F' and k
are the reaction parameters that govern the spatio-temporal dynamic patterns.

Navier-Stokes (NS) [22] The Navier-Stokes PDE describes the motion of viscous fluid substances:

om/ot = —nVm+vAm+§, V=0

where n is the velocity field, m = V x n is the vorticity, both 7 and m lie in a spatial domain .S with
periodic boundary conditions, v is the viscosity (fixed at 1e~2), and £ is the constant forcing term in
the domain S.

4.2 Experimental Setting and Baselines

Settings. We evaluate Dynalnfer in two distinct settings: in-domain generalization on &, and
adaptation to new environments in &,,, with £, and &£, hosting disjoint environments. For in-domain
experiments, both training and testing occur on &,. At test time, environment labels are also not
provided and are instead inferred from the prediction bias over an initial segment of the trajectory (less
than 2At for practical reasons). For adaptation experiments, we follow standard domain adaptation
practice: initial training on the source domain &, is followed by fine-tuning and testing on the target
domain &, where environment labels are provided.

Dataset Preparation. For in-domain experiments, we generate four LV trajectories in each of nine
environments, ten GS trajectories in each of three environments, and eight NS trajectories in each
of four environments. For adaptation experiments, we simulate the same number of trajectories per
environment, conducting finetuning in two additional environments e € &,,. All dynamic environment
parameters are detailed in Appendix [E} For evaluation, we sample 32 trajectories per environment,
initialized according to the underlying distribution p(z¢). The LV and GS data are generated using
the DOPRIS solver [8,112]], while the NS data is simulated with the pseudo-spectral method as in [22].

Baselines. We explore three potential strategies for assigning environment labels in the absence of
environmental information, compared to our method (Dynalnfer): grouping all samples into a single
environment (All in One), assigning a distinct environment label to each sample (One per Env), and
random assignment (Random). Additionally, we consider an "Oracle" assignment method where
labels are fully known during training, bringing the total to five labeling strategies. Furthermore,



we consider three base models for dynamical system generalization: LEADS [43], CoDA-l;, and
CoDA-Ils [17]. We utilize the neural network architectures and parameter configurations as described
in their papers for each type of dynamic system. By combining these assignment methods with
base models, we generate fifteen distinct methods for evaluation. In adaptation experiments, during
fine-tuning, LEADS and CoDA adhere to the protocol described in their papers, by fixing the shared
components or parameters and rendering only the &£,-specific components trainable. All neural
network architectures, optimizers, and parameters for the base models are configured as described in
their respective papers.

Metrics. To rigorously evaluate predictive accuracy in dynamical system learning, we adopt two
complementary metrics: Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE),
averaged over 5 independent runs.

4.3 Experimental Results

4.3.1 In-domain Generalization Results

The in-domain generalization results detailed in Table[T]illustrate the performance implications of
various assignment strategies. We observe that the "All in One" and "Random" assignment strategies
consistently underperform across multiple datasets and baseline models. While the "One per Env"
strategy yields only mediocre results, it provides a viable initial approach in scenarios where no
labels are available. Across all datasets, Dynalnfer significantly outperforms other assignment
strategies. Furthermore, Dynalnfer consistently shows effectiveness across all tested base models and
datasets, underscoring its robustness against diverse methods and datasets. Notably, Dynalnfer either
matches or exceeds Oracle performance, particularly in complex PDE environments like GS and NS,
suggesting that its bias-aware approach effectively compensates for not having access to the true
labels available to Oracle.

In Figure 3] Dynalnfer’s predicted states qualitatively align closely with the ground truth and Oracle,
occasionally outperforming Oracle (e.g., in GS dataset with LEADS base model, where Oracle shows
some jitters).

LEADS CoDA-l; CoDA-l
Data | Assignment Train Test Train Test Train Test
MSE MSE MAPE MSE MSE MAPE MSE MSE MAPE
All'in One 7.17E-2  7.41+0.02E-2 49.22+1.84 7.14E-2  7.40£0.01 E-2 49.44+3.15 7.17E-2  7.41+0.00 E-2 39.26+22.13
One perEnv | 4.15E-4  4.91+3.50 E-4 6.68+2.44 8.68 E-4  9.14+0.41 E-4 5.67+1.01 8.18 E-4 8.43+0.39 E-4 5.73£1.19
Lv Random 720E-2  7.38+0.02E-2 50.01£1.05 7.02E-2  7.39+0.01 E-2 48.87+1.81 7.09E-2  7.3940.00 E-2 48.86+2.54
Dynalnfer 474E-5 7.93+2.49 E-5 2.83£1.62 9.57E-5 1.83+3.40 E-4 3.27+2.36 171E-4  1.82+3.07 E-4 2.02x1.66
Oracle 455E-5  7.02+0.76 E-5 1.780.10 1.78 E-5  3.19+0.24 E-5 1.26+0.06 1.99E-5 2.724#0.18 E-5 1.21+0.08
Allin One 873E-3  9.60+0.02E-3  3008.80+892.20 | 9.24E-3  9.61+0.03E-3  4115.80£223.54 | 9.25E-3  9.60+0.00 E-3  3723.00+713.85
One per Env | 1.38E-3  1.65+0.54 E-3 173.44459.16 1.56 E-3  1.91+0.06 E-3 185.23+61.43 1.52E-3  1.87+0.02 E-3 174.08+57.82
GS Random 878E-3  9.36+0.20E-3  1403.50+119.50 | 9.25E-3  9.59+0.03 E-3  3958.25+682.38 | 8.77E-3  9.35+0.02E-3  3919.88+157.54
Dynalnfer 3.60E-5 4.14+021E-5 117.57+33.90 9.22E-5 1.23+041E-4  122.93+22.05 6.69E-5 7.25+2.11E-5  112.52+14.15
Oracle 7.73E-5 1.34+0.76 E-4 97.77£12.09 6.04 E-5  9.60+3.91 E-5 163.38+47.89 4.69E-5  7.04+1.84 E-5 138.86+16.55
AllinOne | 534E-02 6.71x0.11 E-2  239.70£14.78 5.79E-02  6.64+0.11 E-2 251.38+8.54 6.17E-02  6.64+0.03 E-2 255.26%9.11
One per Env | 2.24E-02  4.11+0.14 E-2 169.48+9.68 3.45E-02  3.88+0.22E-2 161.04£10.73 2.31E-02  4.04+0.22 E-2 158.26+9.35
NS Random 3.06E-02  6.58+0.05 E-2 233.80 +8.44 5.04E-02  6.58+0.05 E-2 247.95+4.59 5.78E-02  6.66+0.04 E-2 254.47+6.40
Dynalnfer | 6.10E-04  7.05+0.34 E-3 77.29+10.18 1.23E-02  1.62+0.18 E-2  108.17+10.30 8.92E-04 1.19+0.12 E-2 96.57+12.75
Oracle 2.59E-04  6.55+1.34 E-3 67.58+9.37 1.36E-02  1.73+0.29 E-2 124.22+12.35 7.11E-04  9.46+0.51 E-3 91.06+5.85

Table 1: In-domain Experiment Results on the LV, GS, and NS environments. Our approach
consistently outperforms all non-oracle assignment methods, and beats oracle at times, demonstrating
its effectiveness in modeling heterogeneous environments and generalizing across dynamical systems.

4.3.2 Domain Adaptation Results

The results in Table[2]demonstrate the performance of different assignment strategies under the domain
adaptation setting. The "One per Env" strategy consistently outperforms the "All in One" approach.
While the "Random" assignment benefits the base model LEADS, it slightly diminishes CoDA’s
performance across all datasets. Dynalnfer shows strong adaptation capabilities across various
datasets and base generalization methods, consistently outperforming other non-Oracle techniques.
This indicates that Dynalnfer effectively captures commonalities across environments, enabling
smoother adaptation to new conditions. Furthermore, the performance gap between Dynalnfer and
the Oracle is significantly narrower in adaptation tasks compared to in-domain generalization.
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Figure 3: Left: Predicted test trajectories from 3 environments vs. ground truth and Oracle for LV
with 2 base models. Middle and Right: Predicted last 3 states for GS and NS, respectively, vs. ground
truth and Oracle using 2 base models. Each environment is shown by row. For CoDA, we use the
best Oracle result’s CoDA version to save space. See Appendix@for all the visualizations.

Data | Assignment LEADS CoDA-[; CoDA-[,
MSE MAPE MSE MAPE MSE MAPE
All in One 4.16£8.61 E-2 9.92+3.55 4.01£6.43 E-2 26.90+10.65 4.10+£7.61 E-2 27.80+8.81
One per Env | 2.28+1.81 E-3 5.41+0.50 1.72+0.53 E-3 27.63+7.81 1.66+0.82 E-3 25.51+7.72
LV Random 1.72+0.53 E-3 6.87+0.13 1.14+0.61 E-3 27.56+6.36 1.05+0.54 E-3 29.65+6.31

Dynalnfer | 5.77+1.46 E-4 2.84x+0.13 8.37+0.94 E-5 10.16+0.04 8.49+2.07 E-5 10.30+0.08
Oracle 1.67+2.26 E-3 3.16+0.37 5.85£1.24 E-5 10.24+0.06 5.1243.17 E-5 10.24+0.04
AllinOne | 4.59£1.18 E-4  721.25+197.54 | 2.85£0.55E-3  6658.20£1651.77 | 2.76+0.72 E-3  7355.20£335.45
One per Env | 3.59+2.71 E-4  450.20£368.36 | 1.08+0.82 E-3  6247.344817.74 | 1.19+0.97 E-3  5948.57+£935.71
GS Random 5.73#0.86 E-4  1261.00£979.30 | 2.92+0.80 E-3  7292.88+312.54 | 2.84+0.89 E-3  4499.25+844.62
Dynalnfer | 1.00+0.32 E-4  378.73£182.12  2.41+0.91 E-4 220.54+65.60 2.13+0.41 E-4  207.96+46.49
Oracle 2214093 E-4  434.73+432.38  2.66+0.79 E-4 302.68+188.25 2.10£0.89 E-4  230.62+118.29
All'in One 1.25+2.04 E-2 67.174£3.33 1.254£0.20 E-2 218.66+27.26 1.29+0.29 E-2 214.44+17.08
One per Env | 2.78+2.08 E-2 96.23+4.54 2.04+0.68 E-2 214.38+15.19 2.43+0.48 E-2 209.68+18.98
NS Random 1.32+0.53 E-2 81.18+7.43 4.66+1.04 E-2 215.21+19.39 4.37£0.99 E-2 191.03£16.38
Dynalnfer | 7.52+0.76 E-3 50.93+8.83 9.27+1.81 E-3 101.38+15.77 9.71+2.10 E-3 101.04+16.27
Oracle 1.16£0.68 E-2 57.35£17.90 7.46+0.72 E-3 154.86+41.00 7.3240.81 E-3 100.04+24.93

Table 2: Adaptation Experiment Results on the LV, GS, and NS environments. Dynalnfer consistently
outperforms other non-Oracle methods across all datasets and narrows the performance gap with the
Oracle more effectively compared to in-domain generalization.

4.3.3 Assignments Convergence

We illustrate the probability of environment assignments with Dynalnfer over training time in Figure[4]
Initially, our model may default to random assignments due to unoptimized neural networks. However,
the assignments quickly converge to the true labels. Notably, systems with simpler dynamics, like
LV compared to NS, enable quicker learning of base generalization methods, resulting in faster
convergence of environment assignments.

4.3.4 Performance across Varying Number of Assumed Environments

As the true number of environments (|€,|) might be unknown, we examine Dynalnfer’s performance
with varying assumed environments M in Figure[5] Our findings show that prior knowledge of the true
M is beneficial: performance peaks when the assumed M aligns with the true count. Additionally, our
model demonstrates robustness to over-estimations of M. Due to its ability to account for bias, our
model effectively identifies trajectories from the same environment and remains robust to an excess of
inaccurately trained neural networks, even when the assumed M is too large. The above observations
suggest that incrementally increasing the number of environments until peak performance is achieved
can be a straightforward way to identify the true M. Lastly, Dynalnfer consistently outperforms
other non-oracle approaches when M is underestimated, except for the One-per-Env baseline (which
requires M equal to the number of trajectories and is computationally infeasible).
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Figure 4: Environment assignment probability over time, averaged over 5 runs, with LEADS as base
model (on LV (top) and NS (bottom); see Appendixfor GS). The assignment converges to the true
label faster than the designated training steps. A similar trend is observed with the CoDA model.
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Figure 5: Performance across assumed number of environments with Dynalnfer(log-scale y-axis).
The peak performance aligns with the true number of environments (bold on x-axis) with high
probability, and remains stable thereafter.

5 Related Work

5.1 Domain Generalization and Adaptation

Domain generalization (DG) seeks to train a model on one or multiple distinct but related source
domains so that it generalizes effectively to any out-of-distribution (OOD) target domain. DG methods
assume data heterogeneity and use additional environment labels to develop models that remain
robust across unseen and shifted test data. Many DG strategies focus on domain alignment, aiming to
minimize divergence among source domains to achieve domain-invariant representations [21}, 14}, 29]
M40]. Other approaches enhance the diversity of training data by augmenting source domains [3}
[33, 39]]. Additionally, some methods leverage meta-learning and invariant risk minimization for
regularization, further enhancing generalization [20, 1]].

Domain adaptation (DA) methods enable model generalization to target domains with shifted data
distributions and are primarily classified into three categories. Instance-based methods reweight or
adjust training samples to reflect the test distribution [6]]. Feature-based approaches align feature
distributions across training and test domains [38], 36]. Model-based strategies focus on developing
models that are either robust to domain shifts or specifically tailored for the target domain [23] [10].



5.2 Generalization for Dynamical Systems

Generalization in dynamical systems remains underexplored in literature. Among the limited studies,
LEADS emerges as a novel multi-task learning framework that effectively generalizes across the
functional space of dynamical systems [43]]. Alternatively, CoDA optimizes within the parameter
space, enhancing model adaptability and efficiency while accommodating increased environmental
variability without requiring multiple distinct network trainings for each setting [17]]. In contrast,
DyAd is a context-aware meta-learning approach that adjusts the dynamics model by decoding a time-
invariant context from observed states [41]]. Despite its novelty, DyAd relies on potentially impractical
weak supervision based on physics-derived quantities and uses Adaptive Instance Normalization,
which may degrade performance.

Currently, three notable weaknesses prevail in generalization works for dynamical systems. First,
there is an assumption that prior knowledge about the target domain exists, and without it, most
generalization methods would fail [[L1]. Second, the predominant use of the mean squared error as a
loss function is inadequate for evaluating the reconstruction accuracy of chaotic systems. Lastly, the
influence of unlabelled trajectory data on the process of learning generalizable dynamical systems
remains both unexplored and unresolved — a gap this paper examines for the first time. While
switched systems learning methods [19]] infer modes by classifying individual data points (analogous
to environment inference), our work operates on trajectories governed by ODEs or PDEs.

6 Conclusion

We propose an environment inference method that improves the understanding and generalization
of complex dynamical systems across various environments without using manually labeled data.
Dynalnfer infers environment labels directly from training data, overcoming the challenges associated
with explicit annotation. Theoretical analysis ensures convergence of Dynalnfer, and experiments
show Dynalnfer often surpasses non-oracle methods and matches or exceeds oracle performance.

Future research could unfold along the following promising directions: First, to improve generaliza-
tion in chaotic systems, MSE-based methods could be replaced with more suitable metrics such as the
sliced Wasserstein-1 distance, which would require developing a tailored inference model. Similarly,
effectively inferring environments for dynamics with complex boundaries remains a significant open
problem, as current learning methods often oversimplify boundary conditions. Furthermore, for
systems requiring interpretable parameters, our method could be extended to jointly optimize environ-
ment labels and physical coefficients. To improve convergence, coordinate optimization techniques
may help escape local optima for objectives that are convex in individual variable blocks [[13}30].
Finally, techniques such as adaptive early stopping, dynamic batching, and membership functions [3]]
could further enhance training efficiency.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately outline our research questions, and
faithfully reflect the paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed it as future work in the Conclusion section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Assumptions, formal statements of theories and proofs can be found in
appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experiment settings and implementation of methods are described in the
experiment section. Codes are available in supplementary materials.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets in this paper are public with citations (see section 6.1). Code
is provided in additional supplemental materials.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experiment settings are described in section 4.1 and 4.2.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use mean =+ standard deviation to report the results over 5 independent
runs. See section 4.2 for details.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Refer to Appendix [E] Results are averaged over 5 independent runs.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in this paper conforms with the NeurIPS Code of
Ethics

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There are no negative social impacts for research conducted in this paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no safeguards risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and base models in this paper are cited. Codes are credited with
original licenses provided.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Proposition 3.1]

Proof. Due to the operation in Equation (3), we must have
Ry (6’(’"+ Y, ¢><’”“)) < Ry (9(”, ¢<’“>) .

In addition, according to the operation in Equation @), we must have

; 2
da : \
Vi e [N],/ —t—h (xg; 0, qsi(lﬂ)) dt
tel i 9
; 2
da ‘ ,
g/ Tt (:c;;e(”, <(2>) dt.
ter || dt € 2

As a result, since the regularization terms (i.e., the (¢.) term) in Regﬂ(&“),d)(”) and

R (0, (,z’)(r)) remain the same, we must have
Reein (07,67) < Reon (60, 67).
Now we have
R o+ (Q(TH), ¢(T+1)> < Ryorn (9(T)a (75(7')) < Ry (Q(T), ¢(T)) .
Now consider the second part of the proposition. Define the following space of 6, ¢
HE {(0, @) : 3é € [M]Y such that Rs(0, ¢) = glgl/ Ré(ﬁ’,qb')} .

Note that by the assumption, we must have |H| < co. Now define A as

a={/ da} i
tel

T h (xi;@,qbe) dt:i€[Nl],ee[M],(0,¢)e ’H} .
2
Note that since |H| < oo, we have | A| < co. C'is defined as

C= min |a—Dbl.
a,beA,a#b

Since |A| < oo, we must have C > 0. In addition, note that when r > 1 and

Ry (00T, o)) < Ry (00, ¢()), we must have "1 £ &) Otherwise we will
have

Ryi41) (g(r-&-l)’(b(ﬂrl)) = R, (9(r+1)7¢(r+1))
= R, (9<r>,¢,<r>) .

As a result, there exists i € [V] such that & ") + ¢{")_ By the choice of ¢\, we must have

d:Ci (r) 2
t_p <a: o) ") > dt
/tel dt k 65 ) 9
dzt . 2
# o h (xz; 0, ¢>gzﬂ>) dt.
ter i 2
As a result, by the definition of C', we have
. 2
dz; ( : (r)
=t _p(axi M, ") dt
/teI dt ! & 2
dzt . 2
- / t - h ("Ei, G(T)a (A7(qrr)~+1)) dt > C.
ter || dt i 2

Therefore, we must have
Ry (0(T+1>,¢<T+1>) < R, (9@)’ ¢(r>) _C

Now the claim follows. O
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B Real-world Experiment

We further evaluated our method using a real-world robot motion trajectory dataset [16]. This dataset
comprises three distinct motion patterns: (1) drawing "S" shapes, (2) placing a cube on a shelf,
and (3) drawing large "C" shapes. In our experimental framework, each of these patterns is treated
as a distinct environment. The objective of this evaluation is to assess whether our method can
accurately infer the underlying environment, thereby supporting the learning of a generalizable neural
network for simulating their dynamics. To ensure a consistent input structure across environments, all
trajectories were projected into a two-dimensional space. The dataset was partitioned into training and
test sets with a ratio of 6:1. Furthermore, each trajectory was temporally resampled to a standardized
length of 100 time steps for smoothing and uniformity following the practice in [44].

The empirical results are presented in Table[3] In summary, these findings collectively suggest that
our approach maintains its efficacy on real-world data, thereby substantiating its practical utility and
robustness.

LEADS CoDA-l; CoDA-l,
Data | Assignment Train Test Train Test Train Test
MSE MSE MAPE MSE MSE MAPE MSE MSE MAPE
AllinOne | 7.17E-2 7.41+0.02E-2 49.22+1.84 | 7.14E-2  7.40+0.01 E-2 49444315 | 7.17E-2 7.41+0.00E-2 39.26+22.13
OneperEnv | 4.15E-4 491+3.50E-4 6.68+2.44 | 8.68E-4 9.14+0.41 E-4 567+1.01 | 8.18E-4 843+039E-4  573+1.19
RM Random 720E-2 7.38+0.02E-2 50.01%x1.05 | 7.12E-2  7.39+0.01 E-2 48.87+1.81 | 7.09E-2  7.39+0.00 E-2  48.86+2.54
Dynalnfer  4.74 E-5 7.93+249E-5 2.83+1.62 | 9.57E-5 1.83+340E-4 3.27+#2.36 | 1.71E-4 1.82+3.07E-4  2.02+1.66
Oracle 455E-5 7.02+0.76 E-5 1.78+0.10 1.78 E-5  3.19+0.24 E-5 1.26+0.06 1.99E-5 2.72+0.18 E-5 1.21+0.08

Table 3: In-domain Experiment Results on the Robot Motion.

C Sensitivity Analysis to |, |

To assess the robustness of our method to the number of underlying environments, we conducted a
sensitivity analysis using the LV system. We systematically varied the true number of environments,
|€5], from 2 to 16 and evaluated the performance of our model against the Oracle baseline that has
privileged access to the true environment labels. The results are presented in Table[d Dynalnfer,
achieves performance comparable to the Oracle across all tested values of |E,|. This empirical
evidence demonstrates that our approach is robust to variations in the quantity of environments.

Table 4: Test Mean Squared Error on the LV system for varying |&,|
&o
2 3 4 5 6 7 8

2.12E-5 4.22E-5 6.77E-5 6.24E-5 8.81E-5 6.70E-5 6.54E-5

Dynalnfer
Oracle 2776E-5 3.99E-5 S5.75E-5 5.20E-5 7.24E-5 8.14E-5 5.74E-5
&

9 10 11

6.33E-5 8.34E-5 2.24E-4
7.60E-5 9.31E-5 1.85E-4

12 13

1.34E-4 9.69E-5
1.23E-4 1.21E-4

14 15 16

1.97E-4 3.43E-4 2.73E-4
1.71E-4 2.56E-4 2.48E-4

Dynalnfer
Oracle

D Robustness over M

We assessed our robustness to the overestimation of M, the assumed number of environments,
in the LV system. The system’s true value is M* = 9, with each environment containing four
trajectories. In our experiments, we varied the assumed M from 5 to 36. The results, shown in
Table 5] demonstrate that Dynalnfer effectively adapts to this overestimation. The learned label count
consistently converged to a range of 811, which aligns closely with the ground-truth value.

Furthermore, we conducted a comprehensive analysis by sweeping M across its full spectrum, from
M =1to M = #trajectory. As shown in Table[6] the optimal performance was achieved at M = 9
and the model maintained robustness even when M exceeded this value.
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Table 5: Learned Label Counts for different values of M averaged over 5 runs

M 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Labels 5 6 7 8 9 88 9 102 9 9 10 108 10 11 11 10
M 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

#Labels 108 11 9 10 102 11 10 10 10 112 10 92 10 10.8 10 11

Table 6: Test MSE over the full spectrum of M for the LV system
M MSE M MSE M MSE M MSE

741E-2 10 241E-4 19 2.60E4 28 2.04E-4
401E-2 11 3.71E-4 20 136E4 29 3.65E-4
247E-2 12 2.57E-4 21 121E4 30 1.42E-3
1.04E-2 13 1.63E-4 22 245E-4 31 3.84E4
7.02E-3 14 2.24E-4 23 9.06E-5 32 1.16E-4
424E-3 15 1.15E-4 24 238E-4 33 3.89E-4
2.59E-3 16 1.76E-4 25 8.27E-5 34 3.10E-4
121E-3 17 1.83E-4 26 1.06E-4 35 1.72E-4
793E-5 18 3.60E-4 27 3.71E4 36 277E-4

OO IANWUN A~ WN—

E Environment Specification

We conducted experiments on a server equipped with a 64-core CPU, 256 GB of RAM, and eight
24GB RTX-3090Ti GPUs. The Dynalnfer framework was implemented using PyTorch [27]. All NN
params in our method are randomly initialized.

Lotka-Volterra (LV) [23] The system models the dynamics between a prey-predator pair in an
ecosystem, captured by the following ODE:

dm/dt = am — Bmn,dn/dt = §mn — yn

, where m, n represent the population density of the prey and predator, respectively, and «, 3, §, ~y are
the interaction parameters between the two species. The system state is defined as 2§ = (mg, n¢) €
R? with initial conditions (mg, n9) sampled from a uniform distribution p(z) = Unif([1,3]?).
The environment e is defined by dynamics parameters 6, = (a./Be,Ve/0c) € O, sampled uniformly
from the set ©. We simulate trajectories over a temporal grid with At = 0.5 and a horizon T' = 10.
At test time, environment labels are inferred from the prediction bias observed over an initial segment
of the trajectory of length At.

Gray-Scott (GS) [28] The model uses simple reaction-diffusion equations to effectively study
complex pattern formation in chemical and biological systems, following underlying PDE dynamics:

om/dt = D,y Am —mn? + F(1 —m),
on/ot = D,An —mn? — (F + k)n.

, where m, n represent the concentrations of two chemical components in the spatial domain S' with
periodic boundary conditions, and D,,, D,, are their constant diffusion coefficients, and F k are the
reaction parameters that govern the spatio-temporal dynamic patterns. S is a 2D space of dimension

32 x 32 with spatial resolution of As = 2. The system state ¢ = (m¢, n¢) € Rixmz. We define the
initial conditions (mg, ng) ~ p(zo) by uniformly sampling three two-by-two squares, which activate
the reactions, from S. (mg,ng) = (1 — ¢, €) with ¢ = 0.05 inside the squares and (mg, ng) = (0, 1)
outside the squares. The environment e is defined by dynamics parameters 0 = (F,,k.) € O,
sampled uniformly from the environment distribution () on ©. We simulate trajectories on a temporal
grid using a timestep of At = 40 over a horizon of T' = 400. At test time, environment labels are
inferred from an initial segment of length At¢.

Navier-Stokes (NS) [22] The Navier-Stokes PDE describes the motion of viscous fluid substances:

om/ot = —nVm+vAm+ &, Vo=0
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, where n is the velocity field, m = V X n is the vorticity, both n, m lie in a spatial domain .S with
periodic boundary conditions, v is the viscosity (fixed as 1e~2) and ¢ is the constant forcing term in
the domain S. The system state is characterized by x§f = m§ € R32° as initialized per [22]. The
environment e is determined by a uniformly sampled forcing term . € ©,. We simulate trajectories
across a temporal interval At = 1 over a horizon 7" = 10. At test time, environment labels are
inferred from an initial segment of length 2At.

The parameters for LV, GS and NS systems are respectively given in Table[7] [§]and [9]

Table 7: Parameters of LV Systems

Params. | Train1 Train2 Train3 Train4 Train5 Train6 Train7 Train8 Train9 Adapt1 Adapt2

o 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.7 0.6
B 0.5 0.75 1 0.5 0.5 0.75 0.75 1 1 0.8 0.7
¥ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0 0.5 0.5 0.5 0.75 1 0.75 1 0.75 1 0.5 0.5

Table 8: Parameters of GS Systems

Params. | Train1 Train2 Train3 Adapt1 Adapt 2
F 0.037 0.03 0.039 0.033 0.036
k 0.06 0.062  0.058 0.059 0.061

Table 9: Parameters of NS Systems

~—
I

Train | 0.1 (sin(2r(X +Y
Train2 | 0.1x (sin(27(X +Y)
Train3 | 0.1 (sin(2r(X +7Y)
Train4 | 0.1  (sin(27(X 4 2Y
Adapt1 | 0.1 (sin(2r(2X 4+ Y
Adapt2 | 0.1« (sin(2r(2X +Y

) + cos(2m * (X +Y)))
+ cos(2m * (X +2Y)))
+cos(2m*x (2X 4+Y)))

)+ cos(2m * (2X + Y;;)

)

~——

+
o
@]
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F Centroid-like NN Behavior

We conducted an additional experiment measuring the MSE loss for each training sample across
different neural networks (NNs). The results, shown in Table [T0] yielded two key findings: first, each
training sample has a uniquely best-fit NN where it attains minimal loss. Second, this optimal NN
generalizes effectively to a broader cluster of trajectories—specifically, those originating from the
same environment. This alignment between a "centroid-like" NN and environment-specific trajectory
clusters strongly reinforces our methodological rationale.
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Traj. NNI NN2 NN3 NN4 NN5 NN6 NN7 NN8 NNO9 Assign.
1 2.06e-01 1.18e-01 2.80e-01 7.76e-06 8.34e-02 1.59e-01 3.14e-01 2.50e-01 2.35e-01 3
2 2.05e-01 1.21e-01 2.66e-01 9.35e-06 8.42e-02 1.53e-01 3.36e-01 2.40e-01 2.26e-01 3
3 2.05e-01 1.21e-01 2.65e-01 1.03e-05 8.41e-02 1.52e-01 3.35e-01 2.39e-01 2.25e-01 3
4 2.45e-01 1.51e-01 3.85e-01 1.98e-05 1.13e-01 1.89e-01 4.05e-01 3.10e-01 3.12e-01 3
5 3.31e-02 1.65e-01 1.12e-01 8.32e-02 5.36e-06 5.42e-02 3.68¢-01 7.26e-02 1.37e-01 4
6 3.15e-02  1.87e-01 1.07e-01 8.46e-02 4.26e-06 5.57e-02 4.21e-01 6.80e-02 1.44e-01 4
7 3.14e-02  1.86e-01 1.06e-01 8.46e-02 4.50e-06 5.52e-02 4.19¢-01 6.74e-02 1.43e-01 4
8 2.84e-02  2.68e-01 2.13e-01 1.14e-01 2.22e-05 9.57e-02 5.38e-01 1.18e-01 2.36e-01 4
9 7.60e-06 2.32e-01 5.48e-02 2.07e-01 3.36e-02 4.44e-02 4.22e-01 1.91e-02 1.18e-01 0
10 6.45e-06 2.64e-01 6.07e-02 2.05e-01 3.12e-02 5.17e-02 4.93e-01 2.10e-02 1.37e-01 0
11 6.65e-06 2.63e-01 6.02e-02 2.05e-01 3.11e-02 5.14e-02 4.91e-01 2.07e-02 1.36e-01 0
12 1.95e-05 3.66e-01 1.6le-01 2.45e-01 2.92e-02 9.83e-02 6.31le-01 7.05e-02 2.32e-01 0
13 231e-01 1.35e-05 1.56e-01 1.16e-01 1.64e-01 8.52e-02 5.28e-02 1.84e-01 7.04e-02 1
14 2.63e-01 1.39e-05 1.64e-01 1.22e-01 1.87e-01 9.48e-02 5.95e-02 2.02e-01 7.16e-02 1
15 2.62e-01 1.41e-05 1.63e-01 1.22e-01 1.86e-01 9.44e-02 5.93e-02 2.0le-01 7.13e-02 1
16  3.65e-01 1.89e-05 2.33e-01 1.50e-01 2.67e-01 1.19e-01 6.96e-02 2.56e-01 1.08e-01 1
17 4.22e-01 5.35e-02 2.43e-01 3.15e-01 3.68e-01 1.95e-01 2.78e-05 3.17e-01 1.13e-01 6
18  491e-01 509le-02 2.77e-01 3.35e-01 4.19e-01 2.27e-01 2.12e-05 3.66e-01 1.30e-01 6
19  4.89-01 5.89e-02 2.76e-01 3.34e-01 4.17e-01 2.26e-01 2.08e-05 3.64e-01 1.30e-01 6

20  6.28e-01 6.90e-02 3.26e-01 4.04e-01 5.35e-01 2.56e-01 1.99e-05 4.18e-01 1.52e-01 6
21 4.36e-02 8.60e-02 1.90e-02 1.58e-01 5.31e-02 7.09e-06 1.96e-01 1.98e-02 2.19e-02 5
22 5.16e-02  9.53e-02 1.74e-02 1.54e-01 5.58e-02 8.08¢-06 2.28e-01 2.09e-02  2.34e-02 5
23 5.13e-02  9.49e-02 1.73e-02 1.53e-01 5.53e-02 7.86e-06 2.27e-01 2.08e-02 2.33e-02 5
24 9.8le-02 1.19e-01 3.84e-02 1.89e-01 9.61e-02 1.45e-05 2.56e-01 2.72e-02 3.41e-02 5
25  1.17e-01 7.14e-02 2.46e-02 2.35e-01 1.36e-01 2.11e-02 1.15e-01 5.47e-02 8.69e-06 8
26 1.37e-01 7.21e-02 2.82e-02 2.26e-01 1.44e-01 2.36e-02 1.31e-01 6.42e-02 5.20e-06 8
27 1.36e-01 7.18e-02 2.81e-02 2.26e-01 1.43e-01 2.35e-02 1.31e-01 6.39e-02 5.32e-06 8
28  2.32e-01 1.08e-01 3.35e-02 3.12e-01 2.37e-01 3.47e-02 1.52e-01 7.46e-02 8.12e-06 8
29 1.90e-02 1.84e-01 1.02e-02 2.49e-01 7.19e-02 2.00e-02 3.17e-01 2.50e-06 5.57e-02 7
30 2.07e-02 2.03e-01 1.15e-02 2.41e-01 6.79e-02 2.11e-02 3.68e-01 2.91e-06 6.44e-02 7
31 2.04e-02 2.02e-01 1.14e-02 2.40e-01 6.74e-02 2.10e-02 3.66e-01 3.05e-06 6.41e-02 7
32 7.07e-02 2.55e-01 2.04e-02 3.09e-01 1.20e-01 2.74e-02 4.17e-01 8.74e-06 7.41e-02 7
33 5.48e-02 1.56e-01 1.22e-06 2.80e-01 1.11e-01 1.89e-02 2.44e-01 1.00e-02 2.53e-02 2
34 6.04e-02 1.65e-01 3.09e-06 2.67e-01 1.07e-01 1.76e-02 2.79e-01 1.14e-02 2.83e-02 2
35 5.99-02 1.64e-01 3.10e-06 2.66e-01 1.06e-01 1.75e-02 2.78e-01 1.14e-02 2.82e-02 2
36 1.6le-01 2.32e-01 1.20e-05 3.85e-01 2.14e-01 3.90e-02 3.26e-01 2.06e-02 3.35e-02 2

Table 10: Training MSE for Trajectories by each Neural Network and Label Assignment
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G Environment Assignment Convergence on GS

Figure[6] presents the temporal evolution of environment assignment probabilities using the LEADS
base model on GS.
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Figure 6: Environment Assignment Probability over Time with LEADS as Base Model on GS.
Despite initial inaccuracies due to complex dynamics, the assignment ultimately converges to the
correct label.

H Plots on Learned Dynamics

We present the recovered test trajectories produced by the learned neural network. Figures[7][8] and[J]
illustrate GS; Figures|[I0} [T1] and[T2]depict NS; and Figure[I3|shows LV. A close examination reveals
that the trajectories predicted by Dynalnfer closely align with both the Oracle and the ground truth

for the selected systems.
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Figure 7: Comparison of final GS states predicted by Dynalnfer (bottom) and Oracle (middle) against
the ground truth (top) with base model LEADS.
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Figure 8: Comparison of final GS states predicted by Dynalnfer (bottom) and Oracle (middle) against
the ground truth (top) with base model CoDA-/;.
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Figure 9: Comparison of final GS states predlcted by DynaInfer (bottom) and Oracle (middle) against
the ground truth (top) with base model CoDA-ls.
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Figure 10: Comparison of final NS states predicted by Dynalnfer (bottom) and Oracle (middle)
against the ground truth (top) with base model LEADS.
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Figure 11: Comparison of final NS states predicted by Dynalnfer (bottom) and Oracle (middle)
against the ground truth (top) with base model CoDA-/;.
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Figure 12: Comparison of final NS states predicted by Dynalnfer (bottom) and Oracle (middle)
against the ground truth (top) with base model CoDA-[5.
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Figure 13: Comparison of predicted LV trajectories from 6 environments by Dynalnfer (green) and
Oracle (red) against the ground truth (blue) with base models LEADS (top), CoDA-/; (middle), and
CoDA-I5 (bottom).
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