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Abstract

The inherent challenge of multimodal fusion is to
precisely capture the cross-modal correlation and
flexibly conduct cross-modal interaction. To fully
release the value of each modality and mitigate
the influence of low-quality multimodal data, dy-
namic multimodal fusion emerges as a promising
learning paradigm. Despite its widespread use,
theoretical justifications in this field are still no-
tably lacking. Can we design a provably robust
multimodal fusion method? This paper provides
theoretical understandings to answer this question
under a most popular multimodal fusion frame-
work from the generalization perspective. We
proceed to reveal that several uncertainty estima-
tion solutions are naturally available to achieve
robust multimodal fusion. Then a novel multi-
modal fusion framework termed Quality-aware
Multimodal Fusion (QMF) is proposed, which
can improve the performance in terms of classifi-
cation accuracy and model robustness. Extensive
experimental results on multiple benchmarks can
support our findings.

1. Introduction
Our perception of the world is based on multiple modalities,
e.g., touch, sight, hearing, smell and taste. With the devel-
opment of sensory technology, we can easily collect diverse
forms of data for analysis. For example, multi-sensor in
autonomous driving and wearable electrical devices (Xiao
et al., 2020; Wen et al., 2022), or various examinations in
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medical diagnosis and treatment (Qiu et al., 2022; Acosta
et al., 2022). Intuitively, fusing information from different
modalities offers the possibility of exploring cross-modal
correlation and gaining better performance. However, con-
ventional fusion methods have largely overlooked the un-
reliable quality of multimodal data. In real-world settings,
the quality of different modalities usually varies due to un-
expected environmental issues. Some recent studies have
shown both empirically and theoretically that multimodal
fusion may fail on low-quality multimodal data, e.g., imbal-
anced (Wang et al., 2020; Peng et al., 2022; Huang et al.,
2022), noisy or even corrupted (Huang et al., 2021b) multi-
modal data. Empirically, it is recognized that multimodal
models cannot always outperform unimodal models espe-
cially in a high noise (Scheunders & De Backer, 2007;
Eitel et al., 2015; Silva et al., 2022) or imbalanced modality
quality (Wu et al., 2022; Peng et al., 2022) regime. Theo-
retically, the previous study proves that the advantages of
multimodal learning may vanish under the setting of lim-
ited data volume (Huang et al., 2021a) which implies the
exploitation of cross-modal relationship is not a free lunch.
To fully release the value of each modality and mitigate
the influence of low-quality multimodal data, introducing
dynamic fusion mechanism emerges as a promising way to
obtain reliable predictions. As a concrete example, previ-
ous work (Guan et al., 2019) proposes a dynamic weight-
ing mechanism to depict illumination condition of scenes.
By introducing dynamics, they can integrate reliable cues
from multi-spectral data for around-the-clock applications
(e.g., pedestrian detection in security surveillance and au-
tonomous driving). Dynamic fusion has been used in diverse
real-world multimodal applications, including multimodal
classification (Han et al., 2021; Geng et al., 2021; Han et al.,
2022b), regression (Ma et al., 2021), object detection (Li
et al., 2022a; Zhang et al., 2019; Chen et al., 2022b) and
semantic segmentation (Tian et al., 2020). While dynamic
multimodal fusion shows excellent power in practice, theo-
retical understanding is notably lack in this field with the fol-
lowing fundamental open problem: Can we realize reliable
multimodal fusion in practice with theoretical guarantee?

This paper tries to shed light upon the theoretical advantage
and criterion of robust multimodal fusion. Following pre-
vious works in multimodal learning theory (Huang et al.,
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Figure 1. Visualization of accuracy gap between multimodal learning methods (e.g., late fusion, align-based fusion, MMTM) and single-
modal learning methods using the best modality on noisy multimodal data. Noted that the performance existing multimodal fusion
methods degrade significantly of compared with their best unimodal counterparts in a high noise regime, while the proposed QMF
consistently outperforms unimodal methods on low-quality data.

2021b; Wang et al., 2020), the framework we study is also
abstracted from decision-level multimodal fusion, which is
one of the most fundamental research topics in multimodal
learning (Baltrušaitis et al., 2018). In particular, we devise a
novel Quality-aware Multimodal Fusion (QMF) framework
for multimodal learning. Key to our framework, we leverage
energy-based uncertainty to characterize the quality of each
modality. Our contributions can be summarised as follows:

• This paper provides a rigorous theoretical framework
to understand the advantage and criterion of robust mul-
timodal fusionas shown in Figure 2. Firstly, we charac-
terize the generalization error bound of decision-level
multimodal fusion methods from a Rademacher com-
plexity perspective. Then, we identify under what con-
ditions dynamic fusion outperforms static, i.e., when
the fusion weights of multimodal fusion is negatively
correlates to the unimodal generalization errors, dy-
namic fusion methods provably outperform static.

• Under the theoretical analysis, we proceed to reveal
that the generalization ability of dynamic fusion coin-
cides with the performance of uncertainty estimation.
This directly implies a principle to design and evaluate
new dynamic fusion algorithms.

• Directly motivated by the above analysis, we pro-
pose a novel dynamic multimodal fusion method
termed Quality-aware Multimodal Fusion (QMF),
which serves as a realization for provably better gener-
alization ability. As shown in Figure 1, extensive ex-
periments on commonly used benchmarks are carried
out to empirically validate the theoretical observations.

2. Related works
2.1. Multimodal Fusion

Multimodal fusion is one of the most original and funda-
mental topics in multimodal learning, which typically aims

to integrate modality-wise features into a joint representa-
tion for downstream multimodal learning tasks. Multimodal
fusion can be classified into early fusion, intermediate fu-
sion and late fusion. Although studies in neuroscience and
machine learning suggest that intermediate fusion could
benefit representation learning (Schroeder & Foxe, 2005;
Macaluso, 2006), late fusion is still the most widely used
method for multimodal learning due to its interpretation
and practical simplicity. By introducing modality-level dy-
namics based on various strategies, dynamic fusion practi-
cally improves overall performance. As a concrete example,
the previous work (Guan et al., 2019) proposes a dynamic
weighting mechanism to depict illumination conditions of
scenes. By introducing dynamics, they can integrate reliable
cues from multi-spectral data for around-the-clock applica-
tions (e.g., pedestrian detection in security surveillance and
autonomous driving). Combining with additional dynamic
mechanism (e.g., a simple weighting strategy or Dempster-
Shafer Evidence Theory (Shafer, 1976)), recent uncertainty-
based multimodal fusion methods show remarkable advan-
tages in various tasks, including clustering (Geng et al.,
2021), classification (Han et al., 2021; 2022b; Tellamekala
et al., 2022; Subedar et al., 2019; Chen et al., 2022a), re-
gression (Ma et al., 2021), object detection (Zhang et al.,
2019; Li et al., 2022b) and semantic segmentation (Tian
et al., 2020; Chang et al., 2022).

2.2. Uncertainty Estimation

Multimodal machine learning has achieved great success
in various real-world application. However, the reliabil-
ity of current fusion methods is still notably unexplored,
which limits their application in safety-critic field (e.g.,
financial risk, medical diagnosis). The motivation of un-
certainty estimation is to indicate whether the predictions
given by machine learning models are prone to be wrong.
Many uncertainty estimation methods have been proposed
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Figure 2. Left: The generalization error upper bound of multimodal fusion method f can be characterized by its performance on each
modality in terms of empirical loss, model complexity and uncertainty awareness. Right: Dynamic vs Static multimodal fusion hypothesis
space, where the latter is a subset of the former. fstatic, fdynamic are the hypothesises of static and dynamic fusion methods respectively and
f∗ is the true mapping. Informally, closer to the true mapping leads to less error. Under some certain conditions, dynamic multimodal
fusion methods (e.g., the proposed QMF) can be well regularized and thus provably achieve better generalization ability.

in the past decades, including Bayesian neural networks
(BNNs) (Denker & LeCun, 1990; Mackay, 1992; Neal,
2012) and its varieties (Gal & Ghahramani, 2016; Han et al.,
2022a), deep ensembles (Lakshminarayanan et al., 2017;
Havasi et al., 2021), predictive confidence (Hendrycks &
Gimpel, 2017), Dempster-Shafer thoery (Han et al., 2021)
and energy score (Liu et al., 2020). Predictive confidence
expects the predicted class probability to be consistent with
the empirical accuracy, which is usually referred in clas-
sification tasks. Dempster-Shafer theory (DST) is a gen-
eralization of Bayesian theory to subjective probabilities
and a general framework for modeling epistemic uncer-
tainty. Energy score emerges as a promising way to cap-
ture Out-of-Distribution (OOD) uncertainty, which arises
when a machine learning model encounters an input that
differs from its training data, and thus the output from the
model is unreliable. A plethora of recent researches have
studied the issue of OOD uncertainty (Ming et al., 2022;
Chen et al., 2021; Meinke & Hein, 2019; Hendrycks et al.,
2019). In this paper, we investigate predictive confidence,
the Dempster-Shafer theory and energy score due to their
theoretical interpretability and effectiveness.

3. Theory
In this section, we first clarify the basic notations and the
formal definition of multimodal fusion used in Section 3.1.
Then we provide main theoretical results in Section 3.2
to rigorously demonstrate when and how dynamic fusion
methods work from the perspective of generalization abil-
ity (Bartlett & Mendelson, 2002). Due to space constraints,
we defer the full details to Appendix A and only present a
brief summary of the proofs.

3.1. Preliminaries

We initialize by introducing the necessary notations for our
theoretical frameworks. Considering a learning task on
the data (x, y) ∈ X × Y , where x = {x(1), · · · , x(M)}
has M modalities and y ∈ Y denotes the data label. The
multimodal training data is defined as Dtrain = {xi, yi}Ni=1.
Specifically, we use X , Y and Z to denote the input space,
target space and latent space. Similar to the previous work
in multimodal learning theory (Huang et al., 2021a), we
define h : X 7→ Z is a multimodal fusion mapping from
the input space to the latent space, and g : Z 7→ Y is a task
mapping. Our goal is to learn a reliable multimodal model
f = g ◦ h(x) performing well on the unknown multimodal
test dataset Dtest. Dtrain and Dtest are both drawn from joint
distribution D over X × Y . Here f = g ◦ h(x) represents
the composite function of h and g.

3.2. When and How Dynamic Multimodal Fusion Help

For simplicity, we provide analysis of ensemble-like late
fusion strategy using logistic loss function in two-class clas-
sification setting. Our analysis follows this roadmap: (1)
we first characterize the generalization error bound of dy-
namic late fusion using Rademacher complexity (Bartlett
& Mendelson, 2002) and then separate the bound into three
components (Theorem 1); (2) base on above separation, we
further prove that dynamic fusion achieves better general-
ization ability under certain conditions (Theorem 2). We
initiate our analysis with the basic setting as follows.

Basic setting. Under a M input modalities and two-class
classification scenario, we define fm as the unimodal clas-
sifier on modality x(m). The final prediction of late fusion
multimodal method is calculated by weighting decisions
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from different modalities: f(x) =
∑M

m=1 w
m · fm(x(m)),

where f(x) denotes the final prediction. In contrast to static
late fusion, the weights in dynamic multimodal fusion are
generated dynamically and vary for different samples. For
clarity, we use subscript to distinguish them, i.e., wm

static

refers to the ensemble weight of modality m in static late
fusion and wm

dynamic refers to the weight in dynamic fu-
sion. Specifically, wm

static is a constant and wm
dynamic(·) is a

function of the input sample x. The generalization error of
two-class multimodal classifier f is defined as:

GError(f) = E(x,y)∼D[ℓ(f(x), y)], (1)

where D is the unknown joint distribution, and ℓ is logis-
tic loss function. For convenience, we simplify unimodal
classifier loss ℓ(fm(xm), y) as lm and omit the inputs in
the following analysis. Now we present our first main result
regarding multi-modal fusion.

Theorem 1 (Generalization Bound of Multimodal Fusion).
Let Dtrain = {xi, yi}Ni=1 be a training dataset of N samples,
Ê(fm) is the unimodal empirical errors of fm on Dtrain.
Then for any hypothesis f in H (i.e., H : X → {−1, 1},
f ∈ H) and 1 > δ > 0, with probability at least 1 − δ, it
holds that

GError(f) ≤
M∑

m=1

E(wm)Ê(fm)︸ ︷︷ ︸
Term-L (average empirical loss)

+

M∑
m=1

E(wm)Rm(fm)︸ ︷︷ ︸
Term-C (average complexity)

+

M∑
m=1

Cov(wm, lm)︸ ︷︷ ︸
Term-Cov (covariance)

+M

√
ln(1/δ)

2N
,

(2)

where E(wm) is the expectations of fusion weights on
joint distribution D, Rm(fm) is Rademacher complexity,
Cov(wm, ℓm) is the covariance between fusion weight and
loss.

Intuitively, Theorem 1 demonstrates that the generalization
error of multimodal classifier is bounded by the weighted
average performances of all the unimodal classifiers in terms
of empirical loss, model complexity and the covariance be-
tween fusion weight and unimodal loss. Having established
the general error bound, our next goal is to verify when dy-
namic multimodal late fusion indeed achieves tighter bound
than that of static late fusion. Informally, in Eq. 1, Term-Cov
measures the joint variability of wm and ℓm. Remember
that in static multimodal fusion wm

static is a constant, which
means Term-Cov = 0 for any static fusion methods. Thus
the generalization error bound of static fusion methods re-

duces to

GError(fstatic) ≤
M∑

m=1

wm
staticÊ(fm)︸ ︷︷ ︸

Term-L (average empirical loss)

+

M∑
m=1

wm
staticRm(fm)︸ ︷︷ ︸

Term-C (average complexity)

+M

√
ln(1/δ)

2N
.

(3)

So when summation of Term-L , Term-C is invariant or
smaller in dynamic fusion and Term-Cov ≤ 0, we can en-
sure that dynamic fusion provably outperforms static fusion.
This theorem is formally presented as
Theorem 2. Let O(GError(fdynamic)), O(GError(fstatic))
be the upper bound of generalization error of multimodal
classifier using dynamic and static fusion strategy respec-
tively. Ê(fm) is the unimodal empirical errors of fm

on Dtrain defined in Theorem 1. Then for any hypothesis
fdynamic, fstatic in H : X → {−1, 1} and 1 > δ > 0, it holds
that

O(GError(fdynamic)) ≤ O(GError(fstatic)) (4)

with probability at least 1− δ, if we have

E(wm
dynamic) = wm

static (5)

and
r(wm

dynamic, ℓ(f
m)) ≤ 0 (6)

for all input modalities, where r is the Pearson correlation
coefficient which measures the correlation between fusion
weights wm

dynamic and unimodal loss ℓm.

Remark. Theoretically, optimizing over the same function
class efficiently results in the same empirical loss. Suppose
for each modality m, the unimodal classifier fm we used in
dynamic and static fusion are of the same architecture, then
the intrinsic complexity of unimodal classifier Rm(fm) and
empirical risk Ê(fm) can be invariant. Thus in this case, it
holds that

M∑
m=1

E(wm
dynamic)Ê(fm) ≤

M∑
m=1

wm
staticÊ(fm), (7)

and
M∑

m=1

E(wm
dynamic)Rm(fm) ≤

M∑
m=1

wm
staticRm(fm), (8)

if Eq. 5 is satisfied for any modality m. According to The-
orem 2, it is easy to derive the conclusion that the main
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challenge of achieving reliable dynamic multimodal fusion
is to learn a reasonable wm

dynamic(x) for each modality that
satisfies Eq. 5 and Eq. 6.

4. Method
Now we proceed to answer "How to realize robust dy-
namic fusion?". In this section, we theoretically identify
the connection between dynamic multimodal fusion and
uncertainty estimation. Then, a unified dynamic multimodal
fusion framework termed Quality-aware Multimodal Fusion
(QMF) is proposed. We next show how to realize this frame-
work in decision-level late fusion and classification tasks to
support our findings.

4.1. Coincidence with Uncertainty Estimation

Firstly, we focus on how to satisfy Eq. 6. As we discuss in
Section 2.2, the common motivation of various uncertainty
estimation methods is to provide an indicator of whether
the predictions given by models are prone to be wrong.
This motivation is inherently close to obtaining weights that
satisfy Eq. 6. We formulate this claim with the following
assumption

Assumption 1. Given an effective uncertainty estima-
tor um : X → R on modality m, the estimated uncer-
tainty um(x) is positively correlated with its modal-
specific loss ℓm(x): r(um, ℓm(x)) ≥ 0, where r is the
Pearson correlation coefficient.

This insight offers opportunity to explore novel dynamic
fusion methods provably outperform conventional static
fusion methods. Similar to previous dynamic fusion meth-
ods (Blundell et al., 2015; Zhang et al., 2019; Han et al.,
2022b), we deploy modal-level weighting strategy to intro-
duce dynamics.

Uncertainty-aware weighting. The uncertainty-aware fu-
sion weighting wm : X → R is a function that linearly and
negatively relates to the corresponding uncertainty

wm(x) = αm um(x) + βm, (9)

where αm < 0, βm ≥ 0 are modal-specific hyper-
parameters. um(x) is the uncertainty of modality m. By
tuning hyper-parameters αm, βm, we can ensure dynamic
fusion weights satisfied Eq. 5 and 6 simultaneously. This
lemma is formally presented as

Lemma 1 (Satisfiability). With Assumption 1, for any
wm

static ∈ R, there always exist βm ∈ R such that

E(wm
dynamic) = wm

static, r(w
m
dynamic, ℓ(f

m)) ≤ 0. (10)

Once we obtain the fusion weights, we can perform
uncertainty-aware weighting fusion in decision-level ac-
cording to the following rule

f(x) =

M∑
m=1

wm(x) · fm(x), (11)

where fm(x) defined in Section 3.2 denotes unimodal pre-
diction on modality m.

4.2. Enhance Correlation by Additional Regularization

With the above analysis, the core challenges of robust dy-
namic multimodal fusion present in Section. 3.2 have been
reduced to obtain an effective uncertainty estimator in As-
sumption 1. In our implementation, we leverage energy
score (Liu et al., 2020), which is a widely accepted met-
ric in the literature of uncertainty learning. Energy score 1

bridges the gap between the Helmholtz free energy of a
given data point and its density. For multimodal data, the
density functions of different modalities can be estimated
by the corresponding energy function:

log p(x(m)) = −Energy(x; fm)/T m − log Zm, (12)

where x(m) is the m-th input modality and fm is the uni-
modal classification model. Energy(·) is the energy func-
tion and Zm is an intractable constant for all xm. The
above equation suggests that −Energy(x(m); fm) is linearly
aligned with density p(x(m)). The energy score for the m-th
modality of input x can be calculated as

Energy(x(m)) = −T m · log
K∑
k

ef
m
k (x(m))/T m

, (13)

where fm
k (x(m)) is the output logits of classifier fm corre-

sponding to the k-th class label and T m is a temperature
parameter. Intuitively, more uniformly distributed predic-
tion leads to higher estimated uncertainty.

However, it has been shown experimentally that the uncer-
tainty estimated in this way without additional regulariza-
tion is not well enough to satisfy our Assumption 1. To
address this, we propose a sampling-based regularization
technology to enhance the original method in terms of corre-
lation. The most simple and straightforward way to improve
the correlation between estimated uncertainty and respec-
tive loss is to leverage the sample-wise loss during training
stage as supervision information. However, due to the over-
parameterization phenomenon of deep neural networks, the

1While another line of previous works usually incorporate an
auxiliary outlier dataset (e.g., random noised out-of-distribution
data) during training for higher performance, for clarity and a
strictly fair comparison, we conduct our experiments without the
help of additional data.
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Algorithm 1 Training Pseudo Code of Quality-aware Multimodal Fusion (QMF)
Input : Multimodal training dataset Dtrain, the number of sampling T, hyperparameters λ, temperature parameters

{T m}Mm=1, unimodal predictors {fm(·)}Mi=m;
Output : The multimodal classifier f ;

1 for each iteration do
2 Obtain training sample (xi, yi) from dataset Dtrain and the decisions on each modality fm(x);
3 Calculate uncertainty-aware fusion weights [w1

i , · · · , wm
i ] defined in Eq. 9;

4 Update the average training loss κm
i of each modalities;

5 Obtain the multimodal decision by weighting unimodal predictions dynamically according to Eq. 11;
6 Update model parameters of each unimodal predictor by minimizing Loverall in Eq. 18.
7 end

losses constantly reduce to zero during training. Inspired
by recent works in Bayesian learning (Maddox et al., 2019)
and uncertainty estimation (Moon et al., 2020; Han et al.,
2022a), we propose to leverage the information from his-
torical training trajectory to regularize the fusion weights.
Specifically, given the m-th modality of a sample (xi, yi),
the training average loss for xm

i is calculated as:

κm
i =

1

T

Ts+T∑
t=Ts

ℓ(yi, f
m
θt (xi)), (14)

where fm
θt

is the unimodal classifier on each iteration epoch
t with parameters θt. After training Ts − 1 epochs, we
sample T times and calculate the average training loss.

Empirically, recent works (Geifman et al., 2019) shown
that easy-to-classify samples are learned earlier during train-
ing compared to hard-to-classify samples (e.g., noise sam-
ples (Arazo et al., 2019)). It is desirable to regularize a
dynamic fusion model by learning the following relation-
ship during training

κm
i ≥ κm

j ⇐⇒ wm
i ≤ wm

j . (15)

We now present the full definition of our regularization term
as follows

Lreg = max(0, g(wm
i , wm

j )(κm
i − κm

j ) + |wm
i − wm

j |),
(16)

where

g(wm
i , wm

j ) =


1 if wm

i > wm
j ,

0 if wm
i = wm

j ,

−1 otherwise.

(17)

Inspired by multi-task learning, we define the total loss func-
tion as a summation of standard cross-entropy classification
losses of multiple modalities and the regularization term

Loverall = LCE(y, f(x)) +

M∑
m=1

LCE(y, f
m(xm)) + λLreg,

(18)

where λ is a hyperparamter which controls the strength of
regularization, LCE and Lreg are the cross-entropy loss and
reguralization term respectively. The whole training process
is shown in Algorithm 1.

Intuitive explanation of the effectiveness of QMF. With-
out loss of generality, we assume modality xA is clean
and modality xB is noisy due to unknown environmental
factors or sensor failure. At this time, xA is in the distri-
bution of clean training data but xB deviates significantly
from it. Accordingly, we have u(xA) ≤ u(xB) and thus
wA ≥ wB . Therefore, for our QMF, the multimodal deci-
sion will tend to more rely on the high-quality modality xA

than the other modality xB . By dynamically determining
the fusion weights of each modality, the influence of the
unreliable modalities can be alleviated.

5. Experiment
In this section, we conduct experiments on multiple datasets
of diverse applications 2. The main questions to be verified
are highlighted here:

• Q1 Effectiveness I. Does the proposed method has bet-
ter generalization ability than its counterparts? (Sup-
port Theorem 1)

• Q2 Effectiveness II. Under what conditions does
uncertainty-aware dynamic multimodal fusion work?
(Support Theorem 2)

• Q3 Reliability. Does the proposed method have an
effective perception for the uncertainty of modality?
(Support Assumption 1)

• Q4 Ablation study. What is the key factor of perfor-
mance improvement in our method?

5.1. Experimental Setup

We briefly present the experimental setup here, including
the experimental datasets and comparison methods. Please

2Code is available at https://github.com/QingyangZhang/QMF.
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(a) NYU Depth V2 (b) SUN RGB-D

Figure 3. Test accuracy and Pearson correlation coefficient achieved by different fusion methods over 10 times random experiments. The
average and worst-case accuracy are highly consistency with uncertainty estimation ability.

refer to Appendix B for more detailed setup.

Tasks and datasets. We evaluate our method on two
multimodal classification tasks. ◦ Scenes Recognition:
NYU Depth V2 (Silberman et al., 2012) and SUN RGB-
D (Song et al., 2015) are two public indoor scenes recogni-
tion datasets, which are associated with two modalities, i.e.,
RGB and depth images. ◦ Image-text classification: The
UPMC FOOD101 dataset (Wang et al., 2015) contains (pos-
sibly noisy) images obtained by Google Image Search and
corresponding textual descriptions. MVSA sentiment anal-
ysis dataset (Niu et al., 2016) includes a set of image-text
pairs with manual annotations collected from social media.
Although the datasets above are all under the condition that
M = 2, it is intuitive and easy to generalize to M ≥ 3.

Evaluation metrics. Due to the randomness involved, we
report the mean accuracy, standard deviation and worst-case
accuracy on NYU Depth V2 and SUN RGB-D over 10 dif-
ferent seeds. To be consistent with existing works (Han et al.,
2022c; Kiela et al., 2019; Yadav & Vishwakarma, 2023), we
repeat experiments over 3 times on UMPC FOOD101 and 5
times on MVSA.

Compared methods. For scene recognition task, we com-
pare the proposed method with three static fusion methods:
Late fusion, Concatenate-based fusion, Alignment-based
fusion methods (Wang et al., 2016) and two representative
dynamic fusion methods, i.e., MMTM (Joze et al., 2020)
and TMC3 (Han et al., 2021). For image-text classifica-
tion, we compare against strong unimodal baselines (i.e.,
Bow, Bert and ResNet-152) as well as sophisticated multi-
modal fusion methods, including Late fusion, ConcatBow,

3There are two variants in (Han et al., 2021): TMC and ETMC
(with additional concatenated-based multimodal fusion strategy).
TMC has comparable performance and is a more fair comparison.

ConcatBERT and recent sota MMBT (Kiela et al., 2019).

5.2. Experimental Results

Classification robustness (Q1). To validate the robust-
ness of the uncertainty-aware weighting fusion, we evaluate
QMF and the compared methods in terms of average and
worst-case accuracy under Gaussian noise (for image modal-
ity) and blank noise (for text modality) following previous
works (Han et al., 2021; Ma et al., 2021; Verma et al., 2021;
Hu et al., 2019; Xie et al., 2017). More results under dif-
ferent types of noise (e.g. Salt-Pepper Noise) can be found
in Appendix C.2. The experimental results are presented in
Table 1. It is observed that QMF usually performs in the top
three in terms of both average and worst-case accuracy. This
observation indicates that QMF has better generalization
ability than their counterparts experimentally. It is also note-
worthy that the QMF outperforms the prior state-of-the-art
methods (i.e., MMBT and TMC) on large-scale benchmark
UPMC FOOD101, which illustrates the superiority of the
proposed method.

Connection to uncertainty estimation (Q2). We fur-
ther conduct comparisons with QMF realized by various
uncertainty estimation algorithms, i.e., prediction confi-
dence (Hendrycks & Gimpel, 2017) and Dempster-Shafer
evidence theory (DST) (Han et al., 2021). According to
comparison results shown in the Figure 3, it is clear that
(i) the generalization ability (i.e., average and worst-case
accuracy) of dynamic fusion methods coincide with their
uncertainty estimation ability and (ii) our QMF achieves
the best performance in terms of classification accuracy and
uncertainty estimation in the meantime. This comparison
reveals the underlying reason of why QMF outperforms
other fusion methods and supports Theorem 2. We show the
results on NYU Depth V2 and SUN RGB-D under Gaussian
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Table 1. Classification comparison when 50% of the modalities are corrupted with Gaussian noise i.e., zero mean with variance of ϵ. The
best three results are in bold brown and the best results are highlighted in bold blue. Full results with standard deviation are in Appendix.

Dataset Dynamic Method
ϵ = 0.0 ϵ = 5.0 ϵ = 10.0

Avg. Worst. Avg. Worst. Avg. Worst.

NYU
Depth V2

✗ RGB 63.30 62.54 53.12 50.31 45.46 42.20

✗ Depth 62.65 61.01 50.95 42.81 44.13 35.93

✗ Late fusion 69.14 68.35 59.63 53.98 51.99 44.95

✗ Concat 70.30 69.4269.4269.42 59.97 55.89 53.2053.2053.20 47.7147.7147.71

✗ Align 70.3170.3170.31 68.50 59.47 56.27 51.74 44.19

✓ MMTM 71.0471.0471.04 70.1870.1870.18 60.3760.3760.37 56.7356.7356.73 52.28 46.18

✓ TMC 71.0671.0671.06 69.5769.5769.57 61.0461.0461.04 58.7258.7258.72 53.3653.3653.36 49.2349.2349.23

✓ Ours 70.09 68.81 61.6261.6261.62 58.8758.8758.87 55.6055.6055.60 51.0751.0751.07

SUN
RGB-D

✗ RGB 56.78 56.51 48.40 47.16 42.94 41.02

✗ Depth 52.99 51.32 37.81 35.63 33.07 30.41

✗ Late fusion 62.0962.0962.09 60.55 52.4452.4452.44 50.8350.8350.83 47.3347.3347.33 44.6044.6044.60

✗ Concat 61.9061.9061.90 61.1961.1961.19 52.6952.6952.69 50.61 45.64 42.95

✗ Align 61.12 60.12 50.05 47.63 44.19 38.12

✓ MMTM 61.72 60.9460.9460.94 51.86 50.8050.8050.80 46.0346.0346.03 44.2844.2844.28

✓ TMC 60.68 60.31 51.24 49.45 45.66 41.60

✓ Ours 62.0962.0962.09 61.3061.3061.30 53.4053.4053.40 52.0752.0752.07 48.5848.5848.58 47.5047.5047.50

FOOD
101

✗ Bow 82.50 82.32 61.68 60.98 41.95 41.41

✗ Img 64.62 64.22 34.72 34.19 33.03 32.67

✗ Bert 86.46 86.42 67.38 67.19 43.88 43.56

✗ Late fusion 90.6990.6990.69 90.5890.5890.58 68.49 65.05 58.0058.0058.00 55.77

✗ ConcatBow 70.77 70.68 38.28 37.95 35.68 34.92

✗ ConcatBert 88.20 87.81 61.10 59.25 49.86 47.79

✓ MMBT 91.5291.5291.52 91.3891.3891.38 72.3272.3272.32 71.7871.7871.78 56.75 56.2156.2156.21

✓ TMC 89.86 89.80 73.9373.9373.93 73.6473.6473.64 61.3761.3761.37 61.1061.1061.10

✓ Ours 92.9292.9292.92 92.7292.7292.72 76.0376.0376.03 74.6874.6874.68 62.2162.2162.21 61.7661.7661.76

MVSA

✗ Bow 48.79 35.45 42.20 32.56 41.57 32.18

✗ Img 64.12 62.04 49.36 45.67 45.00 39.31

✗ Bert 75.61 74.7674.7674.76 69.5069.5069.50 65.7065.7065.70 47.41 45.86

✗ Late fusion 76.8876.8876.88 74.76 63.46 58.57 55.16 47.78

✗ ConcatBow 64.09 62.04 49.95 45.28 45.40 40.95

✗ ConcatBert 65.59 64.74 50.70 44.70 46.12 41.81

✓ MMBT 78.5078.5078.50 78.0478.0478.04 71.9971.9971.99 69.9469.9469.94 55.3555.3555.35 52.2252.2252.22

✓ TMC 74.88 71.10 66.72 60.1260.1260.12 60.36 53.3753.3753.37

✓ Ours 78.0778.0778.07 76.3076.3076.30 73.8573.8573.85 71.1071.1071.10 61.2861.2861.28 57.6157.6157.61
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Table 2. Ablation study on NYU Depth V2. Full results with standard deviation are in Appendix C.1.

UAW Lreg
ϵ = 0.0 ϵ = 5.0 ϵ = 10.0 ϵ = 20.0

Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

✗ ✗ 69.14 68.35 59.62 53.98 51.94 44.95 43.76 36.85
✗ ✓ 69.68 67.74 61.35 58.26 55.44 51.5351.5351.53 47.32 42.97
✓ ✗ 70.06 69.1169.1169.11 61.59 57.49 55.14 50.15 47.46 42.05

✓ ✓ 70.0970.0970.09 68.81 61.6261.6261.62 58.8758.8758.87 55.8155.8155.81 51.07 48.2648.2648.26 43.7343.7343.73

Table 3. Pearson correlation coefficient r between losses and fu-
sion weights of test samples (a higher |r| indicates a better uncer-
tainty estimation).

ϵ = 0.0 ϵ = 5.0 ϵ = 10.0

MSP 0.391 0.433 0.486
Energy score 0.272 0.429 0.510

Entropy 0.397 0.420 0.452
Evidence 0.157 0.136 0.265

Ours 0.4980.4980.498 0.6520.6520.652 0.7350.7350.735

noise with zero mean and variance of 10.

Reliability of QMF (Q3). We calculate the fusion weights
defined in Eq. 9 of different modalities in Table 3 on UPMC
FOOD-101. It is observed that the fusion weights of QMF
have the most effective perception of modal quality com-
pared with other uncertainty estimation methods (in terms
of correlation). This observation justifies our expectation of
uncertainty-aware weights in Eq. 9.

Ablation study (Q4). We compare different combinations
of components (i.e., uncertainty-aware weighting and the
regularization term Lreg). Here we also employ Gaussian
noise on NYU Depth V2 in Table 2, and more results can
be found in the Appendix C.1. It is easy to conclude that
1) adding Lreg is beneficial to obtaining more reasonable
fusion weights; 2) the best performance could be expected
with the full QMF. Please refer to Table. 4 in Appendix C.1
for full results with standard deviation.

In summary, the empirical results can support our theoretical
findings. These works identify the causes and conditions of
performance gains of dynamic multimodal fusion methods.
The proposed method can help to improve robustness on
multiple datasets.

6. Limitations
Even though the proposed method achieves superior per-
formance, there are still some potential limitations. Firstly,
the fusion weights of QMF are based on uncertainty esti-
mation, which can be a challenging task in the real world.

For example, in our experiments, we can only achieve mild
Pearson’s r on NYU Depth V2 and SUN RGB-D dataset.
Therefore, it is important and valuable to explore novel un-
certainty estimation methods in the future work. Secondly,
though we characterize the generalization error bound of
the proposed method, our theoretical justifications are based
on Assumption 1. However, previous work (Fang et al.,
2022) reveals that OOD detection is not learnable under
some scenarios. Thus it’s still a challenging open problem
to further characterize the generalization ability of dynamic
multimodal fusion.

7. Conclusions and Future works
Introducing dynamics in multimodal fusion has yielded re-
markable empirical results in various applications, including
image classification, object detection and semantic segmen-
tation. Many state-of-the-art multimodal models introduce
dynamic fusion strategies, but the inductive bias provided
by this technique is not well understood. In this paper, we
provide rigorous analysis towards understanding when and
what dynamic multimodal fusion methods are more robust
on multimodal data in the wild. These findings demonstrate
the connection between uncertainty learning and robust mul-
timodal fusion, which further implies a principle to design
novel dynamic multimodal fusion methods. Finally, we
perform extensive experiments on multiple benchmarks to
support our findings. In the work, the energy-based weight-
ing strategy is devised, and other uncertainty estimation
ways could be explored. Another interesting direction is
proving the dynamic fusion under a more general setting.
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Appendix

A. Proofs
A.1. Proof of Theorem 1

Proof. Let (x, y) ∼ D denotes the multimodal sample, then we have

ℓ(f(x), y) = ℓ(

M∑
m=1

wmfm(x(m)), y). (19)

Noted that ℓ is a convex logistic loss function, which indicates that

ℓ(f(x), y) = ℓ(

M∑
m=1

wmfm(x(m)), y) ≤
M∑

m=1

wmℓ(fm(x(m)), y). (20)

Then we take the expectation on both sides of the above equation

E(x,y)∼Dℓ(f(x), y) ≤ E(x,y)∼D

M∑
m=1

wmℓ(fm(x(m)), y), (21)

since expectation is a linear operator and the expected value of the product is equal to the product of the expected values
plus the covariance, we can further decompose the right-hand side of the equation into

E(x,y)∼Dℓ(f, y) ≤
M∑

m=1

E(x,y)∼D[w
mℓ(fm, y)] (22)

=

M∑
m=1

E(x,y)∼D(w
m)E(x,y)∼D(ℓ(f

m, y)) + Cov(wm, ℓ(fm, y)) (23)

Next, we recap the Rademacher complexity measure for model complexity. We use complexity-based learning the-
ory (Bartlett & Mendelson, 2002) (Theorem 8) to quantify the generalization error of unimodal models.

Let Dtrain = {xi, yi}Ni=1 be the training dataset of N samples, Ê(fm) is the unimodal empirical error of fm. Then for any
hypothesis fm in H (i.e., H : X → {−1, 1}, f ∈ H) and 1 > δ > 0, with probability at least 1− δ, we have

E(x,y)∼D(f
m) ≤ Ê(fm) +Rm(H) +

√
ln(1/δ)

2N
,

where Rm(fm) is the Rademacher complexities.

Finally, it holds with probability at least 1− δ that

GError(f) ≤
M∑

m=1

E(wm)Ê(fm) + E(wm)Rm(H) + Cov(wm, ℓ(fm, y)) +M

√
ln(1/δ)

2N
. (24)

A.2. Proof of Theorem 2

Proof. Let O(GError(fdynamic)), O(GError(fstatic)) be the upper bound of generalization error of multimodal classifier
using dynamic and static fusion strategy respectively, Ê(fm) is the unimodal empirical errors of fm on Dtrain defined in
Theorem. 1. Theoretically, optimizing over the same function class results in the same empirical risk. Therefore

Ê(fm
static) = Ê(fm

dynamic). (25)
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Additionally, the intrinsic complexity of unimodal classifier Rm(fm) is also invariant

Rm(fm
static) = Rm(fm

dynamic). (26)

Thus in this special case, it holds that

M∑
m=1

E(wm
dynamic)Ê(fm) ≤

M∑
m=1

wm
staticÊ(fm), (27)

and
M∑

m=1

E(wm
dynamic)Rm(fm) ≤

M∑
m=1

wm
staticRm(fm), (28)

if E(wm
dynamic) = wm

static.

Since the covariance and correlation coefficient have the same sign, when r(wm, lm) ≤ 0, the covariance Cov(wm, lm) is
also less than or equal to 0. Therefore, it holds that

O(GError(fdynamic)) ≤ O(GError(fstatic)) (29)

with probability at least 1− δ, if we have
E(wm

dynamic) = wm
static (30)

and
r(wm

dynamic, ℓ(f
m)) ≤ 0 (31)

for all input modality m.

B. Experimental details
B.1. Datasets details

◦ Senses recognition. For NYUD-V2, following the standard split, we reorganize the 27 categories into 10 categories with
9 usual senes and one "others" category. For SUN RGB-D, following the previous work (Han et al., 2021), we use the 19
major scene categories of SUN RGB-D, each of which contains at least 80 images.
◦ Image-text classification. For FOOD-101, following the previous work (Kiela et al., 2019), there are 60101 image-text
pairs in the training set, 5000 image-text pairs in the validation set, and 21695 image-text pairs in the test set. For MVSA,
we conduct the division strategy presents in (Kiela et al., 2019). There are 1555 image-text pairs in the training set. The
validation set contains 518 image-text pairs, and the test set contains 519 image-text pairs.

B.2. Implementation details

Senses recognition. For senses recognition task, we compare the proposed method with diverse multimodal fusion methods,
including late fusion, align-based fusion, concatenated-based fusion and recent SOTA MMTM (attention-based fusion).
Regarding late fusion, align-based fusion, concatenated-based fusion, we adopt the architecture of ResNet (He et al., 2016)
pretrained on ImageNet (Deng et al., 2009) as the backbone network for each modality. ◦ Concatenate-based fusion
For concatenate-based fusion, we concatenate the representations extracted from different modalities by ResNet. Then a
fully connection layer is deployed to map the multimodal representation to the target space. The dimensions of unimodal
representation and common representation are 128 and 256 respectively. ◦ Align-based fusion The alignment fusion method
is a re-implementation of (Wang et al., 2016). We deploy cosine distance to measure the similarity of representations. ◦
MMTM We follow the authors’ implementation, where the squeeze ratio is set to 4. For all compared methods, we use
Adam optimizer to train all above models with L2 regularization and dropout (Srivastava et al., 2014). The learning rate is
1e-4 and the dropout rate is 0.1.

Image-text classification. For image-text classification, we compare the proposed method with diverse multimodal
fusion methods, including late fusion, concatenated-bow fusion, concatenated-bert fusion and MMTM. For late fusion and
concatenated-bert fusion, we adopt the architecutre of ResNet (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) as
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the backbone network for image modality and pre-trained Bert(Devlin et al., 2018) for text modality. For concatenated-Bow
fusion, we use the Bow (Pennington et al., 2014) to replace BERT for text modality. For the Bert models, we use BertAdam
and regular Adam for the other models. The learning rate is 1e-4 with a warmup rate of 0.1. We adopt the early stop strategy
based on validation accuracy.

For all above experiments, we conduct sampling during the whole training phase (Ts = 1). The hyperparameter λ is set to
0.1. Temperature parameters {T m}Mm=1 are set to 1.

C. Additional results
C.1. Full results with standard deviation

In this section, we present the full results with standard deviation in Tab. 5, and Tab. 4.

C.2. Different type of noise

We provide more results with different type of noise (i.e., salt-pepper noise with varying noise rate ϵ) in Tab. 6. The results
validate that the proposed method can improve the performance of multimodal fusion methods under different type of noise.

Table 4. Full ablation study on NYU Depth V2.

UAW Lreg ϵ = 0.0 ϵ = 5.0 ϵ = 10.0 ϵ = 20.0

✗ ✗ 69.14± 0.69 68.35± 0.82 59.62± 1.17 53.98± 1.08
✗ ✓ 69.68± 0.39 67.74± 0.40 61.35± 0.34 58.26± 0.1.13
✓ ✗ 70.06± 0.1.03 69.11± 0.8269.11± 0.8269.11± 0.82 61.59± 0.0.72 57.49± 1.41

✓ ✓ 70.09± 0.3870.09± 0.3870.09± 0.38 68.81± 0.62 61.62± 0.3161.62± 0.3161.62± 0.31 58.87± 0.4058.87± 0.4058.87± 0.40
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Table 5. Full comparison results when 50% of the modalities are corrupted with Gaussian noise.

Dataset Dynamic Method ϵ = 0.0 ϵ = 5.0 ϵ = 10.0

NYU
Depth V2

✗ RGB 62.65± 1.22 50.95± 3.38 44.13± 3.80

✗ Depth 63.30± 0.48 53.12± 1.52 45.46± 2.07

✗ Late fusion 69.14± 0.67 59.63± 2.44 51.99± 3.11

✗ Concat 70.31± 0.80 59.97± 2.14 53.20± 3.50

✗ Align 70.31± 1.28 59.47± 1.84 51.74± 3.41

✓ MMTM 71.04± 0.41 60.37± 2.61 52.28± 3.77

✓ TMC 71.06± 0.7671.06± 0.7671.06± 0.76 61.04± 1.66 53.36± 2.76

✓ Ours 70.09± 0.97 61.62± 1.8461.62± 1.8461.62± 1.84 55.60± 2.0955.60± 2.0955.60± 2.09

SUN
RGB-D

✗ RGB 52.99± 0.88 37.81± 1.14 33.07± 1.81

✗ Depth 56.78± 0.19 48.40± 1.11 42.94± 1.63

✗ Late fusion 62.00± 0.15 52.52± 0.67 47.48± 1.40

✗ Concat 62.48± 0.5062.48± 0.5062.48± 0.50 53.30± 0.39 48.01± 0.96

✗ Align 61.12± 0.61 50.05± 1.59 44.19± 2.18

✓ MMTM 61.72± 0.67 51.86± 1.14 46.03± 1.47

✓ TMC 60.68± 0.24 51.24± 0.96 45.66± 2.06

✓ Ours 62.09± 0.56 53.40± 0.8953.40± 0.8953.40± 0.89 48.58± 0.8248.58± 0.8248.58± 0.82

UMPC
FOOD101

✗ Bow 82.50± 0.18 61.68± 0.71 41.95± 0.54

✗ Img 64.62± 0.40 34.72± 0.53 33.03± 0.37

✗ Bert 86.46± 0.05 67.38± 0.19 43.88± 0.32

✗ Late fusion 90.69± 0.12 68.49± 3.37 57.99± 1.59

✗ Concatbow 70.77± 0.09 38.28± 0.26 35.68± 0.69

✗ Concatbert 88.20± 0.34 61.10± 2.02 49.86± 2.05

✓ MMBT 91.52± 0.10 72.32± 0.34 56.75± 0.33

✓ TMC 89.86± 0.07 73.93± 0.34 61.37± 0.21

✓ Ours 92.92± 0.1192.92± 0.1192.92± 0.11 76.03± 0.7076.03± 0.7076.03± 0.70 62.21± 0.2562.21± 0.2562.21± 0.25

MVSA

✗ Bow 48.79± 7.05 42.20± 6.40 41.57± 6.28

✗ Img 64.12± 1.23 49.36± 2.02 45.00± 2.63

✗ Bert 75.61± 0.53 69.50± 1.50 47.41± 0.79

✗ Late fusion 76.88± 1.30 63.46± 3.46 55.16± 3.60

✗ ConcatBow 64.08± 1.54 49.95± 2.29 45.39± 3.03

✗ ConcatBert 65.59± 1.33 50.70± 2.65 46.12± 2.44

✓ MMBT 78.50± 0.40 71.99± 1.04 55.34± 2.84

✓ TMC 74.87± 2.24 66.72± 4.55 60.35± 2.79

✓ Ours 78.07± 1.1078.07± 1.1078.07± 1.10 73.85± 1.4273.85± 1.4273.85± 1.42 61.28± 2.1261.28± 2.1261.28± 2.12
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Table 6. Full comparison results when 50% of the modalities are corrupted with Salt-pepper noise.

Dataset Dynamic Method ϵ = 0.0 ϵ = 5.0 ϵ = 10.0

NYU
Depth V2

✗ RGB 62.61± 1.21 49.14± 1.40 34.76± 1.59

✗ Depth 63.32± 0.50 50.99± 1.41 38.56± 2.16

✗ Late fusion 69.16± 0.68 56.27± 2.40 41.22± 2.78

✗ Concat 70.44± 0.89 57.98± 2.08 44.51± 2.91

✗ Align 70.31± 1.28 57.54± 2.50 43.01± 2.66

✓ MMTM 71.04± 0.4171.04± 0.4171.04± 0.41 59.45± 1.3859.45± 1.3859.45± 1.38 44.59± 2.49

✓ TMC 71.01± 0.75 59.34± 1.03 44.65± 2.30

✓ Ours 70.06± 0.81 58.50± 2.05 45.69± 2.7945.69± 2.7945.69± 2.79

SUN
RGB-D

✗ RGB 52.63± 0.89 40.42± 0.99 28.15± 1.00

✗ Depth 56.81± 0.57 46.36± 0.82 35.66± 1.44

✗ Late fusion 61.79± 0.57 51.54± 2.12 39.35± 2.89

✗ Concat 62.06± 0.5362.06± 0.5362.06± 0.53 51.09± 1.91 38.61± 3.07

✗ Align 61.02± 0.54 50.45± 0.82 38.70± 1.46

✓ MMTM 61.80± 0.40 51.09± 0.77 38.38± 1.56

✓ TMC 61.02± 0.39 50.88± 1.28 39.61± 2.30

✓ Ours 61.89± 0.49 52.49± 1.8152.49± 1.8152.49± 1.81 40.53± 2.7940.53± 2.7940.53± 2.79

UMPC
FOOD101

✗ Bow 82.43± 0.18 60.83± 0.54 41.56± 0.33

✗ Img 64.53± 0.47 50.75± 0.44 36.83± 0.92

✗ Bert 86.44± 0.02 67.41± 0.20 43.89± 0.33

✗ Late fusion 90.66± 0.16 77.99± 0.54 58.75± 0.99

✗ Concatbow 70.68± 0.12 55.01± 0.33 38.81± 0.62

✗ Concatbert 88.22± 0.36 72.49± 0.75 52.10± 0.97

✓ MMBT 91.51± 0.10 76.27± 0.22 54.98± 0.55

✓ TMC 89.86± 0.07 77.86± 0.41 60.22± 0.43

✓ Ours 92.90± 0.1392.90± 0.1392.90± 0.13 80.87± 0.4080.87± 0.4080.87± 0.40 61.60± 0.2061.60± 0.2061.60± 0.20

MVSA

✗ Bow 48.82± 7.08 42.23± 6.43 41.60± 6.31

✗ Img 64.12± 1.23 56.72± 1.92 50.71± 3.20

✗ Bert 75.61± 0.53 69.50± 1.50 47.41± 0.79

✗ Late fusion 76.88± 1.30 67.88± 1.87 55.43± 1.94

✗ ConcatBow 64.08± 1.54 56.66± 1.73 49.35± 2.44

✗ ConcatBert 65.59± 1.33 58.69± 2.25 51.16± 2.99

✓ MMBT 78.50± 0.4078.50± 0.4078.50± 0.40 74.07± 1.1274.07± 1.1274.07± 1.12 51.26± 5.65

✓ TMC 74.87± 2.24 68.02± 3.07 56.62± 3.67

✓ Ours 78.07± 1.10 73.90± 1.89 60.41± 2.6360.41± 2.6360.41± 2.63
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