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Abstract
We discuss how practically to specify reinforcement learning (RL) objectives through
careful design of reward functions and discounting. We specifically focus on defining
a human-aligned objective for the RL problem, and we argue that reward shaping and
decreasing discounting, if desired, are part of the RL solution—not the problem—and
should be saved for a second step after this paper’s focus. We provide tools for
diagnosing misalignment in RL objectives, such as finding preference mismatches
between the RL objective and human judgments and examining the indifference point
between risky and safe trajectory lotteries. We discuss common pitfalls that can lead
to misalignment, including naive reward shaping, trial-and-error reward tuning, and
improper handling of discount factors. We also sketch candidate best practices for
designing interpretable, aligned RL objectives and discuss open problems that hinder
the design of aligned RL objectives in practice.

1 Introduction
Academic and practical treatments of reinforcement learning tend to assume that RL problem objec-
tives are given. Yet in practice it is often not, and the RL objective—defined by a reward function
and temporal discounting—must be designed by a human RL practitioner. This paper focuses on
how to design an aligned RL objective, meaning one that provides an evaluative signal for what
we humans desire from the RL agent. This RL objective is problem-side, independent of what RL
solution is chosen, and its corresponding reward function is identified sometimes as environmental
reward or true reward because it is defined independently of what specific RL algorithm is used to
learn from it. Best practices for designing such RL objectives (before any reward shaping) have not
yet been proposed. We provide a first attempt at collecting and synthesizing a succinct set of best
practices for designing and debugging such aligned RL objectives in practice. In line with this focus
on providing practical advice, this paper first considers how to find misalignment in an RL objective
(Section 2) and three common sources of misalignment (Sections 3–5) before proposing how to design
aligned RL objectives (Section 6).

1.1 Reward, return, and expected return

In the RL framework, a reward function specifies the immediate scalar reward received by the agent
for taking action at in state st at time step t and transitioning to state st+1: R(st, at, st+1). A
trajectory τ is a sequence of states and actions that either reaches an absorbing state (via episode
termination) or is infinite. The return for some τ is its total discounted cumulative reward, G(τ) =∑|τ |−1

t=0 γtR(st, at, st+1), where the discount factor γ reduces the value of future reward. The goal
of an RL algorithm is to learn a policy π that maximizes the expected return across a distribution
over start states J(π) = Eτ∼π[G(τ)], where the expectation is taken over trajectories generated
by following the policy π. We encourage the precise application of the terms reward, return, and
expected return, because we suspect their common confusion—particularly using “reward” in place
of the other terms—is itself a cause of poor literacy regarding the design of RL objectives and hinders
the return-centric perspective for which we advocate.

1



RLJ | RLC 2024

1.2 A human-aligned RL objective

An RL objective is considered aligned if its reward function and discounting induces the same pref-
erence ordering over policies as the human stakeholders. A preference ordering over policies maps
to a preference ordering over probability distributions over trajectories. In other words, trajectory
distributions and policies that are preferred by humans should also achieve higher expected return
according to the reward function and discounting. See Bowling et al. (2023) for a detailed theoretical
treatment of the relationship between reward functions, discounting, and preferences over trajec-
tory distributions, building upon Von Neumann and Morgenstern’s expected utility theory (1944).1
Roughly speaking, misalignment occurs when the RL objective incentivizes behaviors that are unde-
sirable or even harmful from the human perspective.

An aligned reward function
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A perfectly aligned reward function creates an ordering over 
outcome distributions that matches that of the human 
stakeholder.
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Figure 1: 3 abstract trajectories.

An illustrative example To illustrate this concept of align-
ment, imagine a simple autonomous driving task with only 3 pos-
sible trajectories, illustrated in Figure 1. τsuccess is a successful
drive to its destination. In τidle, the ego vehicle remains parked
and does not attempt to drive. And in τcrash, the ego vehicle drives
halfway to the destination and then crashes.

People generally prefer these trajectories in the order: τsuccess, τidle,
and τcrash. An aligned RL objective would assign returns such
that G(τsuccess) > G(τidle) > G(τcrash), thereby inducing the same preference ordering. For instance,
consider the following return arising from the reward function and discounting: G(τsuccess) = 10,
G(τidle) = 0, and G(τcrash) = −50. Such an RL objective is aligned in this simple task because the
ordering of the trajectories by their returns matches the human preference ordering.

To broaden this example to include distributions over trajectories, now consider adding a fourth
possibility, a so-called lottery that represents the risk inherent in any drive. Here the ego vehicle
follows a policy that has a 90% chance of resulting in τsuccess and a 10% chance of resulting in τcrash.
People tend to prefer the safe option τidle over the lottery, with its 1 in 10 chance of collision. A reward
function and discounting that result in the previous set of returns would result in an expected return
for this lottery of 4, which is higher than the return for τidle, indicating that such an RL objective
would be misaligned in this slightly more complex world that incorporates risk. Practically speaking,
this choice of RL objective incentivizes undesirably risky behavior over the preferred safe behavior.

Change your perspective from player to game designer The common perspective taken by
an RL practitioner is that of the learning agent—an entity that pursues reward, estimates expected
returns, and updates its policy to maximize expected return. However, when designing an RL
objective, instead take the perspective of one who designs the rules of the game, who creates the
scoring system that motivates player decisions. For RL, the scoring system is the calculation of
return.

From this return-centric perspective, the choice of RL objective creates an ordering over policies based
on their expected returns. The role of the designer is to craft a reward function and discounting that
induce the desired ordering—one that aligns with human preferences about which outcomes (and
distributions over outcomes) are better or worse. Getting this ordering right is critical, since the RL
agent will pursue whatever behavior leads to the highest expected return under the RL objective it
is given.2

1Bowling et al. rely on a generalization of the more common form of discounting we shared in the previous
subsection, allowing their results to apply to tasks that are episodic and therefore undiscounted or that are continuing
and either exponentially discounted or average reward.

2When designing RL objectives, the pursuit of alignment and ease of learning might appear at odds. We address this
tension in Section 3. In short, rewards given to improve ease of learning should exclusively come from a separate reward
shaping function, removing this tension by separating these two pursuits, with the added benefit of not overloading
a reward function with two types of information. Additionally, there are many other ways to ease learning besides
reward shaping.
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1.3 Is RL the right approach for your sequential decision-making problem?

Although this work focuses on specifying RL objectives, RL is not the only approach to building
sequential decision-making agents. Alternatives include learning from demonstrations (i.e., imitation
learning) and learning from preferences (e.g., RL from human feedback, or RLHF). Many variants
of these methods involve learning an intermediate reward model that is then used with RL to derive
a policy. In such cases, much of this work’s content is still relevant.

When deciding between designing an RL problem and learning from human input, several factors
should be considered: the quality of human input that can be obtained (e.g., satisfactorily performant
demonstrations); the cost of gathering human input (e.g., if a human must monitor the agent for
safety, as is often the case for autonomous driving, then the cost of gathering input from that
human might be small); the likelihood that one can tune RL to learn a satisfactory policy; and
the cost of gathering experience for RL, especially when the learnt policy is not yet satisfactory.
Additionally, we emphasize that RL can be used in conjunction with learning from human input.
Including demonstrations, preferences, or other feedback can powerfully improve the ability of an
RL algorithm to learn with less reward shaping (Knox & Stone, 2012; Brys et al., 2015), which may
reduce incentives to create misaligned RL objectives.

Is RL potent enough? While RL has shown impressive results in certain domains (Silver et al.,
2016; Wurman et al., 2022; Vinyals et al., 2019; Jumper et al., 2021), its important role in the
training of the most impactful models today (e.g., LLMs) via RLHF (Ziegler et al., 2019; Ouyang
et al., 2022; OpenAI, 2022; Glaese et al., 2022; Bai et al., 2022; Touvron et al., 2023) is merely to find
multidimensional actions (of many tokens) that maximize reward in a bandit task, which falls short
of the vision of RL as a maximizer of expected return over a horizon (Knox et al., 2024). RL generally
appears to be a more difficult optimization problem than supervised learning from demonstrations
and preferences—and therefore broadly effective RL algorithms may take longer to develop—but RL
generally has a higher ceiling of performance with well-designed RL objectives, above what a human
can demonstrate or differentiate via preferences.

Is RL safe enough? Additionally, the AI community is currently debating whether optimizing
RL objectives can be sufficiently safe as the capabilities of AI increase (Cohen et al., 2024). This
work—without taking sides on the debate—both considers the pitfalls of specifying RL objectives and
ways to address them, attempting to clarify aspects of RL safety while making RL safer to deploy.

2 Finding misalignment in an RL objective
In our experience, one of the most effective ways to identify misalignment is to compare the simple
preference orderings of human stakeholders to the orderings created by the RL objective.

Find mismatches in preference orderings This method seeks trajectories where the ordering
implied by the RL objective contradicts the preferences of human stakeholders.

For example, consider the trajectories τidle (vehicle remains parked) and τcrash (vehicle drives halfway
and crashes). Humans would clearly prefer τidle (i.e., τidle ≻ τcrash). But a naive reward function that
provides a seemingly large-magnitude collision penalty—let us say -100—and a small positive reward
for speed—let us say it averages +1—at every time step might assign a higher return to τcrash if it runs
for more than 100 time steps before crashing. Knox et al. (2021) studied published reward functions
that were designed for autonomous driving and found that 7 out of 9 reward functions incorrectly
preferred crashing over not driving at all. This simple test revealed misalignment that could cause
deadly behaviors if a real autonomous vehicle was blindly deployed after learning effectively from one
of these reward functions.

We recommend two methods to find trajectories to compare: (1) choose desirable and undesirable
trajectories that represent salient categories of different outcomes in the task, using your imagination
or observations of policies’ rollouts; and (2) attempt to do specification gaming yourself, mentally
finding trajectories that accrue returns that contrast with their desirability. Note that the trajectories
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can be abstracted to only contain the information that the reward function measures, like speed and
collisions in the example above, which makes them easier to compare and reason about otherwise.

Find undesired risk tolerance via indifference points Another technique for identifying
misalignment is to compare a safe trajectory to a trajectory lottery, representing risk. For example,
we can find the indifference probability p at which the reward function assigns equal expected return
to:

• Option A: The safe trajectory τidle.
• Option B: A lottery that yields the successful trajectory τsuccess with probability p and the crash

trajectory τcrash with probability 1 − p.

By examining the indifference probability p, we can assess whether the reward function exhibits an
acceptable level of risk tolerance. In the same autonomous driving study, Knox et al. (2021) found
that even the most risk-averse reward function was indifferent between not driving and a lottery
with a crash rate more than 4000 times higher than that of a drunk US teenage driver. This second
method of focusing on risk tolerance was broader than the first, showing that all 9 reward functions
overly tolerate risk.

3 Misalignment by reward shaping
For current RL methods, some form of human guidance often appears needed. Reward shaping refers
to the practice of guiding the learning process with human expertise by adding extra rewards to the
base objective: rshaped = r(st, at, st+1) + rshaping(st, at, st+1), where the RL algorithm typically only
experiences rshaped as its reward. For example, in a navigation task, we might add intermediate re-
wards for progress towards the goal, rather than just a sparse reward upon reaching the goal. Reward
shaping is predominant.For example, Knox et al. (2021) found that 13 of 19 reward functions used
some form of reward shaping. Additionally, their study and our own experience unfortunately suggest
that RL practitioners typically shape without maintaining a separate reward shaping function.

Recommendation: Create an aligned reward function without 
shaping, then optionally add a shaping reward function.

Shaped return

Return

Why?

● Clarity
○ The reward function should create an aligned problem 

specification.
○ The shaping rewards give policy guidance and may 

change the problem specification.

● Debugging ("overfit" plot)

Training episodes

● To avoid overloading the reward function with 
two types of signals

○ Freedom to have different discount factors

Figure 2: Illustration of
using a separate shaping
rewards function to catch
shaped reward hacking af-
ter shaping helps during
early learning.

While well-intentioned, naive reward shaping often leads to misalignment
between the shaped reward function and the true objectives of the task.
The agent may learn to optimize for the shaping rewards in ways that
are detrimental to the overall goal. For example, Randløv & Alstrøm
(1998) appear to be the first to report a common mistake in reward shap-
ing—rewarding progress without penalizing regress—which often causes
agents to learn loops of progress followed by regress near the start state.
Such looping navigation is incentivized by positive cumulative rewards
per loop that under low discounting can add to large returns. In another
example, Jaritz et al. (2018) designed reward functions for a racing video
game that include a shaping penalty for deviating from the center of the
lane. (See Knox et al. (2021, Appendix A.6) for full descriptions of their
designed reward functions.) Discussing the misalignment caused by their
shaping, Jaritz et al. write “the bots do not achieve optimal trajectories
... [in part because] the car will always try to remain in the track center.”

There are some reward shaping methods that are guaranteed to preserve alignment (i.e., the ordering
over policies), such as potential-based shaping (Ng et al., 1999). However, these methods are safe
only under oft-ignored assumptions, and they appear to be used in a minority of instances in practice.
See Appendix A for a discussion of the limitations of potential-based shaping.

We recommend to first design an aligned reward function, R, that directly captures human prefer-
ences over trajectory distributions, without any shaping. Then, if one wants to impart task knowledge
via shaping—rather than by other means such as demonstrations3—do so a separate shaping reward
function, rshaping. This allows for clearer analysis of how the shaping affects learning and helps avoid

3In RL’s standard text, Sutton & Barto (2018) encourage such other means over reward shaping: “... the reward
signal is not the place to impart the agent prior knowledge about how to achieve what we want it to do... The reward
signal is your way of communicating to the robot what you want it to achieve, not how you want it achieved... Better
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overloading the base reward with both the true objective and potentially misaligned shaping rewards.
One such analysis involves plotting both shaped and unshaped returns in learning curves, which will
reveal when the RL algorithm is successfully optimizing for shaped expected return without benefit-
ing—perhaps even harming—its accrual of aligned expected return, as Figure 2. (This phenomenon
is often called reward hacking, which falsely implies that the agent knows the aligned objective and
is willfully exploiting the shaped objective, thereby making the issue with the RL objective appear
to be an issue of an malicious RL agent.)

4 Misalignment by trial-and-error reward design
Another common practice that can lead to misalignment is trial-and-error reward design. This
iterative process typically involves this loop, starting with an initial candidate reward function:

1. Train an RL agent using the candidate reward function.
2. Observe the learned behavior of the agent during and after training.
3. If the result of learning are unsatisfactory, manually tweak the reward function—and perhaps

tweak the RL algorithm too—and repeat from step 2.

Trial-and-error reward design is also predominant. Booth et al. (2023) found that 92% of surveyed
RL experts used it to design their most recent reward function. Further, 100% of authors who shared
their design process with Knox et al. (2021) used trial-and-error reward design.

Despite its intuitive appeal, trial-and-error reward design is problematic, as Booth et al. (2023)
explain. First, the RL practitioner effectively acts as an optimization algorithm (aprocryphally
dubbed “graduate student descent” by David McAllester) that can overfit the reward function to
the specific training environment and RL algorithm. The resultant reward function may be brittle,
unable to generalize well to other environments or algorithms, leading to misaligned behavior in new
settings. Further, comparing an RL algorithm and its overfit reward function to another RL algorithm
unfairly biases results towards the first algorithm and is a potential source of scientific invalidity in
the RL literature, a concern that is yet uninvestigated. Second, this ad hoc tuning tends to produce
RL objectives that are complex and thus hard to interpret. Such complexity hinders reasoning about
what is actually being incentivized and whether it truly captures what humans desire.

Booth et al. (2023) asked RL experts to choose RL algorithms and reward functions for a simple grid
world task called Hungry Thirsty (Singh et al., 2009) with a communicated evaluation metric. The
subjects did engage in trial-and-error reward design: even in this time-constrained setting, subjects
tried 4.1 reward functions on average and 93% tried more than one. Unsurprisingly, shaping was
prevalent amidst trial-and-error design: 97% shaped their final reward function, despite that any
of the available RL algorithms are able to learn an optimal policy with the simple reward function
that is aligned with the evaluation metric. Overfitting to the finally chosen RL algorithm was widely
observed.

A common cause of reward misdesign was using reward to rank the immediate desirability of states,
such as giving high positive reward for reaching a goal state and low positive reward for reaching
a subgoal. Critically, they often did not realize that smaller positive rewards could be achieved so
frequently that their cumulative effect on return incentivizes the agent to avoid the larger rewards that
are required for optimal behavior under the true evaluation function. They lacked the return-centric
perspective we recommend in Section 1.2, focusing myopically on states rather than trajectories and
return.

We recommend that any iterative design of the RL objective should focus on improving alignment, not
performance. In other words, the reward function should be designed to represent human preferences
over trajectory distributions, not just to produce appealing behaviors in a specific training setup.

places for imparting this kind of prior knowledge are the initial policy or initial value function, or in influences on
these.”
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5 Misalignment by discounting
Temporal discounting is a key component of the RL framework (see Section 1.1). In the most
common discounting regime—called exponential or geometric discounting—the discount factor γ ∈
[0, 1] controls the relative weighting of immediate and future rewards. A reward k steps into the
future is discounted by a factor of γk compared to an immediate reward.

In practice, RL implementations often use two different discount factors:

• γtask: The true discount factor that is part of the underlying problem definition, helping to create
returns that order trajectory distributions in an aligned way.

• γalg: The discount factor hyperparameter used by the RL algorithm during training.

Ideally, we would always set γalg = γtask. Unfortunately, larger γ values in deep RL often lead to less
stable learning. One cause for this instability is that most deep RL methods use value bootstrapping,
meaning that the target for the value function update is defined to include an estimate from the
learned value function. For example, in TD-learning (Sutton & Barto, 2018) the target for the
value function at state st is set to rt + γVθ(st+1), where Vθ is the same deep value function network
being trained. The effect of bootstrapping is increased with larger γ values since it increases the
contribution of the value function estimate in the target. In general, there are no guarantees that
value bootstrapping with function approximation is stable (Baird, 1995; Gordon, 1995; Van Hasselt
et al., 2018; Fellows et al., 2023); values may diverge to infinity or grow exponentially. Whereas
various works analyze conditions that affect stability and methods to address those conditions (Baird,
1995; Gordon, 1995; Sutton et al., 2008; Van Hasselt et al., 2018; Mnih et al., 2015; Fujimoto et al.,
2018; Fellows et al., 2023; Gallici et al., 2024), in practice it remains hard to scale these methods to
larger γ values. Consequently, most work still sets γalg < γtask.

γ 10% 1% 0.1%
0.9 2.3 s 4.6 s 6.9 s
0.99 23 s 46 s 69 s
0.999 230 s 460 s 690 s

Table 1: Time to X% value for fu-
ture reward under different discount
factors, assuming a 100 ms timestep.

Given that typically γalg ̸= γtask, it is important to keep these
two discount factors separate and to use γtask when assessing
the alignment of the reward function, including when plotting
the true return such as in Figure 2.

To investigate why an RL agent is not pursuing a large future
reward, one can compute the time to X% value—the number
of timesteps in the future at which reward’s contribution to the
return is discounted to X% of its original value. timesteps to
X%= logγalg

X × 100. If you know or can estimate the time per
time step, then finish conversion to a unit of time. For example, with γ = 0.9 and a timestep of 100
ms, a reward’s value is reduced to 10% after just 2.3 seconds. Even with γ = 0.99, the 10% threshold
is reached after only 23 seconds.

With common γalg values and timesteps—such as 0.99 and 100 ms—events merely tens of seconds
away may have little impact on what decisions the RL agent should take. A misaligned γalg can
lead to shortsighted behaviors that prioritize near-term rewards over achieving highly desirable or
undesirable outcomes in the long-term.

Applying our lens of seeking an aligned RL objective, the practical tactic above can be viewed
as another form of assessing the trajectory ordering created by an RL objective. Orderings over
trajectories—and more generally over trajectory distributions—are a valuable tool for evaluating
both γtask and γalg, providing a more precise version of the traditional advice to choose discounting
to capture the desired trade-off between short-term and long-term outcomes.

6 How to design an aligned RL objective
We are unaware of any past proposals of best practices for the design of aligned reward functions
and discounting. As a first draft of such best practices, we propose the following general process:

1. Outcome variables - Identify the minimum set of outcome variables that differentiate varying
levels of success and failure. In other words, these outcomes are the high-level results that matter to
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humans. In autonomous driving, these outcome variables might include whether the autonomous
vehicle reaches its destination, if it avoids collisions, violations of traffic laws, passenger experience,
and so on.
• For each outcome variable, define a per-timestep reward function component that, when

summed over a trajectory, yields the total value of that outcome variable for the trajectory.
For example, if one outcome variable is whether the vehicle reaches its destination, the cor-
responding per-timestep reward component could be a large positive value upon reaching the
destination and zero everywhere else. For outcome variable time taken to reach termination, the
corresponding per-timestep reward component could be −1, using a negative sign to indicate
that less time is preferable.

2. Representation - Combine the per-timestep reward components into a reward function with
parameters that are thus far undefined. As a strong default, we recommend a linear reward
function with weights controlling the relative importance of each outcome variable. Only add
complexity as needed, since simpler RL objectives are easier to tune and debug.

3. Parameter tuning - Tune the reward function parameters—e.g. the weights in a linear func-
tion—until the induced preference ordering over trajectory distributions aligns with human pref-
erences. This step calibrates the contribution of each outcome variable to the overall RL objective.

4. Evaluate and iterate - Evaluate whether the RL objective adequately represents human pref-
erences and, if not, iterate the process above. Critically, these iterations differ from the type of
trial-and-error reward design described previously in that the purpose of iteration is to improve
alignment, not performance.

In addition to further detail in Appendix C, we add two recommendations here.

• To ease reasoning about and debugging RL objectives, seek reward components and resultant
returns that are interpretable to humans. For example, a binary indicator of goal achievement
and a per-timestep time penalty are both highly interpretable, and their linear combination and
undiscounted sum create returns that are likewise relatively interpretable.

• Mind the potential pitfalls discussed earlier, such as misalignment due to reward shaping, tuning
via trial-and-error to directly improve RL performance, and overly myopic discounting. Avoiding
these pitfalls can help prevent common sources of misalignment.

We emphasize that the process above is an incomplete sketch. Of particular note, we have largely
overlooked discounting. In general, discounting should be viewed as part of the expressivity that
defines the space of potential RL objectives; this space determines one’s ability to find an RL objective
that is aligned with any particular set of preferences. For episodic tasks, we recommend starting RL-
objective design with a default of γtask = 1, which is both common outside of deep learning settings
and greatly eases reasoning about return. We refer the reader to Appendix B for discussion of
discounting for continuing tasks and in general.

7 Conclusion
By following a principled process of designing reward functions and discounting—keeping alignment
considerations at the forefront—we can make progress towards RL systems that behave in accordance
with human values and preferences. However, despite our sketch above, no validated best practices
exist and research is urgently needed as the effectiveness of optimizers for sequential decision mak-
ing—including RL and planning algorithms—continue to improve.

Additionally, the recommendations in this paper sometimes require additional effort to follow, such
as finding mismatches in preference orderings. More intuitive and accessible software tools should be
developed to facilitate adherence to our our recommendations—as well as for holistically designing
RL objectives—resulting in more aligned RL objectives.

By pursuing these and other open problems, the research community can work towards more reliably
alignable RL systems that can be safely deployed in a wider range of real-world tasks. However, we
must also remain vigilant to the risks and limitations of RL, and be willing to consider alternative
paradigms when appropriate.
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A On the impracticality of potential-based reward shaping for
contemporary RL

Potential-based reward shaping—which we shorten to potential shaping—is a well-known reward
shaping method that does not distort the true preference ordering of policies for discounted finite-
state MDPs and undiscounted finite-state MDPs in which all policies eventually terminate.4, making
it a form of so-called safe reward shaping. Despite its renown, we found it to be rarely applied in
prior work. Further, we have heard colleagues report negative results from trying it.

A potential reason for its lack of adoption in recent applications is that the same property that makes
potential shaping safe in certain settings, is a property that may make it impractical for modern RL
methods that use N-step returns or experience replay. To explain, we review potential shaping.
Potential shaping starts with the original MDP reward function, R(s, a, s′). It then defines a new
shaped reward function

R̂(s, a, s′) ≜ R(s, a, s′) + γϕ(s′) − ϕ(s),

where ϕ(s) is a potential function that, loosely speaking, assigns a heuristic value to how good it is
to be in any given state. Intuitively, if the agent transitions to better state s′, then the difference
γϕ(s′) − ϕ(s) will be positive, adding a positive value to the original reward that encourages the
agent to take the action again. If it transitions to a worse state, a negative value will be added to
the original reward that discourages the agent from taking the action again.

Potential shaping is safe under its assumptions because for any policy π, the potential-shaped Q-
function, Q̂, only differs from the original Q-function, Q, by a state-dependent offset: Q̂π(s, a) =
Qπ(s, a)−ϕ(s). Since the offset is only state dependent, it does not affect the greedy action selection
from each state.

Potential shaping results in this safe value function because the (discounted) potential value that
is added from the next state, γϕ(s′), is immediately canceled in the subsequent step. We can
demonstrate this canceling by expanding the two-step discounted sum of shaped rewards:

R̂(s, a, s′) + γR̂(s′, a′, s′′) =
(

R(s, a, s′) + γϕ(s′) − ϕ(s)
)

+ γ
(

R(s′, a′, s′′) + γϕ(s′′) − ϕ(s′)
)

=
(

R(s, a, s′) + γϕ(s′) − ϕ(s)
)

+
(

γR(s′, a′, s′′) + γ2ϕ(s′′) − γϕ(s′)
)

= R(s, a, s′) + γϕ(s′) − ϕ(s) + γR(s′, a′, s′′) + γ2ϕ(s′′) − γϕ(s′)
= R(s, a, s′) + γR(s′, a′, s′′) − ϕ(s) + γ���ϕ(s′) −���γϕ(s′) + γ2ϕ(s′′)
= R(s, a, s′) + γR(s′, a′, s′′) − ϕ(s) + γ2ϕ(s′′).

In general, the shaped N -step discounted return is:

N−1∑
t=0

γtR̂(st, at, st+1) =
N−1∑
t=0

γtR(st, at, st+1) + γN ϕ(sT ) − ϕ(s0)

Originally, potential shaping was proposed for one-step online Q-learning methods. In this case, the
subsequent removal of added potential values would not be immediately propagated to the estimated
Q-value. Consequently, the first visit of a state-action pair would be biased toward good actions and
biased away from bad actions. Only from many subsequent visits to the same state-action pair would
its initial bias be diminished, converging to the bias-free potential-shaped value function Q̂π.

In contrast, modern on-policy RL methods such as PPO (Schulman et al., 2017), Impala (Espeholt
et al., 2018), and A3C (Mnih et al., 2016), all use some form of large N-step returns that would

4Potential shaping is also safe for infinite-state MDPs under typical and mild constraints usually required for RL.
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immediately cancel out the dense impact of the potential shaping,5 leaving only a substantially
discounted additional shaped reward based upon the final state of the N-step return: γN ϕ(sN ).

While modern off-policy RL methods such as SAC Haarnoja et al. (2018), TD3 Fujimoto et al.
(2018), DDPG Casas (2017), and DQN Mnih et al. (2015) use single-step value updates, their use
of experience replay may similarly result in fast cancellation of the dense potential values. That
is, methods that use experience replay sample a large batch of state-action pairs and update all
their values on each time step. Consequently, a single state-action pair may have its value adjusted
many times before the agent visits it again in the environment, which can more quickly eliminate the
bonuses from the shaping function. If methods pair experience replay with N-step returns, then the
potential bonuses will be canceled even faster. Studying how fast these bonuses cancel in practice is
a fruitful direction for future research and may lead to more effective and safe shaping approaches.

B Exponential discounting in continuing tasks
For episodic tasks, we recommend γtask = 1. However, for continuing tasks, γtask = 1 does not yield
a meaningful objective because returns will accumulate to ±∞ for all but the most trivial reward
function specifications. E.g., if the agent can accumulate a net positive amount of reward by the
time it revisits a recurrent state in a continuing task, then as time progresses, the cumulative return
will diverge to positive infinity. This divergence prevents a useful comparison of different policies
and cannot capture a designer’s preferences over policies.

There are two common solutions to this issue. Most common is to employ discounting with γ < 1.
Another approach is to reframe the problem using an average reward objective, where the goal is to
find a stationary policy6 that maximizes the average reward. Unfortunately both approaches come
with their own set of challenges, which we discuss below.

B.1 Exponential discounting

Although a task may be continuing in the sense that it lacks a clear terminating condition, in practice,
agents are rarely run indefinitely. If we have an upper bound on the agent’s runtime, we can utilize
the “time to X” method discussed earlier to select a sufficiently large γtask for evaluation purposes.
Notably, it has been shown that every finite MDP has a critical point γ∗ < 1, beyond which a
Blackwell optimal policy emerges that is optimal for all γ ∈ [γ∗, 1) Naik et al. (2019). While this
critical point is specific to each MDP, it implies that if our upper bound exceeds γ∗, we have a path
to optimality over even longer horizons.

Unfortunately, we cannot know in advance how big γ∗ is. It could be much larger than we’d typi-
cally use in practice and choosing a γalg < γtask for a continuing task can complicate optimization.
Specifically, when using γalg < γtask for stability reasons, we typically want the agent to consider all
states it will encounter during its extended execution, rather than myopically focusing on the start
state distribution. In tabular settings, we can achieve this by evaluating the discounted value of a
policy at every state and partially ordering policies based on their dominance over others. Tabular
methods enable finding an optimal policy within this partial ordering. However, when using function
approximation, we need to define an objective function that can totally order policies to enable policy
improvement.

A natural approach to mitigate overly myopic behavior when using function approximation is to
define an objective function that weighs the discounted value function by the distribution of states
induced by the policy: J(π) =

∑
s dπ(s)V π

γ (s), where dπ(s) is the stationary probability that the
agent visits state s when following policy π. However, standard discounted RL methods that greedily
improve policies locally for individual states do not actually optimize this objective (Naik et al., 2019).

5These methods often use λ-returns which are more biased then Monte Carlo returns. While λ-returns would not
as aggressively cancel potential shaping rewards as Monte Carlo returns, the shaping would nonetheless be greatly
diminished compared to one-step updates. As λ → 1, the less the method will benefit from potential shaping.

6A stationary policy is policy that does not change its probability distribution over actions for a given state. That
is, if the agent revisits a state, the probability distribution will remain the same as the last time the agent visited the
state.
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Fortunately, this objective is equivalent to maximizing the average reward, and using average reward
RL methods will directly optimize it, providing a more effective approach.

B.2 Average-reward objectives

Although choosing γtask = 1 for a continuing task is problematic, continuing tasks can be undis-
counted through the average reward RL objective. In this framework, the objective function is
defined as: J(π) =

∑
s dπ(s)Ea,s′∼π(·|s) [R(s, a, s′)]. Here J(π) is the average reward under the

stationary distribution of policy π.

The average reward objective has several useful properties.

• Empirical evaluation is straightforward: simply average the reward signals over a sufficiently long
trajectory (or set of trajectories) when evaluating an agent.

• The policy ordering it induces is equivalent to the policy ordering obtained when taking the limit
of discounted objectives as γ approaches 1. Thus an optimal policy is defined by arg maxπ J(π) =
arg maxπ limγ→∞(1 − γ)V π,γ(s0), where s0 is a start state and V π,γ is the value function under
discount factor γ (Naik et al., 2019).

• Average reward deep RL algorithms avoid the mismatch between evaluation criteria (γtask) and
algorithm training parameters (γalg).

These properties make a strong case for using average-reward RL for continuing tasks. However,
while there are emerging methods to solve average reward RL objectives (Ma et al., 2021; Zhang &
Ross, 2021), methods have historically been difficult to use in practice and newer methods have not
reached widespread adoption suggesting they may not yet be practical. As a result, discounted RL
algorithms may still be the preferred algorithmic method, even with their optimization complications,
until more practical algorithms for average reward RL are developed.

B.3 Reasons to use discounting in continuing-tasks

While we have primarily discussed the drawbacks of overly myopic discounted values with γalg < γtask
and their potential for misalignment, there are scenarios where selecting a smaller γ may be beneficial
in preventing misalignment.

A common concern regarding the safety of RL systems is that a long-lived, continuing-task planning
agent may overoptimize a misaligned reward function, leading to perverse outcomes in the long term.
However, using a smaller discount factor can mitigate this issue by restricting the space of policies
that could be optimal for a given state space, action space, and reward function Jiang et al. (2015).
This property was initially explored in the context of using discount factors to regularize the policies
of model-based agents that plan with a learned model of the environment from limited data. However,
a reduced policy space also facilitates easier evaluation of an agent’s safety and inherently mitigates
long-term perverse optimization of misaligned reward functions.

Therefore, if there is a high risk of reward function misalignment in a model-based, continual-task
agent, discounting may be the preferred approach. Nevertheless, we still recommend evaluating
agents with γtask or the average reward to ensure that misalignment is not caused by excessive
myopia.

C Designing an aligned RL objective
Here we add detail to the sketch of candidate best practices given in Section 6.

Outcome variables

Identifying the right outcome variables can be challenging, leading to a lengthy iteration process. To
address this challenge, one strategy is to measure many more related outcome variables than initially
anticipated. For example, in a project on autonomous racing, Wurman et al. (2022) measured
numerous outcome variables. These outcomes included different types of collisions and passing events,
which were measured to assess racing etiquette, allowing the reward function to trade off between
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this etiquette and and competitiveness. Although this set of outcome variable may be broader than
those in the finally chosen RL objective, it can help indicate when fine-grained agent behavior differs
from designer expectations.

Parameter tuning

Note that this step is effectively RLHF. However, standard RLHF appears to create highly shaped
reward functions (Knox et al., 2024), which is not the aim here. Further, a linear reward function can
be learned with far fewer samples than the shaped, deep reward functions common in contemporary
RLHF. Because of this sample efficiency, a promising approach is to algorithmically identify preference
inconsistencies and have the human designer rectify them, rather than assuming error in the form of
a Boltzmann distribution, an assumption many RLHF researchers begrudgingly use, waiting for an
improved model of error.

Evaluation

Since the usage of preferences in the parameter-tuning step already represents a sort of evaluation,
what evaluation(s) would be helpful at this step is difficult to say without testing this design process
broadly for real-world sequential domains. One potential source of informal additional evaluation is
running RL on the designed objective, which might reveal that some important outcomes are not yet
captured by the reward function. Another tactic is to actively search for trajectories for which the
RL objective produces unintended incentives.
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