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Abstract

As a powerful all-weather Earth observation001
tool, synthetic aperture radar (SAR) remote002
sensing enables critical military reconnais-003
sance, maritime surveillance, and infrastructure004
monitoring. Although Vision language mod-005
els (VLMs) have made remarkable progress006
in natural language processing and image un-007
derstanding, their applications remain lim-008
ited in professional domains due to insuf-009
ficient domain expertise. This paper inno-010
vatively proposes the first large-scale multi-011
modal dialogue dataset for SAR images, named012
SARChat-2M, which contains approximately013
2 million high-quality image-text pairs, en-014
compasses diverse scenarios with detailed tar-015
get annotations. This dataset not only sup-016
ports several key tasks such as visual under-017
standing and object detection tasks, but also018
serves as the first visual-language benchmark019
in the SAR domain. Through this work, we020
enable and evaluate VLMs’ capabilities in021
SAR image interpretation, providing a paradig-022
matic framework for constructing multimodal023
datasets across various remote sensing ver-024
tical domains. Through experiments on 16025
mainstream VLMs, the effectiveness of the026
dataset has been fully verified. The project will027
be released at https://anonymous.4open.028
science/r/SARChat-D0ED/.029

1 Introduction030

In recent years, deep neural networks, notably031

CNNs (LeCun et al., 1998) and ViTs (Dosovit-032

skiy, 2020), have achieved remarkable progress in033

remote sensing data analysis, enhancing both pro-034

cessing efficiency and analytical accuracy. How-035

ever, existing research mainly focuses on visual036

feature extraction, while lacking deep semantic037

parsing and reasoning capabilities (Li et al., 2024),038

limiting model applicability in complex scenarios.039

With the advancement of Large-Language Mod-040

els (LLMs), Vision-Language Models (VLMs),041

through integrating pre-training and instruction tun- 042

ing, have demonstrated robust zero-shot learning 043

and generalization in multimodal tasks (Dai et al., 044

2023). This has inspired researchers to explore the 045

deep integration of visual models with LLMs. 046

Although models designed for optical remote 047

sensing images, like RSGPT (Hu et al., 2023) and 048

GeoChat (Kuckreja et al., 2024), have shown pre- 049

liminary achievements, they struggle to perform 050

well in SAR applications. SAR images inherently 051

pose significant interpretation challenges due to 052

their scattering imaging mechanisms, characterized 053

by blurred target edges, dispersed speckles, and 054

orientation sensitivity. Meanwhile, existing SAR 055

datasets primarily focus on visual recognition tasks 056

(Kuckreja et al., 2024; Cheng et al., 2022; Zhang 057

et al., 2023), leaving a critical shortage of large- 058

scale, high-quality image-text alignment datasets. 059

Both these intrinsic characteristics and data limi- 060

tations impede the advancement of VLMs in the 061

SAR domain. 062

Current VLMs are primarily trained on conven- 063

tional natural images without extensive fine-tuning 064

for the SAR vertical domain. Despite their strong 065

visual capabilities for natural images, these VLMs 066

still have significant room for improvement in SAR 067

image interpretation. Building upon the SARDet- 068

100K dataset (Dai et al., 2024) with its rich SAR 069

imagery and detection annotations, we construct 070

SARChat-Bench-2M, a task-oriented SAR-specific 071

image-text pair dataset, to address the insufficient 072

SAR image interpretation capabilities of existing 073

VLMs. 074

As shown in Figure 1, we present SARChat-2M, 075

a large-scale multimodal conversational dataset for 076

SAR images, and establish SARChat-Bench, a com- 077

prehensive multimodal task-oriented benchmark 078

for the SAR domain. The SARChat-2M dataset 079

contains approximately 2 million high-quality SAR 080

image-text pairs across maritime, terrestrial, and 081

urban scenarios, featuring fine-grained semantic de- 082
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SARChat-Tasks Example Quantitative of Performance-Parameters

Model Performance in SARChat-Bench

Task 1:
Classification

Task 2: 
Fine-Grained Description

Task 3:
Instance Counting

Task 4:
Spatial Grounding

Task 5:
Cross-Modal Identification

Task 6:
Referring

👨: Based on these category options
(aircraft, bridge, car, harbor, ship, tank),
what's visible in this scene?

🤖: It is aircraft

👨: What stands out to you in this satellite
image?

🤖: In this satellite image, we can observe the
following: One can spot a small aircraft in the
central region of the image There is one more
small aircraft in the central region of the image
...

category: 
aircraft

👨: [count] Can you count all the aircraft
in this image?
🤖: There are 3 instances. {<251>
<265><323><342>}{<185><276><256>
<355>}{<88><275><177><356>}

👨: [grounding] Can you describe where
different objects are situated in this SAR
image?
🤖: In this SAR image, I can identify several
objects and their locations: There are 3
aircrafts: one in the middle center portion
{<251><265><323><342>}, one in the middle
center...

👨: [identify] Could you specify what
appears at {<251><265><323><342>}?
🤖: Present in the middle center area is
a very small aircraft.

👨: [refer] I need to find 3 aircraft, can you
help?
🤖: {<251><265><323><342>} (middle center)
{<185><276><256><355>} (middle center)
{<88><275><177><356>} (middle left)

SARChat Presentation

SAR Image

SOTA Open Source VLMs 
SFT by SARChat-2M

. . .

Figure 1: An overview of SARChat-Bench-2M. The left figure demonstrates the representative tasks realized with
the SAR image-text dataset, SARChat-2M, constructed in this paper. Validating the dataset’s efficacy and superiority
in supporting multi-task applications. The right figure presents the correlation radar charts and quantitative line
graphs derived from the performance evaluation of 16 VLMs basing on this dataset, establishing the benchmark
(SARChat-Bench) within this domain.

scriptions and multi-scale resolutions (0.3-10 me-083

ters). The dataset supports major vision-language084

tasks such as image captioning, VQA(Visual Ques-085

tion Answering), visual localization, and object086

detection. To systematically evaluate model per-087

formance in these domains, we design six specific088

benchmark tasks in SARChat-2M: classification,089

fine-grained description, instance counting, spa-090

tial grounding, cross-modal identification, and091

referring. To validate the effectiveness of our092

dataset and benchmark, we conduct extensive ex-093

periments by fine-tuning 16 state-of-the-art VLMs094

of varying parameter scales, including InternVL2.5,095

DeepSeekVL, GLM-Edge-V, and the mPLUG-Owl096

family. Through training on SARChat-2M, these vi-097

sual language models (VLMs) acquire comprehen-098

sive multi-task capabilities in SAR interpretation,099

as demonstrated by our systematic evaluation on100

SARChat-Bench.101

The primary contributions of this paper are as102

follows:103

1. The construction of SARChat-2M, the largest104

SAR remote sensing instruction-following105

dataset to date, comprising over 2 million106

high-quality image-text pairs across multi-107

scenario task-oriented dialogues, alleviating108

the knowledge scarcity of VLMs in the SAR109

domain.110

2. The development of SARChat-Bench, a com-111

prehensive SAR domain multimodal bench-112

mark encompassing six core tasks (classifica-113

tion, description, counting, localization, recog-114

nition, and refering), enabling systematic eval- 115

uation of vision-language models through 116

multi-dimensional assessment metrics. 117

3. It pioneers a research paradigm applicable to 118

the SAR field, providing reference ideas for 119

the construction of models in other remote- 120

sensing vertical domains. The methods and 121

processes adopted in data collection, annota- 122

tion, as well as model training and evaluation 123

in this study have good generality and exten- 124

sibility. 125

2 Related Work 126

2.1 VLMs for Remote Sensing 127

VLMs are capable of converting images into natu- 128

ral language descriptions and parsing the relation- 129

ships between objects, demonstrating remarkable 130

performance in tasks such as text-image retrieval, 131

image captioning, and visual question answering. 132

Recently, models like RemoteClip (Liu et al., 2024) 133

have been applied to the field of remote sensing im- 134

ages, primarily focusing on cross-modal retrieval 135

and zero-shot classification. However, these mod- 136

els have not addressed tasks such as image de- 137

scription generation and visual grounding. The 138

RSGPT model has achieved text description and 139

visual question answering for remote sensing im- 140

ages, but it has not expanded to tasks such as clas- 141

sification and detection. The GeoChat model has 142

advanced multi-task conversational processing of 143

high-resolution remote sensing imagery, includ- 144
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Figure 2: Construction of SARChat-2M dataset. On the left, ten existing SAR detection benchmark datasets. The
middle part is the SARDet-100K dataset, formed by integrating the ten datasets on the left. On the right, six core
tasks constructed based on the dataset are presented, with each task corresponding to different task identifiers,
operation steps, and relevant templates.

ing scene classification, visual question answering,145

multi-turn dialogue, visual grounding, and refer-146

ence object detection. However, these models, in-147

cluding GeoChat, predominantly rely on optical148

remote sensing training data, leading to suboptimal149

performance in SAR-specific interpretation tasks.150

EarthGPT (Zhang et al., 2024) has extended the ap-151

plication of multimodal large language models to152

the remote sensing field through instruction tuning,153

but its performance in SAR image multi-task pro-154

cessing still needs improvement. Compared with155

natural images, the interpretation of SAR images156

is more challenging, which poses higher demands157

on the model’s processing capabilities and adapt-158

ability.159

2.2 Remote Sensing Vision-Language Datasets160

Remote sensing datasets are essential for models161

that interpret remote sensing imagery. Existing162

datasets such as UCM Captions (Qu et al., 2016a),163

Sydney Captions (Qu et al., 2016b), RSICD (Lu164

et al., 2017), RSITMD (Yuan et al., 2022), and165

RSVG (Zhan et al., 2023) provide preliminary re-166

sources for studying the correlation between re-167

mote sensing images and text. However, these168

datasets are limited not only in scale but also in169

modality, containing only optical images with-170

out SAR data, leaving SAR interpretation ca-171

pabilities largely unexplored. Although large-172

scale datasets like MillionAID (Long et al., 2021),173

FMoW (Christie et al., 2018), and BigEarthNet 174

(Sumbul et al., 2019) exist, they lack text-image 175

pairs. The RS5M dataset (Zhang et al., 2023), con- 176

taining 5 million image-text pairs, is still limited 177

to optical images. The MMRS-1M dataset (Zhang 178

et al., 2024), which covers optical, infrared, and 179

SAR modes, has a very low proportion of SAR 180

image-text data. Therefore, this paper constructs 181

the SARChat-2M dataset, which focuses on SAR 182

images and contains over 2 million image-text 183

pairs, covering tasks such as classification, detec- 184

tion, caption generation, VQA, and visual ground- 185

ing. 186

3 Data Construction and Description 187

3.1 The Procedure of Data Construction 188

3.1.1 Dataset Overall 189

As shown in Figure 2, we propose SARChat-2M, a 190

multi-task dataset for SAR images, comprising 2 191

million multimodal dialogue samples (1,836,912 192

train and 226,636 test samples) to ensure robust 193

model training and evaluation. 194

Based on the SARDet-100K dataset (Dai et al., 195

2024), it incorporates multimodal adaptations and 196

enhanced language annotations from ten estab- 197

lished SAR detection benchmarks such as AIR- 198

SARShip(1.0&2.0) (Wang et al., 2019a), HRSID 199

(Wei et al., 2020), MSAR (Chen et al., 2022), 200

SADD (Zhang et al., 2021a), SAR-AIRcraf (Zhirui 201
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et al., 2023), ShipDataset (Wang et al., 2019b),202

SSDD (Zhang et al., 2021b), OGSOD (Wang et al.,203

2023), and SIVED (Lin et al., 2023). The SARChat-204

2M covers six semantic categories (ships, tanks,205

bridges, ports, aircraft, and automobiles) and sup-206

ports six core SAR image analysis tasks: classifica-207

tion, fine-grained description, instance counting,208

spatial grounding, cross-modal identification,209

and referring. These diverse tasks are designed to210

enhance VLMs’ capabilities in SAR image interpre-211

tation, with 2 million carefully curated annotations212

for cross-modal learning.213

3.1.2 Task Definition214

Based on the characteristics of SAR images and the215

core capabilities of the VLM, this study constructs216

an evaluation system consisting of six tasks. The217

definitions of each task are as follows:218

(1) Classification: Classification is a fundamental219

task in SAR image interpretation that evaluates the220

VLM’s basic visual understanding through target221

category discrimination.222

(2) Fine-Grained Description: The fine-grained223

description task focuses on both target category224

identification and geometric attribute analysis in225

SAR imagery. Beyond basic classification, it evalu-226

ates the VLM’s capability to extract detailed mor-227

phological features and spatial orientations, demon-228

strating the model’s proficiency in reasoning about229

SAR-specific spatial-geometric relationships.230

(3) Instance Counting: This task requires accu-231

rate counting of multiple SAR targets while ex-232

tracting their spatial coordinates and orientation233

information. The key challenge lies in prevent-234

ing double-counting errors, particularly in complex235

scenes where multiple targets overlap. The model236

must maintain robust counting performance while237

handling various target densities and background238

complexities.239

(4) Spatial Grounding: This task challenges the240

model to interpret and reason about complex spatial241

relationships between multiple targets in SAR im-242

agery, including their relative positions, distances,243

and directional relationships. The key challenge244

lies in accurately understanding and describing di-245

verse spatial configurations, especially in scenes246

with multiple interacting objects and varying spa-247

tial layouts. The model must demonstrate precise248

spatial reasoning abilities while handling complex249

multi-target scenarios and maintaining consistent250

performance across different scene compositions.251

(5) Cross-Modal Identification: Given specified252

spatial coordinates, the VLM infers target attributes 253

and generates comprehensive descriptions (size, 254

morphology, direction, distance). This task exam- 255

ines the model’s ability to fuse and reason about 256

multimodal information in SAR interpretation. 257

(6) Referring: This reverse-reasoning task chal- 258

lenges the model to locate specific instances in 259

SAR images from textual descriptions. The key 260

challenge lies in bridging semantic-visual gaps 261

while accurately determining target spatial orienta- 262

tions, requiring robust cross-modal reasoning capa- 263

bilities across varied scene configurations. 264

3.1.3 Task-Oriented Data Generation 265

Based on the characteristics of the six tasks, this 266

study designs a multimodal dialogue data genera- 267

tion scheme. The specific rules and implementation 268

logic are as follows, with detailed templates pro- 269

vided in the Appendix A.4: 270

(0) Dataset Definitions 271

Our dataset adopts a unified representation 272

scheme across all visual-language tasks to ensure 273

consistency and interpretability. The spatial infor- 274

mation is uniformly encoded using the bounding 275

box format {<x1><y1><x2><y2>}, where (x1,y1) 276

and (x2,y2) denote the top-left and bottom-right 277

coordinates respectively. Spatial relationships are 278

structured through a standard 3×3 grid system (con- 279

sisting of top-left, top, top-right, left, middle, right, 280

bottom-left, bottom, bottom-right regions). 281

To explicitly specify different task requirements, 282

we incorporate task-specific prompts: [count] for 283

Instance Counting Task, [grounding] for Spatial 284

Grounding Task, [identify] for Cross-Modal Iden- 285

tification, and [refer] for Referring Task. These 286

prompts help guide the model’s attention to the 287

relevant aspects of each task. 288

These definitions form the foundational frame- 289

work for our task formulations and evaluation 290

metrics, enabling systematic assessment of visual- 291

language models’ capabilities. 292

(1) Classification Task 293

The Classification Task assesses the model’s 294

SAR image recognition capabilities through 20 295

distinct question-answer template pairs. Random 296

template combinations enhance data diversity, with 297

standardized notation for multi-target scenarios. 298

(2) Fine-Grained Description Task 299

Fine-Grained description evaluates the model’s 300

structured parsing of satellite imagery through com- 301

prehensive quality control. Following our dataset 302

definitions, we filter images below 224×224 pixels 303
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and exclude targets with area ratio R < 1% (Equa-304

tion 1). Targets with aspect ratios exceeding 10:1305

or out-of-bounds coordinates are removed. Size306

descriptions are categorized using area-ratio thresh-307

olds (small: <5%, large: >30%). We construct 40308

interaction templates to accommodate multi-target309

scenarios. The calculation of R is formulated as310

follows:311

R =
wbox × hbox
Wimg ×Himg

× 100 (1)312

where wbox and hbox denote the width and height313

of the target bounding box, respectively; Wimg and314

Himg represent the width and height of the image.315

(3) Instance Counting Task316

As a fundamental component of our visual rea-317

soning system, this task focuses on evaluating the318

model’s quantitative counting capabilities. We des-319

ignate 15 question templates with [count] identi-320

fiers to specify the task requirements, while utiliz-321

ing our unified bounding box format for structured322

output representation. The framework supports323

extended expressions for multi-instance scenarios324

through coordinate serialization.325

(4) Spatial Grounding Task326

Spatial Grounding assessment evaluates the327

model’s proficiency in characterizing structural re-328

lationships among multiple target objects. Lever-329

aging our established grid system, we quantify spa-330

tial relationships through two primary mechanisms:331

relative distance metrics (with proximal threshold332

defined as (Wimg +Himg)/8) and directional rela-333

tionships (encompassing horizontal, vertical, and334

diagonal orientations). The framework incorpo-335

rates 15 spatial-relationship templates, each pre-336

fixed with [grounding] identifiers, conforming to337

our unified spatial representation scheme.338

(5) Cross-Modal Identification339

Cross-modal parsing evaluation employs a340

three-tier feature description system. Spa-341

tial positioning utilizes a 3×3 grid partition-342

ing scheme for orientation description. Quanti-343

tative classification encompasses five-level size344

descriptions based on area-ratio R thresholds345

(≥0.4:very large; ≥0.25:large; ≥0.1:medium;346

≥0.03:small; <0.03:very small) and morpholog-347

ical analysis through bounding-box aspect ratios348

(>1.5:wide-body; 0.67≤ratio≤1.5:approximately349

square; <0.67:tall-body).350

Feature integration combines spatial-size-351

morphological elements into comprehensive352

target profiles. The system implements 20353

differential response templates with a dedicated 354

[identify] instruction identifier and structured 355

output templates. 356

(6) Referring Task 357

Referring evaluates cross-modal correlation ca- 358

pabilities between natural language and image re- 359

gions. Queries follow the pattern "Where is the 360

{category}?", prefixed with [refer] identifiers. The 361

task outputs both precise bounding box coordinates 362

and grid-based orientation descriptions, adhering 363

to our unified spatial representation framework 364

through nested parenthetical notation. 365

3.2 Quantitative Analysis of Datasets 366

The quantitative analysis in this study focuses on 367

two key dimensions: category distribution and ob- 368

ject morphological patterns. 369

Category Training Test

Ship 93,373 (46.98%) 10,741 (44.38%)
Aircraft 40,705 (20.48%) 6,779 (28.01%)

Car 9,561 (4.81%) 1,230 (5.08%)
Tank 24,187 (12.17%) 1,773 (7.33%)

Bridge 27,615 (13.89%) 3,281 (13.56%)
Harbor 3,306 (1.66%) 399 (1.65%)

Table 1: Category Distribution Statistics

(1) Category Distribution Characteristics 370

As shown in Table 1, the ship category dom- 371

inates both training and test sets (46.98% and 372

44.38% respectively), while the harbor category 373

represents less than 2%. A significant distribution 374

shift is observed in the aircraft category, with a 375

7.53% increase in the test set compared to the train- 376

ing set. Categories such as cars, tanks, and bridges 377

maintain moderate and stable proportions across 378

both sets. This class distribution aligns with real- 379

world SAR imagery characteristics, where certain 380

target types naturally appear more frequently than 381

others due to the inherent nature of SAR remote 382

sensing applications and operational scenarios. 383

(2) Object Morphology Analysis 384

This study quantify geometric characteristics us- 385

ing aspect ratio (AR): 386

AR =
hbox
wbox

× 100% (2) 387

Metric Training Set Test Set Diff-Rate

Mean 1.28 1.26 -0.02
Median 1.062 1.05 -0.017
SD 1.18 0.91 -0.22

Table 2: Aspect Ratio Distribution Comparison
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As shown in Table 2, the differences in central388

tendency between training and test sets are minimal389

(mean: -0.02, median: -0.017). The test set exhibits390

a 0.22 lower standard deviation, indicating a more391

concentrated distribution. The key morphological392

distribution intervals of targets are illustrated in393

Appendix A.2.394

The dataset exhibits three distinct morphologi-395

cal categories based on aspect ratio (AR): broad-396

bodied (AR ≤ 0.67), nearly square-shaped (0.67 <397

AR ≤ 1.5), and tall-bodied (AR > 1.5). Detailed398

distribution analysis can be found in Appendix A.2.399

4 SARChat-Bench Evaluation Method400

and Settings401

This section details the evaluation methodology of402

SARChat-Bench, a standardized benchmark suite403

we designed for comprehensive assessment of404

VLMs in SAR interpretation. The benchmark cov-405

ers six fundamental tasks that evaluate the model’s406

core capabilities across information processing,407

target localization, and semantic understanding,408

providing multi-dimensional insights into visual-409

language model performance in the SAR domain.410

The evaluation framework ensures fair and thor-411

ough assessment of VLMs’ capabilities across dif-412

ferent SAR interpretation scenarios.413

4.1 Evaluation Metrics414

(1) Accuracy: A core metric reflecting model pre-415

diction fit, calculated as:416

Acc =
TP

TP + FP + FN
× 100% (3)417

where TP denotes correct positive predictions,418

FP represents false positive predictions, and FN419

indicates false negative predictions.420

(2) Intersection over Union (IoU): In tasks in-421

volving localization, identification, and reference,422

IoU is a key metric measuring the overlap between423

predicted and ground-truth bounding boxes (bbox).424

Higher IoU values indicate greater overlap and bet-425

ter localization performance. All IoU-related calcu-426

lations in this paper are performed with thresholds427

of 0.25 and 0.5.428

(3) Overall Score Calculation:429

Sm =
∑
t∈T

am,t ×
nt∑
i∈T ni

(4)430

Among them, nt represents the sample size of431

task t, am,t denotes the accuracy of model m on432

task t, and T is the set of all tasks. The detailed 433

calculation of am,t for each task can be found in 434

Appendix C. 435

4.2 Assessment Methods 436

This section elaborates on the specific evaluation 437

method processes for six types of tasks. 438

(1) Instance Counting: Compare predicted and la- 439

bel object counts for single-class evaluation, where 440

counting accuracy is measured by Acc and object 441

localization precision is evaluated using Intersec- 442

tion over Union (IoU ). 443

(2) Spatial Grounding: Evaluate spatial accuracy 444

through IoU -based bbox matching and abstract po- 445

sition analysis (e.g., "top", "bottom") from natural 446

language descriptions. 447

(3) Cross-Modal Identification: Calculate IoU 448

between predicted and ground-truth bboxes for 449

both single and multiple target scenarios to assess 450

cross-modal matching capability. 451

(4) Referring: Assess referring accuracy through 452

IoU metrics in both single-target and multi-target 453

contexts. 454

(5) Fine-Grained Description: Segment predic- 455

tions and ground-truth into short phrases, extract 456

category and position information, and compare 457

content sets for detailed description evaluation. 458

(6) Classification: Compare predicted and ground- 459

truth categories to assess classification accuracy 460

Acc. 461

5 Experiments and Analysis 462

5.1 Implementation Details 463

During the fine-tuning stage, the model is trained 464

for 1 epoch with a batch size of 4 (effective batch 465

size 32 with gradient accumulation steps of 4). This 466

study employs LoRA training method with rank=8 467

and alpha=32 on all linear layers. The learning 468

rate is initialized at 1e-4 with a 0.1 warm-up ratio. 469

All experiments are conducted on 2 NVIDIA A100 470

GPUs using bfloat16 precision. Training is imple- 471

mented using the MS-SWIFT framework (Zhao 472

et al., 2024) for efficient distributed training. In the 473

most time-consuming case, the training process for 474

a single model took up to 192 hours to complete. 475

5.2 Benchmark Evaluation 476

To verify the effectiveness and practicality of the 477

SARChat-2M dataset, we conducted extensive ex- 478

periments on SAR image interpretation tasks using 479

sixteen mainstream visual-language models. Our 480

6



Model Param Avg
score

Tasks
Only
count

Instance Count Abstract
position

Spatial Ground Cross-Modal ID Multi-target Ref Single-target Ref Descript ClassIoU=.25 IoU=.5 Multi Single Multi Single IoU=.25 IoU=.5 IoU=.25 IoU=.5

InternVL2.5

8B 92.79 74.14 61.37 52.17 81.25 62.25 87.91 98.84 98.98 37.49 23.46 74.86 60.13 63.43 97.25
4B 91.57 72.68 57.54 47.35 83.33 60.89 85.90 98.01 98.76 34.05 18.86 69.92 55.29 58.84 97.27
2B 90.55 71.52 54.11 44.22 50.00 60.81 81.92 97.79 98.63 27.05 13.91 68.50 52.16 56.36 96.69
1B 88.89 69.87 50.18 39.35 0.00 56.30 82.24 96.98 98.60 22.13 9.94 62.33 44.99 53.30 96.65

DeepSeekVL 7B 88.99 20.66 8.49 4.19 64.29 65.32 85.78 98.97 99.05 28.75 13.66 64.34 48.84 51.08 93.23
1.3B 84.01 19.61 4.00 1.32 75.00 60.38 82.00 96.40 97.45 16.11 6.23 53.58 34.28 44.44 47.37

Phi-3.5-vision 4.2B 92.06 72.69 57.48 47.60 62.50 58.85 87.29 98.93 98.59 31.65 17.16 70.95 55.70 59.95 96.42

GLM-Edge-V 2B 90.20 71.59 51.97 40.37 42.86 59.15 86.33 97.54 98.60 24.15 10.66 65.57 46.46 57.86 97.39
5B 90.48 73.44 56.30 44.56 75.00 61.38 89.96 96.69 95.96 30.68 15.41 69.36 51.81 61.45 98.02

mPLUG-Owl3
7B 91.71 71.00 48.07 35.27 100.00 56.37 93.32 99.27 99.51 19.72 7.66 57.27 38.00 54.65 98.80
2B 90.32 67.56 41.56 28.83 75.00 45.65 97.58 98.95 99.42 14.91 5.42 50.46 30.16 41.76 98.31
1B 89.68 67.03 38.64 24.98 75.00 44.07 97.19 98.72 98.87 11.86 4.12 44.34 24.02 40.16 98.06

Qwen2-VL 7B 90.76 72.79 58.51 50.24 0.00 64.17 83.87 97.54 99.18 39.11 26.29 70.55 57.04 63.11 97.30
2B 90.27 69.63 53.62 45.47 50.00 59.04 78.49 97.55 99.26 32.60 20.12 65.31 51.53 55.20 96.88

LLaVA-1.5 7B 91.21 71.89 56.89 46.80 57.14 62.70 85.79 97.84 98.42 30.81 15.48 71.89 56.70 61.35 96.90
Yi-VL 6B 84.35 32.62 14.35 9.44 75.00 53.68 72.38 93.63 97.95 7.76 2.69 32.95 16.63 38.15 95.32

Table 3: Performance comparison of different vision-language models

preliminary analysis reveals that these models, de-481

spite their strong performance on natural images,482

struggle significantly with SAR image interpreta-483

tion without domain-specific fine-tuning, demon-484

strating the critical importance of SAR-domain485

adaptation. Specifically, we conducted a detailed486

before-and-after analysis on InternVL2-8B, which487

achieved the best performance among all tested488

models, to quantitatively demonstrate the impact489

of SAR fine-tuning. The results are presented in490

Appendix E.491

As shown in Table 3, the evaluated mod-492

els include recent advances such as Qwen2-493

VL(Wang et al., 2024), InternVL2.5(Chen et al.,494

2024), DeepSeekVL(Lu et al., 2024), Phi-3.5-495

vision(Abdin et al., 2024), GLM-Edge-V(GLM496

et al., 2024), mPLUG-Owl3(Ye et al., 2024), Yi-497

VL(Young et al., 2024) and LLaVA-1.5(Liu et al.,498

2023). In experiments of different tasks, each499

model exhibits diverse characteristics:500

(1) Instance Counting requires VLMs to iden-501

tify the number of specific objects in the image.502

Two leading model families achieve state-of-the-art503

performance: InternVL2.5 and Qwen-VL2, reach-504

ing accuracies of 74.14% and 72.79% respectively.505

However, the accuracy of most other models fall be-506

low 60%, highlighting both the challenging nature507

of the counting task and the dataset’s effectiveness508

in differentiating model capabilities.509

(2) Spatial Grounding evaluates models’ capabil-510

ity in spatial localization. For abstract position511

descriptions, mPLUG-Owl3-7B achieves 100%512

accuracy, significantly outperforming other mod-513

els. The mPLUG-Owl3 family maintains superior514

performance (>90%) in single-target localization,515

while other models achieve 80%-85%. However,516

in multi-target scenarios, most models’ accuracy517

drops to approximately 60%. These results sug-518

gest that accurate multi-target spatial information 519

processing remains a crucial area for future model 520

improvements. 521

(3) Cross-Modal Identification focuses on the 522

model’s ability to build precise connections be- 523

tween visual information and other modal infor- 524

mation. In this experiment, the process from image 525

recognition to text description is mainly concerned. 526

The experimental data shows that for both single- 527

target and multi-target tasks, the accuracy rates 528

of most models exceed 90%. Among them, the 529

mPLUG-Owl3-7B model performs the best, with 530

the accuracy rates of single-target and multi-target 531

tasks reaching 99.27% and 99.51% respectively, 532

fully demonstrating the powerful capabilities of 533

large language models in cross-modal identifica- 534

tion tasks. 535

(4) Referring challenges models to precisely lo- 536

cate objects in SAR images based on textual de- 537

scriptions. Our experiments reveal significant per- 538

formance gaps: models achieve less than 75% ac- 539

curacy on single-target tasks and below 40% on 540

multi-target scenarios. These results highlight the 541

current limitations in cross-modal alignment, par- 542

ticularly in establishing precise text-to-object cor- 543

respondences within SAR imagery. 544

(5) Fine-Grained Description requires the model 545

to provide detailed feature and attribute descrip- 546

tions of the objects in the image. The experi- 547

ment shows that the model accuracy rates are in 548

the range of 40%-63%. Among them, models 549

with larger parameters such as Qwen2-VL-7B and 550

InternVL2.5-8B perform outstandingly and can 551

give more detailed and accurate descriptions. In 552

contrast, other models with smaller parameter sizes 553

perform poorly, indicating that the accuracy rate of 554

the fine-grained description task is highly sensitive 555

to the model’s parameter size. 556
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Task 2: 
Fine-Grained Description

👨 : What do you observe in this satellite
imagery?

🤖 : In this satellite image, we can observe the
following: A small ship is visible in the bottom
left portion of the image.

✅ : In this satellite image, we can observe the
following: A small ship is visible in the bottom
left portion of the image There is one more
small ship on the left side of the image Also,
we can observe another small ship in the
central region of the image.

Task 5:
Cross-Modal Identification
👨 : [identify] What can you identify within these
coordinates: {<294><358><329><427>}?

🤖 : Examining the bottom center area reveals a very
small ship.

✅ : Examining the bottom center area reveals a very
small ship.

Task 4:
Spatial Grounding
👨 : [grounding] What objects can you identify in this
SAR image and where are they located?

🤖 : In this SAR image, I can identify several objects
and their locations: There are 5 ships: one in the middle
left portion {<10><203><75><260>}, one in the middle
center portion {<197><187><230><285>}, one in the
bottom center portion {<289><355><322><429>}, one
in the bottom left portion {<53><453><116><501>}, one
in the bottom center portion {<196><479><221><511>}.

✅ : In this SAR image, I can identify several objects
and their locations: There are 4 ships: one in the bottom
center portion {<294><358><329><427>}, one in the
bottom left portion {<61><448><122><503>}, one in the
middle left portion {<27><199><78><261>}, one in the
middle center portion {<193><157><245><306>}.

Results of 
SARChat-InternVL2.5-8B

Task 1:
Classification

👨 : Looking at this image, which of 
the following categories are present: aircraft, 
bridge, car, harbor, ship, tank?

🤖 : It is ship.

✅ : It is ship.

Task 3:
Instance Counting

👨 : [count] Count the ship in this satellite
image.

🤖 : There are 4 instances. {<291><355>
<320><428>}{<205><195><226><293>}{<12>
<203><78><263>}{<49><453><120><501>}

✅ : There are 4 instances. {<294><358>
<329><427>}{<61><448><122><503>}{<27>
<199><78><261>}{<193><157><245><306>}

👨 : [refer] Identify 4 ship.

🤖 : {<10><0><37><56>} (top left){<17><203><75>
<260>} (middle left){<201><187><224><285>} (middle
center){<291><355><320><428>} (bottom center)

✅ : {<294><358><329><427>} (bottom center){<61>
<448><122><503>} (bottom left){<27><199><78>
<261>} (middle left){<193><157><245><306>} (middle
center)

Task 6:
Referring

Input
Image

Task 3
Result

Task 6
Result

Task 4
Result

Figure 3: Evaluation examples on SARChat-Bench. VLM predictions are shown in green/red for correct/incorrect
descriptions, with the ground truth in green and the predictions in red boxes. And [Human], [Bot], and [Check]
icons denote user input, VLMs response, and standard output, respectively.

(6) Classification evaluates models’ ability to cate-557

gorize images based on their content. According to558

the table data, regardless of parameter size, series559

such as InternVL2.5, mPLUG-Owl3, Qwen2-VL,560

and several other models achieve accuracy rates561

exceeding 96%. The performance of these VLMs562

demonstrates competitiveness with traditional vi-563

sion classification models.564

Summary: We benchmark 16 mainstream VLMs565

on SARChat-Bench. Model size strongly affects566

fine-grained description performance but shows lit-567

tle impact on classification. While large models568

excel in cross-modal and class identify tasks and ba-569

sic spatial grounding, they struggle with referring,570

counting, detailed descriptions, and multi-target571

spatial relationships.572

5.3 Edge-side models for SAR Applications573

This study has multiple edge-side models (≤5B574

parameters) trained on SARChat-2M and evaluates575

their performances. According to Table 3, it demon-576

strates that these models exhibit task-specific per-577

formance variations, achieving remarkable accu-578

racy in cross-modal identification, while show-579

ing potential for improvement in referring tasks.580

These models support domain-specific fine-tuning581

for rapid task adaptation. After optimization, they 582

can operate efficiently on satellite or ground-edge 583

devices, enabling real-time SAR data processing 584

while reducing dependence on cloud infrastructure 585

and minimizing data transmission costs. 586

5.4 Dialogue Visualizaion 587

Figure 3 presents examples across six tasks from 588

SARChat-Bench. The model completes these tasks 589

with reasonable performance, and its coordinate 590

predictions align with the ground truth annotations. 591

In the spatial grounding task, the model identifies 592

an additional ship that was not included in the orig- 593

inal annotations, suggesting its potential in detect- 594

ing previously unmarked targets in SAR imagery. 595

6 Conclusion 596

This research introduces SARChat-2M, a large- 597

scale dataset of two million annotated SAR image- 598

text pairs, addressing the scarcity of language- 599

vision data in the SAR domain. The accompanying 600

SARChat-Bench provides a systematic evaluation 601

framework for assessing VLMs in SAR interpreta- 602

tion tasks, facilitating domain-specific knowledge 603

integration and accelerating the development of 604

SAR-oriented VLMs. 605
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Limitation606

Despite the comprehensive scale of SARChat-2M607

based on SARDet-100K dataset, the inherent an-608

notation inconsistencies across different SAR data609

sources may lead to potential limitations. The vary-610

ing annotation quality could result in missing tar-611

gets or imprecise target delineation. Notably, there612

exist cases where VLMs successfully identify valid613

targets that were not originally annotated in the614

dataset, highlighting the annotation completeness615

challenge in the current benchmark construction.616

Ethics Statement617

In this study, all SAR datasets and methodologies618

are used strictly for academic research purposes,619

adhering to their respective licenses and data usage620

agreements. While our research aims to advance621

the fundamental understanding of SAR image inter-622

pretation, we acknowledge that these technologies623

could potentially be applied to military or defense-624

related purposes. We emphasize that the respon-625

sible application of such technologies is crucial,626

and their deployment should strictly comply with627

relevant regulations and ethical guidelines. The628

research community should maintain ongoing dis-629

cussions regarding the dual-use nature of SAR tech-630

nologies to ensure their development serves benefi-631

cial purposes while minimizing potential misuse.632

References 633

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed 634
Awadallah, Ammar Ahmad Awan, Nguyen Bach, 635
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat 636
Behl, et al. 2024. Phi-3 technical report: A highly ca- 637
pable language model locally on your phone. arXiv 638
preprint arXiv:2404.14219. 639

Jie Chen, Zhixiang Huang, Runfan Xia, Bocai Wu, Lei 640
Sheng, Long Sun, and Baidong Yao. 2022. Large- 641
scale multi-class sar image target detection dataset- 642
1.0 [ol]. Journal of Radars, (1). 643

Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, 644
Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong 645
Ye, Hao Tian, Zhaoyang Liu, et al. 2024. Expanding 646
performance boundaries of open-source multimodal 647
models with model, data, and test-time scaling. arXiv 648
preprint arXiv:2412.05271. 649

Qimin Cheng, Haiyan Huang, Yuan Xu, Yuzhuo Zhou, 650
Huanying Li, and Zhongyuan Wang. 2022. Nwpu- 651
captions dataset and mlca-net for remote sensing im- 652
age captioning. IEEE Transactions on Geoscience 653
and Remote Sensing, 60:1–19. 654

Gordon Christie, Neil Fendley, James Wilson, and Ryan 655
Mukherjee. 2018. Functional map of the world. In 656
Proceedings of the IEEE Conference on Computer 657
Vision and Pattern Recognition, pages 6172–6180. 658

Wenliang Dai, Junnan Li, D Li, AMH Tiong, J Zhao, 659
W Wang, B Li, P Fung, and S Hoi. 2023. Instructblip: 660
Towards general-purpose vision-language models 661
with instruction tuning. arxiv 2023. arXiv preprint 662
arXiv:2305.06500, 2. 663

Yimian Dai, Minrui Zou, Yuxuan Li, Xiang Li, Kang 664
Ni, and Jian Yang. 2024. Denodet: Attention as 665
deformable multi-subspace feature denoising for 666
target detection in sar images. arXiv preprint 667
arXiv:2406.02833. 668

Alexey Dosovitskiy. 2020. An image is worth 16x16 669
words: Transformers for image recognition at scale. 670
arXiv preprint arXiv:2010.11929. 671

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 672
hui Zhang, Da Yin, Dan Zhang, Diego Rojas, Guanyu 673
Feng, Hanlin Zhao, et al. 2024. Chatglm: A family 674
of large language models from glm-130b to glm-4 all 675
tools. arXiv preprint arXiv:2406.12793. 676

Yuan Hu, Jianlong Yuan, Congcong Wen, Xiaonan Lu, 677
and Xiang Li. 2023. Rsgpt: A remote sensing vi- 678
sion language model and benchmark. arXiv preprint 679
arXiv:2307.15266. 680

Kartik Kuckreja, Muhammad Sohail Danish, Muza- 681
mmal Naseer, Abhijit Das, Salman Khan, and Fa- 682
had Shahbaz Khan. 2024. Geochat: Grounded large 683
vision-language model for remote sensing. In Pro- 684
ceedings of the IEEE/CVF Conference on Computer 685
Vision and Pattern Recognition, pages 27831–27840. 686

9



Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick687
Haffner. 1998. Gradient-based learning applied to688
document recognition. Proceedings of the IEEE,689
86(11):2278–2324.690

Xiang Li, Congcong Wen, Yuan Hu, Zhenghang Yuan,691
and Xiao Xiang Zhu. 2024. Vision-language models692
in remote sensing: Current progress and future trends.693
IEEE Geoscience and Remote Sensing Magazine.694

Xin Lin, Bo Zhang, Fan Wu, Chao Wang, Yali Yang,695
and Huiqin Chen. 2023. Sived: A sar image dataset696
for vehicle detection based on rotatable bounding697
box. Remote Sensing, 15(11):2825.698

Fan Liu, Delong Chen, Zhangqingyun Guan, Xiaocong699
Zhou, Jiale Zhu, Qiaolin Ye, Liyong Fu, and Jun700
Zhou. 2024. Remoteclip: A vision language founda-701
tion model for remote sensing. IEEE Transactions702
on Geoscience and Remote Sensing.703

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae704
Lee. 2023. Visual instruction tuning.705

Yang Long, Gui-Song Xia, Shengyang Li, Wen Yang,706
Michael Ying Yang, Xiao Xiang Zhu, Liangpei707
Zhang, and Deren Li. 2021. On creating benchmark708
dataset for aerial image interpretation: Reviews, guid-709
ances, and million-aid. IEEE Journal of selected top-710
ics in applied earth observations and remote sensing,711
14:4205–4230.712

Haoyu Lu, Wen Liu, Bo Zhang, Bingxuan Wang, Kai713
Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhu-714
oshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng,715
Hanwei Xu, Zhenda Xie, and Chong Ruan. 2024.716
Deepseek-vl: Towards real-world vision-language717
understanding. Preprint, arXiv:2403.05525.718

Xiaoqiang Lu, Binqiang Wang, Xiangtao Zheng, and719
Xuelong Li. 2017. Exploring models and data for720
remote sensing image caption generation. IEEE721
Transactions on Geoscience and Remote Sensing,722
56(4):2183–2195.723

Bo Qu, Xuelong Li, Dacheng Tao, and Xiaoqiang Lu.724
2016a. Deep semantic understanding of high reso-725
lution remote sensing image. In 2016 International726
Conference on Computer, Information and Telecom-727
munication Systems (CITS), pages 1–5.728

Bo Qu, Xuelong Li, Dacheng Tao, and Xiaoqiang Lu.729
2016b. Deep semantic understanding of high reso-730
lution remote sensing image. In 2016 International731
conference on computer, information and telecommu-732
nication systems (Cits), pages 1–5. IEEE.733

Gencer Sumbul, Marcela Charfuelan, Begüm Demir,734
and Volker Markl. 2019. Bigearthnet: A large-scale735
benchmark archive for remote sensing image under-736
standing. In IGARSS 2019-2019 IEEE International737
Geoscience and Remote Sensing Symposium, pages738
5901–5904. IEEE.739

Chao Wang, Rui Ruan, Zhicheng Zhao, Chenglong 740
Li, and Jin Tang. 2023. Category-oriented localiza- 741
tion distillation for sar object detection and a unified 742
benchmark. IEEE Transactions on Geoscience and 743
Remote Sensing. 744

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi- 745
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin 746
Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhanc- 747
ing vision-language model’s perception of the world 748
at any resolution. arXiv preprint arXiv:2409.12191. 749

Yuanyuan Wang, Chao Wang, Hong Zhang, Yingbo 750
Dong, and Sisi Wei. 2019a. A SAR dataset of ship de- 751
tection for deep learning under complex backgrounds. 752
Remote. Sens., 11(7):765. 753

Yuanyuan Wang, Chao Wang, Hong Zhang, Yingbo 754
Dong, and Sisi Wei. 2019b. A sar dataset of ship de- 755
tection for deep learning under complex backgrounds. 756
remote sensing, 11(7):765. 757

Shunjun Wei, Xiangfeng Zeng, Qizhe Qu, Mou Wang, 758
Hao Su, and Jun Shi. 2020. Hrsid: A high-resolution 759
sar images dataset for ship detection and instance 760
segmentation. IEEE Access, 8:120234–120254. 761

Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming 762
Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren Zhou. 763
2024. mplug-owl3: Towards long image-sequence 764
understanding in multi-modal large language models. 765
arXiv preprint arXiv:2408.04840. 766

Alex Young, Bei Chen, Chao Li, Chengen Huang, 767
Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng 768
Li, Jiangcheng Zhu, Jianqun Chen, et al. 2024. Yi: 769
Open foundation models by 01. ai. arXiv preprint 770
arXiv:2403.04652. 771

Zhiqiang Yuan, Wenkai Zhang, Kun Fu, Xuan Li, Chubo 772
Deng, Hongqi Wang, and Xian Sun. 2022. Ex- 773
ploring a fine-grained multiscale method for cross- 774
modal remote sensing image retrieval. arXiv preprint 775
arXiv:2204.09868. 776

Yang Zhan, Zhitong Xiong, and Yuan Yuan. 2023. Rsvg: 777
Exploring data and models for visual grounding on 778
remote sensing data. IEEE Transactions on Geo- 779
science and Remote Sensing, 61:1–13. 780

Tianwen Zhang, Xiaoling Zhang, Jianwei Li, Xiaowo 781
Xu, Baoyou Wang, Xu Zhan, Yanqin Xu, Xiao Ke, 782
Tianjiao Zeng, Hao Su, Israr Ahmad, Dece Pan, 783
Chang Liu, Yue Zhou, Jun Shi, and Shunjun Wei. 784
2021a. Sar ship detection dataset (ssdd): Official 785
release and comprehensive data analysis. Remote 786
Sensing, 13(18). 787

Tianwen Zhang, Xiaoling Zhang, Jianwei Li, Xiaowo 788
Xu, Baoyou Wang, Xu Zhan, Yanqin Xu, Xiao Ke, 789
Tianjiao Zeng, Hao Su, et al. 2021b. Sar ship detec- 790
tion dataset (ssdd): Official release and comprehen- 791
sive data analysis. Remote Sensing, 13(18):3690. 792

10

https://arxiv.org/abs/2403.05525
https://arxiv.org/abs/2403.05525
https://arxiv.org/abs/2403.05525
https://doi.org/10.1109/CITS.2016.7546397
https://doi.org/10.1109/CITS.2016.7546397
https://doi.org/10.1109/CITS.2016.7546397
https://doi.org/10.3390/rs11070765
https://doi.org/10.3390/rs11070765
https://doi.org/10.3390/rs11070765
https://doi.org/10.1109/ACCESS.2020.3005861
https://doi.org/10.1109/ACCESS.2020.3005861
https://doi.org/10.1109/ACCESS.2020.3005861
https://doi.org/10.1109/ACCESS.2020.3005861
https://doi.org/10.1109/ACCESS.2020.3005861
https://doi.org/10.3390/rs13183690
https://doi.org/10.3390/rs13183690
https://doi.org/10.3390/rs13183690


Wei Zhang, Miaoxin Cai, Tong Zhang, Yin Zhuang,793
and Xuerui Mao. 2024. Earthgpt: A universal multi-794
modal large language model for multi-sensor image795
comprehension in remote sensing domain. IEEE796
Transactions on Geoscience and Remote Sensing.797

Zilun Zhang, Tiancheng Zhao, Yulong Guo, and Jian-798
wei Yin. 2023. Rs5m: A large scale vision-language799
dataset for remote sensing vision-language founda-800
tion model. arXiv preprint arXiv:2306.11300.801

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang,802
Yunlin Mao, Daoze Zhang, Zeyinzi Jiang, Zhikai Wu,803
Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda804
Chen. 2024. Swift:a scalable lightweight infrastruc-805
ture for fine-tuning. Preprint, arXiv:2408.05517.806

Wang Zhirui, Kang Yuzhuo, Zeng Xuan, WANG Yuelei,807
ZHANG Ting, and SUN Xian. 2023. Sar-aircraft-1.0:808
High-resolution sar aircraft detection and recognition809
dataset. Journal of Radars, 12(4):906–922.810

11

https://arxiv.org/abs/2408.05517
https://arxiv.org/abs/2408.05517
https://arxiv.org/abs/2408.05517


Appendix811

A Data structure analysis812

A.1 Word Frequency Analysis of813

SARChat-2M814

As shown in Figure 4 , location words (such as815

center, middle, top) and target object words (such816

as ship, aircraft, tank) have the highest occurrence817

frequencies in SAR image descriptions, and the818

adjective "small" is the most frequently used de-819

scriptive word.

Figure 4: Cloud Map of Word-frequency Distribution820

Figure 5: The Proportion Distribution of Samples in the
Training Set

Figure 6: The Proportion Distribution of Samples in the
Testing Set

A.2 Analysis of Datasets Composition 821

Training Set Category Distribution 822

As shown in Figure 5, in the SARChat-2M train- 823

ing set, the category distribution shows significant 824

differences. Among them, the "Ship" category has 825

the largest proportion, reaching 46.98%, followed 826

by the "Aircraft" category, with a proportion of 827

20.48%. These two categories account for the ma- 828

jority of the samples in the training set. It can be 829

seen that the sample distribution in the training set 830

is imbalanced, and the "Ship" and "Aircraft" cat- 831

egories dominate. This may enable the model to 832

learn the features of these two categories more com- 833

prehensively during the training process. However, 834

since the samples of other categories are relatively 835

few, the model’s ability to learn and generalize their 836

features may be affected to a certain extent. 837

Test Set Category Distribution 838

As shown in Figure 6, in the SARChat-2M test 839

set, the "Ship" category has the largest proportion 840

among all categories, reaching 44.38%, and the 841

"Aircraft" category ranks second, with a propor- 842

tion of 28.01%. The distribution trends of these 843

two major categories in the test set are similar to 844

those in the training set. This indicates that the 845

test set has a certain similarity to the training set in 846

terms of the overall category distribution and can 847

be used to test the model’s generalization ability 848

on data with a similar distribution. However, the 849

slight differences in the proportions also remind us 850

to comprehensively consider various factors when 851

evaluating the model’s performance. 852

Cross-modal Shape Distribution Analysis 853

As shown in Figure 7, in the cross-modal identi- 854

fication shape distribution, the "Roughly Square" 855

shape has the largest proportion, with a quantity 856

of 179,652. This shape has an absolute advantage 857

among all shape categories. This means that in 858

the cross-modal identification task, the number of 859

samples of the "Roughly Square" shape is much 860

larger than that of other shapes. The model may be 861

more sensitive to this shape and tend to identify the 862

target as the "Roughly Square" shape during the 863

recognition process. Therefore, when training and 864

optimizing the model, attention should be paid to 865

improving the recognition ability of other shapes 866

to achieve a more balanced recognition effect. 867

Distribution Analysis of Morphological Cate- 868

gories 869

As shown in Table 4, nearly square-shaped 870

morphology dominates both datasets, accounting 871
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Category Dataset Total Samples Mean AR Median AR Std Dev AR Distribution (%)

AR≤0.67 0.67<AR≤1.5 AR>1.5

Ship Train 93,342 1.34 1.07 1.24 28.37 39.67 31.96
Test 10,738 1.308 1.026 1.10 29.34 39.82 30.84

Aircraft Train 40,698 1.074 1.047 0.32 5.85 87.67 6.48
Test 6,778 1.08 1.041 0.31 4.56 87.36 8.08

Car Train 9,561 1.23 1.08 0.56 13.18 60.07 26.75
Test 1,230 1.21 1.07 0.53 12.28 62.11 25.61

Tank Train 24,15 1.10 1.00 0.84 1.58 94.29 4.13
Test 1,771 1.09 1.00 0.29 1.41 94.36 4.23

Bridge Train 27,615 1.56 1.18 1.92 18.38 44.83 36.79
Test 3,281 1.568 1.2 1.24 18.01 44.59 37.4

Harbor Train 3,306 1.20 1.01 0.72 14.19 67.93 17.88
Test 399 1.23 1.01 0.81 15.04 68.42 16.54

Table 4: Analysis of Aspect Ratio of Different Types of Targets

Figure 7: Morphological distribution

for 39.67% in training and 59.37% in test sets,872

indicating its prevalence in target morphologies.873

Broad-bodied shapes maintain stable distributions874

(18.14% training, 17.72% test), while tall-bodied875

shapes show a moderate decrease from training876

(31.96%) to test (22.91%) sets. This distribution877

diversity enhances the model’s generalization ca-878

pability, though the significant increase in nearly879

square-shaped samples in the test set demands par-880

ticular attention during model optimization.881

Category-Specific Morphological Patterns882

As shown in Table 4, each category displays883

distinctive morphological characteristics. Bridges884

exhibit the highest average aspect ratio (1.56) with885

balanced distribution across all morphologies (18%886

broad, 45% square, 37% tall). Ships demonstrate887

diverse shapes (28% broad, 40% square, 32% tall),888

reflecting their real-world variability. Tanks and air-889

craft show highly concentrated distributions, with890

nearly square shapes dominating at 94% and 87%891

respectively, facilitating efficient model learning.892

Cars and ports maintain moderate distributions893

with 60-68% nearly square shapes and balanced894

remaining proportions. 895

A.3 Analysis of Task based on Datasets 896

Composition 897

Our dataset is designed to support unified multi- 898

modal tasks through a comprehensive task taxon- 899

omy, as shown in Table 5. It encompasses six 900

primary tasks: Classification, Fine-Grained De- 901

scription, Instance Counting, Spatial Grounding, 902

Cross-Modal Identification, and Referring. Among 903

these, the first three tasks are target-quantity in- 904

dependent, while Spatial Grounding, Cross-Modal 905

Identification, and Referring are further categorized 906

into single-object and multi-object variants. This 907

systematic organization enables diverse training 908

scenarios and enhances model generalization capa- 909

bilities. 910

Task Type Train Test
Instance Counting 95493 (5.2%) 11794 (5.2%)
Spatial Grounding 94456 (5.1%) 11608 (5.1%)
Cross - Modal Identification 1423548 (77.5%) 175565 (77.4%)
Referring 95486 (5.2%) 11703 (5.2%)
Fine - Grained Description 46141 (2.5%) 6032 (2.7%)
Classification 81788 (4.5%) 10024 (4.4%)

Table 5: Task type distribution in training and test sets

Figure 8: Train Task Distribution
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Figure 9: Test Task Distribution

As illustrated in Figure 8, the training set com-911

prises 1,836,912 entries. Cross-Modal Identifica-912

tion dominates with 1,423,548 entries (77.50%),913

enabling robust cross-modal feature learning. In-914

stance Counting and Referring tasks contain 95,493915

(5.20%) and 95,486 (5.20%) entries respectively,916

while Spatial Grounding accounts for 94,456 en-917

tries (5.14%). Fine-Grained Description includes918

46,141 entries (2.51%), with its relatively limited919

data volume potentially affecting model perfor-920

mance. The Classification task contains 81,788921

entries (4.45%).922

The test set (Figure 9) maintains a parallel dis-923

tribution across its 226,636 entries. Cross-Modal924

Identification remains dominant with 175,565 en-925

tries (77.47%), followed by Instance Counting926

(11,704, 5.16%), Referring (11,703, 5.16%), Spa-927

tial Grounding (11,608, 5.12%), Classification928

(10,024, 4.42%), and Fine-Grained Description929

(6,032, 2.66%). This consistent distribution en-930

sures reliable model evaluation.931

The dataset exhibits a well-balanced task distri-932

bution that supports comprehensive model training.933

While the consistency between training and test934

sets ensures reliable evaluation, two aspects war-935

rant attention: the relatively limited data in Fine-936

Grained Description tasks may constrain model per-937

formance and could benefit from expansion, while938

the dominant proportion of Cross-Modal Identifi-939

cation data necessitates careful consideration of940

overfitting during training through appropriate reg-941

ularization methods.942

A.4 Dataset Examples943

Classification Task:
User: "Please identify the target categories
in the figure (candidate categories: {total
category list})"
AI: "The {specific category} targets can be
identified in the figure"

944

Spatial Grounding Task:
User: "[grounding] Can you describe the spatial
arrangement of various features in this SAR
image?"
AI: "In this SAR image, I can identify several
objects and their locations: There is a
{category-1} in the top right portion {bbox}.
There are 2 {category-2} in the bottom left: one
in the bottom left portion {bbox}, another in
the middle left portion {bbox}. The {category-1}
is far from the {category-2}."

945

Fine-Grained Description Task:
User: "Please describe the content of the
satellite image in detail"
AI: "In the figure, {size}{category} can be seen
located at {orientation},"+"and there is also
{size}{category} located at {orientation}"

946

Instance Counting Task:
User: "[count] How many {category} are there in
the image?""
AI: "There are 3 instances. {bbox}{bbox}{bbox}"

947

Cross-Modal Identification Task:
User: "[identify] What object is located in
{bbox}?"
AI: "This is a medium-sized {category} located in
the top right portion of the image. It appears
to be wide in shape."

948

Referring Task:
User: "[refer] Where is the {category}?"
AI: "{bbox} (top right)."

949

B Motivation for the Dual-benchmark 950

Setup 951

In tasks such as spatial localization, cross-modal 952

identification, and referring expression comprehen- 953

sion, this study constructs a dual-benchmark of 954

single-target and multi-target data. The core re- 955

search motivations are as follows: 956

(1) Evaluation of the Model’s Target Discrimi- 957

nation Ability 958

The single-target scenario aims to test the 959

model’s basic recognition ability for independent 960

targets. In contrast, the multi-target scenario fo- 961

cuses on examining the model’s ability to separate 962

and select targets in complex environments, espe- 963

cially when multiple targets exhibit similar features. 964

This dual-benchmark design can effectively diag- 965

nose the performance differences of the model in 966

scenarios with varying degrees of complexity. 967

(2) Revelation of Target Association Understand- 968

ing Issues 969

In multi-target scenarios, the model usually 970

needs to understand the spatial and semantic re- 971

lationships between targets. By comparing the per- 972

formance differences of the model in single-target 973
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Performance 8B 4B 2B 1B
Instance Counting Accuracy 74.14 72.68 71.52 69.87
Instance Counting Accuracy (IoU = 0.25) 61.37 57.54 54.11 50.18
Instance Counting Accuracy (IoU = 0.5) 52.17 47.35 44.22 39.35
Spatial Grounding Accuracy 62.25 60.89 60.81 56.30
Abstract Location in Spatial Grounding Accuracy 81.25 83.33 50.00 0.00
Spatial Grounding Single Accuracy 87.91 85.90 81.92 82.24
Cross-Modal Identification (Multi) Accuracy 98.84 98.01 97.79 96.98
Cross-Modal Identification (Single) Accuracy 98.98 98.76 98.63 98.60
Referring (Multi) Accuracy (IoU = 0.25) 37.49 34.05 27.05 22.13
Referring (Multi) Accuracy (IoU = 0.5) 23.46 18.86 13.91 9.94
Referring (Single) Accuracy (IoU = 0.25) 74.86 69.92 68.50 62.33
Referring (Single) Accuracy (IoU = 0.5) 60.13 55.29 52.16 44.99
Fine-Grained Description Accuracy 63.43 58.84 56.36 53.30
Classification Accuracy 97.25 97.27 96.69 96.65

Table 6: Performance comparison across different model sizes

and multi-target scenarios, it is possible to evaluate974

whether the model truly understands the descrip-975

tions of the positional relationships between targets.976

This helps to identify the limitations of the model977

when dealing with relative position descriptions978

such as "the vehicle on the left" and "the tank in979

the middle".980

(3) Exposure of Attention Mechanism Defects981

In multi-target scenarios, the model is highly982

prone to problems such as attention divergence or983

overlap. When there are multiple similar targets in984

an image, the model may have difficulty accurately985

locating the specific target described by the user.986

Through the comparison between single-target and987

multi-target scenarios, the deficiencies of the model988

in attention allocation can be clearly demonstrated.989

(4) Simulation of Real-world Application Sce-990

narios991

Real-world applications cover both simple992

single-target scenarios and complex multi-target993

environments. The establishment of the dual-994

benchmark is more in line with real-world usage995

requirements, providing a more comprehensive di-996

mension for model evaluation and helping to im-997

prove the applicability and reliability of the model998

in actual deployments.999

C Task-specific Performance Scoring1000

To evaluate model performance on each task, the1001

task-specific accuacy is caculate by Formula 5. For1002

each task t, the accuracy score am,t of model m is1003

computed by averaging the accuracy scores across1004

all subtasks:1005

am,t =
1

k

k∑
i=1

am,t,i (5)1006

where am,t is the average accuracy of model m1007

on task t, k is the number of subtasks, and am,t,i1008

is the accuracy of model m on the i-th subtask of 1009

task t. This approach ensures that each subtask 1010

contributes equally to the overall task score. 1011

D The Analysis of Model Size 1012

Based on the data analysis in Table 6, it can be con- 1013

cluded that for most task-related metrics, there is 1014

a trend of performance improvement as the model 1015

size increases from 1B to 8B. For example, the 1016

instance-counting accuracy rises from 69.87% to 1017

74.14%, the spatial-grounding accuracy increases 1018

from 56.30% to 62.25%, the fine-grained descrip- 1019

tion accuracy goes up from 53.30% to 63.43%, and 1020

the classification accuracy climbs from 96.65% to 1021

97.25%. This indicates that an increase in model 1022

size is beneficial to enhancing the performance of 1023

these tasks. However, the accuracy of abstract loca- 1024

tions in the spatial-grounding task shows a unique 1025

trend of change. This metric increases from 0.00% 1026

for the 1B model to 83.33% for the 4B model, but 1027

then decreases to 81.25% for the 8B model, not 1028

increasing monotonically with the model size. Evi- 1029

dently, the influence of model size on some specific 1030

tasks follows complex patterns. Therefore, when 1031

selecting a model, it is necessary to comprehen- 1032

sively consider the task type and model size to 1033

achieve optimal performance. 1034

E Comparison before and after training 1035

To evaluate the impact of the SARChat-2M training 1036

dataset, we conducted a comparative analysis on 1037

InternVL-2.5-8B—the best-performing model in 1038

SARChat-Bench—before and after fine-tuning. Our 1039

evaluation metrics reveal that without fine-tuning 1040

on SARChat-2M, the model fails to comprehend 1041

most SAR-specific targets, exhibiting near-zero per- 1042

formance on tasks involving target interpretation 1043

and description. The only exception is the Instance 1044
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Model Only
count

Spatial Ground Cross-Modal ID Multi-target Ref Single-target Ref Descript ClassMulti Single Multi Single IoU=.25 IoU=.5 IoU=.25 IoU=.5
InternVL2.5(8B) 63.71 5.07 0.38 0.12 0.17 0 0 0 0 0.04 17.8
SARChat-InternVL2.5(8B) 74.14 62.25 87.91 98.84 98.98 37.49 23.46 74.86 60.13 63.43 97.25

Table 7: Performance comparison of InternVL2.5 before and after fine-tuning

Figure 10: Simple Examples of ship detection in SAR images. The ships appear as distinct bright spots in these
SAR images, making them relatively easy to count even for VLMs without SAR-specific training.

Counting Task, where InternVL2.5-8B achieves a1045

baseline accuracy of 63.71%. This relatively high1046

performance can be attributed to the prevalence of1047

ship-on-sea samples, where SAR imaging exhibits1048

distinctive characteristics: the smooth sea surface1049

creates specular reflection, causing most electro-1050

magnetic waves to scatter away from the sensor1051

direction, resulting in weak returns that appear as1052

dark areas. Meanwhile, ships’ metallic structures1053

and geometric features (such as dihedral and trihe-1054

dral corner reflectors) generate strong backscatter-1055

ing, concentrating radar waves back to the sensor,1056

thus appearing as bright spots. As shown in Fig-1057

ure 10, these samples present relatively straightfor-1058

ward recognition scenarios, leading to higher count-1059

ing accuracy scores. The comparative results be-1060

tween the base model and its fine-tuned version on1061

SARChat-Bench are presented in Table 7. Overall,1062

fine-tuning with the SARChat-2M dataset proves1063

essential for enabling VLMs to interpret SAR im-1064

agery effectively.1065
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