
Interchangeable Token Embeddings for Extendable Vocabulary and
Alpha-Equivalence

İlker Işık 1 Ramazan Gokberk Cinbis 1 Ebru Aydin Gol 2

Abstract

Language models lack the notion of interchange-
able tokens: symbols that are semantically equiva-
lent yet distinct, such as bound variables in formal
logic. This limitation prevents generalization to
larger vocabularies and hinders the model’s ability
to recognize alpha-equivalence, where renaming
bound variables preserves meaning. We formal-
ize this machine learning problem and introduce
alpha-covariance, a metric for evaluating robust-
ness to such transformations. To tackle this task,
we propose a dual-part token embedding strategy:
a shared component ensures semantic consistency,
while a randomized component maintains token
distinguishability. Compared to a baseline that re-
lies on alpha-renaming for data augmentation, our
approach demonstrates improved generalization
to unseen tokens in linear temporal logic solv-
ing, propositional logic assignment prediction,
and copying with an extendable vocabulary, while
introducing a favorable inductive bias for alpha-
equivalence. Our findings establish a foundation
for designing language models that can learn inter-
changeable token representations, a crucial step
toward more flexible and systematic reasoning in
formal domains. Our code and project page are
available at necrashter.github.io/interchangeable-
token-embeddings

1. Introduction
Following the deep learning revolution that affected nu-
merous application areas (Dargan et al., 2020), recent lit-
erature shows that deep learning based approaches also

1Department of Computer Engineering, Middle East Technical
University, Ankara, Turkey 2Microsoft, İstanbul, Turkey. Cor-
respondence to: İlker Işık <ilker@ceng.metu.edu.tr>, Ramazan
Gokberk Cinbis <gcinbis@ceng.metu.edu.tr>, Ebru Aydin Gol
<ebruaydingol@microsoft.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

perform well in neurosymbolic reasoning tasks, such as
theorem proving (Han et al., 2021) and mathematical rea-
soning (Rabe et al., 2020). The formal reasoning capabilities
of these models were once doubted, but Liu et al. (2023)
demonstrated the ability of Transformer models (Vaswani
et al., 2017) to learn shortcuts to automata. Of particular in-
terest is the generalization ability of such models to unseen,
out-of-distribution data (Sanh et al., 2022), enhancing their
appeal for logical reasoning (Abbe et al., 2023).

Another application area is linear-time temporal logic (LTL),
which is heavily utilized by the formal verification commu-
nity (Clarke et al., 2018; Baier & Katoen, 2008) for reason-
ing about how logical propositions change over time (Pnueli,
1977). Through the use of temporal operators, LTL formu-
lae can specify, for example, that a proposition p must hold
at all time steps (Gp), or at least one time step (Fp). LTL
formulae operate on traces, which describe how the proposi-
tions change over time.

Solving a given LTL formula involves finding a satisfying
trace, and it proved essential for generating examples for
system specifications in the literature. This field was domi-
nated by the methods that use classical algorithms, such as
spot (Duret-Lutz et al., 2022) and aalta (Li et al., 2014).
However, following the success of Transformer models on
end-to-end symbolic integration (Lample & Charton, 2019),
Hahn et al. (2021) attacked the LTL solving problem using
the same approach. Their capability to generalize to longer
formulae is especially noteworthy, and it was made possible
thanks to tree-positional encoding (Shiv & Quirk, 2019).

However, generalization to longer formula lengths is not
the only concern. In particular, each LTL formula features
a set of atomic propositions (henceforth APs), and it’s de-
sirable for the model to generalize to more APs. But the
architecture of the model does not even accept new APs that
are not seen during training, despite the fact that all APs
represent semantically equivalent concepts while being dis-
tinguishable from each other. This situation arises in many
other application areas, such as mathematical expressions
and lambda calculus (alp, 1984), where renaming the bound
variables does not change the meaning. This phenomenon
is described as alpha-equivalence. Alpha-conversion (or
alpha-renaming) refers to the process of creating alpha-

1

https://necrashter.github.io/interchangeable-token-embeddings
https://necrashter.github.io/interchangeable-token-embeddings

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

equivalent input-output pairs.

In this paper, we propose a novel approach for represent-
ing interchangeable tokens in neural network models. To
summarize, our method constructs some part of the token
embeddings on-the-fly instead of learning all of them during
training. The token embeddings for interchangeable tokens
consist of two parts: a learnable part and a randomized part.
The learnable part is shared across all interchangeable to-
kens, and the model must depend on the randomized part to
differentiate these tokens. Thanks to the randomized com-
ponent, our method can generate embeddings for arbitrarily
many interchangeable tokens as needed during both training
and inference, with the only practical limitation being the ex-
ponentially growing sampling set size for discrete random
generation methods. We use the weight tying technique
(Press & Wolf, 2016) to share the same token embeddings
with the final projection matrix, which calculates the logits
(i.e., next-token probabilities before softmax).

We use our embedding method in a Transformer encoder-
decoder model and evaluate it on three tasks: copying with
an extendable vocabulary, solving LTL formulae, and pre-
dicting assignments for propositional logic. As a baseline,
we consider a simpler approach that uses alpha-renaming
for data augmentation during training to expose the model
to a larger vocabulary, which is also new in the literature
to the best of our knowledge. Overall, our method demon-
strates generalization capabilities to larger vocabulary sizes,
and also combines well with positional encodings that ex-
hibit length generalization. We also experiment with dataset
perturbation to show that our method introduces a helpful
inductive bias for alpha-equivalence. Finally, we present
alpha-covariance, a metric for measuring robustness against
alpha-conversions that is applicable to any domain where
alpha-equivalence is relevant.

Overall, our contributions can be summarized as follows.

1. Identify the problem of generalizing to larger vocabular-
ies in (formal) language modeling tasks, and define an
experimental protocol to study this problem.

2. Propose alpha-covariance, a novel metric for measuring
robustness against alpha-conversions, applicable to any
domain with interchangeable tokens.

3. Introduce a dual-part embedding method for vocabulary
generalization and improved alpha-covariance, with neg-
ligible computational overhead.

4. Verify the proposed method thoroughly on three tasks:
copying with extendable vocabulary, solving LTL formu-
lae, and predicting assignments for propositional logic.

2. Related Work
Language modeling and formal reasoning. The trans-
former architecture (Vaswani et al., 2017), now ubiquitous

in modern deep learning, was initially proposed as a genera-
tive model to translate between natural languages autoregres-
sively. This led to many successful attempts to frame formal
reasoning tasks as language modeling problems, such as
symbolic integration (Lample & Charton, 2019), symbolic
regression (Kamienny et al., 2022; Vastl et al., 2022), LTL
solving (Hahn et al., 2021), and many more. Further de-
velopments shifted the field towards large language models
(LLMs), e.g., by prompting a model pre-trained on a gigan-
tic scale (Frieder et al., 2023), by enhancing the prompt with
retrieved references for proof generation (Welleck et al.,
2022; Yang et al., 2023), by training an LLM on a spe-
cialized dataset for mathematics (Azerbayev et al., 2023).
However, the reasoning abilities of LLMs were questioned
by (Tang et al., 2023), who showed LLMs struggle with
symbolic reasoning when semantics are decoupled, and by
others (Wu et al., 2023).

Extensible vocabulary. Efforts to create an extensible
vocabulary for neural networks are scarce in the broader
machine learning community, let alone the formal reason-
ing literature. Morazzoni et al. (2023) exploited dictio-
nary definitions to create extensible word embeddings. Wei
et al. (2016) proposed a vocabulary-extensible sign lan-
guage recognition framework by using a component based
approach, where each sign gesture is recognized based on
common components such as hand shape, orientation, axis,
rotation, and trajectory. These studies depend on either
external information (dictionary definitions) or properties
specific to an application area (components of hand gesture);
they do not attempt to design an extensible vocabulary for
interchangeable tokens, which has been neglected by the
literature alongside the concept of alpha-equivalence.

3. Problem Definition
In language modeling, the goal is to predict the next token
in the output sequence given the input and the past output.
(See Appendix A for more background.) Let V denote the
set of all unique tokens, i.e., the vocabulary of a language
modeling problem. We use V∗ to denote the set of all fi-
nite sequences of tokens (strings) from V. We assume that
Vi is the set of interchangeable tokens and Vn = V\Vi is
the set of non-interchangeable tokens. The core idea be-
hind alpha-equivalence is that renaming interchangeable
tokens between each other in both input and output pre-
serves meaning. Let f : V → V be a bijection such that
f(x) = x for all x ∈ Vn, i.e., f arbitrarily renames the
interchangeable tokens between each other in one-to-one
correspondence and preserves the rest of the tokens. We
apply f to each token in a given pair of input a ∈ V∗ and
output b ∈ V∗ strings, obtaining a′ = (f(a1), f(a2), . . .)
and b′ = (f(b1), f(b2), . . .). We call this operation alpha-
conversion or alpha-renaming. The set of interchangeable

2

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

tokens Vi must be defined such that a′ and b′ form a valid
input-output pair semantically equivalent to (a, b) for all
possible f .

Our task is to design an embedding method that—alongside
being resilient to alpha-renaming by construction—can sup-
port a new vocabulary V′ = V′

i ∪ Vn where Vi ⊂ V′
i after

training on V. In other words, the model should be able
to operate on a larger vocabulary than the one seen during
training, as long as the newly introduced tokens belong to
the class of interchangeable tokens. Although we don’t im-
pose any restrictions about the size of V′ in this problem
definition, the maximum size of V′ in practice may change
as a function of the number of embedding dimensions. Thus,
while setting the hyperparameters, the expected size of V′

must be considered.

Example. In the LTL solving problem (Appendix B), the
set of non-interchangeable tokens Vn includes the operators,
constants, delimiter tokens (“;”, “{”, “}”), and any special
tokens such as the end token. The set of interchangeable to-
kens equals to the set of atomic propositions (APs): Vi = P .
Assuming P = {a,b}, the formula-trace pair (“&aXb”,
“a;b;{1}”) is alpha-equivalent to (“&bXa”, “b;a;{1}”).
Further, assume that the augmented set of interchangeable
tokens is V′

i = P ′ = {a,b,c,d}. Now, the aforemen-
tioned pair can also be equivalently represented as (“&cXd”,
“c;d;{1}”). The augmented vocabulary allows the expres-
sion of formula-trace pairs that feature up to 4 APs instead
of 2. For example, (“&&abX&cd”, “&ab;&cd;{1}”) can-
not be expressed using P = {a,b}. Our goal is to create a
model that can handle such inputs despite being trained on
the limited vocabulary V = Vn ∪ P .

4. Proposed Method
To address the problem of learning semantically equivalent
but distinguishable (alpha-equivalent) tokens, our method
employs two ideas: sharing some part of the embeddings
between such tokens to convey their semantic equivalence;
and assigning a unique randomly-generated vector to the rest
of the embedding for each interchangeable token, allowing
the model to distinguish between them. The number of
shared and randomly-generated dimensions are denoted by
dα and dβ respectively. The sum of these two yields the total
number of embedding dimensions in the model, denoted
by dmodel = dα + dβ . For non-interchangeable tokens, dα
dimensions contain separate learnable parameters and dβ
dimensions are set to 0. The structure of the embedding
matrix is visualized in Figure 1.

4.1. Embedding matrix

Construction of the embedding matrix. For a vocabulary
with n non-interchangeable tokens and m interchangeable

tokens, L ∈ Rn×dα represents the matrix of learnable em-
beddings for non-interchangeable tokens, α ∈ R1×dα the
shared learnable embedding for interchangeable tokens, and
βi ∈ R1×dβ the randomly-generated embedding for the
ith interchangeable token where 1 ≤ i ≤ m. Note that
α and βi are row vectors. A zero matrix of size i × j is
represented by 0i,j . In addition, we define two row-based
L2 normalization functions fbn(X) and ffn(X) that divide
each row Xi,: by its L2 norm ∥Xi,:∥. These two functions
are identical but can be disabled independently from each
other, hence the separation. Finally, the overall structure
of the embedding matrix U is shown in Equation 1. In
this construction, the interchangeable tokens are assumed
to come after the non-interchangeable tokens. Note that
it’s also possible to implement multiple sets of different
interchangeable tokens via a trivial extension.

U = ffn(

fbn(L) 0n,dβ

fbn(α) fbn(β1)
fbn(α) fbn(β2)

...
fbn(α) fbn(βm)

) (1)

During training, the embedding matrix must be recon-
structed in each forward pass with resampled random vec-
tors β1 to βm. Resampling βi for 1 ≤ i ≤ m during
training prevents the model from adapting to the idiosyn-
cracies of a particular random generation and forces it to
distinguish between interchangeable tokens regardless of
the contents of βi. During inference, it’s created once at the
start and remains the same since the autoregressive genera-
tion involves multiple forward passes on the same input.

Normalization. There are several concerns that warrant the
heavy use of normalization while constructing U , as seen
in Equation 1. Firstly, dα dimensions and dβ dimensions
should not overwhelm each other in terms of magnitude.
Normalizing α and βi separately addresses this issue. The
magnitude of the concatenated embedding is another con-
cern, which is handled by the final normalization. The
normalization of L is redundant (since the final normaliza-
tion does the same operation after the concatenation with
zeros) but kept in Equation 1 for readability.

4.2. Random embedding generation

This section will explain how the distinguishing part of the
interchangeable token embeddings, βi, 1 ≤ i ≤ m, are
created. To this end, we developed 3 methods to generate
random vectors. Table 1 provides a summary at a glance.
The first method simply samples the standard normal distri-
bution for each dimension. The second one uses the neigh-
boring grid points around the origin, which correspond to
the 8 directions in 2D. For each interchangeable token, a

3

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

Figure 1. Visual structure of the embed-
ding matrix in the proposed method.

Table 1. Comparison of random vector generation methods.

Method Normal Distribution Neighboring Points Hypercube Vertices

Formula ai ∼ N (0, 1) ai ∈ {−1, 0, 1} ai ∈ {−1, 1}
∥a∥ ≠ 0

Size for n-dims Continuous 3n − 1 2n

Sample Visualization

unique vector in this set is sampled. The last method is
similar, but its set consists of the vertices of a hypercube
centered around the origin, i.e., diagonal direction vectors.

Uniqueness constraint. In the normal distribution method,
we don’t have any additional constraints to ensure distin-
guishability between vectors. However, in other two meth-
ods, we need to make sure that each interchangeable token
gets assigned to a unique vector since the sampling set is fi-
nite. To achieve this quickly and space-efficiently, we define
a mapping from integers to possible vectors. The unique
vectors are generated by sampling m unique random inte-
gers (which can be calculated efficiently using the reservoir
sampling technique), and then using the defined mapping to
convert these integers to the vectors. This strategy avoids
materializing the whole set of possible vectors. In the hyper-
cube vertices method, we map the binary digits of an integer
in [0, 2dβ) to {−1, 1}. Although “Neighboring Points” is
simply the ternary version of the same idea, avoiding the
zero vector requires special care. The zero vector maps to
the integer iz = (3dβ − 1)/2. Therefore, we define our do-
main as the integers in [0, 3dβ − 1) and add 1 to the integer
i before converting it if i ≥ iz . Integer mapping approach
for generating unique vectors works well for up to 32 di-
mensions, after which the limits of integer representation
become an issue for reservoir sampling. Therefore, in such
cases, we simply disable the uniqueness check because the
exponentially growing size of the sampling set renders the
probability of drawing the same sample negligible.

4.3. Projection

Weight tying. In a traditional language modeling setting,
since both the embedding and projection matrices are en-
tirely composed of learnable parameters, it’s not necessary
to share them, even though there are many advantages of
weight tying (Press & Wolf, 2016). However, we construct
the embedding matrix manually in our method, which makes
weight tying a requirement. Furthermore, since we per-
form our experiments on an encoder-decoder architecture
in this paper, we utilize a three-way weight tying approach,
whereby the embedding matrices of encoder and decoder

are tied in addition to the final projection matrix. Three-
way weight tying is particularly appropriate for the LTL
solving task since many tokens are shared between the LTL
formulae and traces.

Feature normalization. Given the output of the last layer
before the final projection v (henceforth called feature vec-
tor), instead of directly applying the final projection as in
Uv, we apply L2 normalization to the feature vector v be-
fore passing it through the final projection: Uffn(v). This
matrix multiplication constitutes taking a dot product with
each row. Since a · b = ∥a∥∥b∥cos(θ) where θ is the angle
between a and b, normalizing both the embeddings and
the feature vector leaves only the cosine term to determine
the logits. This forces the model to distinguish between
tokens based solely on the directions, which may improve
the gradient flow.

Cosine loss. If we normalize both the embeddings and the
feature vector, the only thing that determines each logit is
the cosine of the angle between the feature vector and the
embedding. Applying the softmax loss to such logits is
known as cosine loss in the literature. Although cosine-
based loss functions were successful in face recognition
(Ranjan et al., 2017; Wang et al., 2017), it proved sensitive
to hyperparameter settings in these losses. To avoid this
problem, we use AdaCos loss function (Zhang et al., 2019)
that scales the logits adaptively throughout training.

Despite the attractiveness of AdaCos in this context, it is
not directly applicable in a language modeling setting due
to the additional sequence length dimension, and no prior
work explored this application to the best of our knowledge.
To overcome this, we modify the AdaCos loss function as
follows: First, we combine the batch and length dimen-
sions while ignoring the padding tokens, effectively treating
both dimensions as batch dimensions. However, since this
change greatly increases the number of batch dimensions,
it can lead to numerical issues, even with the log-sum-exp
trick. Therefore, we clip the scale value calculated by Ada-
Cos to a maximum of 100 to avoid numerical issues. This
loss formulation can also be used with conventional embed-
dings, as we do in our experiments.

4

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

Training sets have the
same distribution:

sequences of length ≤ 80,
with ≤ 20 unique character

tokens.

Test samples in this region
are limited to length ≤ 80
(as in training), but come
from a larger vocabulary.
Fixed-embeddings cannot

extrapolate.

Test samples in this
region contain ≤ 20 unique
characters (as in training),

but much longer
sequences.

The proposed method
adapts nearly-flawlessly to
sequences of length and

vocabulary size up to 160.

A B

C

D

A B

DC

A B

C

D

Figure 2. Two annotated heatmaps visualizing the test-set edit distance between prediction and ground truth in copying task with
extendable vocabulary. Both heatmaps share the same y-axis. The green box represents the number of unique characters (y-axis) and the
maximum length (x-axis) in the training dataset. Each point shows the average test error, except the lower triangular part of each heatmap
(gray hatch pattern) corresponding to the impossible combinations of length and unique character counts. The traditional approach (left),
using ubiquitously utilized fixed (learned) token embeddings, cannot extrapolate to vocabulary expansions. The proposed method (right)
enables generalization to larger vocabulary sizes at longer sequence lengths, compared to what is observed during training.

5. Experiments
Experimental setup. We use a transformer encoder-
decoder architecture in all experiments. We always use
the same embedding size in both encoder and decoder due
to weight tying. We use the RoPE (Su et al., 2024) as the
positional encoding method in the decoder. In the encoder,
we use tree-positional encoding if applicable (logic tasks),
RoPE otherwise (copying task). The hyperparameter set-
tings are given in Table 4 in Appendix D.

Baselines. We train three types of baseline models with
traditional embeddings: the first one on the original dataset,
the second one on a dataset with the same parameters but us-
ing a larger vocabulary size, and the third one on the original
dataset but using a data augmentation strategy. Specifically,
for the third baseline, the number of interchangeable token
embeddings matches that of the test set, and we apply ran-
dom alpha-renaming at each forward pass during training.
This ensures that the model is exposed to all tokens in the
test set, but the number of unique interchangeable tokens the
model sees in each sample remains limited as in the training
set. Note that this is an internal baseline that doesn’t exist
in the literature to the best of our knowledge.

5.1. Copying with Extendable Vocabulary

We introduce a new toy problem designed to evaluate the
vocabulary generalization capabilities of our embedding
method. We create various training datasets that contain 10
million random strings with a limited vocabulary size. A
string is given as input, and the model is expected to produce
the input string exactly via autoregressive generation. This
embodies a helpful toy problem for our method because
all tokens are interchangeable, barring the special tokens
(start/end). In these experiments, we expect the model to

generalize to larger vocabulary sizes unseen during training.

Using edit distance as our evaluation metric, we first as-
sess the vocabulary generalization capabilities (Appendix
E.1). Since our method excels in this task, we then explore
generalization in both vocabulary size and string length (Ap-
pendix E.2), performing a hyperparameter search over the
settings of our embedding method (Appendix E.3). Finally,
we scale up the vocabulary size and the string lengths to
evaluate our method (Appendix E.5). Our method exhibits
perfect performance in the out-of-distribution domain as
shown in Figure 2. We also examine our method’s sensi-
tivity to randomness in embeddings (Appendix E.4), and
propose using the random embedding with median cross
entropy loss as a proxy for average performance.

5.2. LTL Solving

In this section, we train models on the LTLRandom35
dataset from DeepLTL (Hahn et al., 2021) and other syn-
thetic datasets created with the same method. To evaluate
the correctness of the generated formulae, we utilize spot
framework version 2.11.6 (Duret-Lutz et al., 2022). We
use tree-positional encoding (Shiv & Quirk, 2019) in the
encoder and RoPE (Su et al., 2024) in the decoder. We
generate predictions using beam search with beam size = 3.

Baselines. We trained all of the baseline models from
scratch. For the first type of baseline, we aimed to repro-
duce the results from Hahn et al. (2021). Hence, we used
the best hyperparameters they reported (Appendix D). Un-
like Hahn et al. (2021), we experimented with RoPE (in
the decoder) and AdaCos, but did not observe a noteworthy
improvement on the validation set.1After determining the
best baseline model on the validation set, we evaluated it on
the test split of LTLRandom35 and obtained a correct rate

5

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

Table 2. Evaluation of the baselines, our method, and Llama 3.2 on the LTLRandom35 dataset. The alpha-renaming baseline was trained
using 5 AP embeddings since vocabulary generalization is not evaluated here. First two columns denote the training dataset and the
model. Next two columns indicate the ratio of the correct predictions and exact matches on 99,989 test set samples as evaluated by spot.
Last three columns display mean alpha-covariance values for varying atomic proposition (AP) counts, evaluated on all alpha-equivalent
variants of 1000 test samples. The results indicate that our method induces a robust inductive bias for alpha-equivalence.

Training Evaluation Alpha-Covariance
Dataset Model Correct Exact 3 AP 4 AP 5 AP
Normal Baseline 98.23% 83.23% 96.87% 95.86% 91.80%
Perturbed Baseline 34.13% 12.12% 64.93% 57.99% 40.91%
Perturbed Alpha-Renaming 97.96% 77.66% 99.55% 99.49% 98.86%
Perturbed Proposed 95.94% 76.45% 97.66% 97.76% 98.29%
Pretrained Llama 3.2 3B 24.33% 0.34% 68.17% 63.27% 62.34%

of 98.2% against the 98.5% reported by Hahn et al. (2021).

5.2.1. DATASET PERTURBATIONS

To demonstrate that our method creates a helpful inductive
bias, we created a perturbed version of the LTLRandom35
dataset by renaming the APs such that the order of the
first AP appearances in the trace is always the same. As the
empirical evidence in Table 2 confirms, both our method and
the alpha-renaming baseline are naturally immune to these
alterations. We train these methods only on the perturbed
dataset since training them again on the normal dataset
amounts to training with different random samples.

While the original model performs significantly worse un-
der perturbation, both alpha-renaming and proposed models
match the baseline performance in correctness ratio despite
perturbation. This observation suggests that these modifica-
tions introduce a robust inductive bias that makes the models
resistant to perturbations in the data. A minor decrease in
the ratio of exact matches is noted, but this may signify less
overfitting and a better bias-variance tradeoff in the larger
context. Appendix F continues this experiment with limited
amount of training samples instead of perturbations.

5.2.2. ALPHA-COVARIANCE

Given a vocabulary of n AP tokens and an LTL formula-
trace pair containing k APs, it’s possible to write nPk =
n!/(n− k)! alpha-equivalent pairs. Since these are semanti-
cally equivalent, we expect the model’s predictions to be the
same after undoing the alpha-conversions for all of them.
As there is no metric to quantify this in the literature to the
best of our knowledge, we develop a new metric.

Let (x,y) be an input-output pair for the model, and let
P = {(x1,y1), . . . , (xn,yn)} be n input-output pairs

1Using RoPE in the decoder increased the ratio of correct
predictions from 97.8% to 98.0% on the validation set. Introducing
AdaCos in addition to RoPE increased this value to 98.2%.

alpha-equivalent to (x,y). We define αi as the alpha-
conversion function for the ith input-output pair such that
αi(x) = xi and αi(y) = yi. To compute the alpha-
covariance of a model with respect to P, we generate pre-
dictions for each input in P, obtaining the prediction ŷi for
each xi. We define a set that contains the predictions with
alpha-conversion undone: U = {α−1

i (ŷi) | 1 ≤ i ≤ n}.
Note that if we defined this set for the ground truth outputs in
P, we would get {y} since α−1

i (yi) = y holds for each yi

by definition. The model’s sensitivity to alpha-conversions
could be quantified by simply |U|, but this value may be
hard to interpret since it depends on |P|. To normalize this
value intuitively, we define the alpha-covariance of a model
with respect to P as in Equation 2.

1− |U| − 1

|P| − 1
(2)

Intuitively, when alpha-covariance is 1, the model is unaf-
fected by all alpha-conversions in P. An alpha-covariance
of 0 indicates that |U| = |P|, i.e., the model’s prediction for
each alpha-equivalent pair is unique after undoing the alpha-
conversion. This is unwanted because alpha-conversions
should not change the semantic meaning. Thanks to the em-
bedding randomization in our method, an alpha-conversion
does not necessarily change the embeddings, and conversely,
there are multiple ways to embed the same input.

For the proposed method, we generate the random embed-
dings once at the start of an evaluation run using the heuristic
explained in Appendix E.4. Thus, alpha-conversions in this
context are equivalent to shuffling the random embeddings
in our method, which amounts to measuring our model’s
robustness against differences in random embeddings.

We report the results in Table 2, which demonstrates that
our method has a positive impact on the alpha-covariance,
especially in limited data settings. Since the LTLRandom35
dataset was created synthetically, it doesn’t have any note-
worthy biases and even the baseline enjoys a high alpha-

6

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

1 10 20 30 40 50
Formula length

1

5

10

A
P

 c
ou

nt

Proposed Method (90.76%)

1 10 20 30 40 50
Formula length

Baseline (41.97%)

1 10 20 30 40 50
Formula length

Full Vocabulary (92.82%)

1 10 20 30 40 50
Formula length

Alpha-Renaming (82.71%)

0.00

0.25

0.50

0.75

1.00

(a) LTL Solving

1 10 20 30 40 50
Formula length

1

5

10

A
P

 c
ou

nt

Proposed Method (77.70%)

1 10 20 30 40 50
Formula length

Baseline (37.11%)

1 10 20 30 40 50
Formula length

Full Vocabulary (84.41%)

1 10 20 30 40 50
Formula length

Alpha-Renaming (68.96%)

0.00

0.25

0.50

0.75

1.00

(b) Propositional Logic

Figure 3. Heatmaps visualizing the ratio of correct predictions on a special test set, for LTL solving (top) and propositional logic (bottom)
tasks. The brightness of the color depends on the sample size, with full brightness representing 100 samples. The dashed white box
represents the boundaries of the training dataset. Our model is competitive with the full vocabulary baseline despite being only trained on
formulae with at most 5 APs, and outperforms other baselines.

Figure 4. Scaling behavior of the
trace generation using spot.

1 10 20 30 40 50
Formula length

1

5

10

A
P

 c
ou

nt

w/o Adacos (81.45%)

1 10 20 30 40 50
Formula length

w/o ffn & AdaCos (81.65%)

1 10 20 30 40 50
Formula length

w/o fbn (29.53%)

0.00

0.25

0.50

0.75

1.00

(a) LTL Solving

1 10 20 30 40 50
Formula length

1

5

10

A
P

 c
ou

nt

w/o Adacos (77.52%)

1 10 20 30 40 50
Formula length

w/o ffn & AdaCos (77.91%)

1 10 20 30 40 50
Formula length

w/o fbn (14.12%)

0.00

0.25

0.50

0.75

1.00

(b) Propositional Logic

Figure 5. Heatmaps for the ablation studies. The results are reported on the same test set as in Figure 3.

1 10 20 30 40 50
Formula length

1

5

10

A
P

 c
ou

nt

LTL Solving (21.70%)

1 10 20 30 40 50
Formula length

1

5

10

Propositional Logic (30.92%)

0.00

0.25

0.50

0.75

1.00

Figure 6. Llama 3.2 heatmaps for the two logic tasks.

0 25 50 75 100
Unique Vectors

0.0000

0.0025

0.0050

0.0075

0.0100

T
im

e
(s

ec
on

ds
)

Optimized
Naive

Figure 7. Average runtime cost of generating 8-
dimensional unique random vectors from Neighboring
Points with different uniqueness checking methods.

7

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

covariance thanks to this. However, when the dataset is
perturbed by introducing a bias to the order of APs, the
baseline struggles heavily with alpha-covariance, whereas
our method does not.

5.2.3. GENERALIZATION

The test dataset for this experiment contains at most 100
formula-trace pairs for each combination of AP count and
formula length, whose maximum is 50 instead of 35. We
report the results for our model (using Hypercube Vertices,
dβ = 5) and the three baselines in Figure 3(a). The first
baseline uses the same training dataset, whereas the second
baseline uses a new LTL dataset with 10 APs, which we
create using the same method as LTLRandom35. For the
third baseline, we train a fixed embedding model with 10
APs using the same 5 AP dataset but we shuffle the AP
embeddings in each forward pass during training.

Discussion. Despite seeing only 5 APs during training, our
method performs only slightly worse than the full vocabu-
lary baseline, which represents what a transformer-based
model can do with 10 APs. Our method outperforms both
the vanilla and the alpha-renaming baselines by a consid-
erable margin, which is significant since the latter is the
only other model that can generalize to more APs. Based on
this, we hypothesize that the proposed stochastic AP embed-
dings provide a more explicit enforcement towards learning
embedding-covariant transformations in the model, as op-
posed to training with alpha-renaming, where the learned
embeddings may still carry unwanted token-specific biases.
Furthermore, unlike the baseline models, our model does
not have to learn the concept of AP from scratch for each
AP token thanks to the shared embedding part. This could
explain why our method shone against the alpha-renaming
baseline in the LTL task where the interchangeable tokens
are more complex than the copying task.

Motivation for generalization. The generalization to larger
AP counts is important especially when considering the
exponential growth of the dataset generation time. In Figure
4, we visualize the growth pattern of the trace checking
duration based on increasing formula length and AP count.
The times are relative to the fastest trace checking time. The
exact times will vary depending on the machine. In our
experiments, generating 100000 samples of exact formula
length 50 with at most 10 APs took 2 hours and 21 minutes
on a system with 56 threads.

Alpha-covariance. On the same generalization dataset, we
evaluate the alpha-covariance performance of these models
in Table 3. Note that since 10 APs lead to a lot more nam-
ing permutations than 5 APs, the alpha-covariance values
are remarkably smaller compared to Table 2. Unlike the
results from Table 2, however, our method outperforms the
alpha-renaming approach here. This shows that our method

excels in out-of-distribution settings, but trades off some
in-distribution performance. Although the full vocabulary
baseline performs very similarly to our method, it’s impor-
tant to note that this region is in-distribution for that model.
Overall, these results align with Figure 3(a).

5.3. Assignment Prediction for Propositional Logic

To further demonstrate the applicability and generalization
capabilities of our method, we evaluate it on a considerably
different logical problem: predicting assignments for propo-
sitional logic (Appendix C). The experimental setup is based
on DeepLTL (Hahn et al., 2021) with minor differences in
hyperparameter choices (Appendix D). We use pyaiger
(Vazquez-Chanlatte & Rabe) to generate datasets and eval-
uate predictions. In Appendix G.1, we provide additional
details about our experimental setup.

We perform the generalization experiment as in Section
5.2.3 and report the results in Figure 3(b). We observe the
same ranking with slightly larger performance gaps. Once
more, the proposed method is superior to all approaches
that use the same 5 AP training dataset, beaten only by the
full vocabulary model which sidesteps the challenge of AP
generalization due to its enhanced training dataset.

We continue propositional logic experiments in Table 3 and
Appendix G.2, which focus on alpha-covariance and dataset
perturbations respectively. The results of these experiments
also align with the LTL experiments.

5.4. Ablation Studies

The hyperparameter search in Appendix E.3 operates on the
copying task, and, alongside searching over the embedding
hyperparameters, experiments with disabling the normaliza-
tion features and AdaCos, thereby constituting an ablation
study. For the LTL and propositional logic tasks, we always
kept the normalization features and AdaCos enabled in the
previous sections. In this section, we evaluate the impact
of these features by disabling them on our best-performing
models for these two logic tasks. We ablate one aspect at a
time, except for ffn, which is disabled together with Ada-
Cos because AdaCos depends on ffn to function correctly.

Figure 5 presents the results, which demonstrate the critical
importance of the fbn normalization component. Removing
fbn leads to dramatic performance drops (from 90.76% to
29.53% on LTL, and from 77.70% to 14.12% on proposi-
tional logic), confirming that maintaining balance between
the common and randomized embedding parts is essential
for our method’s success. The experiments with AdaCos
and ffn indicate task-dependent benefits: they provide sig-
nificant improvements on LTL (90.76% vs. 81.45% when
AdaCos is removed), while showing negligible impact on
propositional logic.

8

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

Table 3. Mean alpha-covariance values for varying AP counts, evaluated on 1000 test samples, each with 120 random alpha-equivalent
variants. The best value for each AP count is highlighted in bold.

Task Model Alpha-Covariance
3 AP 4 AP 5 AP 6 AP 7 AP 8 AP 9 AP 10 AP

Full Vocabulary 54.09% 45.51% 45.23% 42.07% 33.54% 34.47% 32.36% 28.42%
LTL Alpha-Renaming 50.64% 43.00% 40.95% 37.49% 30.80% 30.30% 28.76% 25.57%

Proposed 54.30% 46.05% 45.64% 41.88% 33.89% 35.29% 33.18% 28.34%

Propositional
Logic

Full Vocabulary 39.77% 30.08% 30.37% 26.64% 20.97% 22.97% 18.80% 17.20%
Alpha-Renaming 42.29% 32.36% 33.45% 30.28% 24.91% 26.47% 22.29% 19.83%
Proposed 43.36% 32.49% 33.65% 30.04% 25.00% 26.63% 21.99% 20.75%

5.5. Comparison with LLMs

To contextualize the effectiveness of our proposed approach,
we evaluate the performance of a general-purpose LLM
(large language model), specifically, the 3B parameter ver-
sion of Llama 3.2 (Grattafiori et al., 2024), on the LTL task.
The details about the prompt design, inference parameters,
and implementation are provided in Appendix I.

In the last row of Table 2, we report the performance of
Llama 3.2 on the test split of LTLRandom35. These re-
sults (e.g., 24.33% correct) are drastically lower than those
achieved by our proposed method (95.94%). On proposi-
tional logic, Llama 3.2 achieves a slightly better accuracy
but much worse alpha-covariance (Table 8 in Appendix
G.2). Additionally, we replicate the setups in Figure 3 using
Llama 3.2 on the same datasets and sample sizes. As shown
in Figure 6, the resulting accuracies are 21.70% (LTL solv-
ing) and 30.92% (propositional logic), compared to 90.76%
and 77.70% by our method. This striking gap illustrates the
limitations of general-purpose LLMs in highly specialized
domains such as LTL solving, even when the model size far
exceeds that of our dedicated architectures.

5.6. Computational Efficiency

We evaluate the computational efficiency of our method in
terms of training time, inference speed, and memory us-
age (see Appendix H for full details). Our method incurs
a modest 13% training overhead compared to the baseline
in LTL solving task. At inference, embedding preparation
takes only 0.0003 seconds and is required just once at the
beginning of an evaluation session, making its cost neg-
ligible relative to model execution (0.206 seconds for a
forward pass and 9.808 seconds for autoregressive gener-
ation). Our optimized method for generating unique ran-
dom vectors with integer reservoir sampling (Section 4.2)
scales efficiently to a large number of vectors unlike the
naive approach (Figure 7). While the parameter count of
traditional embeddings scales linearly with interchangeable
token count, our method’s parameter count remains constant,
as embeddings are shared across interchangeable tokens.

6. Limitations
While our method provides an effective framework for en-
forcing alpha-equivalence in formal languages, it is not
directly applicable to natural language, in which tokens
carry semantic and contextual information that is often es-
sential for interpretation. For instance, even though variable
names like electricity bill and water bill may
be functionally interchangeable in certain code constructs,
they convey distinct meanings that are not preserved under
alpha-conversions. As such, enforcing alpha-equivalence
may reduce interpretability and degrade performance in
tasks that rely on linguistic connotations. This represents an
intriguing area for future research.

Another limitation is the requirement to manually define the
set of interchangeable tokens, which may not be feasible in
some settings. Moreover, our method requires training from
scratch due to modifications in the embedding architecture,
posing challenges for integration with pretrained models.

Although our dual-part embedding method demonstrates
generalization capabilities, its performance in the LTL solv-
ing task decreases slightly for in-distribution data (Table 2).
The future work can tackle this issue, which may eventu-
ally lead to Pareto improvements in bias-variance tradeoff.
Finally, new randomization and normalization methods for
our embeddings can be explored.

7. Conclusion
A central goal in machine learning is to generalize to out-
of-distribution samples, for which the model design and its
inductive biases play a vital role. In this work, we tackle
the challenge of generalizing to larger vocabulary sizes
unseen during training and creating an inductive bias for
alpha-equivalence. We also contribute the alpha-covariance
metric for measuring the model consistency against alpha-
equivalent inputs. These contributions embody a foundation
for learning extensible vocabularies for interchangeable to-
kens, which is especially useful for formal reasoning tasks
in which alpha-equivalence naturally arises.

9

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

Acknowledgments
The numerical calculations were partially performed at
TÜBİTAK TRUBA, MareNostrum5, METU ImageLab, and
METU ROMER resources. This project was supported in
part by the project METU ADEP-312-2024-11525. Dr. Cin-
bis is supported by the “Young Scientist Awards Program
(BAGEP)‘’ of Science Academy, Türkiye.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Conversion (Chapter 2). In Barendregt, H. P. (ed.), The

Lambda Calculus, volume 103 of Studies in Logic and
the Foundations of Mathematics, pp. 22–49. 1984.

Abbe, E., Bengio, S., Lotfi, A., and Rizk, K. Generalization
on the unseen, logic reasoning and degree curriculum. In
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 31–60, 23–29 Jul 2023.

Azerbayev, Z., Schoelkopf, H., Paster, K., Santos, M. D.,
McAleer, S. M., Jiang, A. Q., Deng, J., Biderman, S.,
and Welleck, S. Llemma: An open language model for
mathematics. ArXiv, abs/2310.10631, 2023.

Baier, C. and Katoen, J.-P. Principles of model checking.
2008.

Clarke, E. M., Henzinger, T. A., Veith, H., and Bloem, R.
Handbook of model checking. In Cambridge Interna-
tional Law Journal, 2018.

Dargan, S., Kumar, M., Ayyagari, M. R., and Kumar, G.
A Survey of Deep Learning and Its Applications: A
New Paradigm to Machine Learning. Archives of Com-
putational Methods in Engineering, 27(4):1071–1092,
September 2020. ISSN 1886-1784.

Duret-Lutz, A., Renault, E., Colange, M., Renkin, F., Aisse,
A. G., Schlehuber-Caissier, P., Medioni, T., Martin, A.,
Dubois, J., Gillard, C., and Lauko, H. From Spot 2.0
to Spot 2.10: What’s new? In Proceedings of the 34th
International Conference on Computer Aided Verification
(CAV’22), volume 13372 of Lecture Notes in Computer
Science, pp. 174–187, August 2022.

Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori, T.,
Lukasiewicz, T., Petersen, P., Chevalier, A., and Berner,
J. J. Mathematical capabilities of chatgpt. ArXiv,
abs/2301.13867, 2023.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Hahn, C., Schmitt, F., Kreber, J. U., Rabe, M. N., and
Finkbeiner, B. Teaching temporal logics to neural net-
works. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021, 2021.

Han, J. M., Rute, J. M., Wu, Y., Ayers, E. W., and Polu,
S. Proof artifact co-training for theorem proving with
language models. ArXiv, abs/2102.06203, 2021.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton, F.
End-to-end symbolic regression with transformers. ArXiv,
abs/2204.10532, 2022.

Lample, G. and Charton, F. Deep learning for symbolic
mathematics. ArXiv, abs/1912.01412, 2019.

Li, J., Yao, Y., Pu, G., Zhang, L., and He, J. Aalta: an ltl
satisfiability checker over infinite/finite traces. In Pro-
ceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE
2014, pp. 731–734, New York, NY, USA, 2014.

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata. 2023.

Morazzoni, I., Scotti, V., and Tedesco, R. Def2vec: Ex-
tensible word embeddings from dictionary definitions.
In International Conference on Natural Language and
Speech Processing, 2023.

Pnueli, A. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science, Prov-
idence, Rhode Island, USA, 31 October - 1 November
1977, pp. 46–57, 1977.

Press, O. and Wolf, L. Using the output embedding to
improve language models. In Conference of the European
Chapter of the Association for Computational Linguistics,
2016.

Rabe, M. N., Lee, D., Bansal, K., and Szegedy, C. Mathe-
matical reasoning via self-supervised skip-tree training.
arXiv: Learning, 2020.

Ranjan, R., Castillo, C. D., and Chellappa, R. L2-
constrained softmax loss for discriminative face verifica-
tion, 2017.

Sanh, V., Webson, A., Raffel, C., Bach, S. H., Sutawika,
L., Alyafeai, Z., Chaffin, A., Stiegler, A., Raja, A., Dey,
M., Bari, M. S., Xu, C., Thakker, U., Sharma, S. S.,
Szczechla, E., Kim, T., Chhablani, G., Nayak, N. V.,

10

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

Datta, D., Chang, J., Jiang, M. T.-J., Wang, H., Manica,
M., Shen, S., Yong, Z.-X., Pandey, H., Bawden, R., Wang,
T., Neeraj, T., Rozen, J., Sharma, A., drea Santilli, A.-.,
Févry, T., Fries, J. A., Teehan, R., Scao, T. L., Bider-
man, S., Gao, L., Wolf, T., and Rush, A. M. Multitask
prompted training enables zero-shot task generalization.
In International Conference on Learning Representations,
2022. URL https://api.semanticscholar.
org/CorpusID:276421109.

Shiv, V. L. and Quirk, C. Novel positional encodings to
enable tree-based transformers. In NeurIPS 2019, De-
cember 2019.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu,
Y. Roformer: Enhanced transformer with rotary po-
sition embedding. Neurocomput., 568(C), February
2024. ISSN 0925-2312. doi: 10.1016/j.neucom.
2023.127063. URL https://doi.org/10.1016/
j.neucom.2023.127063.

Tang, X., Zheng, Z., Li, J., Meng, F., Zhu, S.-C., Liang,
Y., and Zhang, M. Large language models are in-context
semantic reasoners rather than symbolic reasoners. ArXiv,
abs/2305.14825, 2023.

Vastl, M., Kulhánek, J., Kubalı́k, J., Derner, E., and Babuška,
R. Symformer: End-to-end symbolic regression using
transformer-based architecture, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Vazquez-Chanlatte, M. and Rabe, M. py-aiger.
URL https://github.com/mvcisback/
py-aiger.

Wang, F., Xiang, X., Cheng, J., and Yuille, A. L. Normface:
L2 hypersphere embedding for face verification. In Pro-
ceedings of the 25th ACM international conference on
Multimedia, MM ’17, October 2017.

Wei, S., Chen, X., Yang, X., Cao, S., and Zhang, X. A
component-based vocabulary-extensible sign language
gesture recognition framework. Sensors (Basel, Switzer-
land), 16, 2016.

Welleck, S., Liu, J., Lu, X., Hajishirzi, H., and Choi, Y.
Naturalprover: Grounded mathematical proof generation
with language models. ArXiv, abs/2205.12910, 2022.

Wu, Z., Qiu, L., Ross, A., Akyürek, E., Chen, B., Wang,
B., Kim, N., Andreas, J., and Kim, Y. Reasoning or
reciting? exploring the capabilities and limitations of
language models through counterfactual tasks. In North
American Chapter of the Association for Computational
Linguistics, 2023.

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P.,
Yu, S., Godil, S., Prenger, R. J., and Anandkumar, A.
Leandojo: Theorem proving with retrieval-augmented
language models. ArXiv, abs/2306.15626, 2023.

Zhang, X., Zhao, R., Qiao, Y., Wang, X., and Li, H. Adacos:
Adaptively scaling cosine logits for effectively learning
deep face representations. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
10815–10824, 2019.

11

https://api.semanticscholar.org/CorpusID:276421109
https://api.semanticscholar.org/CorpusID:276421109
https://doi.org/10.1016/j.neucom.2023.127063
https://doi.org/10.1016/j.neucom.2023.127063
https://github.com/mvcisback/py-aiger
https://github.com/mvcisback/py-aiger

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

A. Preliminary: Language models
The autoregressive language modeling or sequence modeling in a broader sense—whose goal is to predict the next token
given the past tokens—was revolutionized by the transformer architecture (Vaswani et al., 2017), replacing the step-by-step
processing of recurrent neural networks (RNNs) with a parallelizable attention mechanism. At its core lies the attention
mechanism, which computes three vectors—query, key, and value—from input embeddings. This mechanism allows
the model to weigh the importance of different tokens, enabling it to capture long-range dependencies efficiently. In
self-attention, these vectors come from the same sequence, while in cross-attention, key and value vectors come from a
different sequence, as in encoder-decoder setups. The transformer consists of an encoder with self-attention and feed-forward
layers, and a decoder that adds cross-attention to incorporate the encoder’s output. Since attention lacks an inherent sense of
token order, positional encodings are added to input embeddings to provide sequence structure. During training, attention
masking ensures causality in predictions, preventing future tokens from being considered when predicting the next one.

B. Temporal logic overview
Linear Temporal Logic (LTL) extends propositional logic by introducing the ability to reason about the evolution of
propositions over time (Pnueli, 1977). The syntax of LTL, defined over a finite set of atomic propositions P , is given in
Equation 3, where T represents True, p ∈ P an atomic proposition, ¬ the negation operator, ∧ the conjunction operator, X
and U the temporal operators next and until respectively.

ϕ := T | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2 (3)

Specifically:

• Xϕ holds at time t if and only if ϕ holds at the next time step, i.e., at time t+ 1.

• ϕ1Uϕ2 means that ϕ2 must hold at some future time t2, and ϕ1 holds at every time step t from the current time t1 up
to but not necessarily including t2.

For instance, the formula XXa specifies that a must hold at the third time step. Similarly, the formula TUa requires that a
holds at some point in the future. Finally, as a more complex example, the formula Xb ∧ aUc asserts that b holds at the
second time step, c holds at some future time, and a holds at all preceding time steps.

An LTL formula is evaluated over a trace, which represents a sequence of truth values for atomic propositions over time. In
this work, as in DeepLTL (Hahn et al., 2021), we consider symbolic traces of infinite length. These traces are expressed in
what is known as a lasso form, denoted uvω , where u is a finite prefix, and v is a finite sequence that repeats indefinitely.

A symbolic trace represents all traces that satisfy the propositional formulae at the respective time steps. For example, the
symbolic trace a, a ∧ ¬b, (c)ω describes all traces in which a holds at the first two time steps, b does not hold at the second
time step, and c holds at every step from the third onward. This symbolic trace satisfies the formulae TUc and X¬b ∧ aUc,
but it violates the formula XXb since b is not guaranteed to hold at the third time step. Symbolic traces, such as this one,
can be underspecified, meaning that certain propositions (e.g., a and b) may take arbitrary values at some time steps.

The LTL solving problem involves identifying a symbolic trace in lasso form uvω that satisfies a given input formula ϕ. We
approach this as an autoregressive language modeling task: given an LTL formula and a partially generated symbolic trace,
the model predicts the probabilities for the next token in the trace.

For compatibility with the dataset from DeepLTL (Hahn et al., 2021), both our traces and formulae are represented in Polish
(prefix) notation, where operators precede their operands. For instance, a ∧ b is written as &ab, which avoids the need for
parentheses to resolve ambiguities.

As described earlier, we assume that traces are infinite and represented in lasso form uvω. Alongside atomic propositions,
constants (True:1 and False:0), and logical operators, we use special symbols in the notation: “;” is a position
delimiter, and “{” and “}” enclose the repeating period v. For example, the string “a;&ab;{b}” represents the symbolic
trace a, a ∧ b, (b)ω .

12

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

C. Propositional Logic
Unlike LTL (Appendix B), propositional logic does not feature any temporal operators, but we include the derived operators
for equivalence (↔) and exclusive or (⊕) alongside the basic negation (¬), conjunction (∧), and disjunction (∨). This leads
to the syntax given in Equation 4, defined over a finite set of atomic propositions P where p ∈ P an atomic proposition.

ϕ := T | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ↔ ϕ2 | ϕ1 ⊕ ϕ2 (4)

In assignment prediction problem for propositional logic, the goal is to determine a Boolean assignment for every atomic
proposition p ∈ P such that the given formula is satisfied. We allow the assignments to be partial, e.g., just as a = 1, b = 1
is a valid assignment for the formula a ∨ b, so is a = 1, which allows b to take any value.

To encode the assignments for the neural network, an alternating sequence of atomic propositions and values is used. For
example, a1b0 represents the assignment a = 1 and b = 0. To verify the outputs of the neural network and to generate
datasets, pyaiger was used (Vazquez-Chanlatte & Rabe).

D. Hyperparameters
The constant hyperparameter choices for all experiments are given in Table 4. These hyperparameters are kept constant
within an experiment. The hyperparameters for the logic tasks are taken from DeepLTL (Hahn et al., 2021). For the LTL
task, we used the same hyperparameters. On the other hand, for the propositional logic task, we had to make some changes
to adapt them to our updated architecture. Firstly, since we utilize weight sharing, we cannot separate the embedding
dimensions of encoder and decoder. As a result, instead of having an embedding dimension of 128 for the encoder and 64
for the decoder, we use 128 for both. However, since there are 6 attention heads, we round it up to 132.

Table 4. Hyperparameter choices.

Experiment Embedding Layers Heads FC size Batch Size Train Steps
Copy (Sections E.1 and E.2) 64 2 4 64 512 20K

Copy (Section E.5) 128 6 8 128 512 20K
LTL (Section 5.2) 128 8 8 1024 768 52K

Propositional Logic (Section 5.3) 132 6 6 512 1024 50K

E. Copying Task Experiments
Evaluation method. We generate the predictions using greedy sampling in the copying task. We use the edit distance
between the prediction and the ground truth as our evaluation metric. To generate the evaluation datasets (validation and
test splits), we create 100 samples for each possible combination of unique character count and string length, starting from
a minimum of 3. Consequently, the total evaluation dataset is arranged in a matrix in which the rows represent unique
character count in the string and the columns represent the string length. This matrix is upper triangular since the unique
character count cannot exceed the string length. For random embeddings, we repeat the evaluation 10 times and report the
average. To evaluate up to the string length of 30 in this setup, 10× 100× 406 = 406000 predictions are required, where
406 is the number of upper triangular elements in a 28× 28 matrix. To minimize the impact of random factors, we train
each model three times and report the results only for the best.

E.1. Generalization to larger vocabularies

We create a dataset consisting of 10 million strings whose lengths vary between 3 and 30 with at most 5 unique characters.
We evaluate the models on strings up to length 30 with at most 30 unique characters. Out of 27 models we trained with
dual-part embeddings, 20 of them achieve an average edit distance of 0.0, i.e., no error. The worst model’s average edit
distance is 1.0. For comparison, an output sequence of length 30 can have a maximum edit distance of 30.

13

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

E.2. Generalization to larger vocabularies and lengths

We create a dataset consisting of 10 million strings whose lengths vary between 5 and 10 with at most 5 unique characters.
We evaluate on the same validation set as before, expecting the model to generalize to both longer lengths and larger
vocabulary sizes. In the next subsection, we perform a hyperparameter search over random embedding methods, dβ values,
and whether fbn, ffn, AdaCos are enabled.

E.3. Hyperparameter Search

On the smaller copying task, we train multiple models that use different random embedding methods (Section 4.2) with
different dβ values. While altering dβ , we keep the total number of embedding dimensions dα + dβ constant. We train
each model at least 3 times with different seeds and report the results for the best one in Tables 5 (proposed method) and 6
(baselines).

Table 5. Mean edit distance for various models using proposed method. The numbers in the header row represents dβ for each random
embedding method. In the first column, enabled normalization features are listed. AC refers to AdaCos, which can only be enabled when
ffn is used.

Enabled Normal Distribution Neighboring Points Hypercube Vertices
Features 2 4 8 16 32 4 6 8 16 32 5 6 8 16 32

fbn + ffn + AC 13.6 5.4 4.6 8.1 8.1 1.9 13.0 2.2 1.0 2.1 2.8 0.4 7.5 8.4 3.9
ffn + AC 7.6 13.1 4.6 2.2 5.2 8.7 11.5 2.8 2.9 2.2 0.5 3.7 3.2 4.2 4.1
fbn + ffn 13.7 10.6 8.3 3.8 11.8 11.9 5.7 3.7 7.4 8.3 2.2 13.1 21.5 19.4 20.9

ffn 15.4 10.6 8.2 3.7 10.1 8.1 12.3 6.4 13.4 9.9 2.5 1.7 12.5 2.1 12.8
fbn 10.6 16.6 11.8 6.9 8.2 5.8 3.0 0.6 7.8 14.3 12.8 13.8 19.4 22.9 11.6

- 16.5 11.6 12.6 12.5 9.0 12.5 3.7 9.5 5.9 13.5 12.7 9.6 8.6 15.9 16.6

Table 6. Mean edit distance for various baseline models. In the first column, enabled normalization features are listed. AC refers to
AdaCos, which can only be enabled when ffn is used. Note that fbn is not applicable for baseline models. The results for the first type of
baseline are omitted since it cannot generalize to larger vocabularies. The second baseline was trained on a dataset with a vocabulary
size of 30. The third baseline uses the same limited vocabulary dataset like the proposed method, but uses alpha-renaming as data
augmentation.

Enabled Baseline Baseline
Features 2nd Type 3rd Type
ffn + AC 6.1 1.9

ffn 4.9 11.3
- 5.5 12.9

The results in Tables 5 and 6 exhibit high variance with no clear patterns that indicate which methods are better. Therefore,
we perform an analysis based on correlation coefficients between these hyperparameters and the edit distance using the
results from all 277 models we’ve trained (not including the baseline models). For this analysis, we assume that the value of
Boolean properties (such as fbn, ffn and AdaCos) are 0 or 1. The correlation coefficients are as follows:

N.D. N.P. H.V. dβ fbn ffn AdaCos
0.02 -0.14 0.11 0.01 0.10 -0.29 -0.41

First three columns are the random embedding methods as listed in Table 1, the fourth column is dβ , and the last three
columns represent whether the given feature is enabled. Accordingly, the best random embedding method is “Neighboring
Points” since it’s the only one that correlates negatively with edit distance. The correlation observed for dβ is negligible.
Introducing fbn increases the edit distance, but the statistical significance is not ideal (p-value 0.04). Both ffn and AdaCos
loss have a positive and statistically significant impact on edit distance, with p-values smaller than 10−6.

We determine the best model for the proposed method and the baseline on the validation set, evaluate them on the test set and
visualize the results in Figure 8. Since the baseline model cannot process larger vocabularies, we assume that the prediction

14

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

is empty if the unique character count exceeds the training set’s vocabulary, hence the edit distance equals length in that area.
Our best model trained on limited length uses Hypercube Vertices with dβ set to 6 and ffn + AdaCos enabled. It achieves a
mean edit distance of 0.38 on the test set. The first baseline’s mean edit distance is 0.51 (calculated up to 5 unique characters,
only for this model). The second and third baselines’ mean edit distances are 4.93 and 1.85 respectively. However, the
significance of this difference is highly questionable, as these models exhibit high variance across different training runs.

Figure 8. Edit distance heatmaps on test set. The first and second heatmaps are the proposed and baseline (first type) models respectively,
trained on strings up to length 10 and a vocabulary size 5. The third heatmap is the second baseline, which uses a new training dataset
with a larger vocabulary. The last heatmap is the third baseline that uses the same dataset as the proposed method but incorporates
alpha-renaming in training. The difference between the last two baselines is that the alpha-renaming baseline is not exposed to more than
5 unique characters per sample. The lower triangular part of each heatmap (gray hatch pattern) represents the impossible combinations of
length and unique character count. The green box represents the number of unique characters (y-axis) and the maximum length (x-axis) in
the training dataset. Note that all heatmaps share the same y-axis.

E.4. Sensitivity to randomness in embeddings

We analyze the impact of the randomization that the proposed method performs on embeddings. The minimum, mean, and
maximum edit distance (on test set) obtained by ten different embedding randomizations of the second model in Figure
8 are 0.25, 0.38, 0.55 respectively, with a sample standard deviation of 0.09. The pooled standard deviation of the edit
distance across all 277 models evaluated on the validation set is 1.73. However, our best models are more resilient against
randomness: this value is 0.74 for top 10% models.

To reduce the computational cost of evaluation in other experiments (All LTL experiments and Section E.5), we generate
10 random embeddings, sort them by their cross entropy loss on the evaluated dataset, and use the median one. We find
that this serves as a decent proxy for the average performance. Across the validation set evaluations of all 277 models, the
percent difference in edit distance between this median method and the real mean is 1.4% on average (meaning that the
result from the median method is worse), and 9.1% if we consider the absolute differences.

E.5. Scaling up

We increase the length of the strings from 5-10 to 20-80, and vocabulary size from 5 to 20. We create the evaluation sets by
generating 20 samples for each combination of unique character count and string length. The mean edit distance of our best
model is 0.0. The heatmap is given in Figure 2. All baselines also attain perfect performance in this task on the vocabulary
sizes they support. Therefore, only the first type of baseline is shown in Figure 2.

F. LTL Experiment with Limited Dataset
This is a continuation of the experiment from Section 5.2.1. Table 7 contains evaluations of the baseline, the alpha-renaming
model, and the proposed model trained with a severely limited number of samples: 80,000 instead of 799,909. We kept the
number of epochs constant, and as a result, the number of training steps were also divided by ten (approximately).

15

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

The result of limiting the number of training samples is similar to the dataset perturbation, albeit much less pronounced for
the baseline model. Unlike in the perturbation experiment, where the baseline model’s performance plummets, all models
trained on the reduced dataset maintain similar correctness ratios. The biggest difference is observed in the alpha-covariance
values, particularly in the 5 AP category, whose ranking aligns with the perturbation experiment.

Since LTLRandom35 is a synthetic dataset, it exhibits minimal inherent bias, even when the dataset size is limited.
Consequently, limiting the dataset size has a smaller effect than introducing perturbations. Furthermore, since the alpha-
renaming model was trained using 5 AP embeddings in this experiment, it loses its vocabulary generalization capability
unlike our proposed method. Training the alpha-renaming baseline with more APs would require learning a new embedding
for each AP, which would reduce its performance.

Table 7. Evaluation of the baselines and our method trained on different versions of LTLRandom35. The same results from Table 2 are
shown for easier comparison. The alpha-renaming baseline was trained using 5 AP embeddings since vocabulary generalization is not
evaluated here. First two columns denote the training dataset and the model. Next two columns indicate the ratio of the correct predictions
and exact matches on 99,989 test set samples as evaluated by spot. Last three columns display mean alpha-covariance values for varying
atomic proposition (AP) counts, evaluated on all alpha-equivalent variants of 1000 test samples.

Training Evaluation Alpha-Covariance
Dataset Model Correct Exact 3 AP 4 AP 5 AP
Normal Baseline 98.23% 83.23% 96.87% 95.86% 91.80%
Perturbed Baseline 34.13% 12.12% 64.93% 57.99% 40.91%
Perturbed Alpha-Renaming 97.96% 77.66% 99.55% 99.49% 98.86%
Perturbed Proposed 95.94% 76.45% 97.66% 97.76% 98.29%
Limited Baseline 87.47% 63.61% 94.37% 91.70% 85.64%
Limited Alpha-Renaming 89.50% 64.15% 99.02% 98.67% 97.82%
Limited Proposed 87.32% 59.04% 97.94% 96.12% 94.34%

G. Propositional Logic Experiments
This section gives more details about the experimental setup of the propositional logic task and continues the experiments.

G.1. Experimental Setup

We use PropRandom35 from DeepLTL (Hahn et al., 2021) as our main 5 AP dataset, and create other datasets using the
same approach. In particular, propositional logic formulae are generated randomly, with negation (¬), conjunction (∧), and
disjunction (∨) operators having an equal weight. Equivalence (↔) and exclusive or (⊕) operators each have half as much
weight since they are derived operators. The corresponding assignment is generated by querying the pyaiger’s SAT solver
for a minimal unsatisfiable core of the negated formula.

As in the LTL experiments, we use a transformer encoder-decoder architecture with three-way weight tying (Press & Wolf,
2016). The positional encoding method is tree-positional encoding (Shiv & Quirk, 2019) for the encoder and RoPE (Su
et al., 2024) for the decoder. Predictions are generated using beam search with a beam size of 3.

Since the network outputs the assignments as a sequence (Appendix C), the same assignment can be encoded in multiple
ways by changing the order. For example, both a1b0 and b0a1 represent the same set of assignments a = 1 and b = 0,
which can be written as {(a, 1), (b, 0)} in set notation. We consider such pairs exact matches in the propositional logic
experiments. If the predicted assignment does not exactly match the ground truth, we use pyaiger to evaluate the
correctness.

G.2. Dataset Perturbations

In this section, we repeat the dataset perturbation experiment (Section 5.2.1) for the propositional logic task. The perturbation
is introduced in a similar manner by renaming the APs such that the order of the first AP appearances in the label (sequence
denoting the Boolean assignment) is always the same. As shown in Table 8, the experimental results once again confirm that
our method introduces a robust inductive bias for alpha-equivalence.

16

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

Table 8. Evaluation of the baselines, our method, and Llama 3.2 on the PropRandom35 dataset. The alpha-renaming baseline was trained
using 5 AP embeddings since vocabulary generalization is not evaluated here. First two columns denote the training dataset and the model.
Next two columns indicate the ratio of the correct predictions and exact matches on 100,000 test set samples as evaluated by pyaiger.
Last three columns display mean alpha-covariance values for varying atomic proposition (AP) counts, evaluated on all alpha-equivalent
variants of 1000 test samples.

Training Evaluation Alpha-Covariance
Dataset Model Correct Exact 3 AP 4 AP 5 AP
Normal Baseline 95.62% 57.94% 95.70% 93.69% 76.02%
Perturbed Baseline 41.57% 9.04% 14.96% 16.85% 10.65%
Perturbed Alpha-Renaming 93.85% 57.24% 99.56% 99.60% 93.23%
Perturbed Proposed 93.25% 56.45% 99.23% 99.42% 92.98%
Pretrained Llama 3.2 3B 29.03% 1.56% 50.75% 27.96% 11.25%

H. Computational Efficiency Details
To evaluate the practical applicability of our method, we analyze its computational overhead compared to baseline approaches.
We report training times, inference speeds, and memory requirements across different experimental settings.

Training efficiency. We measured training durations for models trained on NVIDIA H100 GPUs using identical hyperpa-
rameter settings. In LTL solving task, the average training times were as follows:

• Baseline (traditional embeddings): 2 hours 12 minutes

• Alpha-renaming baseline: 2 hours 33 minutes

• Proposed method: 2 hours 29 minutes

The proposed method introduces minimal training overhead compared to the baseline, with only a 13% increase in training
time. This modest overhead stems from the additional embedding preparation steps required during training.

Inference performance. We conducted a runtime analysis using our best-performing LTL model on NVIDIA A4000
hardware. The model uses Hypercube Vertices randomization with uniqueness checking enabled, evaluated with batch size
768 and beam search (beam size = 3). In this setup, a forward pass takes 0.206 seconds, and autoregressive generation 9.808
seconds. On the other hand, the embedding preparation time is measured at 0.0003 seconds, which is negligible compared
to model execution. Importantly, during inference, embeddings need only be generated once at the start of the evaluation
session, making the amortized cost even smaller for batch processing.

Memory overhead. Our method reduces the total parameter count compared to traditional approaches since only one
common embedding is learned for all interchangeable tokens, regardless of their quantity. The memory overhead comes
primarily from constructing the embedding matrix during runtime, which requires temporary storage for the randomized
components. However, this additional memory requirement is on the same order of magnitude as the embedding matrix
itself, which represents a small fraction of total model parameters in transformer architectures.

The parameter efficiency of our method scales favorably with vocabulary size. Unlike traditional approaches that require
learning separate embeddings for each token (thereby scaling linearly with the vocabulary size), our method’s parameter
count remains constant regardless of the number of interchangeable tokens. However, two factors require consideration for
very large vocabularies:

1. Sampling set size: In discrete random generation methods, the sampling set is naturally bounded (Table 1). However,
the sampling set grows exponentially with the number of dimensions, ensuring sufficient diversity even for large
vocabularies.

2. Uniqueness checking: For vocabularies with hundreds of thousands of tokens, uniqueness verification becomes
computationally expensive, but the probability of collisions decreases exponentially with increasing embedding
dimensions.

17

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

I. LLM Setup
We use the 3B-parameter version of Llama 3.2 (Grattafiori et al., 2024), quantized with Q4_K_M, and run it using Ollama
0.4.7 as our LLM backend. We first experimented with greedy sampling (by setting top-k=1) since Ollama does not
support beam search. However, we found that the default sampling options (top-k=40 and top-p=0.9) yielded better results.
Therefore, we use these default settings for all experiments.

Unlike our specialized models, which operate on prefix (Polish) notation, we prompt the LLM using infix notation for input
formulas (and output traces in the LTL task), as this format is more prevalent in natural language and more familiar to
general-purpose LLMs. To output the assignments in the propositional logic task, we use JSON format, and constrain the
LLM’s output using a JSON schema. The input prompts for the LTL and propositional logic tasks are given in Listing 1 and
Listing 2, respectively. For each sample, the “{formula}” substring in the prompt is replaced by the input formula, and
the prompt is given as a user message to the LLM.

We set the random seed to 42 for each sample. Although the reason behind this choice is reproducability, it also seems to
improve alpha-covariance. For example, the alpha-covariance values reported for Llama 3.2 in Table 2 are 68.17%, 63.27%,
62.34% for 3 to 5 APs, respectively, which decrease to 41.94%, 43.10%, 44.62% when the random seed is no longer fixed.

Listing 1. LLM Prompt for the LTL solving task.
1 Your task is to generate a satisfying trace for a given LTL (Linear Temporal Logic)

formula.
2 Lowercase letters denote the atomic propositions.
3 The output trace should be in lasso form composed of two parts: the prefix part and the

cycle part.
4 Timesteps in the trace should be separated by semicolons, and the cycle part should be

enclosed in curly braces, preceeded by the keyword "cycle".
5

6 Temporal operators:
7 X: Next operator
8 U: Until operator
9

10 Logical operators:
11 &: AND operator
12 |: OR operator
13 !: NOT operator
14 The output trace is a symbolic trace, which means that the logical operators are allowed,

but not temporal operators.
15

16 Constants:
17 0: False
18 1: True
19 Note that other numbers are invalid.
20

21 Example 1
22 Formula: X((a & Xa) U XXb)
23 Trace: 1; 1; 1; b; cycle{{1}}
24

25 Example 2
26 Formula: !c U X(1 U b)
27 Trace: 1; b; cycle{{1}}
28

29 Example 3
30 Formula: X!X!(b & Xb)
31 Trace: 1; 1; b; b; cycle{{1}}
32

33 Example 4
34 Formula: !(1 U !c)
35 Trace: cycle{{c}}
36

37 Your Turn
38 Formula: {formula}
39 Please generate the corresponding trace. Output the trace only.

18

Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence

Listing 2. LLM Prompt for the propositional logic task.
1 Your task is to generate an assignment that satisfies a given propositional logic formula.
2 Lowercase letters denote the atomic propositions.
3 The output is a JSON object representing the assignment.
4

5 Logical operators (ordered from highest precedence to lowest):
6 !: NOT operator
7 &: AND operator
8 |: OR operator
9 xor: Exclusive OR operator

10 <->: Logical equivalence operator (biconditional)
11

12 Constants:
13 0: False
14 1: True
15 Note that other numbers are invalid.
16

17 Example 1
18 Formula: !a | c & (b <-> c)
19 Assignment: { "a": false }
20

21 Example 2
22 Formula: !(a <-> (!a xor !e))
23 Assignment: { "a": true, "e": true }
24

25 Example 3
26 Formula: a & (!a <-> !c | d)
27 Assignment: { "a": true, "c": true, "d": false }
28

29 Example 4
30 Formula: !(a | !(!d | b & d))
31 Assignment: { "a": false, "d": false }
32

33 Your Turn
34 Formula: {formula}
35 Please generate an assignment that satisfies this formula. Output the assignment only, in

JSON format.

19

