
Permutation Decision Trees using Structural Impurity

Anonymous Author(s)
Affiliation
Address
email

Abstract

Decision Tree is a well understood Machine Learning model that is based on1

minimizing impurities in the internal nodes. The most common impurity measures2

are Shannon entropy and Gini impurity. These impurity measures are insensitive3

to the order of training data and hence the final tree obtained is invariant to a4

permutation of the data. This leads to a serious limitation in modeling data instances5

that have order dependencies. In this work, we use Effort-To-Compress (ETC) - a6

complexity measure, for the first time, as an impurity measure. Unlike Shannon7

entropy and Gini impurity, structural impurity based on ETC is able to capture8

order dependencies in the data, thus obtaining potentially different decision trees9

for different permutation of the same data instances (Permutation Decision Trees).10

We then introduce the notion of Permutation Bagging achieved using permutation11

decision trees without the need for random feature selection and sub-sampling. We12

compare the performance of the proposed permutation bagged decision trees with13

Random Forest. Our model does not assume independent and identical distribution14

of data instances. Potential applications include scenarios where a temporal order15

is present in the data instances.16

1 Introduction17

The assumptions in Machine Learning (ML) models play a crucial role in interpretability, repro-18

ducibility, and generalizability. One common assumption is that the dataset is independent and19

identically distributed (iid). However, in reality, this assumption may not always hold true, as human20

learning often involves connecting new information with what was previously observed. Psycho-21

logical theories such as Primacy and Recency Effects [1], Serial Position Effect, and Frame Effect22

suggest that the order in which data is presented can impact decision-making processes. In this work,23

we have devised a learning algorithm that exhibits sensitivity to the order in which data is shuffled.24

This unique characteristic imparts our proposed model with decision boundaries or decision functions25

that rely on the specific arrangement of training data.26

In our research, we introduce the novel use of ‘Effort to Compress’ (ETC) as an impurity function for27

Decision Trees, marking the first instance of its application in Machine Learning. ETC effectively28

measures the effort required for lossless compression of an object through a predetermined lossless29

compression algorithm [2]. ETC was initially introduced in [3] as a measure of complexity for30

timeseries analysis, aiming to overcome the limitations of entropy-based complexity measures. It31

is worth noting that the concept of complexity lacks a singular, universally accepted definition.32

In [2], complexity was explored from different perspectives, including the effort-to-describe (Shan-33

non entropy, Lempel-Ziv complexity), effort-to-compress (ETC complexity), and degree-of-order34

(Subsymmetry). The same paper highlighted the superior performance of ETC in distinguishing35

between periodic and chaotic timeseries. Moreover, ETC has played a pivotal role in the development36

of an interventional causality testing method called Compression-Complexity-Causality (CCC) [4].37

The effectivenss CCC has been tested in various causality discovery applications [5, 6, 7, 8]. ETC38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



has demonstrated good performance when applied to short and noisy time series data, leading to its39

utilization in diverse fields such as investigating cardiovascular dynamics [9], conducting cognitive40

research [10], and analysis of muscial compositions [11]. The same is not the case with entropy based41

methods.42

In this research, we present a new application of ETC in the field of Machine Learning, offering a43

fresh perspective on its ability to capture structural impurity. Leveraging this insight, we introduce a44

decision tree classifier that maximizes the ETC gain. It is crucial to highlight that Shannon entropy45

and Gini impurity fall short in capturing structural impurity, resulting in an impurity measure that46

disregards the data’s underlying structure (in terms of order). The utilization of ETC as an impurity47

measure provides the distinct advantage of generating different decision trees for various permutations48

of data instances. Consequently, this approach frees us from the need to adhere strictly to the i.i.d.49

assumption commonly employed in Machine Learning. Thus, by simply permuting data instances,50

we can develop a Permutation Decision Forest.51

The paper is structured as follows: Section 2 introduces the Proposed Method, Section 3 presents the52

Experiments and Results, Section 4 discusses the Limitations of the research, and Section 5 provides53

the concluding remarks and outlines the future work.54

2 Proposed Method55

In this section, we establish the concept of structural impurity and subsequently present an illustrative56

example to aid in comprehending the functionality of ETC.57

Definition: Structural impurity for a sequence S = s0, s1, . . . , sn, where si ∈ {0, 1, . . . ,K}, and58

K ∈ Z+ is the the extent of irregularity in the sequence S.59

We will now illustrate how ETC serves as a measure of structural impurity. The formal definition60

of ETC is the effort required for lossless compression of an object using a predefined lossless61

compression algorithm. The specific algorithm employed to compute ETC is known as Non-sequential62

Recursive Pair Substitution (NSRPS). NSRPS was initially proposed by Ebeling [12] in 1980 and63

has since undergone improvements [13], ultimately proving to be an optimal choice [14]. Notably,64

NSRPS has been extensively utilized to estimate the entropy of written English [15]. The algorithm65

is briefly discussed below: Let’s consider the sequence S = 00011 to demonstrate the iterative steps66

of the algorithm. In each iteration, we identify the pair of symbols with the highest frequency and67

replace all non-overlapping instances of that pair with a new symbol. In the case of sequence S, the68

pair with the maximum occurrence is 00. We substitute all occurrences of 00 with a new symbol, let’s69

say 2, resulting in the transformed sequence 2011. We continue applying the algorithm iteratively.70

The sequence 2011 is further modified to become 311, where the pair 20 is replaced by 3. Then, the71

sequence 311 is transformed into 41 by replacing 31 with 4. Finally, the sequence 41 is substituted72

with 5. At this point, the algorithm terminates as the stopping criterion is achieved when the sequence73

becomes homogeneous. ETC, as defined in [3], represents the count of iterations needed for the74

NSRPS algorithm to attain a homogeneous sequence.75

We consider the following three sequence and compute the ETC:76

Table 1: Comparison of ETC with Shannon entropy, and Gini impurity for various binary sequences.

Sequence ID Sequence ETC Entropy Gini Impurity
A 111111 0 0 0
B 121212 1 1 0.5
C 222111 5 1 0.5
D 122112 4 1 0.5
E 211122 5 1 0.5

Referring to Table 1, we observe that for sequence A, the ETC, Shannon Entropy, and Gini impurity77

all have a value of zero. This outcome arises from the fact that the sequence is homogeneous, devoid78

of any impurity. Conversely, for sequences B, C, D, and E, the Shannon entropy and Gini impurity79

remain constant, while ETC varies based on the structural characteristics of each sequence. Having80

shown that the ETC captures the structural impurity of a sequence, we now define ETC Gain. ETC81

2



gain is the reduction in ETC caused by partioning the data instances according to a particular attribute82

of the dataset. Consider the decision tree structure provided in Figure 1.83

Parent

Left Child Right Child

Figure 1: Decision Tree structure with a parent node and two child node (Left Child and Right Child).

The ETC Gain for the chosen parent attribute of the tree is defined as follows:84

ETC_Gain = ETC(Parent)−[wLeft_Child·ETC(Left_Child)+wRight_Child·ETC(Right_Child)],
(1)

where wLeft_Child and wRight_Child are the weights associated to left child and right child respec-85

tively. The formula for ETC Gain, as given in equation 1, bears resemblance to information gain. The86

key distinction lies in the use of ETC instead of Shannon entropy in the calculation. We now provide87

the different steps in the Permutation Decision Tree algorithm.88

1. Step 1: Choose an attribute to be the root node and create branches corresponding to each89

possible value of the attribute.90

2. Step 2: Evaluate the quality of the split using ETC gain.91

3. Step 3: Repeat Step 1 and Step 2 for all other attributes, recording the quality of split based92

on ETC gain.93

4. Step 4: Select the partial tree with the highest ETC gain as a measure of quality.94

5. Step 5: Iterate Steps 1 to 4 for each child node of the selected partial tree.95

6. Step 6: If all instances at a node share the same classification (homogeneous class), stop96

developing that part of the tree.97

3 Experiments and Results98

To showcase the effectiveness of the ETC impurity measure in capturing the underlying structural99

dependencies within the data and subsequently generating distinct decision trees for different permu-100

tations of input data, we utilize the following illustrative toy example.101

Table 2: Toy example dataset to showcase the potential of a permuted decision tree generated with a
novel impurity measure known as “Effort-To-Compress".

Serial No. f1 f2 label
1 1 1 2
2 1 2 2
3 1 3 2
4 2 1 2
5 2 2 2
6 2 3 2
7 4 1 2
8 4 2 2
9 4 3 1

10 4 4 1
11 5 1 1
12 5 2 1
13 5 3 1
14 5 4 1

The visual representation of the toy example provided in Table 2 is represented in Figure 2102

3



0 1 2 3 4 5
f1

0
1
2
3
4

f 2

class-1
class-2

Figure 2: A visual representation of the toy example provided in Table 2.

We consider the following permtation of dataset, for each of the below permutation we get distinct103

decision tree.104

• Serial No. Permutation A: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. Figure 3 represents the105

corresponding decision tree.106

x0 ≤ 2

Class-2 x0 ≤ 4

x1 ≤ 2 Class-1

Class-2 Class-1

Figure 3: Decision using ETC for Serial No. Permutation A.

• Serial No Permutation B: 14, 3, 10, 12, 2, 4, 5, 11, 9, 8, 7, 1, 6, 13. Figure 4 represents the107

corresponding decision tree.108

x1 ≤ 2

x0 ≤ 4

Class-2 Class-1

x0 ≤ 2

Class-2 Class-1

Figure 4: Decision Tree using ETC for Serial No. Permutation B.

• Serial No Permutation C: 13, 11, 8, 12, 7, 6, 4, 14, 10, 5, 2, 3, 1, 9. Figure 5 represents the109

corresponding decision tree.110

4



x0 ≤ 4

x1 ≤ 2

Class-2

Class-1

x0 ≤ 2

Class-2 Class-1

Figure 5: Decision Tree using ETC for Serial No. Permutation C.

• Serial No Permutation D: 3, 2, 13, 10, 11, 1, 4, 7, 6, 9, 8, 14, 5, 12. Figure 6 represents the111

corresponding decision tree.112

x0 ≤ 4

x0 ≤ 2

Class-2

Class-1

x1 ≤ 2

Class-2 Class-1

Figure 6: Decision Tree using ETC for Serial No. Permutation D.

• Serial No Permutation E: 10, 12, 1, 2, 13, 14, 8, 11, 4, 7, 9, 6, 5, 3. Figure 7 represents the113

corresponding decision tree.114

x0 ≤ 2

Class-2 x1 ≤ 2

x0 ≤ 4 Class-1

Class-2 Class-1

Figure 7: Decision Tree using ETC for Serial No. Permutation E.

5



The variability in decision trees obtained from different permutations of data instances (Fig-115

ures 3, 4, 5, 6,and 7) can be attributed to the ETC impurity function’s ability to capture the116

structural impurity of labels, which sets it apart from Shannon entropy and Gini impurity. Table117

3 highlights the sensitivity of ETC to permutation, contrasting with the insensitivity of Shannon118

entropy and Gini impurity towards data instance permutations. In the given toy example, there are six119

class-1 data instances and eight class-2 data instances. Since Shannon entropy and Gini impurity are120

probability-based methods, they remain invariant to label permutation. This sensitivity of ETC to121

the structural pattern of the label motivates us to develop a bagging algorithm namely Permutation122

Decision Forest.123

Table 3: Comparison between Shannon Entropy, Gini Impurity and Effort to Compress for the toy
example.

Label Impurity
Shannon
Entropy

(bits)

Gini
Impurity

Effort-
To-Compress

Permutation A 0.985 0.490 7
Permutation B 0.985 0.490 8
Permutation C 0.985 0.490 9
Permutation D 0.985 0.490 9
Permutation E 0.985 0.490 8

3.1 Permutation Decision Forest124

Permutation decision forest distinguishes itself from Random Forest by eliminating the need for125

random subsampling of data and feature selection in order to generate distinct decision trees. Instead,126

permutation decision forest achieves tree diversity through permutation of the data instances. The ac-127

companying architecture diagram provided in Figure 8 illustrates the operational flow of permutation128

decision forest.129

Figure 8: Architecture diagram of Permutation Decision Forest. Permutation Decision Forest, which
comprises multiple individual permutation decision trees. The results from each permutation decision
tree are then fed into a voting scheme to determine the final predicted label.

The architecture diagram depicted in Figure 8 showcases the workflow of the Permutation Decision130

Forest, illustrating its functioning. Consisting of individual permutation decision trees, each tree131

operates on a permuted dataset to construct a classification model, collectively forming a strong132

6



classifier. The outcomes of the permutation decision trees are then fed into a voting scheme, where133

the final predicted label is determined by majority votes. Notably, the key distinction between134

the Permutation Decision Forest and Random Forest lies in their approaches to obtaining distinct135

decision trees. While Random Forest relies on random subsampling and feature selection, Permutation136

Decision Forest achieves diversity through permutation of the input data. This distinction is significant137

as random feature selection in Random Forest may result in information loss, which is avoided in138

Permutation Decision Forest.139

3.2 Performance comparison between Random Forest and Permutation Decision Forest140

We evaluate the performance of the proposed method with the following datasets: Iris [16], Breast141

Cancer Wisconsin [17], Haberman’s Survival [18], Ionosphere [19], Seeds [20], Wine [21]. For all142

datasets, we allocate 80% of the data for training and reserve the remaining 20% for testing. Table 4143

provides a comparison of the hyperparameters used and the test data performance as measured by144

macro F1-score.145

Table 4: Performance comparison of Permutation Decision Forest with Random Forest for various
publicly available datasets

Dataset Random Forest Permutation
Decision Forest

F1-score n_estimators max_depth F1-score n_estimators max_depth
Iris 1.000 100 3 0.931 31 10
Breast Cancer
Wisconsin 0.918 1000 9 0.893 5 10

Haberman’s
Survival 0.560 1 3 0.621 5 10

Ionosphere 0.980 1000 4 0.910 5 5
Seeds 0.877 100 5 0.877 11 10
Wine 0.960 10 4 0.943 5 10

In our experimental evaluations, we observed that the proposed method surpasses Random Forest146

(F1-score = 0.56) solely for the Haberman’s survival dataset (F1-score = 0.621). However, for the147

Seeds dataset, the permutation decision forest yields comparable performance to Random Forest148

(F1-score = 0.877). In the remaining cases, Random Forest outperforms the proposed method.149

4 Limitations150

The current framework demonstrates that the proposed method, permutation decision forest, achieves151

slightly lower classification scores compared to random forest. We acknowledge this limitation and152

aim to address it in our future work by conducting thorough testing on diverse publicly available153

datasets. It is important to note that permutation decision trees offer an advantage when dealing154

with datasets that possess a temporal order in the generation of data instances. In such scenarios,155

permutation decision trees can effectively capture the specific temporal ordering within the dataset.156

However, this use case has not been showcased in our present work. In our future endeavors, we157

intend to incorporate and explore this aspect more comprehensively.158

5 Conclusion159

In this research, we present a unique approach that unveils the interpretation of the Effort-to-Compress160

(ETC) complexity measure as an impurity measure capable of capturing structural impurity in161

timeseries data. Building upon this insight, we incorporate ETC into Decision Trees, resulting in the162

introduction of the innovative Permutation Decision Tree. By leveraging permutation techniques,163

Permutation Decision Tree facilitates the generation of distinct decision trees for varying permutations164

of data instances. Inspired by this, we further develop a bagging method known as Permutation165

Decision Forest, which harnesses the power of permutation decision trees. Moving forward, we are166

committed to subjecting our proposed method to rigorous testing using diverse publicly available167

datasets. Additionally, we envision the application of our method in detecting adversarial attacks.168

7



References169

[1] Jamie Murphy, Charles Hofacker, and Richard Mizerski. Primacy and recency effects on170

clicking behavior. Journal of computer-mediated communication, 11(2):522–535, 2006.171

[2] Nithin Nagaraj and Karthi Balasubramanian. Three perspectives on complexity: entropy,172

compression, subsymmetry. The European Physical Journal Special Topics, 226:3251–3272,173

2017.174

[3] Nithin Nagaraj, Karthi Balasubramanian, and Sutirth Dey. A new complexity measure for time175

series analysis and classification. The European Physical Journal Special Topics, 222(3-4):847–176

860, 2013.177

[4] Aditi Kathpalia and Nithin Nagaraj. Data-based intervention approach for complexity-causality178

measure. PeerJ Computer Science, 5:e196, 2019.179

[5] SY Pranay and Nithin Nagaraj. Causal discovery using compression-complexity measures.180

Journal of Biomedical Informatics, 117:103724, 2021.181

[6] Vikram Ramanan, Nikhil A Baraiya, and SR Chakravarthy. Detection and identification of182

nature of mutual synchronization for low-and high-frequency non-premixed syngas combustion183

dynamics. Nonlinear Dynamics, 108(2):1357–1370, 2022.184

[7] Aditi Kathpalia, Pouya Manshour, and Milan Paluš. Compression complexity with ordinal185

patterns for robust causal inference in irregularly sampled time series. Scientific Reports,186

12(1):1–14, 2022.187

[8] Harikrishnan NB, Aditi Kathpalia, and Nithin Nagaraj. Causality preserving chaotic transforma-188

tion and classification using neurochaos learning. Advances in Neural Information Processing189

Systems, 35:2046–2058, 2022.190

[9] Karthi Balasubramanian, K Harikumar, Nithin Nagaraj, and Sandipan Pati. Vagus nerve stimu-191

lation modulates complexity of heart rate variability differently during sleep and wakefulness.192

Annals of Indian Academy of Neurology, 20(4):403, 2017.193

[10] Vasilios K Kimiskidis, Christos Koutlis, Alkiviadis Tsimpiris, Reetta Kälviäinen, Philippe194

Ryvlin, and Dimitris Kugiumtzis. Transcranial magnetic stimulation combined with eeg reveals195

covert states of elevated excitability in the human epileptic brain. International journal of196

neural systems, 25(05):1550018, 2015.197

[11] Abhishek Nandekar, Preeth Khona, MB Rajani, Anindya Sinha, and Nithin Nagaraj. Causal198

analysis of carnatic music compositions. In 2021 IEEE International Conference on Electronics,199

Computing and Communication Technologies (CONECCT), pages 1–6. IEEE, 2021.200

[12] Werner Ebeling and Miguel A Jiménez-Montaño. On grammars, complexity, and information201

measures of biological macromolecules. Mathematical Biosciences, 52(1-2):53–71, 1980.202

[13] Miguel A Jiménez-Montaño, Werner Ebeling, Thomas Pohl, and Paul E Rapp. Entropy and203

complexity of finite sequences as fluctuating quantities. Biosystems, 64(1-3):23–32, 2002.204

[14] Dario Benedetto, Emanuele Caglioti, and Davide Gabrielli. Non-sequential recursive pair205

substitution: some rigorous results. Journal of Statistical Mechanics: Theory and Experiment,206

2006(09):P09011, 2006.207

[15] Peter Grassberger. Data compression and entropy estimates by non-sequential recursive pair208

substitution. arXiv preprint physics/0207023, 2002.209

[16] R. A. FISHER. The use of multiple measurements in taxonomic problems. Annals of Eugenics,210

7(2):179–188, 1936.211

[17] W Nick Street, William H Wolberg, and Olvi L Mangasarian. Nuclear feature extraction for212

breast tumor diagnosis. In Biomedical image processing and biomedical visualization, volume213

1905, pages 861–870. SPIE, 1993.214

8



[18] Shelby J Haberman. The analysis of residuals in cross-classified tables. Biometrics, pages215

205–220, 1973.216

[19] Vincent G Sigillito, Simon P Wing, Larrie V Hutton, and Kile B Baker. Classification of radar217

returns from the ionosphere using neural networks. Johns Hopkins APL Technical Digest,218

10(3):262–266, 1989.219

[20] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.220

[21] Michele Forina, Riccardo Leardi, Armanino C, and Sergio Lanteri. PARVUS: An Extendable221

Package of Programs for Data Exploration. 01 1998.222

9


	Introduction
	Proposed Method
	Experiments and Results
	Permutation Decision Forest
	Performance comparison between Random Forest and Permutation Decision Forest

	Limitations
	Conclusion

