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Abstract

Document retrieval in real-world scenarios001
faces significant challenges due to diverse doc-002
ument formats and modalities. Traditional text-003
based approaches rely on tailored parsing tech-004
niques that disregard layout information and are005
prone to errors, while recent parsing-free visual006
methods often struggle to capture fine-grained007
textual semantics in text-rich scenarios. To008
address these limitations, we propose Unveil,009
a novel visual-textual embedding framework010
that effectively integrates textual and visual011
features for robust document representation.012
Through knowledge distillation, we transfer013
the semantic understanding capabilities from014
the visual-textual embedding model to a purely015
visual model, enabling efficient parsing-free016
retrieval while preserving semantic fidelity. Ex-017
perimental results demonstrate that our visual-018
textual embedding method surpasses existing019
approaches, while knowledge distillation suc-020
cessfully bridges the performance gap between021
visual-textual and visual-only methods, improv-022
ing both retrieval accuracy and efficiency.023

1 Introduction024

Document retrieval for real-world applications re-025

mains a challenging task due to the need to effec-026

tively handle diverse document formats, includ-027

ing text, images, charts, and complex visual lay-028

outs. As shown in Figure 1, traditional document029

retrieval predominantly relies on Optical Character030

Recognition (OCR) to convert scanned or image-031

based documents into machine-readable text. Sub-032

sequently, approaches such as the lexical-based033

BM25 (Robertson et al., 2009) and embedding-034

based techniques like Dense Passage Retrieval035

(DPR) (Karpukhin et al., 2020) are utilized to036

model the semantic relevance between queries and037

documents. However, OCR-dependent pipelines038

come with significant limitations. They not only039

add computational overhead but also introduce po-040

tential recognition errors. Furthermore, these ap-041
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Figure 1: Comparison of document retrieval methods.
Traditional approaches parse text and use text encoders
for embeddings, while parsing-free methods directly
process document screenshots with visual language
models. Our visual-textual approach leverages both
modalities, effectively addressing diverse scenarios.

proaches often miss crucial visual contextual ele- 042

ments, which are essential for comprehending doc- 043

ument content (Zhang et al., 2024; Faysse et al., 044

2024; Ma et al., 2024a). 045

Recent research has shifted toward parsing-free 046

techniques that directly utilize visual inputs such 047

as document screenshots (Faysse et al., 2024; Ma 048

et al., 2024a; Zhou et al., 2024; Ni et al., 2021). 049

These methods leverage Vision-Language Models 050

(VLMs) and Multi-Modal Large Language Models 051

(MLLMs) to process entire pages directly, preserv- 052

ing rich structural and graphical information (Cho 053

et al., 2024; Yu et al., 2024; Yao et al., 2024a). 054

While these approaches circumvent the computa- 055

tional overhead and complexity associated with 056

OCR, our empirical analysis reveals significant 057

limitations in their textual understanding capabil- 058
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ities. As shown in Figure 2, our comparison of059

text-based and visual-based methods across both060

text-rich scenarios (web-page retrieval) and visual-061

rich scenarios (visual document retrieval) reveals062

distinct performance patterns. In visual-rich scenar-063

ios where layout and graphical elements are crucial,064

these visual-based methods outperform traditional065

text-based approaches, highlighting their superior066

ability to process spatial and structural information067

(Masry et al., 2022; Tanaka et al., 2023; Tito et al.,068

2023). However, when handling text-rich contexts,069

visual-based methods struggle to capture semantic070

details that text-based methods process effectively.071

This observation underscores a fundamental072

challenge: text-based methods excel in modeling073

linguistic semantics but overlook crucial layout and074

graphical details, while purely visual methods pre-075

serve visual context but struggle with fine-grained076

language understanding (Faysse et al., 2024; Zhang077

et al., 2024; Ni et al., 2021; Ma et al., 2024a). To078

address this limitation, we propose Unveil (Unified079

Visual-Text Integration and Distillation), a novel080

framework that bridges the gap between textual081

and visual document understanding. Our approach082

consists of two key components: First, we develop083

a visual-textual embedding approach that integrates084

both textual and visual inputs, leveraging the com-085

plementary strengths of both modalities for compre-086

hensive document representations. Second, we con-087

duct knowledge distillation to transfer semantic un-088

derstanding from the teacher model (visual-textual089

embedding model) to the student model (purely090

visual model), enabling enhanced text comprehen-091

sion without OCR dependency during inference.092

Specifically, we propose several techniques to fa-093

cilitate this distillation process: (1) Representa-094

tion Alignment: The student model is trained to095

replicate the teacher model’s representations by096

minimizing the distance between their query and097

document representations. (2) Soft Label Distil-098

lation: We utilize the teacher model to provide a099

fine-grained label distribution for the student model.100

(3) Adaptive Re-Weighting: We dynamically iden-101

tify instances where discrepancies exist between102

the teacher and student models, assigning higher103

weights to these instances.104

Our framework offers a flexible retrieval system.105

For text-rich scenarios that require precise seman-106

tic nuances, the visual-textual model—which in-107

corporates both textual and visual inputs—can be108

employed. Alternatively, in scenarios where effi-109

Text–Based Method Visual–Based Method

Figure 2: Empirical analysis on retrieval performance
under text-rich and visual-rich scenarios.

ciency or OCR-free processing is preferred, the 110

distilled visual-only model serves as a practical al- 111

ternative while maintaining comparable semantic 112

understanding. We validate our approach on 12 113

datasets encompassing both text-rich and visual- 114

rich scenarios. Experimental results indicate that 115

the visual-textual embedding model consistently 116

outperforms both text-based and visual-based meth- 117

ods. Furthermore, the distillation process effec- 118

tively reduces the gap between visual-textual and 119

visual-only approaches, enhancing retrieval accu- 120

racy and efficiency. 121

In summary, our contributions are as follows: 122

• We identify that existing text-based and visual- 123

based methods struggle to adapt across differ- 124

ent scenarios. To address this, we introduce 125

Unveil, a visual-textual embedding approach 126

that integrates textual and visual features for 127

comprehensive document understanding. 128

• We propose several knowledge distilla- 129

tion strategies to transfer the visual-textual 130

model’s robust textual understanding to a 131

purely visual model, enabling parsing-free re- 132

trieval without compromising accuracy. 133

• Extensive experiments demonstrate that our 134

visual-textual embedding method outperforms 135

existing text-based and visual-based meth- 136

ods. Additionally, the knowledge distillation 137

effectively reduces the gap between visual- 138

textual and visual-only approaches, enhancing 139

retrieval accuracy and efficiency. 140

2 Methodology 141

Our proposed method seeks to bridge the gap be- 142

tween visual-textual and visual-only approaches. 143
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Figure 3: Unveil consists of: (a) a visual-textual embedding model that jointly processes document images and OCR
text, and (b) a purely visual model that operates on document images only. During training, knowledge distillation is
employed to transfer semantic understanding from the teacher (visual-textual) to the student (visual-only) model. At
inference time, the framework offers flexibility to choose between the two models based on efficiency requirements.

Initially, Unveil learns a textual-visual embedding144

model that leverages both OCR-derived text and145

visual inputs. Subsequently, it distills the strong ca-146

pacity of the visual-textual embedding model into147

a purely visual model. The distilled visual model148

thus retains the semantic richness characteristic of149

visual-textual embeddings while achieving high150

efficiency without the need for textual input.151

2.1 Task Definition152

Given a query q and a corpus C comprising vi-153

sual documents {d1, d2, . . . , dn}, the task of multi-154

modal document retrieval is to identify the k visual155

documents most relevant to the query q. Relevance156

is assessed using a similarity metric to measure157

the similarity between the query and document em-158

beddings. Here, a visual document represents a159

complete information snippet (e.g., a web article or160

a PPT page), while the query is purely textual.161

2.2 Unveil Framework162

As illustrated in Figure 3, Unveil comprises two163

components: the teacher model (Visual-Textual164

model) and the student model (Visual-Only model).165

We initially train these models independently, fol-166

lowed by knowledge distillation to produce a visual-167

only model capable of robust document retrieval168

without OCR reliance during inference.169

Unified View of Retrieval Models Both the170

visual-textual and visual-only models employ a171

dual encoder architecture to model the similarity172

between queries and documents. The key distinc-173

tion lies in the input to the document encoder.174

For the visual-textual model’s document encoder, 175

we begin by employing OCR on each document im- 176

age di to derive a textual description ti. The docu- 177

ment image is then processed by the vision encoder 178

of the vision-language model to yield visual tokens. 179

The encoded visual latent embeddings are concate- 180

nated with a text prompt for input to the subsequent 181

language model: “<s><img> <description> What 182

is shown in this image?</s>”. In contrast, for the 183

visual-only model’s document encoder, the input 184

to the subsequent language model is: “<s><img> 185

What is shown in this image?</s>”. For both mod- 186

els, the input to the query encoder is the query 187

text. To aggregate sequence information using a 188

language model with uni-directional attention, fol- 189

lowing prior work (Ma et al., 2024a), we use the 190

embedding of the end-of-sequence token </s> from 191

the last hidden state as the representation. The 192

representation of the queries and documents are 193

calculated as follows: 194

q = VLM(q)[−1]

ds = VLM(<img>,<inst>)[−1]

dt = VLM(<img>,<desc>,<inst>)[−1]

(1) 195

where ds,dt denote the document representation 196

from the student and teacher, respectively. 197

The query-document similarity is measured us- 198

ing cosine similarity between their embeddings: 199

Sim(q,d) =
qT · d

∥q∥ · ∥d∥
(2) 200

During training, our embedding model is opti- 201
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mized using the InfoNCE loss (Oord et al., 2018):202

Lhard = −
∑

d+∈D+

log
exp(Sim(q,d+))∑
d∈D exp(Sim(q,d)) (3)203

After independently training both models, we204

freeze the teacher model and leverage it to guide205

the student model during knowledge distillation.206

Representation Alignment To align the repre-207

sentation of the student and teacher model, we de-208

fine a representation alignment loss:209

Lalign =
1

n

n∑
i=1

(∥dt − ds∥22 + ∥qt − qs∥22) (4)210

where n is the number of query-doc pairs.211

Minimizing Lalign encourages ds and qs to in-212

herit the teacher’s textual representation abilities.213

As training progresses, the student model learns214

to encode in a manner reflecting both textual se-215

mantics and visual features, despite never explicitly216

encountering textual data during inference.217

Soft Label Distillation The teacher model’s218

score distribution conveys fine-grained similarity219

information, unlike hard one-hot labels. We lever-220

age this by aligning the student’s distribution with221

the teacher’s: The label distribution of the student222

model and the teacher model are defined as follows:223

t = ∀
d∈D

exp(Sim(d,dt))∑
d′∈D exp(Sim(d,d′

t))
(5)224

s = ∀
d∈D

exp(Sim(d,ds))∑
d′∈D exp(Sim(d,d′

s))
(6)225

The soft label distillation loss is calculated as:226

Lsoft = DKL(t/τ, s/τ) (7)227

where τ is the temperature parameter.228

Adaptive Re-Weighting Discrepancies between229

student and teacher models on certain documents230

can reveal student misinterpretations. We propose231

focusing on these discrepancies by giving them232

higher weights using KL Divergence:233

wi =
exp(−DKL(ti, si)/τ)∑K

j=1 exp(−DKL(tj , sj)/τ)
(8)234

where wi denotes the importance of document di.235

Finally, the total loss combines both the align-236

ment loss and soft label distillation loss:237

Ltotal =
n∑

i=1

wi × (Li
align + Li

soft) (9)238

Inference During inference, Unveil offers two in- 239

ference modes to cater to different needs regarding 240

performance and computational efficiency. 241

The first mode, Visual-Textual Mode, uses both 242

OCR text and document images to achieve opti- 243

mal retrieval performance. By combining rich vi- 244

sual features with extracted textual information, 245

it maximizes semantic understanding for scenar- 246

ios requiring high precision. The second mode, 247

Visual-Only Mode, relies solely on the distilled vi- 248

sual model without OCR dependency, maintaining 249

competitive accuracy through advanced visual rep- 250

resentations. This mode significantly reduces com- 251

putational overhead, making it ideal for efficiency- 252

critical applications. 253

3 Experiment Setup 254

We evaluate Unveil on two distinct multi-modal re- 255

trieval scenarios: visual document retrieval, which 256

emphasizes visual content, and web page retrieval, 257

which focuses on textual content. 258

3.1 Visual Document Retrieval 259

Dataset We employ question-document pairs 260

from various VQA datasets, each targeting dis- 261

tinct document types: MP-DocVQA (Tito et al., 262

2023) for industrial documents, ArXivQA (Li 263

et al., 2024), ChartQA (Masry et al., 2022), 264

InfographicsVQA (Mathew et al., 2022), and 265

PlotQA (Methani et al., 2020) for different types of 266

figures, as well as SlideVQA (Tanaka et al., 2023) 267

for presentation slides. We adhere to the datasets’ 268

original train-test splits, except for MP-DocVQA 269

and InfographicsVQA, where the validation split 270

is utilized as our evaluation set. We construct the 271

retrieval corpus by collecting the positive docu- 272

ments linked to each query from the training and 273

evaluation sets. 274

Evaluation Following conventional assessment 275

approaches for VQA datasets, we apply Recall@10 276

and MRR@10 as evaluation metrics. 277

3.2 Web-Page Retrieval 278

Dataset Following (Ma et al., 2024a), we em- 279

ploy the Wiki-SS-corpus1 as our retrieval corpus. 280

This dataset is compiled from English Wikipedia 281

pages via URLs, with screenshots captured auto- 282

matically over four days, from May 20 to May 23, 283

2024. The corpus comprises 1,267,874 Wikipedia 284

1
https://huggingface.co/datasets/Tevatron/wiki-ss-corpus
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Model
ArxivQA ChartQA DocVQA InfoVQA PlotQA SlideVQA AVG

Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR

Text-Based Models
BM25 42.30 32.48 56.69 43.66 86.38 73.56 83.19 69.03 50.48 33.18 91.16 76.65 68.37 54.76
GTR 40.82 31.17 56.55 43.50 74.19 57.09 84.95 67.82 44.87 28.83 90.43 74.82 65.30 50.54
BGE-Large 38.40 29.78 53.76 42.47 77.54 59.63 87.98 70.86 47.60 32.06 92.26 75.77 66.26 51.76
NV-Embed 44.92 35.13 52.09 43.04 80.26 60.50 91.84 77.05 47.67 31.55 93.90 78.83 68.45 54.35
MiniCPM 69.53 57.02 73.96 60.91 93.24 80.56 94.67 82.34 63.86 45.07 96.93 92.30 82.03 69.70

Visual-Based Models
SigLIP 50.50 35.57 66.16 47.62 54.55 34.86 68.08 47.40 52.82 25.89 87.22 78.06 63.22 44.90
ColPali 81.11 69.85 77.16 62.68 94.78 83.64 94.82 81.92 60.66 40.84 97.32 86.83 84.31 70.96
DSE 85.41 72.11 78.13 63.42 94.20 80.41 97.07 84.96 63.82 43.82 97.01 93.08 85.94 72.96
VisRAG 84.93 71.41 78.83 64.54 94.73 80.12 96.33 85.53 64.30 44.31 97.38 92.94 86.08 73.14

Hybrid Models
DSE 77.57 63.76 74.51 62.68 93.88 81.55 96.58 85.39 64.22 45.70 97.20 93.84 83.99 72.16
VisRAG 83.58 69.48 77.58 64.35 95.64 83.27 96.63 85.70 64.61 46.00 97.71 93.61 85.96 73.74

Unveil (Ours)
Visual-Textual 86.24 73.67 79.53 66.75 96.06 83.88 97.26 86.19 64.63 45.91 97.87 94.37 86.93 75.13
Visual-Only 86.23 73.27 80.36 66.40 95.74 82.53 97.61 86.39 64.82 46.16 97.61 93.75 87.06 74.75

Table 1: Overall performance on Visual Document Retrieval. The best retrieval performance is marked in bold.

screenshots. To reduce inference time, we sam-285

ple 112,888 screenshots to serve our retrieval cor-286

pus. For training, we use the Wiki-SS-NQ dataset2,287

which is constructed by performing a BM25 search288

for each question to retrieve positive documents,289

thus forming query-document pairs.290

Given the extensive use of the Wikipedia cor-291

pus in open-domain QA tasks, we make evalu-292

ation using several widely utilized QA datasets.293

These include open-domain QA datasets such as294

NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi295

et al., 2017), and WebQ (Berant et al., 2013), multi-296

hop datasets like Wikihop (Yang et al., 2018) and297

HotpotQA (Ho et al., 2020), as well as the ambigu-298

ous dataset ASQA (Stelmakh et al., 2022).299

Evaluation Consistent with previous practices300

for evaluating the effectiveness of retrieval in QA301

datasets, we use Recall@10 and MRR@10 as eval-302

uation metrics. Specifically, a question is consid-303

ered correctly answered if its retrieved documents304

contain at least one answer from the answer list.305

3.3 Implementation Details306

Our framework involves initially training both a307

teacher and a student model independently, fol-308

lowed by knowledge distillation. Throughout both309

stages, models are fine-tuned using in-batch nega-310

tives for two epochs, with a batch size of 16 and311

a learning rate of 2e-5 on 8 NVIDIA A100 80GB312

GPUs. We initialize the models with MiniCPM-V313

2
https://huggingface.co/datasets/Tevatron/wiki-ss-nq

2.0 (OpenBMB, 2024; Yao et al., 2024a). Addi- 314

tional details regarding the training and document 315

parsing are provided in Appendices B and C. 316

3.4 Baselines 317

We compare our method with the following re- 318

trieval approaches: 319

• Text-Based Models: This category encom- 320

passes BM25, a well-known lexical model, as 321

well as advanced text embedding models such 322

as BGE-Large-en-v1.53(Xiao et al., 2023), 323

GTR-T5-Large4(Ni et al., 2021), NV-Embed- 324

v15(Lee et al., 2024a), and MiniCPM6(Yao 325

et al., 2024b), which has been fine-tuned for 326

dense text retrieval. 327

• Visual-Based Models: This includes 328

SigLIP7(Zhai et al., 2023), a model in the 329

CLIP style for vision tasks; ColPali(Faysse 330

et al., 2024), a multi-vector retrieval model; as 331

well as DSE (Ma et al., 2024a) and VisRAG 332

(Yu et al., 2024), which are state-of-the-art 333

visual embedding models. 334

• Hybrid Models: We also create hybrid mod- 335

els by interpolating similarity scores from the 336

retrieval results of visual-based retriever like 337

3
https://huggingface.co/BAAI/bge-large-en-v1.5

4
https://huggingface.co/sentence-transformers/gtr-t5-large

5
https://huggingface.co/nvidia/NV-Embed-v1

6
openbmb/MiniCPM-V-2

7
https://huggingface.co/HuggingFaceM4/

siglip-so400m-14-980-flash-attn2-navit

5

https://huggingface.co/datasets/Tevatron/wiki-ss-nq
https://huggingface.co/BAAI/bge-large-en-v1.5
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https://huggingface.co/nvidia/NV-Embed-v1
openbmb/MiniCPM-V-2
https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
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Model
NQ TriviaQA WebQ Wikihop HotpotQA ASQA AVG

Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR Rec MRR

Text-Based Models
BM25 61.33 40.01 72.67 56.35 64.07 41.73 36.02 23.98 48.93 33.64 70.50 48.07 58.92 40.63
GTR 66.84 52.22 57.41 40.70 73.13 55.96 25.14 15.11 38.23 25.04 79.66 64.28 56.74 42.22
BGE-Large 68.39 54.22 61.03 44.36 73.97 56.99 26.65 16.74 42.55 29.05 80.67 66.46 58.88 44.64
NV-Embed 69.97 54.61 68.84 52.04 75.10 55.77 31.62 19.48 45.63 31.78 82.12 68.96 62.21 47.11
MiniCPM 75.23 60.04 77.44 63.56 75.76 59.26 39.10 25.44 50.93 36.11 83.24 69.47 66.95 52.31

Visual-Based Models
SigLIP 59.57 41.45 53.25 34.08 58.33 39.09 22.30 13.93 31.63 18.89 67.82 47.11 48.82 32.42
ColPali 68.78 53.18 60.70 44.82 73.57 56.50 27.59 16.97 40.77 27.43 81.68 66.47 58.85 44.23
DSE 71.70 55.90 73.07 55.61 71.67 54.30 35.03 21.70 45.53 30.43 78.66 62.21 62.61 46.69
VisRAG 72.17 56.20 72.37 55.55 71.38 53.96 34.13 20.46 45.60 31.06 79.78 63.72 62.57 46.83

Hybrid Models
DSE 73.80 59.56 76.18 61.74 73.79 57.98 37.17 23.88 48.20 34.25 81.34 67.03 65.08 50.74
VisRAG 73.80 59.73 75.84 61.22 74.14 57.84 36.13 23.16 48.67 34.81 81.79 68.36 65.06 50.85

Unveil (Ours)
Visual-Textual 75.80 61.86 78.75 64.68 75.81 60.02 40.57 26.23 52.40 36.62 84.13 70.40 67.91 53.30
Visual-Only 72.20 57.30 74.64 59.07 73.84 55.84 35.50 22.23 48.13 32.95 80.11 65.31 64.07 48.78

Table 2: Overall performance on Web-Page Retrieval. The best retrieval performance is marked in bold.

DSE and VisRAG and with text-based retriev-338

ers MiniCPM (Ma et al., 2024b).339

4 Experimental Results340

4.1 Main Result341

In this section, we present experiments in both342

visual document retrieval and web page retrieval343

scenarios. Based on the results shown in Tables 1344

and 2, several observations can be made:345

First, text-based and visual-based models each346

exhibit unique advantages in different scenarios.347

For example, in web page retrieval, the text-based348

method MiniCPM significantly outperforms visual-349

based models. Conversely, in visual document re-350

trieval, visual-based approaches excel. This high-351

lights that these models cannot achieve superior352

performance across both scenarios. Interestingly,353

the simple lexical method BM25 outperforms more354

powerful dense retrieval models like BGE-Large.355

This can be attributed to the fact that text within356

these visual documents is often fragmented and se-357

mantically incoherent. In such cases, string match-358

ing might be a more effective solution.359

Second, hybrid models yield intermediate re-360

sults, which is understandable given that, in web-361

page retrieval, the scores generated by text-based362

models might be adversely affected by the less363

accurate scores from visual-based models, which364

leads to performance inferior to that of text-based365

models alone. This demonstrates that merely merg-366

ing the outputs of the two models does not inher-367

ently enhance performance. Additionally, these368

Methods DocVQA InfoVQA

Rec MRR Rec MRR

Ours 95.74 82.53 97.61 86.39
-w/o Adaptive Re-Weighting 95.64 82.45 97.41 86.20
-w/o Representation Alignment 95.26 81.49 97.21 85.89
-w/o Soft Label Distillation 94.94 80.89 96.68 85.06
-w/o Distillation 94.20 80.41 97.07 84.96

Table 3: Ablation Study. We experiment by gradually re-
moving all components and observing the performance.

models necessitate inference from both models, 369

which increases the inference cost. 370

Third, our method Unveil, specifically the visual- 371

textual variant, consistently achieves the highest 372

performance across all retrieval scenarios, confirm- 373

ing its effectiveness in integrating information from 374

both modalities for improved outcomes. Further- 375

more, the distilled visual-only version exhibits su- 376

perior performance compared to both text-based 377

and visual-based models and can even achieve per- 378

formance comparable to the teacher model while 379

requiring no text input. This is mainly because 380

our distillation framework can effectively transfer 381

comprehensive knowledge to the student model. 382

4.2 Ablation Study 383

In this section, we evaluate the effectiveness of 384

each component by incrementally removing them 385

and observing the changes in performance. “w/o 386

Representation Alignment” and “w/o Soft Label 387

Distillation ” refer to the removal of representation 388

alignment and soft label distribution loss, respec- 389
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NQ TriviaQA WebQ

Length Rec MRR Rec MRR Rec MRR

0 71.70 55.90 73.07 55.61 71.67 54.30
512 72.73 57.53 75.94 60.93 73.55 57.00
1024 73.70 57.73 76.81 61.41 72.81 56.79
2048 74.43 59.68 78.11 63.81 74.33 58.46
3096 75.27 60.83 78.71 63.87 76.11 59.09

Table 4: Performance of teacher model using different
input text lengths.

tively, following the removal of the adaptive re-390

weighting. “w/o distillation” represents the visual391

model before distillation.392

As shown in Table 3, removing each component393

results in performance degradation, confirming the394

effectiveness of each component. Specifically, we395

find that removing the representation alignment396

loss leads to significant degradation in model per-397

formance. This is because token representation398

contains the most valuable information about the399

query and document, and forcing the visual model400

to produce representations similar to the visual-401

textual model is the most direct way to learn from402

it. Additionally, removing the soft label distillation403

also results in performance degradation, primarily404

because the teacher provides a soft label that helps405

the student model discern fine-grained differences406

between documents within the same batch.407

4.3 Analysis408

Impact of Text Length In this section, we ana-409

lyze the impact of text length on the performance410

of the teacher model. Specifically, we gradually411

increase the text length from 0 to 3096 and observe412

the changes in performance.413

As shown in Table 4, the model performance im-414

proves as the context length increases. This is ex-415

pected because longer texts can provide more use-416

ful information about the image. However, longer417

contexts also incur additional inference costs, high-418

lighting the importance of distilling the strong ca-419

pabilities of the visual-textual teacher model into a420

visual-only student model. Additionally, we ob-421

serve a saturation phenomenon in performance.422

Specifically, there is a significant performance in-423

crease when the text length grows from 0 to 512,424

but the improvement becomes less pronounced as425

the length increases from 2048 to 3096. Therefore,426

selecting an intermediate text length might offer a427

good balance between effectiveness and efficiency.428

(a) Before Distillation (b) After Distillation

Figure 4: The visualization of document embeddings.

Visualization of Embeddings In this section, we 429

analyze the effects of the distillation process by 430

visualizing the document representations of the 431

student and teacher models before and after dis- 432

tillation. Specifically, we sample 200 documents 433

from the ChartQA dataset and apply t-SNE to these 434

document representations. 435

As shown in Figure 4, the representations of the 436

student model become much more aligned with 437

those of the teacher model after distillation, con- 438

firming the effectiveness of the representation align- 439

ment technique. Additionally, the cosine similarity 440

between the student and teacher models also in- 441

creases. Consequently, after distillation, the student 442

model is able to achieve performance similar to that 443

of the teacher model without incurring additional 444

computational costs from input text. 445

4.4 Case Study 446

In this section, we analyze the effectiveness of 447

the visual-textual model versus the visual-only 448

model through several cases from the DocVQA 449

and PlotQA datasets. 450

As illustrated in Figure 5, the visual-textual 451

model demonstrates superior retrieval accuracy 452

compared to its visual-only counterpart. The key 453

distinction lies in their ability to capture semantic 454

information: while the visual-only model primarily 455

relies on visual patterns, potentially missing crucial 456

textual context, the visual-textual model leverages 457

both modalities to form a comprehensive under- 458

standing of the document content. This enhanced 459

semantic comprehension directly translates to more 460

accurate retrieval results. 461

5 Related Work 462

5.1 Multi-modal Document Retrieval 463

In multi-modal document understanding, models 464

integrate visual and textual data to enhance infor- 465

mation extraction. MPLUG-DocOwl (Ye et al., 466
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"RF" block in the…
Answer: To provide a hypothesis

Question: Based on the points 
for Globular Clusters…
Answer: C

Figure 5: Case Study. We sample several cases from the DocVQA and PlotQA datasets to compare the performance
of the visual-only method and the visual-textual method. The keywords that match between the questions and the
content of the images are highlighted in red.

2023) introduces a modular multimodal large lan-467

guage model for OCR-free document understand-468

ing, leveraging both visual and textual content.469

MPLUG-DocOwl2 (Hu et al., 2024) extends this470

approach by focusing on high-resolution compres-471

sion for multi-page documents. VISTA (Zhou472

et al., 2024) offers a method for visualized text em-473

bedding, enabling efficient multi-modal retrieval474

across document types. Unified multi-modal repre-475

sentations, such as in (Lee et al., 2024b), combine476

text and image features for improved retrieval and477

understanding. Document parsing challenges are478

also addressed by recent work on structured infor-479

mation extraction (Zhang et al., 2024), which fo-480

cuses on methods for extracting and understanding481

document structures.482

5.2 Multi-modal RAG483

Multi-modal retrieval-augmented generation484

(RAG) models combine retrieval and generative485

techniques, leveraging both textual and visual486

information to enhance document processing487

tasks. VisRAG (Yu et al., 2024) uses vision-based488

retrieval to improve generative tasks such as489

document summarization by combining visual490

and textual content. M3DocRAG (Cho et al.,491

2024) extends RAG to multi-page, multi-document492

settings, improving the generation of summaries493

and answers by incorporating information from494

multiple document sources. M-Longdoc (Chia 495

et al., 2024) introduces a retrieval-aware tuning 496

framework that enhances the understanding 497

of super-long documents by selecting relevant 498

document segments for generation. Colpali 499

(Faysse et al., 2024) applies vision-language 500

models with retrieval for more efficient document 501

retrieval, thereby boosting the quality of generation 502

tasks. MM-Embed (Lin et al., 2024) proposes a 503

unified framework for multimodal retrieval with 504

LLMs, optimizing retrieval and generation for 505

multi-modal documents. 506

6 Conclusion 507

In this paper, we identify that current text-based 508

and visual-based methods lack adaptability across 509

different scenarios. To overcome this, we introduce 510

Unveil, a visual-textual embedding approach that 511

integrates text and visual document features for en- 512

hanced semantic grounding. Our knowledge distil- 513

lation technique transfers robust textual understand- 514

ing from the visual-textual model to a purely visual 515

model, allowing for parsing-free retrieval without 516

sacrificing accuracy. Empirical results show that 517

our visual-textual embedding method surpasses ex- 518

isting text-based and visual-based approaches. Ad- 519

ditionally, the knowledge distillation bridges the 520

gap between visual-textual and visual-only models, 521

improving retrieval accuracy and efficiency. 522
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Limitations523

In this paper, we propose a multi-modal document524

retrieval framework that leverages both visual and525

textual information. We acknowledge a limita-526

tion in our approach: the visual-textual embedding527

model relies on textual inputs, necessitating OCR528

parsing of documents. This requirement can intro-529

duce additional computational overhead and may530

affect processing time, especially when dealing531

with large volumes of documents or when OCR532

accuracy is variable.533

Ethics Statement534

This research was conducted in full compliance535

with the ACL Ethics Policy. All datasets and large536

language models (LLMs) used for evaluation pur-537

poses are publicly available, ensuring transparency538

and reproducibility of our results. Our work is539

aimed at advancing multi-modal embedding tech-540

niques to improve document retrieval capabilities.541

We have carefully considered ethical implications542

and do not foresee any negative ethical impacts543

arising from our research.544
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A Dataset Statistics 720

Settings NQ TriviaQA WebQ HotpotQA 2WikiMultihopQA ASQA
(Kwiatkowski et al., 2019) (Joshi et al., 2017) (Berant et al., 2013) (Yang et al., 2018) (Ho et al., 2020) (Stelmakh et al., 2022)

Task Open-domain QA Open-domain QA Open-domain QA Multi-hop QA Multi-hop QA Ambiguous QA
Test Data 3,610 11,313 2,032 7,405 12,576 895
Metrics Recall@10, MRR@10

Table 5: Statistics and experimental settings of different tasks/datasets.

Settings ArXivQA ChartQA MP-DocVQA InfoVQA PlotQA SlideVQA
(Li et al., 2024) (Masry et al., 2022) (Tito et al., 2023) (Mathew et al., 2022) (Methani et al., 2020) (Tanaka et al., 2023)

Task Arxiv Figures Charts Industrial Documents Infographics Scientific Plots Slide Decks
Test Data 8,640 718 1,879 2,046 11,307 1,640
Metrics Recall@10, MRR@10

Table 6: Statistics and experimental settings of different tasks/datasets.

B Training Details 721

Training Data In web page retrieval, we utilize 49,095 training pairs of query and positive documents. 722

In visual document retrieval, we utilize 122,752 training pairs of query and positive documents. 723

Training Process We conducted full parameter fine-tuning during both stages. In the first stage, both 724

student model and teacher were fine-tuned for 2 epochs with a learning rate of 2e-5 and a batch size of 725

16. In the second stage, the teacher model was frozen and the student was fine-tuned for 2 epochs with a 726

learning rate of 2e-5 and a batch size of 16. 727

Model Inference After fine-tuning on the web page retrieval dataset, we tested the model on all the 728

open-domain datasets, including open-domain QA datasets such as NQ (Kwiatkowski et al., 2019), 729

TriviaQA (Joshi et al., 2017), and WebQ (Berant et al., 2013), multi-hop datasets like Wikihop (Yang 730

et al., 2018) and HotpotQA (Ho et al., 2020), as well as the ambiguous dataset ASQA (Stelmakh et al., 731

2022). 732

After fine-tuning on the visual document retrieval dataset, we tested the model on all the visual document 733

datasets, including MP-DocVQA (Tito et al., 2023) for industrial documents, ArXivQA (Li et al., 2024), 734

ChartQA (Masry et al., 2022), InfographicsVQA (Mathew et al., 2022), and PlotQA (Methani et al., 2020) 735

for different types of figures, as well as SlideVQA (Tanaka et al., 2023). 736

C Document Parsing 737

Following (Yu et al., 2024), we use PaddlePaddle OCR (PPOCR) (Du et al., 2020) for document parsing. 738

The process involves several stages: 739

1. Text Detection: A text detection model identifies text regions within the document and generates 740

bounding boxes around them. 741

2. Orientation Classification: These detected regions are processed by a classification model to correct 742

any orientation issues, such as rotation or flipping. 743

3. Text Recognition: A recognition model extracts the textual content from the corrected bounding 744

boxes, returning the recognized text along with confidence scores. Only results with confidence 745

scores above 0.6 are retained, and the bounding box coordinates, along with the recognized text, are 746

stored for further processing. 747

Throughout this process, we apply a Layout Preserving policy. This approach maintains the original 748

document structure by ordering the text boxes based on their spatial positions. Spaces and line breaks are 749

dynamically inserted to reflect horizontal and vertical gaps between text regions. This ensures that the 750

extracted text mirrors the original document layout, preserving its formatting in the final output. 751
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