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ABSTRACT

We introduce the Redundant Information Neural Estimator (RINE), a method that
allows efficient estimation for the component of information about a target vari-
able that is common to a set of sources, previously referred to as the “redundant
information.” We show that existing definitions of the redundant information can
be recast in terms of an optimization over a family of deterministic or stochastic
functions. In contrast to previous information decompositions, which can only
be evaluated for discrete variables over small alphabets, by optimizing over func-
tions we show empirically that we can recover the redundant information on sim-
ple benchmark tasks and that we can approximate the redundant information for
high-dimensional predictors on image classification tasks, paving the way for ap-
plication in different domains.

1 INTRODUCTION

Given a set of sources X1, . . . , Xn and a target variable Y , we study how information about the
target Y is distributed among the sources: different sources may contain information that no other
source has (“unique information”), contain information that is common to other sources (“redundant
information”), or contain complementary information that is only accessible when considered jointly
with other sources (“synergistic information”). Such a decomposition of the information across the
sources can inform design of multi-sensor systems (e.g., to reduce redundancy between sensors), or
support research in neuroscience, where neural activity is recorded from two areas during a behavior.
For example, a detailed understanding of the role and relationship between brain areas during a task
requires understanding how much unique information about the behavior is provided by each area
that is not available to the other area, how much information is redundant (or common) to both
areas, and how much additional information is present when considering the brain areas jointly (i.e.
information about the behavior that is not available when considering each area independently).

Standard information-theoretic quantities conflate these notions of information. Williams & Beer
(2010) therefore proposed the Partial Information Decomposition (PID), which provides a principled
framework for decomposing how the information about a target variable is distributed among a set
of sources. For example, for two sources X1 and X2, the PID is given by:

I(X1, X2;Y ) = UI(X1;Y ) + SI + UI(X2;Y ) + I∩ (1)

Here UI represents the “unique” information, SI the “synergistic” information, and I∩ represents
the redundant information, shown in Fig 2. We provide details in Appendix C.1, describing how
standard information-theoretic quantities like I(X1;Y ) and I(X2;Y |X1) are decomposed in terms
of the PID constituents.

Despite effort and proposals for defining the constituents (Griffith et al., 2014; Bertschinger et al.,
2014; Harder et al., 2013; Griffith & Ho, 2015; Banerjee et al., 2018; Kolchinsky, 2019), exist-
ing definitions involve difficult optimization problems and remain only feasible in low-dimensional
spaces, limiting their practical applications. To enable optimization for high-dimensional problems,
we reformulate the redundant information as a variational optimization problem over a restricted
family of functions. We show that our formulation generalizes existing notions of redundant infor-
mation. Additionally, we show that it correctly computes the redundant information on canonical
low-dimensional examples and demonstrate that it can be used to compute the redundant information
between different sources in a higher-dimensional image classification task.
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2 RELATED WORK

Central to the PID is the notion of redundant information I∩, and much of the work surrounding the
PID has focused on specifying the desirable properties that a notion of redundancy should follow.
Although there has been some disagreement as to which properties a notion of redundancy should
follow (Williams & Beer, 2010; Harder et al., 2013; Kolchinsky, 2019), the following properties are
widely accepted:

• Symmetry: I∩(X1; . . . ;Xn→Y ) is invariant to the permutation of X1, . . . , Xn.
• Self-redundancy: I∩(X1→Y ) = I(X1;Y ).
• Monotonicity: I∩(X1; . . . ;Xn→Y ) ≤ I∩(X1; . . . ;Xn−1→Y ).

Several notions of redundancy have been proposed that satisfy these requirements, although we em-
phasize that these notions were generally not defined with efficient computability in mind. Griffith
et al. (2014) proposed a redundancy measure I∧∩ , defined through the optimization problem:

I∧∩ (X1; . . . ;Xn→Y ) := max
Q

I(Y ;Q) s.t. ∀i ∃fi Q = fi(Xi). (2)

Here, Q is a random variable and fi is a deterministic function. The redundant information is thus
defined as the maximum information that a random variable Q, which is a deterministic function of
allXi, has about Y . This means thatQ captures a component of information common to the sources
Xi. A more general notion of redundant information IGH

∩ (Griffith & Ho, 2015; Banerjee & Griffith,
2015) is defined in terms of the following optimization problem:

IGH
∩ (X1; . . . ;Xn→Y ) := max

Q
I(Y ;Q) s.t. ∀i I(Y ;Q|Xi) = 0. (3)

IGH
∩ reflects the maximum information between Y and a random variable Q such that Y −Xi −Q

forms a Markov chain for all Xi, relaxing that Q needs to be a deterministic function of Xi. We
show in Section 3 that our definition of redundant information is a generalization of both of these
notions.

2.1 USABLE INFORMATION IN A RANDOM VARIABLE

An orthogonal line of recent work has looked at defining and computing the “usable” information
Iu(X;Y ) that a random variableX has about Y (Xu et al., 2020; Dubois et al., 2020; Kleinman et al.,
2021). This aims to capture the fact that not all information contained in a signal can be used for
inference by a restricted family of functions. Given a family of decoders V ⊆ U = {f : X → Y},
the usable information that X has about Y is defined as:

Iu(X;Y ) = H(Y )−HV(Y |X) (4)
where HV(Y |X) is defined as:

HV(Y |X) = inf
f∈V

Ex,y∼X,Y [− log f(y|x)] . (5)

For example, U could be the the family of deterministic function and V could represent the family
of linear deterministic functions. Thus, the “usable” information differs from Shannon’s mutual
information in that it involves learning a decoder function f in a model family V , which is a subset
of all possible decoders U . When the “usable” information is defined such that the model family
corresponds to the universal model family, the definition recovers Shannon’s mutual information,
I(X;Y ) = H(Y )−HU (Y |X). However, in many cases, the “usable information” is closer to our
notion of information, reflecting the amount of information that a learned decoder, as opposed to the
optimal decoder, can decode the information under computational constraints (Xu et al., 2020). We
extend these ideas to compute the “usable redundant information” in the next section.

3 REDUNDANT INFORMATION NEURAL ESTIMATOR

We first show that the existing definitions of redundancy can be recast in terms of an optimization
over a family of functions, similar to how the “usable information” was defined above. For two
sources, we can define a notion of redundancy, the Redundant Information Neural Estimator (RINE),
through the following optimization over models f1, f2 ∈ V .

LV∩(X1;X2→Y ) := min
f1,f2∈V

1

2

[
Hf1(Y |X1) +Hf2(Y |X2)

]
(6)

s.t. D(f1, f2) = 0 (7)

IV∩ (X1;X2→Y ) :=H(Y )− LV∩, (8)
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where Hfi(Y |Xi) denotes the cross-entropy when predicting Y using the decoder fi(y|x) and
D(f1, f2) = Ex1,x2

[
‖f1(y|x1) − f2(y|x2)‖1

]
denotes the expected difference of the predictions

of the two decoders. Importantly, the model family V can be parametrized by neural networks,
enabling optimization over the two model families with backpropagation. In contrast, direct opti-
mization of eq. 2 and eq. 3 is only feasible for discrete sources with small alphabets (Kolchinsky,
2019). Our formulation can be naturally extended to n sources (Appendix C.6).

To solve the constrained minimization problem eq. 6, we can minimize the corresponding La-
grangian:

LV∩(X1;X2→Y, β) := min
f1,f2∈V

1

2

[
Hf1(Y |X1) +Hf2(Y |X2)

]
+ βD(f1, f2). (9)

When β → ∞ the solution to the Lagrangian is such that D(f1, f2) → 0, thus satisfying the
constraints of the original problem. When optimizing this problem with deep networks, we found it
useful to start the optimization with a low value of β, and then increase it slowly during training to
some sufficiently high-value (β = 50 in our experiments).

Our definition of V-redundant information (eq. 8) is a generalization of both I∧∩ and IGH
∩ (Sec. 2) as

shown by the following proposition:

Proposition 1 (Appendix B). Let V be the family of deterministic functions, then IV∩ = I∧∩ . If,
instead, V is the family of stochastic functions, then IV∩ = IGH

∩ .

In our experiments described in the next section, we optimize over a model family V of deterministic
neural networks using gradient descent. For the image classification tasks, we optimized over a
model family V of ResNets (He et al., 2016), which have been successful for image classification
tasks, and for other experiments we optimize over fully-connected networks. In general, the model
class to optimize over should be selected such that it is not too complicated that it overfits to spurious
features of the finite train set, but is of high enough capacity to learn the mapping from source to
target.

4 EXPERIMENTS

We now apply our framework to estimate the redundant information on canonical examples that were
previously used to study the PID, and then then demonstrate the ability to compute the redundant
information for problems where the predictors are high dimensional.

4.1 CANONICAL EXAMPLES

True I∧∩ IGH
∩ IV∩ (β = 15)

UNQ [T2] 0 0 0 0.011
AND [T3] [0, 0.311] 0 0 -0.017

RDNXOR [T4] 1 1 1 0.967
IMPERFECTRDN [T5] 0.99 0 0.99 0.989

Table 1: Comparison of redundancy measures on canonical examples. Quantities are in bits, and
IV∩ denotes our variational approximation (for β = 15). I∧∩ denotes the redundant information in
Griffith et al. (2014) and IGH

∩ denotes the redundant information in Griffith & Ho (2015). We do
this computation for different values of β in Table 6.

We first describe the results of our method on standard canonical examples that have been previously
used to study the PID. They are particularly appealing because for these examples it is possible to
ascertain ground truth values for the decomposition. Additionally, the predictors are low dimen-
sional and have been previously studied, allowing us to compare our variational approximation. We
describe the tasks, the values of the sources X1, X2, and the target Y for in Section A. Briefly, in
the UNQ, each input X1 and X2 contributes 1 bit of unique information about the output and there
is no redundant information. In the AND task, it is accepted that the redundant information should
be between [0, 0.311] depending on the stringency of the notion of redundancy used (Griffith & Ho,
2015). When using deterministic decoders, as we do, we expect the redundant information to be
0 bits (not 0.311 bits). The RDNXOR tasks corresponds to a redundant XOR task, where there is
1 bit of redundant and 1 bit of synergistic information. Finally the IMPERFECTRDN tasks corre-
sponds to the case where X1 fully specifies the output, with X2 having a small chance of flipping
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one of the bits. Hence, there should be 0.99 bits of redundant information. As we show in Table 1,
RINE (optimizing with a deterministic family) recovers the desired values on all these canonical
examples.

4.2 CIFAR EXPERIMENTS
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Figure 1: (Left) Redundant information of different crops of CIFAR-10 images. Redundant infor-
mation as a function of the width of each partition, for different values of β. A width of 16 means
that both X1 and X2 is a 16 x 32 image. The images begin from opposing sides, so in the case of
the 16 x 32 image, there is no overlap between X1 and X2. As the amount of overlap increases,
the redundant information increases. (Right) Per class redundant information for different channels,
crops, and frequency decompositions, with β = 50 used in the optimization.

To the best of our knowledge, computations of redundant information have been limited to predictors
that were 1 dimensional (Griffith et al., 2014; Griffith & Ho, 2015; Banerjee et al., 2018; Kolchinsky,
2019). We now show the ability to compute the redundant information when the predictors are high
dimensional. We focus on the ability to predict discrete target classes, corresponding to a standard
classification setting. We analyze the redundant information between different views of the same
CIFAR-10 image (Figure 1), by optimizing over a model family of ResNet-18’s (He et al., 2016),
described in Appendix C.5. In particular, we split the image in two crops, a left crop X1 containing
all pixels in the first w columns, and a right crop X2 containing all pixels in the last w columns
(Fig 4). Intuitively, we expect that as the width of the crop w increases, the two views will overlap
more, and the redundant information that they have about the task will increase. Indeed, this is what
we observe in Figure 1 (left).

We study the redundant information between different sensor modalities, in particular we decom-
pose the images into different color channels (X1 = red channel and X2 = blue channel), and
frequencies (X1 = low-pass filter and X2 = high-pass filter). We show example images in Fig 4.

As expected, different color channels have highly redundant information about the task (Figure 1
(right)) except when discriminating classes (like dogs and cats) where precise color information
(coming from using jointly the two channels synergistically) may prove useful. On the contrary, the
high-frequency and low-frequency spectrum of the image has a lower amount of redundant informa-
tion, which is also expected, since the high and low-frequencies carry complementary information.
We also observe that left and right crop of the image are more redundant for pictures of cars than
other classes. This is consistent with the fact that many images of cars in CIFAR-10 are symmetic
frontal pictures of cars, and can easily be classified using just half of the image. Overall, there is
more redundant information between channels, then crops, then frequencies. Together, we show we
can compute the redundant information of high dimensional sources, confirming our intuition, and
providing a scalable approach to apply in other domains.

5 CONCLUSION

Central to the PID, the notion of redundant information offers promise for characterizing the com-
ponent of task-related information present across a set of sources. Despite its appeal for providing a
more fine-grained depiction of the information content of multiple sources, it has proven difficult to
compute in high-dimensions, limiting widespread adoption. Here, we show that existing definitions
of redundancy can be recast in terms of optimization over a family of deterministic or stochastic
functions. By optimizing over a subset of these functions, we show empirically that can recover
the redundant information on simple benchmark tasks and that we can indeed approximate the re-
dundant information for high-dimensional predictors, paving the way for application in different
domains.
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A CANONICAL TASKS

The probabilities on the right hand side of the table denote the probability p(x1, x2, y).

X1 X2 Y

a b ab 1/4
a B aB 1/4
A b Ab 1/4
A B AB 1/4

Table 2: UNQ. X1 and X2 contribute uniquely 1 bit of Y. Hence, there is no redundant and syner-
gistic information.

X1 X2 Y

0 0 0 1/4
0 1 0 1/4
1 0 0 1/4
1 1 1 1/4

Table 3: AND. X1 and X2 combine nonlinearly to produce the output Y . It is generally accepted
that the redundant information is between [0,0.311] bits (Griffith & Ho, 2015), where I(X1;Y ) =
I(X2;Y ) = 0.311 bits.

X1 X2 Y

r0 r0 r0 1/8
r0 r1 r1 1/8
r1 r0 r1 1/8
r1 r1 r0 1/8
R0 R0 R0 1/8
R0 R1 R1 1/8
R1 R0 R1 1/8
R1 R1 R0 1/8

Table 4: RDNXOR. A combination of redundant a synergistic information where X1 and X2 con-
tributes 1 bit of redundant information, and 1 bit of synergistic information.

X1 X2 Y

0 0 0 0.499
0 1 0 0.001
1 1 1 0.500

Table 5: IMPERFECTRDN.X1 fully specifies the output, withX2 having a small chance of flipping
one of the bits. There should be 0.99 bits of redundant information.
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B PROOFS

Proposition 1: Let V be the family of deterministic functions, then IV∩ = I∧∩ . If, instead, V is the
family of stochastic functions, then IV∩ = IGH

∩ .

Proof. We first note that if V represents the entire family of deterministic functions, than V = Ud.
If instead, V represents the entire family of stochastic functions, than V = Us.

Additionally, D(f1, .., fn) = 0 ⇐⇒ Q = fi(Xi) ∀i.
In both I∧∩ and IGH

∩ , the objective is maxQ I(Y ;Q). Since I(Y ;Q) = H(Y ) −H(Y |Q), we can
rewrite the objective as:

max
Q

I(Y ;Q) = min
Q

H(Y |Q) (10)

Now we know that Q = fi(Xi) ∀i. Therefore we can perform the minimization over fi:

min
Q

H(Y |Q) = inf
fi∈V

Hfi(Y |Xi) (11)

In our objective in Eqn 6, we technically minimize the average V-cross entropy loss across sources
Xi, but when D(f1, ..., fn) = 0, all the terms are equal since Q = fi(Xi) ∀i, hence considering the
average is equivalent to considering any particular source.

When fi are deterministic functions, the constraint corresponds to that of I∧∩ (i.e. that Q = fi(Xi),
with fi being a deterministic function). When fi are more general stochastic functions, the con-
straint corresponds to a Markov chain (i.e Y −Xi−Q), as in IGH

∩ , or in other words thatQ = fi(Xi),
with fi being a stochastic function.

By performing the optimization over a restricted set V ⊆ U of either deterministic or stochastic
functions, we recover the V-redundant information analogues of I∧∩ and IGH

∩ .

C ADDITIONAL DETAILS

C.1 PARTIAL INFORMATION DECOMPOSITION

Information theory provides a powerful framework for understanding the dependencies of random
variables through the notion of mutual information (Cover & Thomas, 2006). However, information
theory does not naturally describe how the information is distributed. For example, while we could
compute the mutual information I(X1, X2;Y ), we would not understand how much information
that X1 contained about Y was also contained in X2, how much information about Y was unique
to X1 (or X2), as well as how much information about Y was only present when knowing both X1

and X2 together. These ideas were presented in Williams & Beer (2010) in the Partial Information
Decomposition.

Standard information-theoretic quantities I(X1;Y ), I(X1;Y |X2), and I(X1, X2;Y ) can be formed
with components of the decomposition:

I(X1;Y ) = UI(X1;Y ) + I∩ (12)
I(X2;Y |X1) = UI(X2;Y ) + SI (13)

I(X1, X2;Y ) = UI(X1;Y ) + SI + UI(X2;Y ) + I∩ (14)

Here UI represents the “unique” information and SI represents the “synergistic” information. Equa-
tion 14 comes form the chain rule of mutual information, and by combining equation 12 and equa-
tion 13. These quantities are shown in the PID diagram (Fig. 2). Computing any of these quantities
allows us to compute all of them (Bertschinger et al., 2014). In Banerjee et al. (2018), they described
an approach to compute the unique information, which was only feasible in low dimensions. Here,
we primarily focus on computing the “redundant” information.
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SI

UIX1\X2
UIX2\X1

I∩

Figure 2: Decomposition of the mutual information of a sources X1, X2 and target Y into the
synergistic information SI , the unique information UI of X1 with respect to Y and X2 with respect
to Y , and the redundant information I∩.

C.2 ADDITIONAL NOTION OF REDUNDANCY

Recently Kolchinsky (2019) proposed to quantify redundancy via the following optimization prob-
lem:

IK∩ (X1; . . . ;Xn→Y ) := max
sQ|Y

I(Q;Y ) s.t. ∀i sQ|Y � pXi|Y (15)

The notation pQ|Y � pXi|Y was used to indicate that there exists a channel pQ|Xi
such that Equa-

tion 16 holds for all q and y.

pQ|Y (q|y) =
∑
xi

pQ|Xi
(q|xi)pXi|Y (xi|y). (16)

In some sense, Equation 16 indicates that Q is a “statistic” of Xi, or that the information about each
Xi is contained in Q.

It would be interesting to apply a similar approximation towards this more general notion of redun-
dancy.

C.3 SETTING VALUE OF β

When optimizing the equation in practice, it is more difficult to optimize initially using very large
values of β, since the network could easily learn a trivial solution. We therefore adaptively set β
depending on the epoch of training, so that the final solution could be as redundant as possible,
but the network would not immediately settle in a trivial solution. In this manner, we find that the
network settles in a redundant solution that performs well on the task, as opposed to a redundant
solution that is trivial. We smoothly increase βi during training following the formula, so that the
value of β at epoch i (γ = 0.97):

βi = β(1− γi) (17)

When we perform an ablation study, where we fix βi = β, we find that the network settles at a trivial
solution (Fig 3).

C.4 TRAINING DETAILS FOR CANONICAL EXAMPLES

We trained a small fully-connected network with hidden layers of size [25− 15− 10], using batcn-
horm and ReLU activations, with an initial learning rate of 0.01 decaying smoothly by 0.97 per
epoch, for 15 epochs. We generated a dataset consisting of 10, 000 samples, of which 80% cor-
responded to training data, and the remaining 20% corresponding to test data. We trained with
different values of β. β = 0 corresponds to the usable information of I(X1;Y ) and I(X2;Y ) (more
precisely, it is (I(X1;Y )+ I(X2;Y ))/2, but in most cases I(X1;Y ) = I(X2;Y )). As β increases,
the quantity IV∩ more strongly reflects redundant information. RINE produces values close to the
ground truth for these canonical examples. The tasks, with their corresponding inputs, outputs and
associated probabilities are shown in the Section A. Our comparison is shown in Table 1. Note, that
there is some randomness that occurs due to different initialization optimizing the neural networks,
hence the values may differ slightly.
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Figure 3: (Left) If B = 50 for all epochs of training, the networks is stuck in a trivial solution in
learning. Setting β adaptively leads to an improved solution. (Right) The final distance terms are
comparable.

C.5 TRAINING DETAILS FOR CIFAR-10

To compute the redundant information for Cifar-10, we optimized over the weights in Equation 6
using ResNet-18’s He et al. (2016). We trained the network for 40 epochs, with an initial learning
rate of 0.075, decreasing smoothly by 0.97 per epoch, with weight decay of 0.005. We show example
images that represent the inputs x1 and x2 in Fig 4. We jointly train two networks that process inputs
x1 and x2 respectively, constrained to have similar predictions through including D(f1, f2) in the
loss. To compute D(f1, f2), we quantified the L1 norm of the distance between the softmax scores
of the predictions. We evaluate the cross-entropy loss on the test set.

C.6 GENERALIZATION TO n SOURCES

Our formulation naturally generalizes to n sources X1, ..., Xn. In particular, Equation 9 can be
generalized as:

LV∩(X1; ...;XN→Y, β) := min
f1,...,fn∈V

1

n

[ n∑
i=1

Hfi(Y |Xi)
]
+ βD(f1, ..., fn). (18)

We note that when computing the redundant information, we compute the loss without the distance
term D(f1, ..., fn). A naive extension of the distance term to n sources is computing the sum of
all the pairwise distance terms. If the number of sources is large, however, it may be beneficial to
consider efficient approximations of this distance term.

C.7 DETAILS ON CANONICAL EXAMPLES

True I∧∩ IGH
∩ IV∩ (β = 0) IV∩ (β = 5) IV∩ (β = 15)

UNQ [T2] 0 0 0 0.987 0.613 0.011
AND [T3] [0, 0.311] 0 0 0.310 -0.001 -0.017

RDNXOR [T4] 1 1 1 0.991 0.988 0.967
IMPERFECTRDN [T5] 0.99 0 0.99 0.989 0.988 0.989

Table 6: Comparison of redundancy measures on canonical examples for additional values of β than
Table 1. Quantities are in bits. IV∩ denotes our variational approximation, for different values of β.
I∧∩ denotes the redundant information in Griffith et al. (2014) and IGH

∩ corresponds to the redundant
information in Griffith & Ho (2015).

C.8 EXAMPLE IMAGES IN THE DECOMPOSITION
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Figure 4: Example decompositions of an image (car) from CIFAR-10. This is an example of x1
and x2 in our CIFAR experiments. (Top left): different crops, (top right) colors of channels, and
(bottom): frequencies.
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