
Link Prediction on Multilayer Networks through Learning of
Within-Layer and Across-Layer Node-Pair Structural Features and

Node Embedding Similarity
Anonymous Author(s)∗

ABSTRACT
Link prediction has traditionally been studied in the context of sim-
ple graphs, although real-world networks are inherently complex
as they are often comprised of multiple interconnected components,
or layers. Predicting links in such network systems, or multilayer
networks, require to consider both the internal structure of a tar-
get layer as well as the structure of the other layers in a network,
in addition to layer-specific node-attributes when available. This
problem poses several challenges, even for graph neural network
based approaches despite their successful and wide application to a
variety of graph learning problems. In this work, we aim to fill a
lack of multilayer graph representation learning methods designed
for link prediction. Our proposal is a novel neural-network-based
learning framework for link prediction on (attributed) multilayer
networks, whose key idea is to combine (i) pairwise similarities of
multilayer node embeddings learned by a graph neural network
model, and (ii) structural features learned from both within-layer
and across-layer link information based on overlapping multilayer
neighborhoods. Extensive experimental results have shown that
our framework consistently outperforms both single-layer and mul-
tilayer methods for link prediction on popular real-world multilayer
networks, with an average percentage increase in AUC up to 38%.
We make source code and evaluation data available to the
research community at https://shorturl.at/cOUZ4.

CCS CONCEPTS
• Computing methodologies→Machine learning.

KEYWORDS
graph representation learning, graph neural networks, link predic-
tion, multilayer networks

ACM Reference Format:
AnonymousAuthor(s). 2018. Link Prediction onMultilayer Networks through
Learning of Within-Layer and Across-Layer Node-Pair Structural Features
and Node Embedding Similarity. In Proceedings of Make sure to enter the cor-
rect conference title from your rights confirmation emai (Conference acronym
’XX).ACM,NewYork, NY, USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
A wide range of complex network systems, from online social net-
works (OSNs) to transportation networks and biological networks,
can profitably be modeled using the formalism of multilayer net-
works [22], in which two or more layers are interconnected and
represent different types or contexts of relationships between the
entities. For instance, in the landscape of OSNs, layers can repre-
sent different types of interaction (e.g., mention, like/favorite) for
the same user base, but also different platforms providing multiple
connectivity contexts for the same users. Modeling such complex
network systems with a flattened graph or multiple independent
graphs would lead to a loss of important information, since both
internal, i.e., within-layer, and external, i.e., across-layer, structural
features are needed to discover knowledge patterns from a complex
network [6, 25, 32, 33].

Like in simple graphs, one fundamental problem in multilayer
networks is link prediction, which is to estimate the likelihood
that a link exists between two nodes in one of the layers, based
on structural information involving the nodes within and outside
that layer; again, in the OSN domain, an intuitive application of
link prediction is suggesting new friends for users on one target
platform (i.e., layer), by also exploiting the social contacts users
have on other platforms. Surprisingly, despite the pervasiveness of
multilayer networks in real-world scenarios, most existing studies
on link prediction have focused on single-layer networks.

Over the last few years, neural networks (NNs) and especially
graph neural networks (GNNs) have become the dominant para-
digm for machine learning on single-layer networks. While GNN-
based frameworks have achieved strong performance for tasks
such as node and graph classification, their representation learn-
ing design hinders GNNs in capturing link-specific information;
as a consequence, classic heuristics might achieve comparable per-
formance with GNNs for the link prediction task. Indeed, GNNs
are not effective in distinguishing automorphic nodes (i.e., nodes
having the same structural role in the graph) and cannot focus on
information relevant for target pair(s) of nodes (e.g., overlapping
neighborhoods) [47]. The latter limitation is particularly crucial for
link prediction, as it requires to properly model pairwise (common)
neighbors of nodes, whereas GNNs heavily rely on smoothed node-
features rather than graph structure [42]. To alleviate this issue for
link prediction in simple graphs, some methods aim to inject link
structural information in the learning process [10, 41, 42, 45].

In this work, we propose a neural-network-based learning frame-
work for link prediction in (attributed) multilayer networks, which
brings the aforementioned idea of incorporating structural informa-
tion at node-pair level into the learning process for link prediction.
To compute the likelihood of existence of a link between two nodes

https://shorturl.at/cOUZ4
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

on a specific layer, our proposed approach jointly learns two compo-
nents, namely GNN-based node embedding and NN-based node-pair
neighborhood feature extraction. The former relies on node-level
graph representation learning methods specifically designed for
multilayer networks, and as such is able to integrate available exter-
nal information associated with nodes (i.e., node attributes or initial
features); the latter is designed to extract node-pair-level structural
features based on shared neighborhoods of any two nodes in dif-
ferent layers. Both components leverage within-layer as well as
across-layer information to contribute to computing the likelihood
of existence of a link, but in different ways: the GNN-based node
embedding component considers information across all layers ac-
cording to the message passing paradigm in multilayer networks,
whereas the NN-based node-pair neighborhood feature extraction
component accounts for different notions of overlapping multilayer
neighborhood between nodes located in different layers.

We summarize our contributions as follows:

(1) We define a neural-network-based learning framework for
link prediction on (attributed) multilayer networks, named
ML-Link. To the best of our knowledge, we are the first
to propose augmenting multilayer GNNs with node-pair
features learned from both within-layer and across-layer
structural information.

(2) ML-Link leverages different types of overlapping multilayer
neighborhoods and adaptively incorporates their informa-
tion using an attention mechanism to generate node-pair
structural features for link prediction.

(3) Experimental evaluation on real-world and synthetic multi-
layer networks has shown the significance of ML-Link and
its superiority of against 11 competing methods and 6 base-
lines, with percentage increase in AUC averaged over all
competitors ranging from 5% to 38%. Also, results indicate
the usefulness of all architectural components of ML-Link,
and a certain robustness w.r.t. the main hyper-parameter.

2 RELATEDWORK
Link prediction on simple networks. Link prediction has been
traditionally addressed using heuristic methods or latent-feature
methods [44]. The former generally determine the likelihood of
links based on topological measures of node similarity, such as
Common neighbors [26], Jaccard score, Preferential attachment [3],
Adamic-Adar [1], ResourceAllocation [48] and SimRank [20]. Latent-
feature methods extract node vectorial representations from the
graph structure through matrix factorization, and apply the inner
product to pairs of such representations to predict links [44]. Also,
shallow graph-representation learning methods, e.g., LINE [38],
DeepWalk [35], and node2vec [17], can be used to learn node rep-
resentations based on random walks.

GNNmethods for link prediction can be categorized into subgraph-
based and node-based approaches [44]. Subgraph-based methods [8,
39, 46], exemplified by SEAL [45], extract local subgraphs around
each target link and use GNNs tomap subgraph patterns to link exis-
tence. While usually outperforming node-based methods, subgraph-
basedmethodsmay suffer from high computational complexity [44].
Node-based methods, pioneered by Graph AutoEncoder (GAE) [21],
learn node embeddings from local neighborhoods and aggregate

them using GNNs to construct link representations. Node-based
methods can perform worse than traditional heuristics due to their
dependence on smoothed node features rather than graph struc-
ture. Neo-GNN [42] addresses this limitation by learning struc-
tural features from an adjacency matrix and estimating overlapping
neighborhoods for link prediction.

Our proposedML-Link adopts the core idea of Neo-GNN, which
is to exploit structural features based on overlapping neighborhoods.
However, we extend this to the multilayer link prediction setting,
based on multilayer neighborhood definitions, and by relying on
GNNs specifically conceived for multilayer networks. Moreover,
ML-Link is highly versatile and modular in terms of the adopted
GNN model since, should better GNNs for multilayer networks
be devised in the future, these can easily be incorporated into our
approach by just changing one building block.
Link prediction on multilayer networks. Link prediction meth-
ods for multilayer networks consider information from some or all
layers to predict the likelihood of a link between two nodes in a
specific layer. Early works include [36], which uses a collection of
heuristic link-prediction scores computed for each relation type as
input features for a decision tree (in addition to multiplex features
such as the score average and entropy across layers); [18], which
aggregates different traditional scores to feed a random forest clas-
sifier; [19], which applies a support vector machine (SVM) with
a Gaussian kernel to features extracted from a metagraph built
upon the application of a community detection algorithm on each
link type separately. Such methods were mainly evaluated on spe-
cific types of multilayer network, namely bibliography data ([36]),
geo-social data ([18]), and two-layer social networks ([19]).

A generalization of the Adamic-Adar method for multiplex net-
works is given in [2], although without considering that two nodes
could be connected in other layers than the target one. MELL [30]
embeds each layer into a low dimensional space, capturing the
shared connectivity across layers. CrossMNA [12] leverages across-
layer information by jointly learning an intra-vector and an inter-
vector for each node; the former can be used for link prediction,
and the latter for node matching across the layers. MAGMA [14]
derives graph association rules by identifying all frequent patterns
in a network via multiplex graph mining, then it assigns a score to
each disconnected node-pair by finding the occurrences of each rule
in the network. [43] proposes one of the earliest GNN-based frame-
work designed for attributed multilayer networks, as it learns node
representations by exploiting both intra- and inter-layer dependen-
cies. GATNE [9] is designed for attributed multiplex heterogeneous
networks, which also include the particular case of a multiplex
network with a single type, hence GATNE can be used for link
prediction on homogeneous multiplex networks.
Comparison with our ML-Link. Unlike the GNN-based mul-
tilayer methods proposed in [43] and [9], we enhance the GNN
predictive ability by computing structural features extracted from
multilayer interactions, which are beneficial for the link prediction
task where the topological aspect is crucial [29]. Indeed, the ability
of GNNs to incorporate topological features is insufficient for the
task of link prediction, and simple heuristics like Adamic-Adar or
Jaccard indexes can sometimes achieve better performance by a
large margin [42, 45, 47].

Link Prediction on Multilayer Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Compared to [12] and [30], our approach can leverage (external)
node-attributes at each layer. Additionally, those methods exploit
across-layer interactions by preserving the similarity of the em-
beddings associated with the same nodes across different layers,
which could be suboptimal in cases where the structure of the layers
is substantially different. In contrast, our method for harnessing
multi-layer dependencies is custom-designed to address the link
prediction task.

Differently from [18, 36], we do not aggregate multiple scores
derived from traditional heuristics for link prediction (e.g., Adamic-
Adar) nor we utilize predefined heuristics for structural feature
extraction [2, 19]; rather, we learn structural features of nodes in
a data-driven fashion from each layer, and use them to generate
different link existence scores for each pair of nodes, encompassing
both within-layer and across-layer interactions. We also jointly
leverage different notions of multilayer neighborhoods in order to
get a more holistic view of the interplay between layers.

Compared to [14] whereby associative rules are extracted con-
sidering the entire multiplex network, our approach explicitly dif-
ferentiates between the contribution provided by within-layer and
across-layer interactions. Yet, generating associative rules can po-
tentially be burdensome due to the extraction of frequent patterns
across the entire network.

To the best of our knowledge, we are the first to develop a GNN-
based framework for link prediction on multilayer networks which
relies on structural features learned from both within-layer and
across-layer link information based on different notions of overlap-
ping multilayer neighborhoods.

3 PRELIMINARY DEFINITIONS
Attributed multilayer networks. Given a set V of 𝑛 entities and
a set L = {𝐿1, · · · , 𝐿ℓ } of layers, indexed in 𝐿 = {1, . . . , ℓ}, with
|L| = ℓ ≥ 2, we denote an attributed multilayer network with
𝐺L = ⟨𝑉L , 𝐸L ,X,V, L⟩, where𝑉L ⊆ V ×𝐿 is the set of all entity
occurrences, or nodes, in L, and in particular, 𝑉𝑙 is the set of nodes
in layer 𝑙 (𝑙 ∈𝐿); in the following, we might also refer to elements
in 𝑉𝑙 as pairs ⟨𝑣, 𝑙⟩, otherwise, i.e., if the layer is clear from the
context, we will use membership notation of the form 𝑣 ∈ 𝑉𝑙 to
denote the occurrence of entity 𝑣 in layer 𝑙 . 𝐸L is the set of edges
between nodes belonging to the same layer, and 𝐸𝑙 ⊆ 𝑉𝑙 × 𝑉𝑙 is
the set of edges in layer 𝑙 . Each entity has a node in at least one
layer, henceV =

⋃
𝑙=1..ℓ 𝑉𝑙 , and that inter-layer edges exist between

each node in a layer and its counterpart in a different layer. We
assume independence on any relation order between the layers; if
such information is available, we denote with 𝑃 (𝑙) the set of valid
pairings with layer 𝑙 .

A multilayer network can be represented by a set of adjacency
matrices A = {A1, . . . ,Aℓ }, with A𝑙 ∈ R𝑛𝑙×𝑛𝑙 (𝑙 ∈ 𝐿), where 𝑛𝑙 =
|𝑉𝑙 |. Entities can also be associated with external information or
attributes stored in layer-specific matricesX = {X1, . . . ,Xℓ }, where
X𝑙 is the attribute matrix for 𝑙 ; if no attributes are given for nodes
in a layer, the corresponding attribute matrix is set as an identity
matrix.
Multilayer neighborhood. For any layer 𝑙 and entity 𝑣 appearing
in 𝑙 , one basic concept characterizing the status of node ⟨𝑣, 𝑙⟩ is
its within-layer neighborhood locally at 𝑙 , denoted as Γ⟨𝑣,𝑙 ⟩ and

defined as Γ⟨𝑣,𝑙 ⟩ = {𝑤 | 𝑤 ∈ V, (𝑤, 𝑣) ∈ 𝐸𝑙 }. Since we want to take
advantage of the interplay between layers in a network, we also
consider neighborhoods that span across different layers to capture
a notion of global connectivity of an entity. [18] propose the notion
of global neighbors of an entity 𝑣 w.r.t. layer 𝑙 and 𝑙 ′, as the union
of its entity-neighbors in both layers:

Γ
(𝑔)
⟨𝑣,𝑙,𝑙 ′ ⟩ = {𝑤 | 𝑤 ∈ Γ⟨𝑣,𝑙 ⟩ ∪ Γ⟨𝑣,𝑙 ′ ⟩}. (1)

For the link prediction problem, leveraging pairwise information
is crucial. To capture the direct connections of two nodes in different
layers, we define the overlapping across-layer neighborhood (OAN) of
two nodes ⟨𝑣, 𝑙⟩ and ⟨𝑢, 𝑙 ′⟩ as the set of their shared entity-neighbors
across layers 𝑙, 𝑙 ′:

Γ
(𝑜𝑎𝑛)
(⟨𝑣,𝑙 ⟩,⟨𝑢,𝑙 ′ ⟩) = {𝑤 | 𝑤 ∈ Γ

(𝑔)
⟨𝑣,𝑙,𝑙 ′ ⟩ ∩ Γ

(𝑔)
⟨𝑢,𝑙,𝑙 ′ ⟩}. (2)

One alternative to the above measure corresponds to the multi-
layer Adamic-Adar neighborhood (MAAN) introduced in [2], and
here denoted as Γ (𝑚𝑎𝑎𝑛) , which considers triadic closure relations
from two layers:

Γ
(𝑚𝑎𝑎𝑛)
(⟨𝑣,𝑙 ⟩,⟨𝑢,𝑙 ′ ⟩) = {𝑤 | 𝑤 ∈ Γ⟨𝑣,𝑙 ⟩ ∩ Γ⟨𝑢,𝑙 ′ ⟩}. (3)

Note that the above identifies an overlap between the set of neigh-
bors of a node from one layer and the set of neighbors of another
node from a different layer (e.g., mutual friends in different layers
that are not necessarily known to each other). It is hence more
restrictive than Eq. 2 which extends a node’s neighborhood to more
layers, thus allowing for identifying across-layer shared neighbors.

To enable a holistic view of the multilayer neighborhood, we can
assume that a set T of alternative types of multilayer neighborhood
measures are available. In the following, we shall consider T =

{Γ (𝑜𝑎𝑛) , Γ (𝑚𝑎𝑎𝑛) }, as two different contexts of multilayer structural
information for nodes in our multilayer link prediction setting.
Problem statement (Multilayer Link Prediction). Given an
(attributed) multilayer network𝐺L , the multilayer link prediction
problem is to estimate the probability of existence of edges in an
arbitrary set of layers. More specifically, for each layer 𝑙 ∈ 𝐿, the
goal is to learn a function 𝑠 : 𝑉𝑙 × 𝑉𝑙 ↦→ [0, 1] expressing the
likelihood of linkage between any pair of nodes in 𝑙 , based on their
multilayer neighborhood information available within 𝑙 as well as
outside 𝑙 .

We emphasize that the problem we consider focuses on perform-
ing link prediction over all the layers of the network simultaneously,
i.e., all layers in L are considered as target layers.
Why within-layer and across-layer structural features for
link prediction? In a network-of-networks system, relying solely
on within-layer information while discarding across-layer informa-
tion is clearly an ineffective approach to several tasks, including link
prediction [6, 25, 32, 33]. Keeping this in mind, our approach learns
node structural features to compute overlapping neighborhoods
between pairs of nodes, both from a within-layer and an across-
layer perspective. This triggers a twofold effect: on the one hand,
considering structural features of the overlapping neighborhoods
between a pair of nodes within a layer, allows for the generaliza-
tion of pairwise topological heuristics (e.g., [26]), thus enabling the
exploitation of layer-specific key structural information regarding

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

links [42]; on the other hand, considering the structural features of
the overlapping multilayer neighborhood between a pair of nodes
across different layers, allows for the generalization of multilayer
link prediction heuristics (e.g., [2]) and the exploitation of multi-
layer interactions that are crucial for link prediction.

Therefore, our approach to combining within- and across-layer
structural information regarding links based on the overlapping
multilayer neighborhoods can lead to unprecedented exploitation
of multiple different structural aspects of the multilayer network.
This is fundamental for a task such as link prediction, where taking
advantage of any available structural information is beneficial [49].
We also argue that the joint exploitation of different types of over-
lapping multilayer neighborhood can facilitate the link prediction
task. In the Appendix, we will further motivate this aspect.

4 THE ML-LINK FRAMEWORK
To address the link prediction problem for (attributed) multilayer
networks, we define a learning framework based on neural network
models, named ML-Link.

Extracting structural information in the multilayer setting is
more challenging than in the single-layer case, because we need to
handle different layers of connectivity and the complex relation-
ships arising from the multilayer structure (e.g., neighborhoods)
at once. To address these challenges, our framework learns layer-
tailored structural features and relies on different overlapping mul-
tilayer neighborhoods for all paired layers. This allows us to extract
meaningful multilayer structural information and leverage it in
an adaptive manner through an attention mechanism. Another
key challenge is the ability to handle layer-specific node external
features. We address this challenge by delegating it to the GNN
module, which is designed for the multilayer setting.
Overview. Figure 1 illustrates the conceptual architecture of the
proposedML-Link, which is designed as an end-to-end trainable
framework based on two components, named NN-based node-pair
neighborhood feature extraction (NN-NPN) and GNN-based node
embeddings (GNN-NE). The former learns node-pair-level structural
features exploiting the shared neighborhood of any two nodes
in different layers. The latter leverages message passing neural
networks [16] for learning dense representations of nodes in the
network, also exploiting available external information of nodes.

The outputs of the NN-NPN and GNN-NE components are two
scores of link existence, denoted as 𝑠𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) ∈ R and 𝑠𝑛𝑒 (𝑣,𝑢, 𝑙) ∈
R, respectively, for any pair of nodes 𝑣,𝑢 and layer 𝑙 . These scores
are then summed up to finally compute the probability 𝑝 of link
existence between 𝑣 and 𝑢 in layer 𝑙 , which is defined as follows:

𝑝 (𝑣,𝑢, 𝑙) = _ 𝜎 (𝑠𝑛𝑝𝑛 (𝑣,𝑢, 𝑙)) + (1 − _) 𝜎 (𝑠𝑛𝑒 (𝑣,𝑢, 𝑙)), (4)

where _ is a learnable parameter, and 𝜎 (·) is the sigmoid function.

4.1 NN-based Node-pair Neighborhood Feature
Extraction

The NN-NPN component is comprised of three modules that cooper-
ate to learn the link existence scoring function 𝑠𝑛𝑝𝑛 :V×V×𝐿 ↦→ R,
namely: (i) internal structure learning (ISL) for extracting within-
layer node-pair structural features, (ii) external structure learning
(ESL) for extracting across-layer node-pair structural features, and

(iii) context-level attention (CLA) for adaptively weighting the im-
portance of the information yielded from each type of multilayer
neighborhood. The final score produced by the NN-NPN component
for any pair of nodes 𝑣,𝑢 in a layer 𝑙 is as follows:

𝑠𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) = (1 −𝜓)𝑠⇔𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) +𝜓𝑠
⇕
𝑛𝑝𝑛 (𝑣,𝑢, 𝑙), (5)

where 𝑠⇔𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) is the score produced by ISLw.r.t. layer 𝑙 , 𝑠
⇕
𝑛𝑝𝑛 (𝑣,𝑢, 𝑙)

is the score produced by modules ESL and CLA, containing across-
layer information, i.e., overlapping multilayer neighborhoods, and
𝜓 is a tunable parameter.
Internal structure learning. The ISL module relies on within-
layer topological overlap for extracting features of node-pairs. To
this purpose, structural node features are first extracted from the
adjacencymatrix of each layer via layer-specific learnable functions,
based on the message passing paradigm [41]. Given a node ⟨𝑣, 𝑙⟩,
its structural feature ℎ̂⟨𝑣,𝑙 ⟩ ∈ R is learned as follows:

ℎ̂⟨𝑣,𝑙 ⟩ = 𝑔
(𝑙)
2

(∑︁
𝑤∈Γ⟨𝑣,𝑙⟩

𝑔
(𝑙)
1 (A𝑙 [𝑣,𝑤])

)
, (6)

where 𝑔 (𝑙)1 , 𝑔 (𝑙)2 are layer-specific MLPs, and A𝑙 [𝑣,𝑤] denotes the
entry in row 𝑣 and column𝑤 of A𝑙 .

Next, a similarity score between any two nodes is computed
by leveraging the structural features of their common neighbors.
Let Ĥ𝑙 = ∥𝑣∈𝑉𝑙 ℎ̂⟨𝑣,𝑙 ⟩ be the tensor of shape (𝑛𝑙 , 1) obtained by
stacking node features ℎ̂⟨𝑣,𝑙 ⟩ , and let H̃𝑙 = 𝑑𝑖𝑎𝑔(Ĥ𝑙) ∈ R𝑛𝑙×𝑛𝑙 be
its diagonalization. The latter can be used to define the following
matrix to incorporate nodes’ neighborhood structural information:

Z𝑙 = A𝑙 H̃𝑙 . (7)

Above, Z𝑙 is in fact the matrix of structural node representations
whose 𝑣-th row, z⟨𝑣,𝑙 ⟩ ∈ R𝑛 , is the node representation vector for
node ⟨𝑣, 𝑙⟩, where the 𝑤-th entry z⟨𝑣,𝑙 ⟩ [𝑤] is equal to ℎ̂⟨𝑤,𝑙 ⟩ , if
𝑤 ∈ Γ⟨𝑣,𝑙 ⟩ , and 0 otherwise.

For any pair of nodes 𝑣,𝑢 in layer 𝑙 , 𝑠⇔𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) is computed as
the cosine similarity applied to vectors 𝑧⟨𝑣,𝑙 ⟩ and 𝑧⟨𝑢,𝑙 ⟩ , as defined
in Eq. 8:

𝑠⇔𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) =
(z⟨𝑣,𝑙 ⟩)Tz⟨𝑢,𝑙 ⟩z⟨𝑣,𝑙 ⟩2

z⟨𝑢,𝑙 ⟩2
=

=
∑︁

𝑤∈ (Γ⟨𝑣,𝑙⟩∩Γ⟨𝑢,𝑙⟩)

ℎ̂2
⟨𝑤,𝑙 ⟩z⟨𝑣,𝑙 ⟩2
z⟨𝑢,𝑙 ⟩2

.

(8)

External structure learning. The ESL module is designed to cap-
ture multilayer interactions between the entities related to a target
pair of nodes, using their overlapping multilayer neighborhood.
Given a pair of nodes 𝑣,𝑢 in layer 𝑙 , and a set of multilayer neighbor-
hood types T , the goal is to compute an across-layer link existence
score w.r.t. each pair of layers in (𝑙, 𝑙 ′) ∈ 𝑙 × 𝑃 (𝑙) according to each
context 𝜏 ∈ T . To this purpose, we compute two vectors, z(𝜏)⟨𝑣,𝑙 ⟩ and

z(𝜏)⟨𝑢,𝑙 ′ ⟩ , based on the shared neighbors between ⟨𝑣, 𝑙⟩ and ⟨𝑢, 𝑙 ′⟩ un-

der 𝜏 . Here, z(𝜏)⟨𝑣,𝑙 ⟩ ∈ R
𝑛 is the context-aware vector under 𝜏 for node

⟨𝑣, 𝑙⟩, which provides a representation of node ⟨𝑣, 𝑙⟩ informed of
the overlapping multilayer neighborhood between ⟨𝑣, 𝑙⟩ and ⟨𝑢, 𝑙 ′⟩.

Link Prediction on Multilayer Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 1: Overview of our proposedML-Link for link prediction in (attributed) multilayer networks. Blue-colored and
yellow-colored modules refer to the NN-NPN and GNN-NE components, respectively.

Figure 2: Construction of the context-aware vectors for the
pair of nodes 0 and 1 in layers 𝑙 and 𝑙 ′, resp.

The𝑤-th entry of z(𝜏)⟨𝑣,𝑙 ⟩ is defined as ℎ̂⟨𝑤,𝑙 ′ ⟩ , if𝑤 ∈ 𝜏 ∧𝑤 ∉ Γ⟨𝑣,𝑙 ⟩ ,

and ℎ̂⟨𝑤,𝑙 ⟩ otherwise. An illustrative example of construction of
the context aware vectors for the pair of nodes 0 in 𝑙 and 1 in 𝑙 ′ is
shown in Fig. 2, where non-grey-colored entries represent the over-
lapping neighborhoods. For the OAN context, Γ (𝑔)⟨0,𝑙,𝑙 ′ ⟩ = {2, 3, 4, 6},

and Γ
(𝑔)
⟨1,𝑙 ′,𝑙 ⟩ = {2, 3, 4, 5, 6}, thus Γ (𝑜𝑎𝑛) = {2, 3, 4, 6}, i.e., node 5 is

not included in the resulting OAN, because it is not a neighbor
of node 0 neither in layer 𝑙 nor in layer 𝑙 ′. Also, the 6-th entry of
z(𝜏)⟨0,𝑙 ⟩ corresponds to the feature learned for node ⟨6, 𝑙 ′⟩. Similar

considerations hold for the MAAN context, Γ (𝑚𝑎𝑎𝑛) .
The ESL link existence score under 𝜏 for 𝑣,𝑢 in 𝑙 is finally com-

puted through the cosine similarity of the context aware node
representations for each pair of comparable layers (𝑙, 𝑙 ′), as shown
in Eq. 9:

𝑠
(𝜏)
𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) = 𝑔

(𝜏)
3

(⊕
𝑙 ′∈𝑃 (𝑙)

[(𝜏) ·
(z(𝜏)⟨𝑣,𝑙 ⟩)

Tz(𝜏)⟨𝑢,𝑙 ′ ⟩z(𝜏)⟨𝑣,𝑙 ⟩

2

z(𝜏)⟨𝑢,𝑙 ′ ⟩

2

)
, (9)

where [(𝜏) is a weighing coefficient associated with context 𝜏 to
control the weights of each pair of layers (𝑙, 𝑙 ′); by default [(𝜏) is
set to 1, however an alternative setting as 1

𝑘𝑙 ·𝑘𝑙 ′ , with 𝑘𝑙 denoting
the average degree of layer 𝑙 , would be useful for penalizing link
likelihoods more on denser layers. Moreover, 𝑔 (𝜏)3 in Eq. 9 denotes a
transformation function for yielding a high level representation of
the across-layer information scores;

⊕
is the aggregator operator

(e.g., sum or concatenation). In our framework,
⊕

is chosen as the
summation operator, and 𝑔 (𝜏)3 corresponds to a MLP.

Note that, unlike [42], the link predictions are produced using
the cosine similarity function, rather than the dot product, as the

normalization factor reveals to be beneficial for the learning process.
In the Appendix, we give empirical evidence of the effectiveness
of our choice.
Context-level attention. Given the different predictive informa-
tion obtaied w.r.t. the various contexts (i.e., overlapping multilayer
neighborhood types) 𝜏 , we introduce a self-attention mechanism
to weigh the importance that each context has in predicting link
(𝑣,𝑢) in layer 𝑙 . The overall likelihood computed by the node-pair
neighborhood feature extraction module is hence defined as:

𝑠
⇕
𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) =

∑︁
𝜏∈T

𝛼 (𝜏,𝑙)𝑠 (𝜏)𝑛𝑝𝑛 (𝑣,𝑢, 𝑙), (10)

where 𝛼 (𝜏,𝑙) is the normalized amount of attention for neighbor-
hood of type 𝜏 in layer 𝑙 . To learn the attention coefficients, we
follow the formulation used in [40]:

𝛼 (𝜏,𝑙) =
exp (𝑚 (𝜏,𝑙))∑

𝜏∈T
∑
𝑙∈𝐿 exp (𝑚 (𝜏,𝑙))

with,

𝑚 (𝜏,𝑙) =
1
|𝐸𝑙 |

∑︁
(𝑢,𝑣) ∈𝐸𝑙

aT𝑔𝑎𝑡𝑡 (𝑠 (𝜏)𝑛𝑝𝑛 (𝑣,𝑢, 𝑙)),

(11)

where a is the trainable attention vector, and 𝑔𝑎𝑡𝑡 is a MLP.
Note that, to gain insights into which contexts the CLA module

focused on through the conducted experiments, we provide a visual
analysis of the learned attention coefficients, in the Appendix.

4.2 GNN-based Node Embedding
The GNN-NE component is initially in charge of learning node-
level dense representations (embeddings) Z̄, possibly incorporating
layer-specific nodes’ attributes (X), based on intra- and inter-layer
topology information in a unified way:

Z̄ = 𝐹\ (𝐺L ,X). (12)

Z̄ is the learned node-embedding matrix with shape (|VL |, 𝑑), so
that z̄⟨𝑣,𝑙 ⟩ is the embedding for node ⟨𝑣, 𝑙⟩. Moreover, 𝐹\ denotes
a GNN model, with learnable parameters Θ, specifically dealing
with multilayer networks. In this work, we resort to the ML-GNN
framework proposed in [43], which generalizes the message pass-
ing paradigm for multilayer graphs. Our choice for ML-GNN over
existing GNN-based alternatives (e.g., [37]) is mainly motivated

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

since ML-GNN, has shown to be particularly effective in aggre-
gating topological neighborhood information from different layers
directly into the propagation rule of the GNN component, i.e., dur-
ing its forward learning phase, in order to make the embedding of
an entity in a particular layer depending on both its neighbors in
that layer (i.e., within-layer neighborhood) and on its neighbors
located in other layers where the entity occurs (i.e., outside-layer
neighborhood). Moreover, ML-GNN architecture is versatile w.r.t.
both convolutional and attentive GNN models. In our experimen-
tal evaluation of ML-Link, we shall refer to instantiation with the
GATv2 architecture, based on a self-attention mechanism, here-
inafter referred to as ML-GAT [7]. Please note that testing the
impact of further alternative GNNs on our framework is beyond
the scope of this work.

To predict the final GNN-NE function, 𝑠𝑛𝑒 , the embeddings
learned by the ML-GAT model are pairwise used as input of layer-
specific MLP decoders based on the Hadamard product, as shown
in Eq. 13:

𝑠𝑛𝑒 (𝑣,𝑢, 𝑙) = 𝑔 (𝑙)4 (z̄⟨𝑣,𝑙 ⟩ ◦ z̄⟨𝑢,𝑙 ⟩), (13)

where ◦ is the element-wise product, and 𝑔 (𝑙)4 is the MLP predictor
that outputs the GNN-NE likelihood of link formation in 𝑙 .

We point out that, due to the GNN-NE component, ourML-Link
can normally work in case no overlapping neighbors exist between
a pair of nodes, due to the ability of ML-Link to adaptively combine
information from the two components (cf. Eq. 4).

4.3 Loss Function
The loss function of ML-Link is defined for a binary classification
task, where existing edges in the input multilayer network are
treated as positive examples, and a certain amount of non-linked
node-pairs are treated as negative examples. Given any pair of nodes
𝑣,𝑢 in layer 𝑙 , let us denote with 𝑦 (𝑙)(𝑣,𝑢) the associated ground-truth
value, i.e., 1 if the nodes are linked to each other, 0 otherwise.

We optimize the binary cross entropy of each of the learned link-
existence scoring functions, i.e., 𝑠𝑛𝑝𝑛 , 𝑠𝑛𝑒 , and 𝑝 . Considering the
latter, the loss function associated with the overall link-existence
scores is:

I𝑝 =
∑︁
𝑙∈𝐿

∑︁
(𝑣,𝑢) ∈𝐸 (𝑡𝑟𝑎𝑖𝑛)

𝑙

B
(
𝑝 (𝑣,𝑢, 𝑙), 𝑦 (𝑙)(𝑣,𝑢)

)
, (14)

where B is the binary cross entropy function, and 𝐸 (𝑡𝑟𝑎𝑖𝑛)
𝑙

is the
set of (positive and negative) training node-pairs in 𝑙 .

Note that I𝑝 is mainly in charge of balancing, through the learn-
able parameter _, the contributions of the scores yielded by the
NN-NPN and GNN-NE components, where the latter independently
learn their prediction scores. Analogously, we apply binary cross
entropy to the 𝑠𝑛𝑒 and 𝑠𝑛𝑝𝑛 scores, respectively, to compute their
corresponding I𝑛𝑒 and I𝑛𝑝𝑛 loss functions. Finally, the overall loss
function I is computed by summing up I𝑛𝑝𝑛,I𝑛𝑒 , and I𝑝 .

Our choice of combining the individual losses, rather than rely-
ing on I𝑝 only, is motivated since this is likely to make the training
process more stable; intuitively, on the one hand, during the opti-
mization of each component’s loss, wrong scores can be directly
detected during the training, and on the other hand, by optimizing

I𝑝 , errors in individual component could get overlooked if they
compensate each other.

We emphasize that ML-Link is trained in end-to-end manner to
jointly learn the link existence score between any pair of nodes in
all the layers of the network. Therefore, it does not require a separate
training stage for each layer, but one single training for all layers
altogether (cf. Eq. 14).

5 EXPERIMENTAL EVALUATION
Evaluation goals. We design our experimental evaluation to pur-
sue the following objectives: (1) to measure and compare the effec-
tiveness of ML-Link w.r.t. 11 machine-learning-based competitors
and 6 link-prediction heuristics; (2) to carry out an ablation analysis
to show the impact of each constituting module of ML-Link on
the link prediction task; (3) to assess the sensitivity of ML-Link
w.r.t. its main hyper-parameter, i.e.,𝜓 ; (4) to test ML-Link scalabil-
ity capabilities. Also, in the Appendix, we discuss computational
complexity aspects of ML-Link.
Data.We used publicly available real-world multilayer networks
for our main experiments. In addition, we built synthetic networks
of varying size, based on the Watts-Strogatz generative model, for
studying the efficiency of ML-Link. A description of the real-world
networks, the generation process of the synthetic networks, as well
as their structural characteristics, are reported in the Appendix.
Competing methods.We compare the proposedML-Link to an
ensemble of traditional heuristic algorithms, which include Com-
mon Neighbors, Preferential Attachment, Adamic-Adar, Jaccard,
Resource allocation index, and SimRank (cf. Appendix). We also
consider the following methods for link prediction in multilayer
graphs:MAGMA [14], Pujari [36], Jalili [19], Hristova [18], MAA [2],
MELL [30], CrossMNA [12], ML-GAT [43] and GATNE [9]. Yet, we
include widely used methods for link prediction on single layer
networks, such as Neo-GNN [42] and SEAL [45].
Experimental setting. Given a multilayer network, we performed
link prediction on all its layers, at the same time; also, we refer to a
transductive setting, i.e., all the nodes of a network are available
at training time. For the evaluation, we considered the whole set
of edges of a multilayer network, split it into training, test and
validation edge-sets using 10-fold cross validation, and projected
the edges of each fold onto the layers; for instance, if the edge
(𝑢, 𝑣) was in the current training/test/validation split, we took it
in the training/test/validation split of layer 𝑙 only if it appeared in
layer 𝑙 . The negative training/test/validation non-linked node-pairs
were randomly sampled for each layer, in the same amount of the
training/test/validation positive edges. We measured the area under
the ROC curve (AUC) and the average precision (AP) scores on the
union of layer-specific test sets of linked/non-linked node-pairs.

For the single-layer methods, Neo-GNN and SEAL, we first
trained a separate model on each layer of the network, then we
performed inference on the test set of each layer to fit single-layer
approaches for the training and the evaluation on multilayer net-
works. Finally, we computed the AUC and AP values on the con-
catenation of the link existence scores provided by each model. In
the Appendix, we describe the setting of the hyperparameters for
each method.

Link Prediction on Multilayer Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 1: Comparative evaluation: AUC (top) and AP (bottom)
values on real multilayer networks. Bold, resp. underlined,
values correspond to the best, resp. second-best, scores on
each network. OOT: Out-of-Time, OOM: Out-of-Memory

Method Cs-Aarhus CKM Elegans Lazega DkPol ArXiv

ML-Link
97.208 99.269 99.646 99.557 99.552 99.342
97.348 99.268 99.645 99.579 99.515 99.470

Ensemble 89.831 73.528 80.322 81.860 92.124 99.171
89.520 72.906 79.759 80.398 92.423 99.293

MAGMA [14] 85.606 92.341 96.176 82.188 90.749 96.238
80.619 89.659 96.335 79.036 89.632 96.114

Pujari [36] 83.218 69.225 77.017 64.564 79.241 OOT
75.559 74.774 76.763 58.747 71.735 OOT

Jalili [19] 80.717 79.730 67.987 59.801 73.408 OOT
76.270 70.188 65.248 55.223 72.701 OOT

Hristova [18] 79.766 71.803 56.198 55.054 62.586 OOT
60.176 61.44 54.097 53.626 53.295 OOT

MAA [2] 92.083 85.151 86.025 79.682 90.719 OOT
91.611 86.692 84.422 78.260 89.438 OOT

MELL [30] 73.641 68.357 82.093 64.262 45.918 OOM
77.517 77.521 88.644 70.328 48.570 OOM

CrossMNA [12] 78.589 88.317 88.389 74.54 68.371 98.318
75.457 87.859 87.203 69.68 61.268 98.426

ML-GAT [43] 89.432 88.517 96.307 72.623 85.382 82.635
88.754 86.751 95.236 69.047 84.015 76.617

GATNE [9] 85.096 90.033 88.389 78.352 75.579 98.914
84.459 88.445 87.203 75.231 73.317 99.187

Neo-GNN [42] 83.370 89.094 82.793 78.956 81.084 92.176
82.986 87.591 82.405 78.428 81.983 93.847

SEAL [45] 81.986 83.898 87.979 81.429 95.004 98.823
82.316 83.651 86.517 80.140 94.684 98.816

6 RESULTS
Comparative evaluation. Table 1 shows the AUC and the AP
values obtained on real-world multilayer networks by ML-Link,
competing methods, and baselines. Note that, for the sake of pre-
sentation, we summarize in row Ensemble the scores by the best-
performing baseline on each particular dataset (full details are re-
ported in the Appendix). Also, ML-Link results correspond to the
use of all types of multilayer context (T), which reveals to be the
best setting as we shall discuss next in the ablation study.

Looking at Table 1, several remarks stand out. First of all,ML-
Link outperforms all the other methods in all cases, yielding the best
average results across all datasets (on average, 99.09 AUC), followed
byMAGMA (with percentage decrease of about 10% on the averaged
results), MAA and SEAL.ML-Link consistently outperforms Neo-
GNN, which is the only other neural method leveraging overlapping
neighborhoods; this supports our initial intuition that our approach
of considering both within- and across-layer structural features
improves the link prediction performance.

As expected, the two best-performing competitors, i.e., MAGMA
and MAA, are all multilayer methods. The GNN-based approaches,
GATNE and ML-GAT, are among the best multilayer methods;
however, both achieve low performance scores on Lazega. Note that
this is a network with high average degree (12.148 layer average),
high clustering coefficient (0.351), low diameter (5.667), low average
path length (2.211) and present multiple hub nodes. Also, the same
nodes across different layers share similar degree centrality scores.
Given the above structural properties of the network, ML-GAT

and GATNE might learn similar hidden representations for several
nodes, thus complicating the task of distinguishing between existing
and non-existing link.1 By contrast, our ML-Link learns distinct
structural features for each node at each layer, and can extract
complex patterns of structural information regarding links, which
may help the model in discerning between links and non-links.

GATNE performs poorly also on DkPol, which has similar intra-
layer characteristics w.r.t. Lazega, but with a marked unbalance
between layers: the third layer is two orders of magnitude larger
than the other two, and has a significantly higher average degree
(79.922), higher clustering coefficient (0.520), lower diameter (4),
and lower modularity (0.183). Such a lack of structural coherence in
DkPol layers is also detrimental for the performance of CrossMNA
and MELL, where they achieve their worst AUC and AP.

Considering other multilayer methods, Hristova yields the over-
all worst performance, followed by MELL, Jalili and Pujari. By
contrast, as previously mentioned, MAA (which uses the MAAN
neighborhood for computing link existence scores) and MAGMA
perform generally well; however, MAGMA performance is nega-
tively affected on Lazega, likely due to its high density that hinders
MAGMA to learn meaningful patterns.

Both the single-layer GNN methods, i.e., Neo-GNN and SEAL,
and the ensemble of heuristics provide good results on most net-
works, sometimes even better than multilayer methods. However,
note that such methods deal with each layer independently, and
especially the heuristics appear to particularly suffer from the pres-
ence of layers that are far from a small-world model, like in CKM
and Elegans.

On the ArXiv network, which exhibits a high clustering coeffi-
cient (0.650) and modularity (0.942), competitors perform well, with
the exception of those models that running out of time/memory.2
ML-GAT relatively low performance could be ascribed to the net-
work’s high dimensionality and clustering coefficient of each layer,
where nodes within a cluster might negatively impact on the ML-
GAT attentive-based ability to assign diverse weights to each edge.

Overall, empirical evidence has demonstrated the high effec-
tiveness of our ML-Link on networks with different structural
properties. This is ascribed to its ability to extract complex within-
layer and across-layer structural patterns regarding link formation.
Next, in the ablation analysis, we show that when across-layer
information are integrated and adaptively combined, there is a a
performance improvement w.r.t. the case where only within-layer
information are used, by a large margin.
Ablation analysis. To validate the architectural design of our
ML-Link, we assessed the effectiveness of each component, by
examining several simplified variants of ML-Link.

Table 2 summarizes the performance results obtained byML-Link
and its simplified variants on a subset of our evaluation networks.
As expected, the full framework is the best-performing version,

1ML-GAT follows a message passing scheme in which the embedding of a node in one
layer is computed by considering all its neighbors in all the layers, which can lead to
over-smoothing problems [34, 43] due to the excessive aggregation of information.
Similarly, GATNE learns node representations in one layer and a base embedding that
is shared for the same nodes across different layers; also, its optimization procedure
employs a meta-path based random walks strategy combined with the skip-gram
model, ensuring that nodes appearing in the same context have similar embeddings.
2Hristova, Jalili and Pujari ran out-of-time (i.e., > 24h), likely due to their NetworkX
implementation, while MELL faced out-of-memory issues.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

Table 2: Ablation study: AUC (top) and AP (bottom) values
of ML-Link and its simplified versions. Bold and underlined
values correspond to the best and second-best scores, resp.

Method Cs-Aarhus CKM Elegans Lazega DkPol

GNN-NE 89.432 88.517 96.307 72.603 85.382
88.754 86.751 95.236 69.047 84.015

ISL 84.622 62.450 75.158 78.905 85.924
84.848 68.512 73.560 77.035 85.699

ISL w/
GNN-NE

91.16 89.341 96.253 80.577 90.398
91.07 88.645 95.377 79.867 92.031

ISL w/
ESL (Γ (𝑜𝑎𝑛))

90.410 72.301 82.172 78.294 85.531
89.946 76.821 79.523 77.455 82.478

ISL w/
ESL (Γ (𝑚𝑎𝑎𝑛))

89.175 70.723 79.369 80.527 87.915
88.769 75.393 77.826 78.456 86.236

ISL w/ ESL 90.284 73.191 82.693 81.254 87.521
89.566 77.709 80.294 79.200 86.228

NN-NPN 95.927 98.561 98.828 99.023 98.036
95.481 97.576 98.865 99.104 98.560

ML-Link
97.208 99.269 99.646 99.557 99.552
97.348 99.268 99.645 99.579 99.515

while the worst is ISL, whose AUC and AP scores in most datasets
are comparable to Pujari in Table 1. As the overlapping multilayer
neighborhoods are gradually integrated within the ESL module,
the performance tends to significantly increase. Nonetheless, when
both contexts are considered without being adaptively combined
(ISL w/ ESL), the performance improvement is marginal compared
to cases where only one single context is employed (i.e., ISL w/ ESL
(Γ (𝑜𝑎𝑛)), and ISL w/ ESL (Γ (𝑚𝑎𝑎𝑛)). On the other hand, when the
CLA module is used, NN-NPN outperforms all competing methods
shown in Table 1, achieving similar performance as ML-Link. This
is due to the attention mechanism, enabling each layer to learn
the importance to be given for each type of overlapping multilayer
neighborhood. Regarding the GNN-NE component, it stands out
that it is also beneficial for the performance. This is particularly
evident considering that, despite we use the identity matrix ini-
tialization, the ISL w/ GNN-NE version achieves an average AUC
percentage increase of about 15% w.r.t. the ISL version. The above
results demonstrate the importance of each module of ML-Link,
and that all are needed to maximize performance.
Sensitivity analysis. A further stage of evaluation concerned the
impact of the𝜓 hyper-parameter, which weighs the importance of
ISL vs. modules ESL and CLA (cf. Eq. 5). To avoid any bias from the
GNN-NE component, we discarded it in the evaluation; experiments
with the full framework are described in the Appendix.

Figure 3 shows AUC and AP results by varying 𝜓 from 0 to 1;
note that𝜓 = 0 discards the overlapping multilayer neighborhood
contributions (i.e., ESL module is off), which is conversely the only
information used when 𝜓 = 1. In the figure, it can be noticed a
certain robustness of ML-Link w.r.t.𝜓 , as we consistently observe
on all networks that the performances are higher and relatively
stable when 𝜓 ∈ [0.2, 0.9], with peaks reached within [0.5, 0.8].
Note that when 𝜓 = 1, the AUC values tend to slightly decrease,
but do not degrade as observed when 𝜓 = 0, which is due to the
overlappingmultilayer neighborhood contributions that encompass
the within-layer connectivity information.
Efficiency analysis. Table 3 compares the training time of our
frameworkwith that of the strongest competingmethod, i.e., MAGMA,

Figure 3: AUC (left) and AP (right) values by varying𝜓 .

Table 3: Training time (min) of ML-Link vs. MAGMA.

𝛽 = 0.1 𝛽 = 0.5
ML-Link MAGMA ML-Link MAGMA

|𝑉L | GPU CPU CPU GPU CPU CPU
1500 0.013 0.095 0.027 0.023 0.167 0.043
3000 0.020 0.403 0.154 0.034 0.718 0.453
4500 0.030 1.193 0.670 0.059 2.271 1.595
6000 0.060 3.792 5.173 0.120 7.280 5.636
7500 0.102 7.938 8.489 0.211 15.589 12.478
9000 0.179 17.627 20.339 0.397 33.054 29.131
10500 0.339 31.074 34.781 0.740 60.217 54.932
12000 0.641 62.395 77.394 1.322 117.877 148.338
13500 1.366 88.707 127.924 2.659 184.375 235.066

on two sets of small-world networks synthetically generated with
rewiring probability 𝛽 set to 0.1 and 0.5, and by varying the number
of nodes from 500 to 13500 on each set. To make the comparison as
much fair as possible, we took two actions: (i) since the available
code of MAGMA is for CPU only, we show the training time of
ML-Link on both CPU and GPU, and (ii) we used the suboptimal
ISL w/ GNN-NE version of ML-Link to achieve comparable AUC
results with MAGMA (cf. Tables 1–2).

Considering the CPU times, we observe that as the number of
nodes increases, ML-Link tends to be faster than MAGMA for both
sets of networks. On networks corresponding to 𝛽 = 0.5, both GPU
and CPU times of ML-Link are approximately doubled compared to
the case when 𝛽 = 0.1; this is explained since we needed to double
the number of epochs (20) to achieve comparable performance with
MAGMA. The latter also shows slower performance when 𝛽 = 0.5,
as this results in a higher degree of randomness, making the rule
extraction process by MAGMA more challenging.

7 CONCLUSIONS
We presented ML-Link, a novel neural-network-based learning
framework for link prediction on (attributed) multilayer networks,
which jointly learns GNN-based multilayer node embeddings and
NN-based node-pair structural features leveraging different types
of overlapping multilayer neighborhood, thus effectively utilizing
across-layer information for link estimation. Results have shown
that ML-Link consistently outperforms several baselines and com-
peting methods on different real-world multilayer networks, is
faster than the most accurate competing method, and is robust to
the hyper-parameter controlling the impact given to the overlap-
ping multilayer neighborhoods.

Reproducibility Note: Please refer to the Technical Appendix
for further information on our approach, evaluation data and ex-
periments. Source code and evaluation data are made available to
the research community at https:// shorturl.at/ cOUZ4

https://shorturl.at/cOUZ4

Link Prediction on Multilayer Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

REFERENCES
[1] Lada A Adamic and Eytan Adar. 2003. Friends and neighbors on the web. Social

networks 25, 3 (2003), 211–230.
[2] Alberto Aleta, Marta Tuninetti, Daniela Paolotti, Yamir Moreno, and Michele

Starnini. 2020. Link prediction in multiplex networks via triadic closure. Physical
Review Research 2, 4 (nov 2020). https://doi.org/10.1103/physrevresearch.2.042029

[3] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random
networks. science 286, 5439 (1999), 509–512.

[4] Federico Battiston, Vincenzo Nicosia, and Vito Latora. 2014. Structural measures
for multiplex networks. Physical Review E 89, 3 (2014), 032804.

[5] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[6] Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús
Gómez-Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massi-
miliano Zanin. 2014. The structure and dynamics of multilayer networks. Physics
reports 544, 1 (2014), 1–122.

[7] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How Attentive are Graph Atten-
tion Networks? arXiv:2105.14491 [cs.LG]

[8] Lei Cai and Shuiwang Ji. 2020. A multi-scale approach for graph link prediction.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 34. 3308–3315.

[9] Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, and Jie Tang.
2019. Representation learning for attributed multiplex heterogeneous network.
In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining. 1358–1368.

[10] Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca,
Thomas Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire.
2022. Graph neural networks for link prediction with subgraph sketching. arXiv
preprint arXiv:2209.15486 (2022).

[11] Beth Chen, David Hall, and Dmitri Chklovskii. 2006. Wiring optimization can
relate neuronal structure and function. Proceedings of the National Academy of
Sciences of the United States of America 103 (04 2006), 4723–8. https://doi.org/10.
1073/pnas.0506806103

[12] Xiaokai Chu, Xinxin Fan, Di Yao, Zhihua Zhu, Jianhui Huang, and Jingping Bi.
2019. Cross-Network Embedding for Multi-Network Alignment. In The World
Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Association for
Computing Machinery, New York, NY, USA, 273–284. https://doi.org/10.1145/
3308558.3313499

[13] J. Coleman, E. Katz, and H. Menzel. 1957. The diffusion of an innovation among
physicians. Sociometry 20, 4 (1957), 253–270.

[14] Michele Coscia, Christian Borgelt, and Michael Szell. 2022. Fast Multiplex Graph
Association Rules for Link Prediction. arXiv preprint arXiv:2211.12094 (2022).

[15] Manlio De Domenico, Andrea Lancichinetti, Alex Arenas, and Martin Rosvall.
2015. Identifying modular flows on multilayer networks reveals highly over-
lapping organization in interconnected systems. Physical Review X 5, 1 (2015),
011027.

[16] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.
Dahl. 2017. Neural Message Passing for Quantum Chemistry. In Proc. 34th Int.
Conf. on Machine Learning. 1263–1272.

[17] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[18] Desislava Hristova, Anastasios Noulas, Chloë Brown, Mirco Musolesi, and Cecilia
Mascolo. 2015. A Multilayer Approach to Multiplexity and Link Prediction in
Online Geo-Social Networks. EPJ Data Science 5 (08 2015). https://doi.org/10.
1140/epjds/s13688-016-0087-z

[19] Mahdi Jalili, Yasin Orouskhani, Milad Asgari, Nazanin Alipourfard, and Matjaž
Perc. 2017. Link prediction in multiplex online social networks. Royal Society
open science 4, 2 (2017), 160863.

[20] Glen Jeh and Jennifer Widom. 2002. Simrank: a measure of structural-context
similarity. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining. 538–543.

[21] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[22] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P Gleeson, Yamir Moreno,
and Mason A Porter. 2014. Multilayer networks. Journal of complex networks 2, 3
(2014), 203–271.

[23] Matthew Kraatz, Nina Shah, and Emmanuel Lazega. 2003. The Collegial Phe-
nomenon: The Social Mechanisms of Cooperation among Peers in a Corpo-
rate Law Partnership. Administrative Science Quarterly 48 (09 2003), 525.
https://doi.org/10.2307/3556688

[24] Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas. 2020.
Link prediction techniques, applications, and performance: A survey. Physica A:
Statistical Mechanics and its Applications 553 (2020), 124289.

[25] Kyu-Min Lee, Byungjoon Min, and Kwang-Il Goh. 2015. Towards real-world
complexity: an introduction to multiplex networks. The European Physical Journal
B 88 (2015), 1–20.

[26] David Liben-Nowell and Jon Kleinberg. 2003. The link prediction problem for so-
cial networks. In Proceedings of the twelfth international conference on Information
and knowledge management. 556–559.

[27] Matteo Magnani, Obaida Hanteer, Roberto Interdonato, Luca Rossi, and Andrea
Tagarelli. 2022. Community Detection in Multiplex Networks. ACM Comput.
Surv. 54, 3 (2022), 48:1–48:35. https://doi.org/10.1145/3444688

[28] Matteo Magnani, Barbora Micenkova, and Luca Rossi. 2013. Combinatorial
Analysis of Multiple Networks. arXiv:1303.4986 [cs.SI]

[29] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. 2016. A Survey of
Link Prediction in Complex Networks. 49, 4, Article 69 (dec 2016), 33 pages.
https://doi.org/10.1145/3012704

[30] Ryuta Matsuno and Tsuyoshi Murata. 2018. Mell: effective embedding method
for multiplex networks. In Companion Proceedings of the The Web Conference
2018. 1261–1268.

[31] M. E. J. Newman. 2001. Clustering and preferential attachment in growing
networks. Phys. Rev. E 64 (Jul 2001), 025102. Issue 2. https://doi.org/10.1103/
PhysRevE.64.025102

[32] Vincenzo Nicosia, Ginestra Bianconi, Vito Latora, and Marc Barthelemy. 2013.
Growing multiplex networks. Physical review letters 111, 5 (2013), 058701.

[33] Vincenzo Nicosia and Vito Latora. 2015. Measuring and modeling correlations in
multiplex networks. Physical Review E 92, 3 (2015), 032805.

[34] Kenta Oono and Taiji Suzuki. 2019. Graph neural networks exponentially lose
expressive power for node classification. arXiv preprint arXiv:1905.10947 (2019).

[35] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[36] Manisha Pujari and Rushed Kanawati. 2015. Link prediction in multiplex
networks. Networks and Heterogeneous Media 10 (03 2015), 17–35. https:
//doi.org/10.3934/nhm.2015.10.17

[37] Uday Shankar Shanthamallu, Jayaraman J. Thiagarajan, Huan Song, and Andreas
Spanias. 2019. GrAMME: Semi-Supervised Learning using Multi-layered Graph
Attention Models. arXiv:1810.01405 [stat.ML]

[38] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[39] Komal Teru, Etienne Denis, andWill Hamilton. 2020. Inductive relation prediction
by subgraph reasoning. In International Conference on Machine Learning. PMLR,
9448–9457.

[40] Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021. Self-supervised heteroge-
neous graph neural network with co-contrastive learning. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining. 1726–1736.

[41] XiyuanWang, Haotong Yang, andMuhan Zhang. 2023. Neural CommonNeighbor
with Completion for Link Prediction. arXiv preprint arXiv:2302.00890 (2023).

[42] Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim.
2021. Neo-GNNs: Neighborhood Overlap-aware Graph Neural Networks for Link
Prediction. In Advances in Neural Information Processing Systems, M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34.
Curran Associates, Inc., 13683–13694. https://proceedings.neurips.cc/paper_
files/paper/2021/file/71ddb91e8fa0541e426a54e538075a5a-Paper.pdf

[43] Lorenzo Zangari, Roberto Interdonato, Antonio Caliò, and Andrea Tagarelli. 2021.
Graph convolutional and attention models for entity classification in multilayer
networks. Appl. Netw. Sci. 6, 1 (2021), 87. https://doi.org/10.1007/s41109-021-
00420-4

[44] Muhan Zhang. 2022. Graph Neural Networks: Link Prediction. In Graph Neural
Networks: Foundations, Frontiers, and Applications, Lingfei Wu, Peng Cui, Jian Pei,
and Liang Zhao (Eds.). Springer Singapore, Singapore, 195–223.

[45] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in neural information processing systems 31 (2018).

[46] Muhan Zhang and Yixin Chen. 2019. Inductive matrix completion based on graph
neural networks. arXiv preprint arXiv:1904.12058 (2019).

[47] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling trick:
A theory of using graph neural networks for multi-node representation learning.
Advances in Neural Information Processing Systems 34 (2021), 9061–9073.

[48] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. 2009. Predicting missing links via
local information. The European Physical Journal B 71 (2009), 623–630.

[49] Boyao Zhu and Yongxiang Xia. 2015. An information-theoretic model for link
prediction in complex networks. Scientific reports 5, 1 (2015), 13707.

https://doi.org/10.1103/physrevresearch.2.042029
https://arxiv.org/abs/2105.14491
https://doi.org/10.1073/pnas.0506806103
https://doi.org/10.1073/pnas.0506806103
https://doi.org/10.1145/3308558.3313499
https://doi.org/10.1145/3308558.3313499
https://doi.org/10.1140/epjds/s13688-016-0087-z
https://doi.org/10.1140/epjds/s13688-016-0087-z
https://doi.org/10.2307/3556688
https://doi.org/10.1145/3444688
https://arxiv.org/abs/1303.4986
https://doi.org/10.1145/3012704
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.3934/nhm.2015.10.17
https://doi.org/10.3934/nhm.2015.10.17
https://arxiv.org/abs/1810.01405
https://proceedings.neurips.cc/paper_files/paper/2021/file/71ddb91e8fa0541e426a54e538075a5a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/71ddb91e8fa0541e426a54e538075a5a-Paper.pdf
https://doi.org/10.1007/s41109-021-00420-4
https://doi.org/10.1007/s41109-021-00420-4

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

A NOTATIONS
Frequently used symbols throughout the main paper are summa-
rized in Table 4.

B MORE ON OVERLAPPING MULTILAYER
NEIGHBORHOODS

Let us consider the example in Figure 4 to elaborate more on the
OAN and the MAAN neighborhood types (cf. Eqs 2 and 3 in the
main text). For the target pair 0, 1 in layers 𝑙 and 𝑙 ′, the OAN overlap-
ping multilayer neighborhoods is Γ (𝑜𝑎𝑛)(⟨0,𝑙 ⟩,⟨1,𝑙 ′ ⟩) = {2, 3, 4, 6} because
it takes into account the union of the connections of 0 and 1 in both
layers, that is, Γ (𝑔)⟨0,𝑙,𝑙 ′ ⟩ = {2, 3, 4, 6} and Γ

(𝑔)
⟨1,𝑙 ′,𝑙 ⟩ = {2, 3, 4, 5, 6}. The

MAAN overlapping multilayer neighbors is Γ
(𝑚𝑎𝑎𝑛)
(⟨0,𝑙 ⟩,⟨1,𝑙 ′ ⟩) = {3},

since Γ⟨0,𝑙 ⟩ = {2, 3, 4} and Γ⟨1,𝑙 ′ ⟩ = {3, 5}. In this example, it
can be noticed its asymmetry property [2], i.e., Γ (𝑚𝑎𝑎𝑛)

(⟨𝑣,𝑙 ⟩,⟨𝑢,𝑙 ′ ⟩) ≠

Γ
(𝑚𝑎𝑎𝑛)
(⟨𝑢,𝑙 ⟩,⟨𝑣,𝑙 ′ ⟩) , observing that Γ

(𝑚𝑎𝑎𝑛)
(⟨1,𝑙 ⟩,⟨0,𝑙 ′ ⟩) = {6}.

As a realistic scenario of how the joint exploitation of the two
types of overlapping multilayer neighborhoods can be beneficial,
consider Fig. 4 as an OSNwith two layers, where 𝑙 models friendship
and 𝑙 ′ models group membership, e.g., collaboration, trust or shared
interests. For predicting links in layer 𝑙 (friend recommendation),
exploiting a high overlap in the OAN multilayer neighborhoods
between nodes could be beneficial, since two users (0 and 1) might
become friends if they share multiple friends (2 and 4), or people
following the same groups (3), or users not necessarily in the same
layer (6). Conversely, for predicting links in the second layer (group
membership), the OAN overlapping neighborhood could be less
beneficial, since a potentially high overlap of the latter (e.g., users
sharing many friends) may not necessarily mean that people are
interested to join the same groups. Relying on richer information
about the pair of target users (0 and 1), such as their triadic relations
when they belong to different layers (i.e., the MAAN multilayer
neighbor between 0 in 𝑙 and 1 in 𝑙 ′) could be more meaningful,
since two people might be more likely to join the same group in
the future (e.g. 0 and 1 will connect in 𝑙 ′), if one of the two people
has a friend (0 is connected to 3 in 𝑙) who is in the same group of
the other person (3 is connected to 1 in 𝑙 ′).

C COMPUTATIONAL TIME COMPLEXITY
We discuss the computational time complexity of the GNN-NE and
NN-NPN components separately. We assume sparse matrices, that
the size of the hidden dimensions for each neural module is 𝑑 , with
𝑑 ≪ 𝑛, and that link prediction is performed on each layer of the
multilayer graph.

TheGNN-NE component takesO(𝐾 |𝑉L |𝑑2+𝐾 |𝐸L |𝑑) [43], where
𝐾 is the number of GNN’s hidden layers, and𝑑 the size of the hidden
dimension. Regarding the NN-NPN component, learning the struc-
tural node features and constructing Z𝑙 for layer 𝑙 takes O(|𝐸𝑙 |𝑑).
Then, since Z𝑙 is represented as a sparse matrix, the time complexity
of computing the ISL score is O(|𝐸𝑙 |) for each layer. Thus, consid-
ering all the layers, and the ESL, we have O(|𝐸L |𝑑) +∑

𝜏∈T T(𝜏)

where T(𝜏) , is the complexity related to the specific context 𝜏 . For
example, taking into account the OAN multilayer neighborhood
(i.e., 𝜏 = Γ (𝑜𝑎𝑛)), we have that T(𝜏) =

∑
𝑙∈𝐿

∑
𝑙 ′∈𝑃 (𝑙) O(|𝐸𝑙 + 𝐸𝑙 ′ |)

Figure 4: Multiplex network with 2 layers, denoted with 𝑙
and 𝑙 ′, 7 entities and 14 edges. The target pair of nodes in
both layers (0 and 1) is red-colored with bold identifiers.

due to the sum of the adjacency matrices A𝑙 and A′
𝑙
and the com-

putation of the overlapping neighborhood on the resulting matrix.
Thus, assuming the worst-case scenario where each layer 𝑙 is paired
with each other (i.e., 𝑃 (𝑙) = 𝐿 \ {𝑙}), the overall time complexity is
O(|𝐸L |2). On the contrary, if each layer is paired with a constant
number of other layers, the overall time complexity can be reduced
to O(|𝐸L |). Finally, learning the attention coefficients to weigh
each 𝜏 is O(|T ||𝐸L |𝑑).

D DATA DESCRIPTION
D.1 Real-world datasets
We describe the real-world multilayer networks used in our evalua-
tion, whose main statistics are reported in Table 5.

Cs-Aarhus [28] is a social network with five types of (undi-
rected) relations between employees (nodes) in the Department of
Computer Science at Aarhus University. Layers corresponds to on-
line and offline relations: Co-authorship, Facebook, Leisure, Lunch,
Work relations.

CKM [13] is a network built from social information obtained
from physicians (nodes) when adopting new drugs. It includes three
directed layers that represent interactions between physicians: ask
for advice, discussion and friendship.

Lazega [23] is a directed social network between partners and
associates in a corporate law partnership, where its three layers
correspond to Advice, Friendship and Co-workship relationship.

Elegans [11] is an undirected multiplex network representing
the Caenorhabditis elegans connectome. Entities are neurons and
layers correspond to different synaptic junctions: electric, chemical
monadic, and polyadic.

DkPol (Dansk Politik) [27] is a network with three types of
direct online relations (Retweet, Reply, Follow) on Twitter between
Danish politicians running for the parliament who also had a Twit-
ter account.

ArXiv [15] is a co-autorship (undirected) networkwhich consists
of 13 layers corresponding to different arXiv categories.

D.2 Synthetic networks
For the efficiency analysis, we generated two sets of synthetic
networks with 3 layers and a different number of entities (from
500 to 4000 with step 500) using the Watts-Strogatz model. Each
layer was generated with a different realization of Watts-Strogatz,

Link Prediction on Multilayer Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 4: Summary of notations and their description.

Notations Description

𝐺L An attributed multilayer network graph
V,𝑉L , 𝐸L ,X Set of entities/nodes/edges and attributes of 𝐺L
L, 𝐿, ℓ Set of layers, set of layer indices, and number of layers
𝑙, 𝑃 (𝑙) Generic layer, and set of valid pairings with layer 𝑙
𝑉𝑙 , 𝐸𝑙 Set of nodes, and edges in layer 𝑙
A𝑙 , 𝑛𝑙 Adjacency matrix of layer 𝑙 , number of nodes in layer 𝑙
𝑣, ⟨𝑣, 𝑙⟩ Entity 𝑣 , and the associated node (or instance) in layer 𝑙
A𝑙 [𝑣,𝑤] 𝑣,𝑤-th entry of the adjacency matrix A𝑙

⟨𝑣, 𝑙⟩, ⟨𝑢, 𝑙 ′⟩ Pair of nodes in different layers
Γ⟨𝑣,𝑙 ⟩ Local neighborhood in layer 𝑙 for node ⟨𝑣, 𝑙⟩
Γ
(𝑔)
⟨𝑣,𝑙,𝑙 ′ ⟩ Global neighborhood of 𝑣 w.r.t. layer 𝑙 and 𝑙 ′

T , 𝜏 Set of multilayer contexts, and a generic multilayer context
Γ
(𝑜𝑎𝑛)
(⟨𝑣,𝑙 ⟩,⟨𝑢,𝑙 ′ ⟩) , Γ

(𝑚𝑎𝑎𝑛)
(⟨𝑣,𝑙 ⟩,⟨𝑢,𝑙 ′ ⟩) OAN and MAAN multilayer neighborhoods between nodes ⟨𝑣, 𝑙⟩ and ⟨𝑢, 𝑙 ′⟩

ℎ̂⟨𝑣,𝑙 ⟩ Structural feature for node ⟨𝑣, 𝑙⟩
[(𝜏) Weighting factor associated with 𝜏
𝛼 (𝜏,𝑙) Attention coefficient learned for 𝜏 and layer 𝑙
Z𝑙 Structural representations matrix for layer 𝑙
z⟨𝑣,𝑙 ⟩ , z⟨𝑣,𝑙 ⟩ [𝑤] Structural representation of node ⟨𝑣, 𝑙⟩, and its𝑤-th component, resp.
z(𝜏)⟨𝑣,𝑙 ⟩ , z

(𝜏)
⟨𝑣,𝑙 ⟩ [𝑤] Context aware representation under 𝜏 for node ⟨𝑣, 𝑙⟩, and its𝑤-th component, resp.

Z̄ Node embedding matrix
z̄⟨𝑣,𝑙 ⟩ Node embedding for node ⟨𝑣, 𝑙⟩
𝑔
(𝑙)
1 , 𝑔 (𝑙)2 , 𝑔 (𝑙)4 MLPs for layer 𝑙
𝑔𝑎𝑡𝑡 Attention MLP⊕

, 𝑔
(𝜏)
3 Generic aggregation operator and transformation function for context 𝜏 , resp.

𝑠
(𝜏)
𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) ESL link existence score associated with 𝜏
𝑠⇔𝑛𝑝𝑛 (𝑣,𝑢, 𝑙), 𝑠

⇕
𝑛𝑝𝑛 (𝑣,𝑢, 𝑙) ISL and across-layer link existence score for (𝑣,𝑢) in layer 𝑙

𝑝 (𝑣,𝑢, 𝑙), 𝑠𝑛𝑝𝑛 (𝑣,𝑢, 𝑙), 𝑠𝑛𝑒 (𝑣,𝑢, 𝑙) Overall, NN-NPN and GNN-NE link existence scores for (𝑣,𝑢) in layer 𝑙

and using the 0.5% of the number of entities as average degree for
obtaining similar networks to the real ones. Table 6 reports the
basic statistics of the synthetically generated networks.

E ADDITIONAL DETAILS ON EXPERIMENTAL
METHODOLOGY

E.1 Baselines
In our experimental evaluation, baselines correspond to local and
global heuristic algorithms for single-layer networks. In the follow-
ing, we will use Γ𝑣 for denoting the neighborhood of node 𝑣 in a
single-layer graph.

Common Neighbors (CN) [26] computes the likelihood of
connection between two nodes by counting the number of shared
neighbors:

𝐶𝑁 (𝑣,𝑢) = |Γ𝑣 ∩ Γ𝑢 |. (15)

CN is particularly used in the domain of social network for
friend recommendation. Indeed, it has been shown that there is
a correlation between the number of shared neighbors and the
likelihood of linkage between two nodes [31].

Jaccard similarity. Similarly to CN, Jaccard index is also based
on the shared neighbors between two nodes:

𝐽 (𝑣,𝑢) = |Γ𝑣 ∩ Γ𝑢 |
|Γ𝑣 ∪ Γ𝑢 |

. (16)

It normalizes the CN score, quantifying the probability of se-
lecting the common neighbors between two nodes given all the
neighbors of either nodes.

Adamic-Adar. [1] quantifies the similarity between two nodes
by assigning weights to common neighbors:

𝐴𝐴(𝑣,𝑢) =
∑︁

𝑤∈Γ𝑣∩Γ𝑢

1
log |Γ𝑤 | , (17)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

Table 5: Main structural characteristics of the real-world networks; deg, apl, c, den and diam correspond to average degree,
average path length, clustering coefficient, density and diameter, resp. Mod. and comm, correspond to the modularity value and

the number of communities obtained with Louvain [5] algorithm, with resolution equal to 1.

Network |V| |𝑉L | |𝐸L | ℓ deg. apl. cc. den diam. mod. comm.

Cs-Aarhus 61 224 620 5

1.680 1.667 0.429 0.073 8 0.757 8
7.750 1.956 0.481 0.250 4 0.332 4
3.745 3.123 0.343 0.081 8 0.571 6
6.433 3.189 0.569 0.109 7 0.654 5
6.467 2.390 0.339 0.110 4 0.452 4

CKM 246 674 1551 3
2.233 3.481 0.212 0.010 6 0.722 8
2.446 4.504 0.211 0.011 14 0.740 8
2.219 3.669 0.241 0.010 10 0.759 8

Lazega 71 211 2571 3
12.563 2.243 0.365 0.179 6 0.281 3
8.333 2.505 0.347 0.123 7 0.369 4
15.549 1.886 0.341 0.222 4 0.301 3

Elegans 279 791 5860 3
4.063 4.523 0.128 0.016 12 0.638 11
6.304 3.436 0.115 0.024 9 0.483 9
11.486 2.749 0.207 0.041 7 0,432 6

DkPol 490 839 20198 3
4.321 3.965 0.176 0.020 9 0.663 8
2.321 4.404 0.011 0.017 11 0.636 16
79.922 1.920 0.520 0.163 4 0.183 6

ArXiv 14489 26796 59026 13 3.899 ± 0.945 5.598 ± 2.618 0.650 ± 0.180 0.03 ± 0.002 14.538 ± 7.523 0.942 ± 0.04 295.693 ± 154.621

Table 6: Main structural characteristics of the synthetic
networks; deg, apl and cc correspond to average degree,
average path length, and clustering coefficient, resp.

𝛽 = 0.1 𝛽 = 0.5
|V| |𝑉L | |𝐸L | deg apl cc apl cc
500 1500 1400 6.667 12.895 0.321 9.981 0.061
1000 3000 14000 9.333 5.817 0.457 3.983 0.080
1500 4500 25500 11.333 4.929 0.481 3.629 0.086
2000 6000 44000 14.667 4.245 0.503 3.298 0.090
2500 7500 62500 16.667 4.073 0.507 3.228 0.088
3000 9000 87000 19.333 3.902 0.514 3.134 0.090
3500 10500 112000 21.333 3.819 0.519 3.091 0.092
4000 12000 148000 24.667 3.650 0.523 2.996 0.093
4500 13500 180000 26.667 3.588 0.522 2.965 0.092

where each shared neighbors is logarithmically penalized by its
degree. The main assumption is that node with low degree are more
informative, thus they are assigned more weight.

Resource allocation index (RA). [48] Similarly to Adamic-
Adar, RA weighs the contribution of the shared neighbors using a
heavier down-weighting factor:

𝑅𝐴(𝑣,𝑢) =
∑︁

𝑤∈Γ𝑣∩Γ𝑢

1
|Γ𝑤 | . (18)

Compared with Adamic-Adar, it penalizes nodes with high de-
gree more.

Preferential-attachment (PA). [3] measures the likelihood of
connection with the product of node degrees:

𝑃𝐴(𝑢, 𝑣) = |Γ𝑣 | · |Γ𝑢 |. (19)

In this case, the probability of link formation between two nodes
increases as the degree of the pair of nodes.

SimRank. [20] Differently from the previous approaches which
are local methods, SimRank is a global similarity index (i.e., it uses
the whole network information), assuming that two nodes are
similar if they are connected to similar nodes [24]. It is recursively
defined as:

𝑠𝑟 (𝑢, 𝑣) = 𝜔
∑

𝑤∈Γ𝑣
∑
𝑞∈Γ𝑢 𝑠𝑟 (𝑤,𝑞)

|Γ𝑣 | · |Γ𝑢 |
(20)

where 𝑠𝑟 (𝑢, 𝑣) = 1 if 𝑢 = 𝑣 then, and 𝜔 is a damping factor between
0 and 1.

E.2 Implementation details
We implemented our method using PyTorch3 and DGL4 libraries.
For the implementation of heuristic algorithms and MAA mea-
sure, we used the NetworkX library5. For SEAL 6, Neo-GNN7,
CrossMNA8, ML-GAT9 and GATNE10, we used their publicly avail-
able source code. Regarding the remaining methods (MELL, Pujari,
Jalili, Hristova, MAGMA) we adopted the implementation provided
by [14].11

E.3 Hyper-parameters
Single layermethods.We trained learnable single-layer approaches,
i.e., Neo-GNN, and SEAL, by adopting the default hyper-parameters
provided in their source code, except for the number of epochs,
which was set to 100 in order to be consistent with our training
procedure.

3https://pytorch.org/
4https://www.dgl.ai/
5https://networkx.org/documentation/stable/index.html
6https://github.com/facebookresearch/SEAL_OGB
7https://github.com/seongjunyun/Neo-GNNs
8https://github.com/ChuXiaokai/CrossMNA
9https://github.com/lorenzozangari/ML_GNN
10https://github.com/THUDM/GATNE
11https://www.michelecoscia.com/?page_id=1857

https://pytorch.org/
https://www.dgl.ai/
https://networkx.org/documentation/stable/index.html
https://github.com/facebookresearch/SEAL_OGB
https://github.com/seongjunyun/Neo-GNNs
https://github.com/ChuXiaokai/CrossMNA
https://github.com/lorenzozangari/ML_GNN
https://github.com/THUDM/GATNE
https://www.michelecoscia.com/?page_id=1857

Link Prediction on Multilayer Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 5: AUC (left) and AP (right) values by varying𝜓 .

Multilayermethods.RegardingMAGMA, for the common datasets
between our work and theirs (i.e., CKM, Cs-Aarhus, Elegans), we
used the same hyper-parameters provided in their paper (i.e., maxi-
mum pattern size equals to 4, confidence was 0, and support equals
to 15, 20, 75, resp.). For ArXiv, we set the maximum pattern size,
confidence and support equal to 4, 0 and 5. Regarding the other two
datasets (Lazega and DkPol), we reduced the maximum pattern size
due to out-of-time issues. For these networks, we used maximum
pattern size, confidence and support equal to 3, 0 and 75, resp. For
MELL, Jalili, Hristova, and Pujari, we adopted the same configu-
ration used by [14]. For MAA score, we implemented the same
formulation provided in [2], and set the relative weight of each
type of triadic relation to 1. Concerning GATNE and CrossMNA,
we used the default hyper-parameters provided in their source code,
with the exception of the number of epochs, which was set to 100
in order to be consistent with our training procedure. In the case
of CrossMNA, where the default batch size was larger than the size
of some networks, we trained the model using full-batch size.

Concerning our ML-Link, for the ISL module we used the same
hyper-parameters as Neo-GNN. Then, we chose 𝑃 (𝑙) = 𝐿\𝑙 ,𝜓 = 0.5,
[(𝜏) = 1 for each 𝜏 and 1 hidden layer for all the MLPs we used. For
the other hyper-parameters, we performed hyper-parameter tuning
with grid search (cf. source code associated with this submission).
For ML-GAT, we selected the same hyper-parameters as the GNN-
NE module.
Efficiency analysis. Regarding the hyper-parameters chosen in
the efficiency analysis, for MAGMA we selected confidence, sup-
port and maximum pattern size equal to 0, 15 and 3, resp. Although
a support equal to 4 would have allowed to achieve better per-
formance [14], we experimented out-of-memory issues when we
tested MAGMA with a support value of 4.

Concerning our ML-Link, we used the ISL w/ GNN-NE version,
for which we adopted the same hyper-parameters used in the com-
parative evaluation, except for the GNN-NEmodule and the number
of epochs. For the former, we used hidden dimension equal to 256,
attention dropout 0.7 and 1 head of attention. For the latter, we
selected a value allowing to achieve comparable performance with
MAGMA. Regarding the set of networks generated with 𝛽 = 0.1 we
used 10 epochs, while for the other set (𝛽 = 0.5) where networks are
less regular, we need a higher number of epochs (20) to converge.

E.4 Environment
We conducted all the experiments on a Linux machine (OS Ubuntu
22.04 LTS), equipped with 256GB of memory, processor Intel(R)
Xeon(R) Gold 6258R CPU, 2.70GHz and GPU NVIDIA GeForce RTX
3090 with 24GB memory.

Table 7: AUC (on the top) and AP (on the bottom) values
achieved by baseline methods on real world networks. Best

values are in bold.

Baseline Cs-Aarhus CKM Elegans Lazega DkPol ArXiv

CN 88.104 73.276 78.509 79.286 89.743 98.641
85.375 71.692 76.58 77.005 90.309 98.584

PA 65.255 63.92 68.435 69.135 87.783 59.685
67.876 60.946 68.782 67.696 89.274 65.91

Jaccard 87.579 73.11 77.144 81.562 87.897 98.665
86.464 71.565 73.332 79.627 88.154 98.661

RA 89.831 73.511 79.939 81.860 92.124 98.698
89.520 72.831 79.759 80.398 92.423 98.702

Adamic-Adar 89.667 73.528 79.597 80.441 90.339 98.7
89.309 72.906 79.539 79.181 90.909 98.696

SimRank 84.829 70.584 80.322 61.673 57.803 99.171
81.524 70.139 75.558 56.549 51.560 99.293

Table 8: AUC (on the top) and AP (on the bottom) of our
method when using dot product and cosine similarity as

similarity function for producing link existence scores. Best
values are in bold.

Method Cs-Aarhus CKM Elegans Lazega DkPol

NN-NPN (w/ 𝑑𝑜𝑡) 93.213 96.100 97.367 95.422 93.528
92.806 93.653 97.532 95.615 93.688

NN-NPN (w/ 𝑐𝑜𝑠) 95.927 98.561 98.828 99.023 98.036
95.481 97.576 98.865 99.104 98.560

F ADDITIONAL RESULTS
F.1 Baseline results
Table 7 shows the AUC and AP values achieved by each baseline
method. RA shows the best average results across all datasets, while
PA is the worst performing approach.

F.2 Sensitivity analysis with the full framework
Figure 5 shows the AUC andAP values achieved by thewhole frame-
work (i.e., using both the NN-NPN and the GNN-NE component).
We can observe the same trend as for the NN-NPN component,
but with better performance, particularly for the minimum and
maximum values of 𝜓 , i.e., 0 and 1. Thus, we can conclude that
ML-Link in its entirety is more robust w.r.t. the choice of 𝜓 than
using only the NN-NPN component.

F.3 Node-pair similarity analysis
We also present an empirical comparison between the NN-NPN
component using cosine similarity and dot product, which is em-
ployed by [42], as similarity functions for producing the similarity
scores of links existence (Eqs. 8 and 9 in the main text). Table 8
shows that, when using cosine similarity, ML-Link achieves better
AUC and AP scores in all cases. This could be due to the normal-
ization factor, which helps in controlling the magnitude of vector
representations, thus making the training process more stable.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

(a) Cs-Aarhus (b) CKM (c) Elegans

(d) Lazega (e) DkPol

Figure 6: Conditional probability overlap (𝑐𝑝𝑜) for Cs-Aarhus, CKM, Elegans, Lazega, DkPol (left to right). Darker colors
correspond to higher 𝑐𝑝𝑜 .

(a) Cs-Aarhus (b) CKM (c) Elegans (d) Lazega (e) DkPol

Figure 7: Attention coefficients learned for Cs-Aarhus, CKM, Elegans, Lazega, DkPol (from left to right). Darker colors
correspond to higher attention intensity.

F.4 Visual interpretation of the attention
coefficients

We visualize the attention coefficients extracted by the CLAmodule
(cf. Eq. 11 in the main text) which, for each layer, learns the impor-
tance of the predictive information yielded by each overlapping
multilayer neighborhoods, i.e., Γ (𝑜𝑎𝑛) and Γ (𝑚𝑎𝑎𝑛) .

To support our analysis, we compute the similarity between
layers employing the conditional probability overlap (𝑐𝑝𝑜), defined
as follows [4]:

𝜔 (𝑙, 𝑙 ′) = 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 (Al ◦ Al′)
𝑛𝑜𝑛𝑧𝑒𝑟𝑜 (Al′)

(21)

where𝜔 (𝑙, 𝑙 ′) is the probability of finding a link in layer 𝑙 , given the
existing edges in layer 𝑙 ′; 𝑛𝑜𝑛𝑧𝑒𝑟𝑜 counts the number of nonzero
values in a matrix, and ◦ is the element-wise product. Figure 6

Link Prediction on Multilayer Networks Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

shows the 𝑐𝑝𝑜 value for each real-world network, which yields a
non-symmetric similarity matrix for each dataset. We consider the
entry [𝑙, 𝑙 ′] of each matrix as the relative importance the layer 𝑙 ′
has for predicting links formation in layer 𝑙 . However, since we
used the summation operator as

⊕
(cf. Eq. 9 in the main text)

— thus obtaining the overall across-layer predictive information
under each 𝜏 — the attention coefficients and the 𝑐𝑝𝑜 are not di-
rectly comparable. Furthermore, the former are normalized such
that

∑
𝜏∈T

∑
𝑙∈𝐿 𝛼

(𝜏,𝑙) = 1, while each𝜔 (𝑙, 𝑙 ′) is a conditional prob-
ability value for each pair of layers.

Consequently, to interpret the attention weights we use the 𝑐𝑝𝑜
score as a benchmark. That is, we expect that the 𝑐𝑝𝑜 score and
the magnitude of the attention coefficients follow similar patterns.
Figure 7 shows a heatmap expressing the attention coefficients for
each dataset. This shows how each layer distributes its attention
over different 𝜏 ∈ T . As discussed, the attention mechanism allows
the model to selectively integrate the overall predictive information
produced by each overlapping multilayer neighborhoods for each
layer. For example, in Lazega, the model assigns almost the same
importance to each 𝜏 in layer 1 (Advice), but it assigns a larger mag-
nitude to the OAN and the MAAN contexts in layers 2 (Friendship)
and 3 (Co-Workship), respectively. Similarly in CKM, the model as-
signs similar weights to each context in layer 1 (Advice), but assigns
greater weights to the OAN context in the remaining two layers
(Discussion and Friendship). For Cs-Aarhus, the model prefers to
alternate the importance that is given to the different contexts at
each layer. Interestingly, the model prefers the MAAN context for
Co-authorship (1) and Work (5) layers, which can extract more
meaningful and deeper connections. However, the model prefers
the OAN context for Leisure (3) and Lunch (4) layers . For DkPol,
the OAN context is weighted heavily, especially in layer 3 (Follow).

ML-Link can distribute the attention not only across different
multilayer neighborhoods, but also across the layers, thus effectively
estimating the importance of across-layer predictive information.

Comparing Figs. 6 and 7, we can observe that the attention
weights have higher magnitudes for layers with higher 𝑐𝑝𝑜 , and
lower magnitudes for layers with lower 𝑐𝑝𝑜 . This is as expected,
since the 𝑐𝑝𝑜 score measures the similarity between layers, and we
would expect layers that are more similar to be more important
for each other. For example, in DkPol layers 1 and 2 are relatively
important for layer 3, as shown in Fig. 6. Similarly, in Fig. 7 we
can observe that for layer 3 the predictive information carried
by the ESL module is weighted with high intensity. Considering
Elegans and Cs-Aarhus networks we observe a similar behavior,
where layers with higher similarity according the 𝑐𝑝𝑜 score are
weighted heavily by the attention mechanism. Conversely, in CKM
and Lazega, all layers exhibit a high demand for external informa-
tion from other layers (Fig. 6). In these cases, the attention weights
are distributed more uniformly (Fig. 7) across all the layers. This
shows thatML-Link is able to adapt its attention mechanism to the
specific characteristics of the network.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary Definitions
	4 The ML-Link Framework
	4.1 NN-based Node-pair Neighborhood Feature Extraction
	4.2 GNN-based Node Embedding
	4.3 Loss Function

	5 Experimental Evaluation
	6 Results
	7 Conclusions
	References
	A Notations
	B More on overlapping multilayer neighborhoods
	C Computational time complexity
	D Data description
	D.1 Real-world datasets
	D.2 Synthetic networks

	E Additional details on experimental methodology
	E.1 Baselines
	E.2 Implementation details
	E.3 Hyper-parameters
	E.4 Environment

	F Additional Results
	F.1 Baseline results
	F.2 Sensitivity analysis with the full framework
	F.3 Node-pair similarity analysis
	F.4 Visual interpretation of the attention coefficients

