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Abstract

The proliferation of highly realistic singing voice deepfakes presents a significant
challenge to protecting artist likeness and content authenticity. Automatic singer
identification in vocal deepfakes is a promising avenue for artists and rights holders
to defend against unauthorized use of their voice, but remains an open research
problem. Based on the premise that the most harmful deepfakes are those of
the highest quality, we introduce a two-stage pipeline to identify a singer’s vocal
likeness. It first employs a discriminator model to filter out low-quality forgeries
that fail to accurately reproduce vocal likeness. A subsequent model, trained exclu-
sively on authentic recordings, identifies the singer in the remaining high-quality
deepfakes and authentic audio. Experiments show that this system consistently
outperforms existing baselines on both authentic and synthetic content.

1 Introduction

Recent advances in singing voice cloning technology enable the generation of "deepfakes" that are
virtually indistinguishable from authentic recordings, posing a significant threat to content authenticity
and artist likeness protection. In the same way that audio fingerprinting protects recordings from
unauthorized use [1} 2} 3], we propose a system to protect a singer’s vocal likeness. Our goal is to be
able to identify a singer’s voice in both authentic and deepfake recordings, providing a tool for artists
and rights holders to defend against unauthorized uses.

The scientific community has largely pursued two separate countermeasures: deepfake detection,
which aims to distinguish synthetic from authentic audio [4} 5} 16l [7], and singer identification, which
verifies a vocalist’s identity [8, 9]. However, identifying a singer within a deepfake remains a
challenge [[10]. This paper investigates singer identification across authentic and synthetic signals.

We argue that the potential for harm from a deepfake correlates with its quality: a highly realistic fake
is more dangerous than a poor one where the singer is unrecognizable. Based on this observation,
we introduce a two-stage pipeline designed for maximum effectiveness against the most threatening
deepfakes. First, a discriminator model filters out low-quality forgeries, which do not faithfully
reproduce the vocal likeness. Second, a singer identification model trained only on authentic
recordings matches the test recording to known vocal likenesses. Our experiments show that our
system consistently outperforms existing baselines across both authentic and deepfake content.

2 Method

Motivated by the notion that the potential harm that can be caused to an artist by an unauthorized
deepfake is proportional to its perceptual quality, we propose a two-steps pipeline, depicted in
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Figure 1: Proposed two-stage pipeline for singer identification. Stage 1 (D) filters low-quality
deepfakes. Tracks classified as authentic proceed to Stage 2, where singer identity is determined by
nearest neighbor search using cosine distance of extracted embeddings (e).

Figure[I] First, the recording under test is processed by a discriminator D, which objective is to filter
out poor quality deepfakes. Because they typically exhibits significant artifacts and do not faithfully
replicate the singer’s vocal likeness, their potential for harm is comparatively much lower than that of
higher quality deepfakes, and they are likely to be easier to detect. Recordings that are deemed either
high quality deepfakes or authentic by D are passed to the second stage, where a singer identification
model S extracts a vocalist likeness embedding to be compared with a database of known vocalist
likeness embeddings.

For the discriminator (D) we use a Light Convolutional Neural Network (LCNN) [1L1}[12], a compact
and efficient architecture introduced for spoofing detection. It is trained to predict whether a track
is a deepfake or authentic on the CTRSVDD dataset. Because we expect that poor quality deepfakes
should be easy to detect because they features salient and unnatural artifacts, we purposefully keep D
light and its training regime simple. Our expectation is that D would be effective at detecting poor
deepfakes but would be fooled by high quality ones.

For the singer identification model (S) we apply the ECAPA-TDNN architecture [[13]] to singing voice
data and train it as a multi-class classifier. We selected this model architecture, shown to perform well
in speech applications, on the basis that our task also focuses on human voice. In addition, we consider
two baselines. 1- SSL: A Self-Supervised Learning baseline using a Siamese EfficientNet-B0 encoder,
specifically designed to learn singer representations from mel-spectrograms [14]. 2- RESNET-TDNN:
A hybrid model [15]] pre-trained on the VoxCeleb speech dataset [16] to evaluate speech-to-singing
speaker identification transferability. S and SSL are trained only on authentic content. Again, this is
an important property since it makes the method easier to operate and scale, and paired authentic and
deepfake content is rarely available in practice.

To assess the generalization capability of our proposed pipeline across different data distributions,
we use four datasets of music recordings that contain singing voice - see Table[I] These include two
datasets with only authentic recordings (PRIVATE and ARTIST20) and two with both authentic and
deepfake tracks (CTRSVDD and WILDSVDD). All recordings are resampled to 16 kHz for consistency.
PRIVATE: A proprietary corpus of 134,826 tracks from 2,000 different singers, containing authentic
commercial recordings for training S and evaluation. ARTIST20 [17]]: Open dataset of authentic
recordings, used for testing only. CTRSVDD [[18]]: Authentic and deepfake a cappella vocals from
SVDD 2024 Challenge, used for training D and evaluation. WILDSVDD [19]: Designed for real-world
deepfake detection, this dataset introduced by Zhang et al. in [19] includes authentic and synthetic
tracks sourced from social media. Many tracks listed in the original dataset are no longer available.

D S
Authenticity Discriminator Singer Identification
Dataset Audio Contents  Authentic Deepfake Training Testing Training  Testing Reference
PRIVATE Full mix N X X v’ v’ N —
ARTIST20 Full mix N X X N X N Ellis in [17]
CTRSVDD  Vocals only v’ v’ v’ v’ X v’ Zang et al. in [18]
WILDSVDD  Full mix N N X v’ X v’ Zhang et al. in [19]

Table 1: Overview of used datasets. “Full mix” refers to a mix of vocals with (background) music.
“Authenticity” refers to bona fide (“Authentic”) or deepfake audio (“Deepfake”).
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Figure 2: Confusion matrices of the considered singing voice discriminator D across the four different
datasets. False Positive Rate (FPR) (i.e., authentic tracks misclassified as deepfakes) is exceptionally
low across all datasets (see top right corners of the confusion matrices). This means that when D
identifies a track as authentic, it is highly reliable.

We focus on six artists, resulting in 247 tracks evenly split between authentic and fake recordings.
We use this dataset only for the evaluation of the D and S models.

For all datasets, we create an alternative version where vocals and background music are separated
using BS-ROFORMER [20], followed by non-vocal segment removal (4= 40% per track) via an energy-
based Voice Activity Detector (VAD) [21]]. This allows us to focus the training on samples that always
contain vocals, and to use the separated background music as an augmentation.

The model D uses mel-spectrogram as input, with 512 FFT bins, 80 mel bins, a hamming window
length of 400 samples, and a hop length of 160 samples. It was trained using Binary Cross Entropy
loss, a cosine annealing learning rate (10~% to 10~7), and 10~* weight decay. Class imbalance was ad-
dressed via random oversampling, ensuring equal numbers of authentic and deepfake samples in each
batch. Singer identification (S) models ECAPA-TDNN and SSL were trained on 10-second log-mel
spectrogram windows (512 FFT, 400 window, 160 hop, 80 mel bins), batch size of 64, early stopping
(patience 10), cosine annealing learning rate (10~% to 10~7), and 10~° weight decay. Data augmen-
tation (35% probability) included random background music, noise (impulsive/stationary) [22], and
pitch shifting (£2 semitones).

To simulate real-world conditions at inference time, we use the datasets in their original condition (i.e.
no source separation or VAD). Five 10 s windows are extracted from each song for model inference.
For D we average window predictions for a final song classification. For vocalist identification
models, we average the embeddings from the last dense layer of model S, representing vocalist
identity. Singer identity estimation employs cosine distance against reference embeddings, and
performance is evaluated using standard speaker identification metrics (e.g., ROC, ROC, EER).

3 Experiments & Results

Singer Identification: We first evaluate the performance of the singer identification models across
all datasets. Table[2]reveals that ECAPA-TDNN consistently outperforms baselines. RESNET-TDNN’s
performance is comparable to ECAPA-TDNN’s only on CTRSVDD (AUC differences <1%), which we
attribute to the accappella content of CTRSVDD being the most similar to speech. Our music-specific
training regimen proves advantageous on all other datasets that contain background music.

All models tend to exhibit poorer performance on datasets containing deepfakes. To investigate
this further, we analyzed the ECAPA-TDNN’s performance on the CTRSVDD dataset, breaking down
its effectiveness against each deepfake generation algorithm included in the corpus - see Table [3]
Compelling performance is achieved on authentic data and algorithms A01-A05, A12 (AUC > 90%),
while it degrades significantly for algorithms A07-A10 and A13 (EER > 30%). Upon manual
inspection, we observed that performance seem to correlate with the quality of the deepfakes. The
cloned voices generated by algorithms A07-A10 and A13 often do not closely resemble the original
singer. This lack of fidelity likely undermines the effectiveness of the singer identification process. It
also highlights a challenge in the evaluation deepfake singer identification methods: how to deal with
cases where the vocalist is not perceptually recognizable?



Private dataset Artist20 CTRSVDD WILDSVDD Average

Model Ref. EER (%)) AUC(%)T EER(%)]| AUC(%)T EER (%)) AUC(%)T EER(%)] AUC(%)T EER(%)| AUC(%)7T
ECAPA-TDNN 113 4.31 98.29 15.56 91.47 30.34 76.11 19.24 87.41 17.36 88.32
SSL 114 16.13 91.14 25.30 81.78 36.34 68.16 32.92 73.53 27.67 78.65
RESNET-TDNN  [15 8.70 96.28 23.05 84.29 31.46 75.25 21.38 86.41 21.15 85.56

Table 2: Singer identification performance of three models across four different datasets.

A02 REAL A04 A0S AO01 Al2  A03 AO6  All Al3 A09  AI0  A07  AO08

EER (%) 8.83 1073 11.68 12.01 13.88 14.16 1491 2299 2429 30.36 33.61 3398 36.02 36.05
AUC (%) T 9694 9548 9557 9421 9351 9353 9190 84.63 8352 7633 7158 71.12 68.67 69.17

Table 3: Singer identification performance (ECAPA-TDNN) on CTRSVDD dataset. High EER for
algorithms (A07-A10, A13) is linked to poor cloned voice fidelity, impacting identification accuracy.

Pipeline EER (%)) AUC (%) T

S 30.34 76.11
CTRSVDD  po s 16.82 88.90
S 19.24 87.41

WILDSVDD - 1y g 15.55 91.55
R S 24.79 81.76
verage DoS 16.19 90.23

Table 4: Singer identification (S) performance of ECAPA-TDNN with (D o §) and without (S)
discriminator D. Using the discriminator significantly improves singer identification.

Singing Voice Deepfake Discriminator: We introduced a discriminator D to handle poor-quality
deepfakes, and evaluate it as a binary vocal deepfake classifier. The confusion matrices in Figure 2]
show a low False Positive Rate (FPR) across all datasets, indicating high reliability on authentic
tracks. This is an important property since, in practice, flagging an authentic track as deepfake may
have damaging consequences. The False Negative Rate (FNR) (i.e. deepfake tracks misclassified as
authentic) is significantly higher in WILDSVDD than in CTRSVDD. Given our empirical observation
of the varying deepfakes quality in CTRSVDD, we hypothesize it may explain the difference in FNR.
WILDSVDD’s higher FNR would then suggest it contains higher-quality deepfakes that can effectively
fool D, whereas CTRSVDD’s lower quality deepfakes are easier to detect.

Combining Singing Voice Deepfake Detection and Singer Identification: As a final experiment,
we evaluate the benefits of the proposed 2-step pipeline described in Figure [Ii We evaluate the
framework on the CTRSVDD and WILDSVDD datasets, considering only tracks classified as authentic
by the discriminator (we label this condition D o §) and compare it to the performance of the singer
identification model only (labeled S). Table 4] shows the results for EER and AUC metrics, which
reveal that introducing D significantly enhances singer identification performance. Combining the
results of our experiments and our empirical observation of varied deepfake quality, our interpretation
is that ensuring S operates on realistic vocal likenesses, makes the singer identification task more
meaningful and tractable (attempting to identify a singer in the case of an unidentifiable likeness is
bound to fail). In future work we propound to cross-reference these results with a study of deepfakes
perceptual quality to test our interpretation further.

4 Conclusions

This paper addresses singer identification in authentic and deepfake singing voices recordings. We
proposed a novel two-stage pipeline based on the premise that the highest quality deepfakes are those
with the greatest potential for harm. Our experiments show that our proposed method outperforms
baselines on multiple benchmarks. Combining these results with empirical observation suggests that
the performance of singer identification models degrades on low quality deepfakes, where the vocal
likeness is not faithfully reproduced. Our interpretation is that the introduction of the discriminator
allows the singer identification model to only operate on high quality deepfakes and therefore makes
the identification task more meaningful and tractable. For future work we recommend a perceptual
study of deepfake quality to further test this interpretation.
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