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ABSTRACT

Graph Neural Networks (GNNs) excel in learning from relational datasets, pro-
cessing node and edge features in a way that preserves the symmetries of the
graph domain. However, many complex systems—such as biological or social
networks—involve multiway complex interactions that are more naturally repre-
sented by higher-order topological domains. The emerging field of Topological
Deep Learning (TDL) aims to accommodate and leverage these higher-order struc-
tures. Combinatorial Complex Neural Networks (CCNNs), fairly general TDL
models, have been shown to be more expressive and better performing than GNNs.
However, differently from the graph deep learning ecosystem, TDL lacks a princi-
pled and standardized framework for easily defining new architectures, restricting
its accessibility and applicability. To address this issue, we introduce Generalized
CCNNs (GCCNs), a novel simple yet powerful family of TDL models that can be
used to systematically transform any (graph) neural network into its TDL coun-
terpart. We prove that GCCNs generalize and subsume CCNNSs, while extensive
experiments on a diverse class of GCCNs show that these architectures consistently
match or outperform CCNNSs, often with less model complexity. In an effort to
accelerate and democratize TDL, we introduce TopoTune, a lightweight software
for defining, building, and training GCCNs with unprecedented flexibility and ease.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008} |Corso et al., 2024) have demonstrated
remarkable performance in several relational learning tasks by incorporating prior knowledge through
graph structures (Kipf & Welling, 2017;|Zhang & Chen,|2018). However, constrained by the pairwise
nature of graphs, GNNs are limited in their ability to capture and model higher-order interactions—
crucial in complex systems like particle physics, social interactions, or biological networks (Lambiotte
et al.l|2019). Topological Deep Learning (TDL) (Bodnar,2023) precisely emerged as a framework that
naturally encompasses multi-way relationships, leveraging beyond-graph combinatorial topological
domains such as simplicial and cell complexes, or hypergraphs (Papillon et al., 2023)

In this context, Hajij et al. (2023;[2024a) have recently introduced combinatorial complexes, fairly
general objects that are able to model arbitrary higher-order interactions along with a hierarchical
organization among them-hence generalizing (for learning purposes) most of the combinatorial
topological domains within TDL, including graphs. The elements of a combinatorial complex are
cells, being nodes or groups of nodes, which are categorized by ranks. The simplest cell, a single node,
has rank zero. Cells of higher ranks define relationships between nodes: rank one cells are edges,
rank two cells are faces, and so on. |Hajij et al.| (2023) also proposes Combinatorial Complex Neural
Networks (CCNNSs), machine learning architectures that leverage the versatility of combinatorial
complexes to naturally model higher-order interactions. For instance, consider the task of predicting
the solubility of a molecule from its structure. GNNs model molecules as graphs, thus considering
atoms (nodes) and bonds (edges) (Gilmer et al., 2017). By contrast, CCNNs model molecules as
combinatorial complexes, hence considering atoms (nodes, i.e., cells of rank zero), bonds (edges, i.e.,
cells of rank one), and also important higher-order structures such as rings or functional groups (i.e.,
cells of rank two) (Battiloro et al.,[2024).

!'Simplicial and cell complexes model specific higher-order interactions organized hierarchically, while
hypergraphs model arbitrary higher-order interactions but without any hierarchy.
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Figure 1: Generalized Combinatorial Complex Network (GCCN). The input complex C has
neighborhoods Mg = {N1, N, N3}. A. The complex is expanded into three augmented Hasse
graphs Gy, @ = {1, 2, 3}, each with features H;, represented as a colored disc. B. A GCCN layer
dedicates one base architecture wy;, (GNN, Transformer, MLP, etc.) to each neighborhood. C. The
output of all the architectures wy, is aggregated rank-wise, then updated. In this example, only the
complex’s edge features (originally pink) are aggregated across multiple neighborhoods (N3 and

N3).

TDL Research Trend. To date, research in TDL has largely progressed by taking existing GNNs
architectures (convolutional, attentional, message-passing, etc.) and generalizing them one-by-one to
a specific TDL counterpart, whether that be on hypergraphs (Feng et al.|[2019; /Chen et al., 2020a;
Yadati, |2020)), on simplicial complexes (Roddenberry et al., 2021; Yang & Isufi}|2023; [Ebli et al.|
2020; |Giusti et al., [2022a; Battiloro et al., [2023; |Bodnar et al., 2021b; [Maggs et al., [2024), on
cell complexes (Hajij et al.l 2020; |Giusti et al., [2022b; Bodnar et al.| 2021a)), or on combinatorial
complexes (Battiloro et al., 2024} [Eitan et al., 2024). Although overall valuable and insightful, such a
fragmented research trend is slowing the development of standardized methodologies and software
for TDL, as well as limiting the analysis of its cost-benefits trade-offs (Papamarkou et al.| [2024).
We argue that these two relevant aspects are considerably hindering the use and application of TDL
beyond the community of experts.

Current Efforts and Gaps for TDL Standardization. TopoX (Hajij et al.||2024b) and TopoBench-
mark (Telyatnikov et al.| 2024) have become the reference Python libraries for developing and
benchmarking TDL models, respectively. However, despite their potential in defining and implement-
ing novel standardized methodologies in the field, the current focus of these packages is on replicating
and analyzing existing message-passing CCNNs. Works like Jogl et al. (2022bja) have instead
focused on making TDL accessible and reproducible by porting models to the graph domain. They
do so via principled transformations from combinatorial topological domains to graphs. However,
although these architectures over the resulting graph-expanded representations are as expressive as
their TDL counterparts (using the Weisfeiler-Lehman criterion (Xu et al.|[2019a)), they are neither
formally equivalent to nor a generalization of their TDL counterparts. Due to loss of topological
information during the graph expansion, the GNNs on the resulting graph do not preserve the same
topological symmetry as their TDL counterparts.

Contributions. This works seeks to accelerate TDL research and increase its accessibility and
standardization for outside practitioners. To that end, we introduce a novel joint methodological and
software framework that easily enables the development of new TDL architectures in a principled
way—overcoming the limitations of existing works. We outline our main contributions and specify
which of the field’s open problems (as defined in Papamarkou et al.|(2024)) they help answer:

» Systematic Generalization. We propose the first method to systematically generalize any neural
network to its topological counterpart with minimal adaptation. Specifically, we define a novel
expansion mechanism that transforms a combinatorial complex into a collection of graphs, enabling
the training of TDL models as an ensemble of synchronized models. To our knowledge, this is the
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first method which is designed to work across many topological domains. (Open problems 6, 11:
need for foundational, cross-domain TDL.)

¢ General Architectures. Our method induces a novel wide class of TDL architectures, Generalized
Combinatorial Complex Networks (GCCNs), portrayed in Fig. [T GCCNs (i) formally generalize
CCNN:g, (i) are cell permutation equivariant, and (iii) are as expressive as CCNNs. (Open problem
9: consolidating TDL advantages in a unified theory.)

* Implementation. We provide TopoTune, a lightweight PyTorch module for designing and imple-
menting GCCNs fully integrated into TopoBenchmark (Telyatnikov et al.,[2024). Using TopoTune,
both newcomers and expert TDL practitioners can, for the first time, easily define and iterate upon
TDL architectures. (Open problems 1, 4: need for accessible TDL, need for software.)

* Benchmarking. Using TopoTune, we create a broad class of GCCNs using four base GNNs and
one base Transformer over two combinatorial topological spaces (simplicial and cell complexes).
A wide range of experiments on graph-level and node-level benchmark datasets shows GCCNs
generally outperform existing CCNNs, often with smaller model sizes. Some of these results
are obtained with GCCNs that cannot be reduced to standard CCNNs, further underlining our
methodological contribution. We will provide all code and experiment scripts in the camera-ready
paper. (Open problem 3: need for standardized benchmarking.)

Outline. Section |2 provides necessary background. Section[3 motivates and positions our work
in the current TDL literature. Sectiondlintroduces and discusses GCCNs. Section[3]introduces and
describes TopoTune. Finally, Section [6]showcases extensive numerical experiments and comparisons.

2 BACKGROUND

To properly contextualize our work, we revisit in this section the fundamentals of combinatorial
complexes and CCNNs——closely following the works of |[Hajij et al.[ (2023) and Battiloro et al.
(2024)—as well as the notion of augmented Hasse graphs. Appendix |A provides a brief introduction
to all topological domains used in TDL, such as simplicial and cell complexes.

Combinatorial Complex. A combinatorial complex is a triple (V, C,1k) consisting of a set ), a
subset C of the powerset P())\{(}, and a rank function rk : C — Zx( with the following properties:

1. forallv € V, {v} € C and rk({v}) = 0;

2. the function rk is order-preserving, i.e., if o, 7 € C satisfy o C 7, then rk(o) < rk(7).

The elements of ) are the nodes, while the elements of C are called cells (i.e., group of nodes). The
rank of acell o € C is k :=rk(o), and we call it a k-cell. C simplifies notation for (V, C,1k), and its
dimension is defined as the maximal rank among its cell: dim(C) := maxy¢c rk(o).

Neighborhoods. Combinatorial complexes can be equipped with a notion of neighborhood among
cells. In particular, a neighborhood A/ : C — P(C) on a combinatorial complex C is a function that
assigns to each cell o in C a collection of “neighbor cells” A (o) C C U (). Examples of neighborhood
functions are adjacencies, connecting cells with the same rank, and incidences, connecting cells with
different consecutive ranks. Usually, up/down incidences N7 + and N7 | are defined as

Niqy(o)={reC|tk(r) =1k(o) + 1,0 C 7}, Nj (o) ={r €C|k(r) =1k(o) — 1,7 C o}.

)]
Therefore, a k + 1-cell T is a neighbor of a k-cell o w.r.t. to N 1,1 if o is contained in 7; analogously,
a k — 1-cell 7 is a neighbor of a k-cell o w.r.t. to N7 if 7 is contained in 0. These incidences induce
up/down adjacencies N4 + and N4 | as

Naq(o)={reC|tk(r) =1k(0),36 € C : tk(0) =1k(0) + 1,7 C 4, and o C §},
Na(o)={reC|tk(r) =1k(0),36 € C : tk(d) =1k(0) = 1,6 C 7, and 6 C o}.  (2)
Therefore, a k-cell 7 is a neighbor of a k-cell o w.r.t. to N4 + if they are both contained in a k + 1-cell

d; analogously, a k-cell 7 is a neighbor of a k-cell o w.r.t. to N4 | if they both contain a k& — 1-cell 4.
Other neighborhood functions can be defined for specific applications (Battiloro et al., 2024).
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Figure 2: Augmented Hasse graphs. Expansions of a combinatorial complex C (middle) into two
augmented Hasse graphs: (left) the Hasse graph induced by Ne = {N7  }; (right) the augmented
Hasse graph induced by N¢ = {N7 |, Na+}. Information on cell rank is discarded (we retain rank
color for illustrative purposes).

Combinatorial Complex Message-Passing Neural Networks. Let C be a combinatorial complex,
and N¢ a collection of neighborhood functions. The [-th layer of a CCNN updates the embedding

hl e RF' of cell o as

hfj_‘—l = (b hfra ® @ w./\/,rk(o') (hfra hi—) € RFLJrl 3)
NeNe TeN (o)

where h) := h, are the initial features, P is an intra-neighborhood aggregator, ) is an inter-

neighborhood aggregator. The functions a7 i (.) : RF' — RF"™™ and the update function ¢ are
learnable functions, which are typically homogeneous across all neighborhoods and ranks. In other
words, the embedding of a cell is updated in a learnable fashion by first aggregating messages with
neighboring cells per each neighborhood, and then by further aggregating across neighborhoods. We
remark that by this definition, all CCNNs are message-passing architectures. Moreover, they can only
leverage neighborhood functions that consider all ranks in the complex.

Augmented Hasse Graphs. In TDL, a Hasse graph is a graph expansion of a combinatorial
complex. Specifically, it represents the incidence structure A7 | by representing each cell (node,
edge, face) as a node and drawing edges between cells that are incident to each other. For example, if
three edges bound a face, then in the Hasse graph, the three nodes representing the three edges will
each share an edge with the node representing the face. Going beyond just considering N7 | , given a
collection of multiple neighborhood functions, every combinatorial complex C can be expanded into
a unique graph representation. We refer to this representation as an augmented Hasse graph (Hajij
et al.,[2023). Formally, let AV be a collection of neighborhood functions on C: the augmented Hasse
graph Gy, of C induced by A is a directed graph Gar, = (C, Enr,) with cells as nodes, and edges
given by

Ne ={(r,0)|lo,7 € C,AN € Ne: 7 € N(o)}. (4)

The augmented Hasse graph of a combinatorial complex is thus obtained by considering the cells
as nodes, and inserting directed edges among them if the cells are neighbors in C. Fig. [2/shows an
example of a combinatorial complex as well as i) a Hasse graph and ii) an augmented Hasse graph.
Notably, such a representation of a combinatorial complex discards all information about cell rank.

3  MOTIVATION AND RELATED WORKS

As outlined in the introduction, TDL lacks a comprehensive framework for easily creating and experi-
menting with novel topological architectures—unlike the more established GNN field. This section
outlines some previous works that have laid important groundwork in addressing this challenge.

Formalizing CCNNs on graphs. The position paper (Velickovic,2022) proposed that any function
over a higher-order domain can be computed via message passing over a transformed graph, but
without specifying how to design GNNs that reproduce CCNNs. Later, (Hajij et al.,|2023) proposed
that, given a combinatorial complex C and a collection of neighborhoods Ne, a message passing GNN
that runs over the augmented Hasse graph G, is equivalent to a specific CCNN as in (3) running over
C using: i) N¢ as collection of neighborhoods; ii) same intra- and inter-aggregations, i.e., @ = );
and iii) no rank- and neighborhood-dependent message functions, i.e., Yar () = ¥ YN € Ne.
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Figure 3: Ensemble of strictly augmented Hasse Graphs. Given a complex C with neighborhood
structure including both incidence and upper adjacency (left), this graph expansion (right) produces
one augmented Hasse graph for each neighborhood.

Retaining expressivity, but not topological symmetry. [Jogl et al. (2022azb) demonstrate that
GNNs on augmented Hasse graphs G, are as expressive as CCNNs on C (using the WL criterion),
suggesting that some CCNNs can be simulated with standard graph libraries. However, as
the authors state, such GNNs do not structurally distinguish between cells of different ranks or
neighborhoods, collapsing topological relationships into a single representation. For instance, in a
molecule (cellular complex), two bonds (edges) may simultaneously share multiple neighborhoods:
lower-adjacent through a shared atom (node) and upper-adjacent through a shared ring (face). A
GNN on G, collapses these distinctions, applying the same weights to all connections and losing
the structural symmetries encoded in the domain. While this may suffice for preserving expressivity,
it is inherently a very different computation than that of TDL models.

The Particular Case of Hypergraphs. Hypergraph neural networks have long relied on graph
expansions (Telyatnikov et al.,|2023), which has allowed the field to leverage advances in the graph
domain and, by extension, a much wider breadth of models (Antelmi et al.||2023; |Papillon et al.,[2023).
Most hypergraph models are expanded into graphs using the star (Zhou et al.| 2006 |Solé et al.| [1996),
the clique (Bolla, 1993} Rodriguez, 2002} (Gibson et al., 2000), or the line expansion (Bandyopadhyay
et al.,|2020). As noted by|Agarwal et al.|(2006), many hypergraph learning algorithms leverage graph
expansions.

The success story of hypergraph neural networks motivates further research on new graph-based
expansions that generalize and subsume current CCNNs. These expansions could, at the same time,
encompass current CCNNs and exploit progress in the GNN field. Therefore, returning to our core
goal of accelerating and democratizing TDL while preserving its theoretical properties, we propose a
two-part approach: a novel graph-based methodology able to generate general architectures (Section
H), and a lightweight software framework to easily and widely implement it (Section|5).

4 GENERALIZED COMBINATORIAL COMPLEX NEURAL NETWORKS

We propose Generalized Combinatorial Complex Neural Networks (GCCNs), a novel broad class of
TDL architectures. GCCNs overcome the limitations of previous graph-based TDL architectures by
leveraging the notions of strictly augmented Hasse graphs and per-rank neighborhoods.

Ensemble of Strictly Augmented Hasse Graphs. This graph expansion method (see Fig. [3)
extends from the the established definition of an augmented Hasse graph (see Fig. [2). Specifically,
given a combinatorial complex C and a collection of neighborhood functions N, we expand it into
|Nc| graphs, each of them representing a neighborhood A € A¢. In particular, the strictly augmented
Hasse graph Gar = (Cpr, Ex) of a neighborhood N € A is a directed graph whose nodes Cs and
edges £ are given by:

Cny ={o0 €C|N(o) #0}, Ex ={(7,0) [T € N(0)}. ®)

Following the same arguments from [Hajij et al.|(2023), a GNN over the strictly augmented Hasse
graph G induced by N is equivalent to a CCNN running over C and using N¢ = {N} up to the
(self-)update of the cells in C/Cys.

’The same authors generalize these ideas to non-standard message-passing GNNs (Jogl et al., [2024)
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Figure 4: Per-rank neighborhoods. Given a complex C (left), we illustrate four examples of per-rank
neighborhoods (right). In each case, they only include rank-specific cells.

Per-rank Neighborhoods. The standard definition of adjacencies and incidences given in Section 2|
implies that they are applied to each cell regardless of its rank. For instance, consider a combinatorial
complex of dimension two with nodes (0-cells), edges (1-cells), and faces (2-cells).

 Employing the down incidence N7 | as in (I)) means the edges must exchange messages with their
endpoint nodes, and faces must exchange messages with the edges on their sides. It is impossible
for edges to exchange messages while faces do not.

 Employing the up adjacency N4 + as in @) means the nodes must exchange messages with other
edge-connected nodes, and edges must exchange messages the other edges bounding the same
faces. It is impossible for nodes to exchange messages while edges do not.

This limitation increases the computational burden of standard CCNNs while not always increasing
the learning performance, as we will show in the numerical results. For this reason, we introduce
per-rank neighborhoods, depicted in Fig. | Formally, a per-rank neighborhood function A" is a
neighborhood function that, regardless of its definition, maps a cell ¢ to the empty set if ¢ is not a
r-cell (i.e., a cell of rank r). For example, the up/down r-incidences N 7+ and N, 7, are defined as

. {reClik(r) =r1k(o)+ 1,0 C 7}ifrk(c) =7
140) = {(Z) otherwise ’ ©)
. {recC|k(r)=r1k(c) — 1,0 C 7}ifrk(c) =7
14(0) = {(Z) otherwise ’ ™

and the up/down r-adjacencies me and N,Q, | can be obtained analogously. So, it is now straightfor-
ward to model a setting in which:

« Employing only VNV, 11 | (Fig. |4(ii1)) allows edges to exchange messages with their bounding nodes
but not triangles with their bounding edges.

* Employing only NBLT (Fig. E(i)) allows nodes to exchange messages with their edge-connected
nodes but not edges do not exchange messages with other edges that are part of their same faces.

Generating Graph-based TDL Architectures. We use these notions to define a novel graph-based
methodology for generating principled TDL architectures. Given a combinatorial complex C and a
set N¢ of neighborhoods, the method works as follows (see also Fig. [T):

A. C is expanded into an ensemble of strictly augmented Hasse graphs—one for each N/ € N¢.

B. Each strictly augmented Hasse graph Gar and the features of its cells are independently processed
by a base model.

C. An aggregation module () synchronizes the cell features across the different strictly augmented
Hasse graphs (as the same cells can belong to multiple strictly augmented Hasse graphs).

This method enables an ensemble of synchronized models per layer— the wss—each of them applied
to a specific strictly augmented Hasse graph Additionally, such a pipeline confers unprecedented
flexibility in choosing a subset of neighborhoods of interest, allowing the consideration of per-rank
neighborhoods within TDL. The rest of this section formalizes the architectures induced by this
methodology and describes their theoretical properties.

3Contrary to past CCNN simulation works that apply a model to the singular, whole augmented Hasse graph.
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Generalized Combinatorial Complex Networks. We formally introduce a broad class of novel
TDL architectures called Generalized Combinatorial Complex Networks (GCCNs), depicted in Fig.
Let C be a combinatorial complex containing |C| cells and N¢ a collection of neighborhoods on it.
Assume an arbitrary labeling of the cells in the complex, and denote the i-th cell with o;. Denote by
H € RICIXF the feature matrix collecting some embeddings of the cells on its rows, i.e., [H]; = h,,,
and by Hyr € RICVIXF the submatrix containing just the embeddings of the cells belonging to the
strictly augmented Hasse graph G of N. The i-th layer of a GCCN updates the embeddings of the

cells H! € RICIXF' 4

H = (Hl’ X wN(Hk,gm) e RIS, ®)
NeNe

where HY collects the initial features, and the update function ¢ is a learnable row-wise update func-
tion, i.e., [p(A, B)]; = ¢([A];, [B];). The neighborhood-dependent sub-module wys : RICV| xF
RICN X F Hl, which we refer to as the neighborhood message function, is a learnable (matrix) function
that takes as input the whole strictly augmented Hasse graph of the neighborhood, Gar and the
embeddings of the cells that are part of it, and gives as output a processed version of them. Finally,
the inter-neighborhood aggregation module Q) synchronizes the possibly multiple neighborhood
messages arriving on a single cell across multiple strictly augmented Hasse graphs into a single mes-
sage. In this way, the embedding of a cell collects information about the whole relational structures
induced by each (nonempty) neighborhood. GCCNSs enjoy increased flexibility over CCNS (eq. |3)) as
their neighborhoods are allowed to be rank-dependent and the corresponding wa/’s are not necessarily
message-passing based.

/

Theoretical properties of GCCNs. h

1. Generality. GCCNs formally generalize CCNNSs.

Proposition 1. Let C be a combinatorial complex. Let N¢ be a collection of neighbor-
hoods on C. Then, there exists a GCCN that exactly reproduces the computation of a
CCNN over C using Ne.

2. Permutation Equivariance. Generalizing CCNNs, GCCNs layers are equivariant with
respect to the relabeling of cells in the combinatorial complex.

Proposition 2. A GCCN layer is cell permutation equivariant if the neighborhood mes-
sage function is node permutation equivariant and the inter-neighborhood aggregator is
cell permutation invariant.

3. Expressivity. The expressiveness of TDL models is tied to their ability to distinguish
non-isomorphic graphs. Variants of the Weisfeiler-Leman (WL) test, like the cellular
WL for cell complexes (Bodnar et al.,2021a), set upper bounds on their corresponding
TDL models’ expressiveness, as the WL test does for GNNs (Xu et al.,[2019a).

Proposition 3. GCCNs are strictly more expressive than CCNNs.

\__The proofs are provided in Appendix[B.T,[B.2, and[B.3] respectively. Y,

Given Proposition[I} GCCNs allow us to define general TDL models using any neighborhood message
function wys, such as any GNN. Not only does this framework avoid having to approximate CCNN
computations, as is the case in previous works(]ogl et al.,|2022bja; [2023), but it also enjoys the
same permutation equivariance as regular CCNNs (Proposition [2). We show in Appendix [C] that
the resulting time complexity of a GCCN is a compromise between a typical GNN and a CCNN.
Differently from the work in (Hajij et al.,|2023), the fact that GCCNSs can have arbitrary neighborhood
message functions implies that non message-passing TDL models can be readily defined (e.g., by
using non message-passing models as neighborhood message functions). Moreover, the fact that the
whole strictly augmented Hasse graphs are given as input enables also the usage of multi-layer GNNs
as neighborhood message functions. To the best of our knowledge, GCCNs are the only objects in
the literature that encompass all the above properties.

*These models employ GNNs running on one augmented Hasse graph, i.e. a GCCN that, given a collection
of neighborhoods A¢, uses a single neighborhood Ny, defined, for a cell o, as Niot (o) = UNeNc N (o).
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5 TOoOPOTUNE

Our proposed methodology, together with its resulting GCCNs architectures, addresses the challenge
of systematically generating principled, general TDL models. Here, we introduce TopoTune, a
software module for defining and benchmarking GCCN architectures on the fly—a vehicle for
accelerating and democratizing TDL research. TopoTune is made available as part of TopoBenchmark
Telyatnikov et al. (2024)). This section details TopoTune’s main features.

Change of Paradigm. TopoTune introduces a new perspective on TDL through the concept of
“neighborhoods of interest,” enabling unprecedented flexibility in architectural design. Previously
fixed components of CCNNs become hyperparameters of our framework. Even the choice of topolog-
ical domain becomes a mere variable, representing a new paradigm in the design and implementation
of TDL architectures.

Accessible TDL. Using TopoTune, a practitioner can instantiate customized GCCNs simply by
modifying a few lines of a configuration file. In fact, it is sufficient to specify () a collection of
per-rank neighborhoods Ne, (ii) a neighborhood message function wys, and optionally (7i7) some
architectural parameters—e.g., the number [ of GCCN layers For the neighborhood message
function wys, the same configuration file enables direct import of models from standard PyTorch
libraries, including PyTorch Geometric (Fey & Lenssen, |[2019) and Deep Graph Library (Chen et al.,
2020b). TopoTune’s simplicity provides both newcomers and TDL experts with an accessible tool for
defining higher-order topological architectures.

Accelerating TDL Research. TopoTune is fully integrated into TopoBenchmark (Telyatnikov
et al., 2024)), a comprehensive package offering a wide range of standardized methods and tools for
TDL. Practitioners can access ready-to-use models, training pipelines, tasks, and evaluation metrics,
including leading open-source models from TopoX (Hajij et al.,[2024b). In addition, TopoBenchmark
features the largest collection of topological liftings currently available—transformations that map
graph datasets into higher-order topological domains. Together, TopoBenchmark and TopoTune
organize the vast design space of TDL into an accessible framework, providing unparalleled versatility
and standardization for practitionners.

6 EXPERIMENTS

We present experiments showcasing a broad class of GCCN'’s constructed with TopoTune. These
models consistently match, outperform, or finetune existing CCNNs, often with smaller model sizes.
TopoTune’s integration into the TopoBenchmark experiment infrastructure ensures a fair comparison
with CCNNs from the literature, as data processing, domain lifting, and training are homogeonized.

6.1 EXPERIMENTAL SETUP

We generate our class of GCCNs by considering ten possible choices of neighborhood structure A
(including both regular and per-rank, see Appendix [E.T) and five possible choices of war: GCN (Kipf]
& Welling, 2017), GAT (Velickovic et al.|[2017), GIN (Xu et al., 2019b), GraphSAGE (Hamilton
et al.,[2017), and Transformer (Vaswanti et al., 2017). We import these models directly from PyTorch
Geometric (Fey & Lenssen, [2019) and PyTorch (Paszke et al., 2019). TopoTune enables running
GCCNs on both an ensemble of strictly augmented Hasse graphs (eq. [5) and a single augmented
Hasse graph (eq. ). While CCNN results reflect extensive hyperparameter tuning by [Telyatnikov
et al.| (2024), we fix GCCN training hyperparameters using the TopoBenchmark default configuration.

Datasets. We include a wide range of benchmark tasks (see Appendix [E.2) commonly used in the
graph and topological domains. MUTAG, PROTEINS, NCIO1, and NCI09 (Morris et al., 2020) are
graph-level classification tasks about molecules or proteins. ZINC (Irwin et al.,2012) (subset) is a
graph-level regression task related to molecular solubility. At the node level, the Cora, CiteSeer, and
PubMed tasks (Yang et al., 2016) involve classifying publications (nodes) within citation networks.
We consider two cases of combinatorial complexes, simplicial and cellular complexes. We leverage
TopoBenchmark’s data lifting processes to infer higher-order relationships in these datasets. We only
use node features to construct edge and face features.

>We provide a detailed pseudo-code for TopoTune module in Appendix@
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6.2 RESULTS AND DISCUSSION

Table 1: Cross-domain, cross-task, cross-expansion, and cross-ws comparison of GCCN architectures
with top-performing CCNNs benchmarked on TopoBenchmark (Telyatnikov et al.;2024). Best result
isin bold and results within 1 standard deviation are highlighted blue . Experiments are run with 5
seeds. We report accuracy for classification tasks and MAE for regression.

Graph-Level Tasks Node-Level Tasks

Model MUTAG (1) PROTEINS (1) NCI1 (1)  NCII109 (1)  ZINC (}) Cora (1)  Citeseer () PubMed (1)
Cellular
CCNN (Best Model on TopoBenchmark) 80.43+1.78 76.13£2.70 76.67+1.48 7535+1.50 0.34+0.01 |87.44+1.28 75.63+1.58 88.64 +0.36
GCCN wyr = GAT 83.40+4.85 74.05£2.16 76.11+1.69 75.62+0.76 0.38£0.03 | 88.39£0.65 74.62+1.95 87.68 +0.33
GCCN wyr = GCN 85.11+6.73 7441£1.77 7642+1.67 75.62+£094 0.36+0.01 88.51+£0.70 75.41+2.00 88.18+0.26
GCCN wyr = GIN 86.38£6.49 7254+3.07 77.65+1.11 77.19£0.21 0.19£0.00 | 87.42+1.85 75.13+1.17 88.47 +0.27
GCCN wy = GraphSAGE 85.53+6.80 73.62+£2.72 7823+1.47 77.10£0.83 0.24+0.00 88.57+0.58 75.89+1.84 89.40+0.57
GCCN wyr = Transformer 83.83+6.49 70.97+4.06 73.00+1.37 73.20+1.05 0.45£0.02 |84.61+1.32 75.05+1.67 88.37+0.22
GCCN wyr = Best GNN, 1 Aug. Hasse graph | 85.96 £7.15  73.73+2.95 76.75+1.63 76.94+0.82 0.31+0.01|87.24+0.58 74.26 + 1.47 88.65 +0.55
Simplicial
CCNN (Best Model on TopoBenchmark) 76.17+6.63  7527+2.14 76.60+1.75 77.12+1.07 0.36+0.02|82.27 +1.34 71.24+1.68 88.72+0.50
GCCN wyr = GAT 79.15£4.09 74.62+195 74.86+1.42 7481 +1.14 0.57+0.03 |88.33+0.67 74.65+1.93 87.72+0.36
GCCN wyr = GCN 74.04£830 7491+251 7420+2.17 74.13+0.53 0.53+0.05 88.51+0.70 75.41+2.00 88.19+0.24
GCCN wyr = GIN 8596 +4.66 72.83+£2.72 76.67+1.62 75.76+1.28 0.35+0.01 ‘ 87.27+1.63 75.05+127 88.54+0.21
GCCN wy = GraphSAGE 75.74+£243 7470+3.10 76.85+1.50 75.64+1.94 0.50+0.02 88.57+0.59 75.92+1.85 89.34+0.39
GCCN wyr = Transformer 74.04+£4.09 7097+4.06 70.39+0.96 69.99+1.13 0.64+0.01| 844+1.16 746+1.88 88.55+0.39

GCCN wyr =Best GNN, 1 Aug. Hasse graph | 74.04 +5.51 7448 +£1.89 75.02+2.24 7391£39 0.56+0.02|87.56+0.66 74.5+1.61 88.61+0.27

Hypergraph
CCNN (Best Model on TopoBenchmark) ‘ 80.43+4.09 76.63+1.74 75.18+1.24 74.93+250 0.51+0.01 88.92+0.44 7493 +1.39 89.62+0.25

GCCNs outperform CCNNs.  Table|l|portrays a cross-comparison between top-performing CCNN
models and our class of GCCNs. GCCNs outperform CCNNS in the simplicial and cellular domains
across all datasets. Notably, GCCNs in these domains achieve comparable results to hypergraph
CCNNg, a feat unattainable by existing CCNNs in node-level tasks. Out of the 16 domain/dataset
combinations considered in our experiments, GCCNs outperform the best counterpart CCNN by > 1o
in 11 cases. Evidence supports that GCCN’s architectural novelties contribute to this performance: (i)
Representing complexes as ensembles of augmented Hasse graphs, rather than a single augmented
Hasse graph, consistently improves results (Table . (ii) Some GCCNs with per-rank neighborhood
structures outperform not only CCNNs but also other GCCNs with regular neighborhoods. For
example, on MUTAG, a cellular GCCN with a lightweight, per-rank neighborhood structure makes it
19% the size of the best cellular CCNN on this task.

GCCNs perform competitively to CCNNs with fewer parameters. GCCNs are generally more
parameter efficient than existing CCNNSs in simplicial and cellular domains, and in some instances
(MUTAG, NCI1, NCI09), even in the hypergraph domain. Even as GCCNs become more resource-
intensive for large graphs with high-dimensional embeddings—as seen in node-level tasks—they
maintain a competitive edge. For instance, on the Citeseer dataset, a GCCN (wxs = GraphSAGE)
outperforms the best existing CCNN while being 28% smaller. We refer to Table[d| Training times
provided in Appendix [G show that GCCN's train at comparable speeds on smaller datasets, and slow
down for larger datasets, most likely due to TopoTune’s on-the-fly graph expansion. In future work,
we expect that performing this expansion during preprocessing will address this lag.

Generalizing existing CCNNs to GCCNs improves performance. TopoTune makes it easy to
iterate upon and improve preexisting CCNNs by replicating their architecture in a GCCN setting.
For example, TopoTune can generate a counterpart GCCN by replicating a CCNN’s neighborhood
structure, aggregation, and training scheme. We show in Table [2 that counterpart GCCNs often
achieve comparable or better results than SCCN (Yang et al.,2022) and CWN (Bodnar et al., 2021a)
just by sweeping over additional choices of wxs (same as in Table[T). In the single augmented Hasse
graph regime, GCCN models are consistently more lightweight, up to half their size (see Table 3).
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Table 2: We compare existing CCNNs with wxr-modified GCCN counterparts. We show the result
for best choice of wxr. Experiments are run with 5 seeds.

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed
SCCN|Yang et al.|(2022}

Benchmark results|{Telyatnikov et al. (2024} 70.64 £590 74.19+2.86 76.60+1.75 77.12+1.07 82.19+1.07 69.60+1.83 88.18+0.32
GCCN, on ensemble of strictly aug. Hasse graphs 82.13+4.66 75.56+2.48 75.6+1.28 74.19+144 88.06+0.93 74.67+124 87.70+0.19
GCCN, on | aug. Hasse graph 69.79+4.85 7448+2.67 7463176 70.71+550 87.62+1.62 7486+1.7 87.80+0.28
CWN Bodnar et al. |(2021a)

Benchmark results|Telyatnikov et al.|(2024] 8043+ 1.78 76.13+£2.70 73.93+187 73.80+2.06 86.32+138 7520+1.82 88.640.36
GCCN, on ensemble of strictly aug. Hasse graphs 84.26 £+8.19 7591 +2.75 7387+1.10 73.75+049 85.64+138 74.89+145 88.40=+0.46
GCCN, on | aug. Hasse graph 81.70+534 75.05+239 7514%0.76 7539+1.01 86.44+1.33 7445+1.59 88.56+0.55

TopoTune finds parameter-efficient GCCNs. By easily exploring a wide landscape of possible
GCCN:s for a given task, TopoTune helps identify models that maximize performance while minimiz-
ing model size. Fig. [5 illustrates this trade-off by comparing the performance and size of selected
GCCNs (see Appendix [H for more). On the PROTEINS dataset, two GCCNs using per-rank neighbor-
hood structures (orange and purple) achieve performance within 2% of the best result while requiring
as little as 48% of the parameters. This reduction is due to fewer neighborhoods N, resulting in fewer
wr blocks per GCCN layer. Similarly, on ZINC, lightweight neighborhood structures (orange and
dark green) deliver competitive results with reduced parameter costs. Node-level tasks, however, see
less benefit, likely due to the larger graph sizes and higher-dimensional input features.

Impactfulness of GNN choice is dataset specific. Fig. |5 also provides insights into the impact
of neighborhood message functions. On ZINC, GIN clearly outperforms all other models, which
do not even appear in the plot’s range. In the less clear-cut cases of PROTEINS and Citeseer, we
observe a trade-off between neighborhood structure and message function complexity. We find that
more complex base models (GIN, GraphSAGE) on lightweight neighborhood structures perform
comparably to simpler base models (GAT, GCN) on more complete neighborhood structures.

~ PROTEINS ZINC Citeseer
£100.0 ! ‘t | 100.0 f i T 100.0 ‘T T
5 o7 97.5 97.5 ) E il
£ i
£ 950 95.0 95.0 4
% 92.5 925 925
00 50 60 70 8 90 100 0% 50 6 70 8 90 100 9005 9% 97 98 99 100
Relative Parameter Size (%) Relative Parameter Size (%) Relative Parameter Size (%)
wy ®GAT 4 GIN Ne Nas) (@SN} @ (NanNig} @ {Nan NN}
e GCN ¢ GraphSAGE (] per-rank [@(ND Ni Vi) @ (NanNad @ NanNig}t @ (Nag N, Nigh

Figure 5: GCCN performance versus size. We compare various GCCNs across three datasets on the
cellular domain, two graph-level (left, middle) and one node-level (right). Each GCCN (point) has a
different neighborhood structure N, some of which can only be represented as per-rank structures
([ in legend), and message function wys. The amount of layers is kept constant according to the best
performing model. The axes are scaled relative to this model.

7 CONCLUSION

This work introduces a simple yet powerful graph-based methodology for constructing Generalized
Combinatorial Complex Neural Networks (GCCNs), TDL architectures that generalize and subsume
standard CCNNs. Additionally, we introduce TopoTune, the first lightweight software module for
systematically and easily implementing new TDL architectures across many topological domains. In
doing so, we have addressed, either in part or in full, 7 of the 11 open problems of the field defined
by some of its leaders in|Papamarkou et al.|(2024). Future work includes customizing GCCNs for
application-specific and potentially sparse or multimodal datasets, and leveraging software from
state-of-the-art GNNs. We hope TopoTune will also help bridge the gap with other fields such as
attentional learning and k-hop higher-order GNNs (Morris et al.,|2019; |Maron et al., [2019).

10



Under review as a conference paper at ICLR 2025

REFERENCES

Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs. In
Proceedings of the 23rd international conference on Machine learning, pp. 17-24, 2006.

Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, and Dingqi
Yang. A survey on hypergraph representation learning. ACM Comput. Surv., 56(1), aug 2023.
ISSN 0360-0300. doi: 10.1145/3605776. URL https://doi.org/10.1145/3605776.

Sambaran Bandyopadhyay, Kishalay Das, and M Narasimha Murty. Line hypergraph convolution
network: Applying graph convolution for hypergraphs. arXiv preprint arXiv:2002.03392, 2020.

Claudio Battiloro, Lucia Testa, Lorenzo Giusti, Stefania Sardellitti, Paolo Di Lorenzo, and Sergio
Barbarossa. Generalized simplicial attention neural networks. arXiv preprint arXiv:2309.02138,
2023.

Claudio Battiloro, Ege Karaismailoglu, Mauricio Tec, George Dasoulas, Michelle Audirac,
and Francesca Dominici. E (n) equivariant topological neural networks. arXiv preprint
arXiv:2405.15429, 2024.

Guillermo Bernardez, Lev Telyatnikov, Marco Montagna, Federica Baccini, Mathilde Papillon,
Miquel Ferriol Galmés, Mustafa Hajij, Theodore Papamarkou, Maria Sofia Bucarelli, Olga Zaghen,
Johan Mathe, Audun Myers, Scott Mahan, Hansen Lillemark, Sharvaree P. Vadgama, Erik J.
Bekkers, Tim Doster, Tegan Emerson, Henry Kvinge, Katrina Agate, Nesreen K. Ahmed, Pengfei
Bai, Michael Banf, Claudio Battiloro, Maxim Beketov, Paul Bogdan, Martin Carrasco, Andrea
Cavallo, Yun Young Choi, George Dasoulas, Matous Elphick, Giordan Escalona, Dominik Filipiak,
Halley Fritze, Thomas Gebhart, Manel Gil-Sorribes, Salvish Goomanee, Victor Guallar, Liliya
Imasheva, Andrei Irimia, Hongwei Jin, Graham Johnson, Nikos Kanakaris, Boshko Koloski,
Veljko Kovac, Manuel Lecha, Minho Lee, Pierrick Leroy, Theodore Long, German Magai, Alvaro
Martinez, Marissa Masden, Sebastian Meznar, Bertran Miquel-Oliver, Alexis Molina, Alexander
Nikitin, Marco Nurisso, Matt Piekenbrock, Yu Qin, Patryk Rygiel, Alessandro Salatiello, Max
Schattauer, Pavel Snopov, Julian Suk, Valentina Sdnchez, Mauricio Tec, Francesco Vaccarino,
Jonas Verhellen, Frédéric Wantiez, Alexander Weers, Patrik Zajec, Blaz Skrlj, and Nina Miolane.
Icml topological deep learning challenge 2024: Beyond the graph domain. CoRR, abs/2409.05211,
2024. URL https://doi.org/10.48550/arXiv.2409.05211.

Cristian Bodnar. Topological Deep Learning: Graphs, Complexes, Sheaves. PhD thesis, Cambridge
University, 2023.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and Lehman Go Cellular: CW Networks. Advances in Neural
Information Processing Systems, 34:2625-2640, 2021a.

Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F Montufar, Pietro Lio, and
Michael Bronstein. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks.
In International Conference on Machine Learning, pp. 1026-1037. PMLR, 2021b.

Marianna Bolla. Spectra, euclidean representations and clusterings of hypergraphs. Discrete Mathe-
matics, 117(1-3):19-39, 1993.

Chaofan Chen, Zelei Cheng, Zuotian Li, and Manyi Wang. Hypergraph attention networks. In
2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 1560-1565. IEEE, 2020a.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural net-
works: Better and robust node embeddings. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
19314-19326. Curran Associates, Inc., 2020b. URL https://proceedings.neurips.
cc/paper/2020/file/e05c7bad4e087beea9410929698dcd4lab—Paper.pdf.

Gabriele Corso, Hannes Stark, Stefanie Jegelka, Tommi Jaakkola, and Regina Barzilay. Graph neural
networks. Nature Reviews Methods Primers, 4(1):17, 2024.

11


https://doi.org/10.1145/3605776
https://doi.org/10.48550/arXiv.2409.05211
https://proceedings.neurips.cc/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf

Under review as a conference paper at ICLR 2025

S. Ebli, M. Defferrard, and G. Spreemann. Simplicial neural networks. In Advances in Neural
Information Processing Systems Workshop on Topological Data Analysis and Beyond, 2020.

Yam Eitan, Yoav Gelberg, Guy Bar-Shalom, Fabrizio Frasca, Michael Bronstein, and Haggai Maron.
Topological blind spots: Understanding and extending topological deep learning through the lens
of expressivity. arXiv preprint arXiv:2408.05486, 2024.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 3558-3565, 2019.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In International
Conference on Learning Representations Workshop on Representation Learning on Graphs and
Manifolds, 2019.

David Gibson, Jon Kleinberg, and Prabhakar Raghavan. Clustering categorical data: An approach
based on dynamical systems. The VLDB Journal, 8:222-236, 2000.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pp. 1263-1272. JMLR.org, 2017.

Lorenzo Giusti, Claudio Battiloro, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio Barbarossa.
Simplicial attention networks. arXiv preprint arXiv:2203.07485, 2022a.

Lorenzo Giusti, Claudio Battiloro, Lucia Testa, Paolo Di Lorenzo, Stefania Sardellitti, and Sergio
Barbarossa. Cell attention networks. arXiv preprint arXiv:2209.08179, 2022b.

Martin Grohe. Descriptive complexity, canonisation, and definable graph structure theory, volume 47.
Cambridge University Press, 2017.

Mustafa Hajij, Kyle Istvan, and Ghada Zamzmi. Cell complex neural networks. In Advances in
Neural Information Processing Systems Workshop on TDA & Beyond, 2020.

Mustafa Hajij, Ghada Zamzmi, Theodore Papamarkou, Nina Miolane, Aldo Guzmdin-Séenz,
Karthikeyan Natesan Ramamurthy, Tolga Birdal, Tamal Dey, Soham Mukherjee, Shreyas Samaga,
Neal Livesay, Robin Walters, Paul Rosen, and Michael Schaub. Topological deep learning: Going
beyond graph data. arXiv preprint arXiv:1906.09068 (v3), 2023.

Mustafa Hajij, Theodore Papamarkou, Ghada Zamzmi, Karthikeyan Natesan Ramamurthy, Tolga
Birdal, and Michael T. Schaub. Topological Deep Learning: Going Beyond Graph Data. Online,
2024a. URL http://tdlbook.org. Published online on August 6, 2024.

Mustafa Hajij, Mathilde Papillon, Florian Frantzen, Jens Agerberg, Ibrahem AlJabea, Ruben Ballester,
Claudio Battiloro, Guillermo Berndrdez, Tolga Birdal, Aiden Brent, et al. Topox: a suite of python
packages for machine learning on topological domains. arXiv preprint arXiv:2402.02441, 2024b.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pp. 1025-1035, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. ZINC: a
free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7):
1757-1768, 2012.

Fabian Jogl, Maximilian Thiessen, and Thomas Gértner. Reducing learning on cell complexes to
graphs. In ICLR 2022 Workshop on Geometrical and Topological Representation Learning, 2022a.

Fabian Jogl, Maximilian Thiessen, and Thomas Girtner. Weisfeiler and leman return with graph
transformations. In 18th International Workshop on Mining and Learning with Graphs, 2022b.

Fabian Jogl, Maximilian Thiessen, and Thomas Gartner. Expressivity-preserving GNN simulation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https
//openreview.net/forum?id=ytTfonl9wWd.

12


http://tdlbook.org
https://openreview.net/forum?id=ytTfonl9Wd
https://openreview.net/forum?id=ytTfonl9Wd

Under review as a conference paper at ICLR 2025

Fabian Jogl, Maximilian Thiessen, and Thomas Gértner. Expressivity-preserving gnn simulation.
Advances in Neural Information Processing Systems, 36, 2024.

Sandra Kiefer. Power and limits of the Weisfeiler-Leman algorithm. PhD thesis, Dissertation, RWTH
Aachen University, 2020, 2020.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations (ICLR), 2017.

R. Lambiotte, M. Rosvall, and I. Scholtes. From networks to optimal higher-order models of complex
systems. Nature physics, 2019.

Kelly Maggs, Celia Hacker, and Bastian Rieck. Simplicial representation learning with neural
$k$-forms. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=Djw0Xh]jHZDb.

H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks.
Advances in Neural Information Processing Systems, 2019.

C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. Tudataset: A collection
of benchmark datasets for learning with graphs. arXiv preprint arXiv:2007.08663, 2020.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far.
The Journal of Machine Learning Research, 24(1):15865-15923, 2023.

Theodore Papamarkou, Tolga Birdal, Michael Bronstein, Gunnar Carlsson, Justin Curry, Yue Gao,
Mustafa Hajij, Roland Kwitt, Pietro Lio, Paolo Di Lorenzo, et al. Position paper: Challenges and
opportunities in topological deep learning. arXiv preprint arXiv:2402.08871, 2024.

Mathilde Papillon, Sophia Sanborn, Mustafa Hajij, and Nina Miolane. Architectures of topological
deep learning: A survey on topological neural networks, 2023.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems. 2019.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? In The
Eleventh International Conference on Learning Representations.

T Mitchell Roddenberry, Nicholas Glaze, and Santiago Segarra. Principled simplicial neural networks
for trajectory prediction. In International Conference on Machine Learning, pp. 9020-9029.
PMLR, 2021.

Juan A Rodriguez. On the laplacian eigenvalues and metric parameters of hypergraphs. Linear and
Multilinear Algebra, 50(1):1-14, 2002.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network
model. IEEE Transactions on Neural Networks, 2008.

Patrick Solé et al. Spectra of regular graphs and hypergraphs and orthogonal polynomials. European
Journal of Combinatorics, 17(5):461-477, 1996.

Lev Telyatnikov, Maria Sofia Bucarelli, Guillermo Bernardez, Olga Zaghen, Simone Scardapane,

and Pietro Lio. Hypergraph neural networks through the lens of message passing: a common
perspective to homophily and architecture design. arXiv preprint arXiv:2310.07684, 2023.

13


https://openreview.net/forum?id=Djw0XhjHZb

Under review as a conference paper at ICLR 2025

Lev Telyatnikov, Guillermo Bernardez, Marco Montagna, Pavlo Vasylenko, Ghada Zamzmi, Mustafa
Hajij, Michael T Schaub, Nina Miolane, Simone Scardapane, and Theodore Papamarkou.
Topobenchmarkx: A framework for benchmarking topological deep learning. arXiv preprint
arXiv:2406.06642, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Advances in Neural Information Processing Systems, 2017.

Petar Velickovi¢. Message passing all the way up. arXiv preprint arXiv:2202.11097, 2022.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10-48550, 2017.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In International
Conference on Learning Representations, 2019a.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019b. URL https
//openreview.net/forum?id=ryGs61A5Km.

Naganand Yadati. Neural message passing for multi-relational ordered and recursive hypergraphs.
Advances in Neural Information Processing Systems, 33:3275-3289, 2020.

Maosheng Yang and Elvin Isufi. Convolutional learning on simplicial complexes. arXiv preprint
arXiv:2301.11163, 2023.

Ruochen Yang, Frederic Sala, and Paul Bogdan. Efficient representation learning for higher-order data
with simplicial complexes. In Bastian Rieck and Razvan Pascanu (eds.), Proceedings of the First
Learning on Graphs Conference, volume 198 of Proceedings of Machine Learning Research, pp.
13:1-13:21. PMLR, 09-12 Dec 2022. URL https://proceedings.mlr.press/v198/
vang22a.html.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40—48. PMLR, 2016.

M. Zhang and Y. Chen. Link prediction based on graph neural networks. Advances in Neural
Information Processing Systems, 2018.

Dengyong Zhou, Jiayuan Huang, and Bernhard Scholkopf. Learning with hypergraphs: Clustering,
classification, and embedding. Advances in neural information processing systems, 19, 2006.

14


https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.mlr.press/v198/yang22a.html
https://proceedings.mlr.press/v198/yang22a.html

	Introduction
	Background
	Motivation and Related Works
	Generalized Combinatorial Complex Neural Networks
	TopoTune
	Experiments
	Experimental Setup
	Results and Discussion

	Conclusion
	Domains of Topological Deep Learning
	Proofs
	Proof of Generality
	Proof of Equivariance
	Proof of Expressivity
	Homomorphism and Isomorphism Induced by Neighborhoods
	Weisfeiler-Leman (WL) tests on Combinatorial Complexes
	Definitions of k-GNNs and k-CCNNs
	Relationships between CCWL/GCWL tests and CCNNs/GCNNs
	Proof


	Time Complexity
	Key Definitions
	Complexity of N
	Complexity Using Combinatorial Complex Notations
	Complexity of a GCCN Layer
	Takeaways

	Software
	Additional details on experiments
	Neighborhood Structures
	Datasets
	Hyperparameter search
	Hardware

	Model Size
	Model Training Time
	Performance versus Size Complexity
	Additional experiments on larger node-level datasets

