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ABSTRACT

Graph Neural Networks (GNNs) excel in learning from relational datasets, pro-
cessing node and edge features in a way that preserves the symmetries of the
graph domain. However, many complex systems—such as biological or social
networks—involve multiway complex interactions that are more naturally repre-
sented by higher-order topological domains. The emerging field of Topological
Deep Learning (TDL) aims to accommodate and leverage these higher-order struc-
tures. Combinatorial Complex Neural Networks (CCNNs), fairly general TDL
models, have been shown to be more expressive and better performing than GNNs.
However, differently from the graph deep learning ecosystem, TDL lacks a princi-
pled and standardized framework for easily defining new architectures, restricting
its accessibility and applicability. To address this issue, we introduce Generalized

CCNNs (GCCNs), a novel simple yet powerful family of TDL models that can be
used to systematically transform any (graph) neural network into its TDL coun-
terpart. We prove that GCCNs generalize and subsume CCNNs, while extensive
experiments on a diverse class of GCCNs show that these architectures consistently
match or outperform CCNNs, often with less model complexity. In an effort to
accelerate and democratize TDL, we introduce TopoTune, a lightweight software
for defining, building, and training GCCNs with unprecedented flexibility and ease.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Scarselli et al., 2008; Corso et al., 2024) have demonstrated
remarkable performance in several relational learning tasks by incorporating prior knowledge through
graph structures (Kipf & Welling, 2017; Zhang & Chen, 2018). However, constrained by the pairwise
nature of graphs, GNNs are limited in their ability to capture and model higher-order interactions—
crucial in complex systems like particle physics, social interactions, or biological networks (Lambiotte
et al., 2019). Topological Deep Learning (TDL) (Bodnar, 2023) precisely emerged as a framework that
naturally encompasses multi-way relationships, leveraging beyond-graph combinatorial topological
domains such as simplicial and cell complexes, or hypergraphs (Papillon et al., 2023).1

In this context, Hajij et al. (2023; 2024a) have recently introduced combinatorial complexes, fairly
general objects that are able to model arbitrary higher-order interactions along with a hierarchical

organization among them–hence generalizing (for learning purposes) most of the combinatorial
topological domains within TDL, including graphs. The elements of a combinatorial complex are
cells, being nodes or groups of nodes, which are categorized by ranks. The simplest cell, a single node,
has rank zero. Cells of higher ranks define relationships between nodes: rank one cells are edges,
rank two cells are faces, and so on. Hajij et al. (2023) also proposes Combinatorial Complex Neural

Networks (CCNNs), machine learning architectures that leverage the versatility of combinatorial
complexes to naturally model higher-order interactions. For instance, consider the task of predicting
the solubility of a molecule from its structure. GNNs model molecules as graphs, thus considering
atoms (nodes) and bonds (edges) (Gilmer et al., 2017). By contrast, CCNNs model molecules as
combinatorial complexes, hence considering atoms (nodes, i.e., cells of rank zero), bonds (edges, i.e.,
cells of rank one), and also important higher-order structures such as rings or functional groups (i.e.,
cells of rank two) (Battiloro et al., 2024).

1Simplicial and cell complexes model specific higher-order interactions organized hierarchically, while
hypergraphs model arbitrary higher-order interactions but without any hierarchy.
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Figure 1: Generalized Combinatorial Complex Network (GCCN). The input complex C has
neighborhoods NC = {N1,N2,N3}. A. The complex is expanded into three augmented Hasse
graphs GNi , i = {1, 2, 3}, each with features HNi represented as a colored disc. B. A GCCN layer
dedicates one base architecture !Ni (GNN, Transformer, MLP, etc.) to each neighborhood. C. The
output of all the architectures !Ni is aggregated rank-wise, then updated. In this example, only the
complex’s edge features (originally pink) are aggregated across multiple neighborhoods (N2 and
N3).

TDL Research Trend. To date, research in TDL has largely progressed by taking existing GNNs
architectures (convolutional, attentional, message-passing, etc.) and generalizing them one-by-one to
a specific TDL counterpart, whether that be on hypergraphs (Feng et al., 2019; Chen et al., 2020a;
Yadati, 2020), on simplicial complexes (Roddenberry et al., 2021; Yang & Isufi, 2023; Ebli et al.,
2020; Giusti et al., 2022a; Battiloro et al., 2023; Bodnar et al., 2021b; Maggs et al., 2024), on
cell complexes (Hajij et al., 2020; Giusti et al., 2022b; Bodnar et al., 2021a), or on combinatorial
complexes (Battiloro et al., 2024; Eitan et al., 2024). Although overall valuable and insightful, such a
fragmented research trend is slowing the development of standardized methodologies and software
for TDL, as well as limiting the analysis of its cost-benefits trade-offs (Papamarkou et al., 2024).
We argue that these two relevant aspects are considerably hindering the use and application of TDL
beyond the community of experts.

Current Efforts and Gaps for TDL Standardization. TopoX (Hajij et al., 2024b) and TopoBench-
mark (Telyatnikov et al., 2024) have become the reference Python libraries for developing and
benchmarking TDL models, respectively. However, despite their potential in defining and implement-
ing novel standardized methodologies in the field, the current focus of these packages is on replicating
and analyzing existing message-passing CCNNs. Works like Jogl et al. (2022b;a) have instead
focused on making TDL accessible and reproducible by porting models to the graph domain. They
do so via principled transformations from combinatorial topological domains to graphs. However,
although these architectures over the resulting graph-expanded representations are as expressive as
their TDL counterparts (using the Weisfeiler-Lehman criterion (Xu et al., 2019a)), they are neither
formally equivalent to nor a generalization of their TDL counterparts. Due to loss of topological
information during the graph expansion, the GNNs on the resulting graph do not preserve the same
topological symmetry as their TDL counterparts.

Contributions. This works seeks to accelerate TDL research and increase its accessibility and
standardization for outside practitioners. To that end, we introduce a novel joint methodological and
software framework that easily enables the development of new TDL architectures in a principled
way—overcoming the limitations of existing works. We outline our main contributions and specify
which of the field’s open problems (as defined in Papamarkou et al. (2024)) they help answer:

• Systematic Generalization. We propose the first method to systematically generalize any neural
network to its topological counterpart with minimal adaptation. Specifically, we define a novel
expansion mechanism that transforms a combinatorial complex into a collection of graphs, enabling
the training of TDL models as an ensemble of synchronized models. To our knowledge, this is the
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first method which is designed to work across many topological domains. (Open problems 6, 11:
need for foundational, cross-domain TDL.)

• General Architectures. Our method induces a novel wide class of TDL architectures, Generalized

Combinatorial Complex Networks (GCCNs), portrayed in Fig. 1. GCCNs (i) formally generalize
CCNNs, (ii) are cell permutation equivariant, and (iii) are as expressive as CCNNs. (Open problem
9: consolidating TDL advantages in a unified theory.)

• Implementation. We provide TopoTune, a lightweight PyTorch module for designing and imple-
menting GCCNs fully integrated into TopoBenchmark (Telyatnikov et al., 2024). Using TopoTune,
both newcomers and expert TDL practitioners can, for the first time, easily define and iterate upon
TDL architectures. (Open problems 1, 4: need for accessible TDL, need for software.)

• Benchmarking. Using TopoTune, we create a broad class of GCCNs using four base GNNs and
one base Transformer over two combinatorial topological spaces (simplicial and cell complexes).
A wide range of experiments on graph-level and node-level benchmark datasets shows GCCNs
generally outperform existing CCNNs, often with smaller model sizes. Some of these results
are obtained with GCCNs that cannot be reduced to standard CCNNs, further underlining our
methodological contribution. We will provide all code and experiment scripts in the camera-ready
paper. (Open problem 3: need for standardized benchmarking.)

Outline. Section 2 provides necessary background. Section 3 motivates and positions our work
in the current TDL literature. Section 4 introduces and discusses GCCNs. Section 5 introduces and
describes TopoTune. Finally, Section 6 showcases extensive numerical experiments and comparisons.

2 BACKGROUND

To properly contextualize our work, we revisit in this section the fundamentals of combinatorial
complexes and CCNNs—closely following the works of Hajij et al. (2023) and Battiloro et al.
(2024)—as well as the notion of augmented Hasse graphs. Appendix A provides a brief introduction
to all topological domains used in TDL, such as simplicial and cell complexes.

Combinatorial Complex. A combinatorial complex is a triple (V, C, rk) consisting of a set V , a
subset C of the powerset P(V)\{;}, and a rank function rk : C ! Z�0 with the following properties:

1. for all v 2 V, {v} 2 C and rk({v}) = 0;

2. the function rk is order-preserving, i.e., if �, ⌧ 2 C satisfy � ✓ ⌧ , then rk(�)  rk(⌧).

The elements of V are the nodes, while the elements of C are called cells (i.e., group of nodes). The
rank of a cell � 2 C is k := rk(�), and we call it a k-cell. C simplifies notation for (V, C, rk), and its
dimension is defined as the maximal rank among its cell: dim(C) := max�2C rk(�).

Neighborhoods. Combinatorial complexes can be equipped with a notion of neighborhood among
cells. In particular, a neighborhood N : C ! P(C) on a combinatorial complex C is a function that
assigns to each cell � in C a collection of “neighbor cells” N (�) ⇢ C [;. Examples of neighborhood
functions are adjacencies, connecting cells with the same rank, and incidences, connecting cells with
different consecutive ranks. Usually, up/down incidences NI," and NI,# are defined as

NI,"(�) = {⌧ 2 C | rk(⌧) = rk(�) + 1,� ⇢ ⌧}, NI,#(�) = {⌧ 2 C | rk(⌧) = rk(�)� 1, ⌧ ⇢ �}.
(1)

Therefore, a k + 1-cell ⌧ is a neighbor of a k-cell � w.r.t. to NI," if � is contained in ⌧ ; analogously,
a k� 1-cell ⌧ is a neighbor of a k-cell � w.r.t. to NI,# if ⌧ is contained in �. These incidences induce
up/down adjacencies NA," and NA,# as

NA,"(�) = {⌧ 2 C | rk(⌧) = rk(�), 9� 2 C : rk(�) = rk(�) + 1, ⌧ ⇢ �, and � ⇢ �},
NA,#(�) = {⌧ 2 C | rk(⌧) = rk(�), 9� 2 C : rk(�) = rk(�)� 1, � ⇢ ⌧, and � ⇢ �}. (2)

Therefore, a k-cell ⌧ is a neighbor of a k-cell � w.r.t. to NA," if they are both contained in a k+1-cell
�; analogously, a k-cell ⌧ is a neighbor of a k-cell � w.r.t. to NA,# if they both contain a k � 1-cell �.
Other neighborhood functions can be defined for specific applications (Battiloro et al., 2024).
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Complex

Figure 2: Augmented Hasse graphs. Expansions of a combinatorial complex C (middle) into two
augmented Hasse graphs: (left) the Hasse graph induced by NC = {NI,#}; (right) the augmented
Hasse graph induced by NC = {NI,#,NA,"}. Information on cell rank is discarded (we retain rank
color for illustrative purposes).

Combinatorial Complex Message-Passing Neural Networks. Let C be a combinatorial complex,
and NC a collection of neighborhood functions. The l-th layer of a CCNN updates the embedding
h
l
� 2 RF l

of cell � as

h
l+1
� = �

0

@h
l
�,
O

N2NC

M

⌧2N (�)

 N ,rk(�)
�
h
l
�,h

l
⌧

�
1

A 2 RF l+1

, (3)

where h
0
� := h� are the initial features,

L
is an intra-neighborhood aggregator,

N
is an inter-

neighborhood aggregator. The functions  N ,rk(·) : RF l ! RF l+1

and the update function � are
learnable functions, which are typically homogeneous across all neighborhoods and ranks. In other
words, the embedding of a cell is updated in a learnable fashion by first aggregating messages with
neighboring cells per each neighborhood, and then by further aggregating across neighborhoods. We
remark that by this definition, all CCNNs are message-passing architectures. Moreover, they can only
leverage neighborhood functions that consider all ranks in the complex.

Augmented Hasse Graphs. In TDL, a Hasse graph is a graph expansion of a combinatorial
complex. Specifically, it represents the incidence structure NI,# by representing each cell (node,
edge, face) as a node and drawing edges between cells that are incident to each other. For example, if
three edges bound a face, then in the Hasse graph, the three nodes representing the three edges will
each share an edge with the node representing the face. Going beyond just considering NI,# , given a
collection of multiple neighborhood functions, every combinatorial complex C can be expanded into
a unique graph representation. We refer to this representation as an augmented Hasse graph (Hajij
et al., 2023). Formally, let NC be a collection of neighborhood functions on C: the augmented Hasse
graph GNC of C induced by NC is a directed graph GNC = (C, ENC ) with cells as nodes, and edges
given by

ENC = {(⌧,�)|�, ⌧ 2 C, 9 N 2 NC : ⌧ 2 N (�)}. (4)
The augmented Hasse graph of a combinatorial complex is thus obtained by considering the cells
as nodes, and inserting directed edges among them if the cells are neighbors in C. Fig. 2 shows an
example of a combinatorial complex as well as i) a Hasse graph and ii) an augmented Hasse graph.
Notably, such a representation of a combinatorial complex discards all information about cell rank.

3 MOTIVATION AND RELATED WORKS

As outlined in the introduction, TDL lacks a comprehensive framework for easily creating and experi-
menting with novel topological architectures—unlike the more established GNN field. This section
outlines some previous works that have laid important groundwork in addressing this challenge.

Formalizing CCNNs on graphs. The position paper (Veličković, 2022) proposed that any function
over a higher-order domain can be computed via message passing over a transformed graph, but
without specifying how to design GNNs that reproduce CCNNs. Later, (Hajij et al., 2023) proposed
that, given a combinatorial complex C and a collection of neighborhoods NC , a message-passing GNN
that runs over the augmented Hasse graph GNC is equivalent to a specific CCNN as in (3) running over
C using: i) NC as collection of neighborhoods; ii) same intra- and inter-aggregations, i.e.,

L
=
N

;
and iii) no rank- and neighborhood-dependent message functions, i.e.,  N ,rk(·) =  8N 2 NC .

4
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Complex

Figure 3: Ensemble of strictly augmented Hasse Graphs. Given a complex C with neighborhood
structure including both incidence and upper adjacency (left), this graph expansion (right) produces
one augmented Hasse graph for each neighborhood.

Retaining expressivity, but not topological symmetry. Jogl et al. (2022a;b) demonstrate that
GNNs on augmented Hasse graphs GNC are as expressive as CCNNs on C (using the WL criterion),
suggesting that some CCNNs can be simulated with standard graph libraries. 2. However, as
the authors state, such GNNs do not structurally distinguish between cells of different ranks or
neighborhoods, collapsing topological relationships into a single representation. For instance, in a
molecule (cellular complex), two bonds (edges) may simultaneously share multiple neighborhoods:
lower-adjacent through a shared atom (node) and upper-adjacent through a shared ring (face). A
GNN on GNC collapses these distinctions, applying the same weights to all connections and losing
the structural symmetries encoded in the domain. While this may suffice for preserving expressivity,
it is inherently a very different computation than that of TDL models.

The Particular Case of Hypergraphs. Hypergraph neural networks have long relied on graph
expansions (Telyatnikov et al., 2023), which has allowed the field to leverage advances in the graph
domain and, by extension, a much wider breadth of models (Antelmi et al., 2023; Papillon et al., 2023).
Most hypergraph models are expanded into graphs using the star (Zhou et al., 2006; Solé et al., 1996),
the clique (Bolla, 1993; Rodríguez, 2002; Gibson et al., 2000), or the line expansion (Bandyopadhyay
et al., 2020). As noted by Agarwal et al. (2006), many hypergraph learning algorithms leverage graph
expansions.

The success story of hypergraph neural networks motivates further research on new graph-based
expansions that generalize and subsume current CCNNs. These expansions could, at the same time,
encompass current CCNNs and exploit progress in the GNN field. Therefore, returning to our core
goal of accelerating and democratizing TDL while preserving its theoretical properties, we propose a
two-part approach: a novel graph-based methodology able to generate general architectures (Section
4), and a lightweight software framework to easily and widely implement it (Section 5).

4 GENERALIZED COMBINATORIAL COMPLEX NEURAL NETWORKS

We propose Generalized Combinatorial Complex Neural Networks (GCCNs), a novel broad class of
TDL architectures. GCCNs overcome the limitations of previous graph-based TDL architectures by
leveraging the notions of strictly augmented Hasse graphs and per-rank neighborhoods.

Ensemble of Strictly Augmented Hasse Graphs. This graph expansion method (see Fig. 3)
extends from the the established definition of an augmented Hasse graph (see Fig. 2). Specifically,
given a combinatorial complex C and a collection of neighborhood functions NC , we expand it into
|NC | graphs, each of them representing a neighborhood N 2 NC . In particular, the strictly augmented

Hasse graph GN = (CN , EN ) of a neighborhood N 2 NC is a directed graph whose nodes CN and
edges EN are given by:

CN = {� 2 C |N (�) 6= ;}, EN = {(⌧,�) | ⌧ 2 N (�)}. (5)

Following the same arguments from Hajij et al. (2023), a GNN over the strictly augmented Hasse
graph GN induced by N is equivalent to a CCNN running over C and using NC = {N} up to the
(self-)update of the cells in C/CN .

2The same authors generalize these ideas to non-standard message-passing GNNs (Jogl et al., 2024)

5
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Complex (i) (ii) (iii) (iv)

Figure 4: Per-rank neighborhoods. Given a complex C (left), we illustrate four examples of per-rank
neighborhoods (right). In each case, they only include rank-specific cells.

Per-rank Neighborhoods. The standard definition of adjacencies and incidences given in Section 2
implies that they are applied to each cell regardless of its rank. For instance, consider a combinatorial
complex of dimension two with nodes (0-cells), edges (1-cells), and faces (2-cells).

• Employing the down incidence NI,# as in (1) means the edges must exchange messages with their
endpoint nodes, and faces must exchange messages with the edges on their sides. It is impossible
for edges to exchange messages while faces do not.

• Employing the up adjacency NA," as in (2) means the nodes must exchange messages with other
edge-connected nodes, and edges must exchange messages the other edges bounding the same
faces. It is impossible for nodes to exchange messages while edges do not.

This limitation increases the computational burden of standard CCNNs while not always increasing
the learning performance, as we will show in the numerical results. For this reason, we introduce
per-rank neighborhoods, depicted in Fig. 4. Formally, a per-rank neighborhood function N r is a
neighborhood function that, regardless of its definition, maps a cell � to the empty set if � is not a
r-cell (i.e., a cell of rank r). For example, the up/down r-incidences N r

I," and N r
I,# are defined as

N r
I,"(�) =

⇢{⌧ 2 C | rk(⌧) = rk(�) + 1,� ⇢ ⌧} if rk(�) = r

; otherwise
, (6)

N r
I,#(�) =

⇢{⌧ 2 C | rk(⌧) = rk(�)� 1,� ⇢ ⌧} if rk(�) = r

; otherwise
, (7)

and the up/down r-adjacencies N r
A," and N r

A,# can be obtained analogously. So, it is now straightfor-
ward to model a setting in which:

• Employing only N 1
I,# (Fig. 4(iii)) allows edges to exchange messages with their bounding nodes

but not triangles with their bounding edges.
• Employing only N 0

A," (Fig. 4(i)) allows nodes to exchange messages with their edge-connected
nodes but not edges do not exchange messages with other edges that are part of their same faces.

Generating Graph-based TDL Architectures. We use these notions to define a novel graph-based
methodology for generating principled TDL architectures. Given a combinatorial complex C and a
set NC of neighborhoods, the method works as follows (see also Fig. 1):

A. C is expanded into an ensemble of strictly augmented Hasse graphs—one for each N 2 NC .
B. Each strictly augmented Hasse graph GN and the features of its cells are independently processed

by a base model.
C. An aggregation module

N
synchronizes the cell features across the different strictly augmented

Hasse graphs (as the same cells can belong to multiple strictly augmented Hasse graphs).

This method enables an ensemble of synchronized models per layer— the !N s—each of them applied
to a specific strictly augmented Hasse graph.3. Additionally, such a pipeline confers unprecedented
flexibility in choosing a subset of neighborhoods of interest, allowing the consideration of per-rank

neighborhoods within TDL. The rest of this section formalizes the architectures induced by this
methodology and describes their theoretical properties.

3Contrary to past CCNN simulation works that apply a model to the singular, whole augmented Hasse graph.
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Generalized Combinatorial Complex Networks. We formally introduce a broad class of novel
TDL architectures called Generalized Combinatorial Complex Networks (GCCNs), depicted in Fig.
1. Let C be a combinatorial complex containing |C| cells and NC a collection of neighborhoods on it.
Assume an arbitrary labeling of the cells in the complex, and denote the i-th cell with �i. Denote by
H 2 R|C|⇥F the feature matrix collecting some embeddings of the cells on its rows, i.e., [H]i = h�i ,
and by HN 2 R|CN |⇥F the submatrix containing just the embeddings of the cells belonging to the
strictly augmented Hasse graph GN of N . The l-th layer of a GCCN updates the embeddings of the
cells Hl 2 R|C|⇥F l

as

H
l+1

= �

 
H

l,
O

N2NC

!N (H
l
N ,GN )

!
2 R|C|⇥F l+1

, (8)

where H
0 collects the initial features, and the update function � is a learnable row-wise update func-

tion, i.e., [�(A,B)]i = �([A]i, [B]i). The neighborhood-dependent sub-module !N : R|CN |⇥F l !
R|CN |⇥F l+1

, which we refer to as the neighborhood message function, is a learnable (matrix) function
that takes as input the whole strictly augmented Hasse graph of the neighborhood, GN and the
embeddings of the cells that are part of it, and gives as output a processed version of them. Finally,
the inter-neighborhood aggregation module

N
synchronizes the possibly multiple neighborhood

messages arriving on a single cell across multiple strictly augmented Hasse graphs into a single mes-
sage. In this way, the embedding of a cell collects information about the whole relational structures
induced by each (nonempty) neighborhood. GCCNs enjoy increased flexibility over CCNS (eq. 3) as
their neighborhoods are allowed to be rank-dependent and the corresponding !N ’s are not necessarily
message-passing based.

Theoretical properties of GCCNs.
1. Generality. GCCNs formally generalize CCNNs.

Proposition 1. Let C be a combinatorial complex. Let NC be a collection of neighbor-

hoods on C. Then, there exists a GCCN that exactly reproduces the computation of a

CCNN over C using NC .

2. Permutation Equivariance. Generalizing CCNNs, GCCNs layers are equivariant with
respect to the relabeling of cells in the combinatorial complex.
Proposition 2. A GCCN layer is cell permutation equivariant if the neighborhood mes-

sage function is node permutation equivariant and the inter-neighborhood aggregator is

cell permutation invariant.

3. Expressivity. The expressiveness of TDL models is tied to their ability to distinguish
non-isomorphic graphs. Variants of the Weisfeiler-Leman (WL) test, like the cellular
WL for cell complexes (Bodnar et al., 2021a), set upper bounds on their corresponding
TDL models’ expressiveness, as the WL test does for GNNs (Xu et al., 2019a).
Proposition 3. GCCNs are strictly more expressive than CCNNs.

The proofs are provided in Appendix B.1, B.2, and B.3, respectively.

Given Proposition 1, GCCNs allow us to define general TDL models using any neighborhood message
function !N , such as any GNN. Not only does this framework avoid having to approximate CCNN
computations, as is the case in previous works 4 (Jogl et al., 2022b;a; 2023), but it also enjoys the
same permutation equivariance as regular CCNNs (Proposition 2). We show in Appendix C that
the resulting time complexity of a GCCN is a compromise between a typical GNN and a CCNN.
Differently from the work in (Hajij et al., 2023), the fact that GCCNs can have arbitrary neighborhood
message functions implies that non message-passing TDL models can be readily defined (e.g., by
using non message-passing models as neighborhood message functions). Moreover, the fact that the
whole strictly augmented Hasse graphs are given as input enables also the usage of multi-layer GNNs
as neighborhood message functions. To the best of our knowledge, GCCNs are the only objects in
the literature that encompass all the above properties.

4These models employ GNNs running on one augmented Hasse graph, i.e. a GCCN that, given a collection
of neighborhoods NC , uses a single neighborhood Ntot defined, for a cell �, as Ntot(�) =

S
N2NC

N (�).
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5 TOPOTUNE

Our proposed methodology, together with its resulting GCCNs architectures, addresses the challenge
of systematically generating principled, general TDL models. Here, we introduce TopoTune, a
software module for defining and benchmarking GCCN architectures on the fly—a vehicle for
accelerating and democratizing TDL research. TopoTune is made available as part of TopoBenchmark
Telyatnikov et al. (2024). This section details TopoTune’s main features.

Change of Paradigm. TopoTune introduces a new perspective on TDL through the concept of
“neighborhoods of interest,” enabling unprecedented flexibility in architectural design. Previously
fixed components of CCNNs become hyperparameters of our framework. Even the choice of topolog-
ical domain becomes a mere variable, representing a new paradigm in the design and implementation
of TDL architectures.

Accessible TDL. Using TopoTune, a practitioner can instantiate customized GCCNs simply by
modifying a few lines of a configuration file. In fact, it is sufficient to specify (i) a collection of
per-rank neighborhoods NC , (ii) a neighborhood message function !N , and optionally (iii) some
architectural parameters—e.g., the number l of GCCN layers.5 For the neighborhood message
function !N , the same configuration file enables direct import of models from standard PyTorch
libraries, including PyTorch Geometric (Fey & Lenssen, 2019) and Deep Graph Library (Chen et al.,
2020b). TopoTune’s simplicity provides both newcomers and TDL experts with an accessible tool for
defining higher-order topological architectures.

Accelerating TDL Research. TopoTune is fully integrated into TopoBenchmark (Telyatnikov
et al., 2024), a comprehensive package offering a wide range of standardized methods and tools for
TDL. Practitioners can access ready-to-use models, training pipelines, tasks, and evaluation metrics,
including leading open-source models from TopoX (Hajij et al., 2024b). In addition, TopoBenchmark
features the largest collection of topological liftings currently available—transformations that map
graph datasets into higher-order topological domains. Together, TopoBenchmark and TopoTune
organize the vast design space of TDL into an accessible framework, providing unparalleled versatility
and standardization for practitionners.

6 EXPERIMENTS

We present experiments showcasing a broad class of GCCN’s constructed with TopoTune. These
models consistently match, outperform, or finetune existing CCNNs, often with smaller model sizes.
TopoTune’s integration into the TopoBenchmark experiment infrastructure ensures a fair comparison
with CCNNs from the literature, as data processing, domain lifting, and training are homogeonized.

6.1 EXPERIMENTAL SETUP

We generate our class of GCCNs by considering ten possible choices of neighborhood structure NC
(including both regular and per-rank, see Appendix E.1) and five possible choices of !N : GCN (Kipf
& Welling, 2017), GAT (Velickovic et al., 2017), GIN (Xu et al., 2019b), GraphSAGE (Hamilton
et al., 2017), and Transformer (Vaswani et al., 2017). We import these models directly from PyTorch
Geometric (Fey & Lenssen, 2019) and PyTorch (Paszke et al., 2019). TopoTune enables running
GCCNs on both an ensemble of strictly augmented Hasse graphs (eq. 5) and a single augmented
Hasse graph (eq. 4). While CCNN results reflect extensive hyperparameter tuning by Telyatnikov
et al. (2024), we fix GCCN training hyperparameters using the TopoBenchmark default configuration.

Datasets. We include a wide range of benchmark tasks (see Appendix E.2) commonly used in the
graph and topological domains. MUTAG, PROTEINS, NCI01, and NCI09 (Morris et al., 2020) are
graph-level classification tasks about molecules or proteins. ZINC (Irwin et al., 2012) (subset) is a
graph-level regression task related to molecular solubility. At the node level, the Cora, CiteSeer, and
PubMed tasks (Yang et al., 2016) involve classifying publications (nodes) within citation networks.
We consider two cases of combinatorial complexes, simplicial and cellular complexes. We leverage
TopoBenchmark’s data lifting processes to infer higher-order relationships in these datasets. We only
use node features to construct edge and face features.

5We provide a detailed pseudo-code for TopoTune module in Appendix D.
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6.2 RESULTS AND DISCUSSION

Table 1: Cross-domain, cross-task, cross-expansion, and cross-!N comparison of GCCN architectures
with top-performing CCNNs benchmarked on TopoBenchmark (Telyatnikov et al., 2024). Best result
is in bold and results within 1 standard deviation are highlighted blue . Experiments are run with 5
seeds. We report accuracy for classification tasks and MAE for regression.

Graph-Level Tasks Node-Level Tasks

Model MUTAG (") PROTEINS (") NCI1 (") NCI109 (") ZINC (#) Cora (") Citeseer (") PubMed (")

Cellular

CCNN (Best Model on TopoBenchmark) 80.43 ± 1.78 76.13 ± 2.70 76.67 ± 1.48 75.35 ± 1.50 0.34 ± 0.01 87.44 ± 1.28 75.63 ± 1.58 88.64 ± 0.36

GCCN !N = GAT 83.40 ± 4.85 74.05 ± 2.16 76.11 ± 1.69 75.62 ± 0.76 0.38 ± 0.03 88.39 ± 0.65 74.62 ± 1.95 87.68 ± 0.33

GCCN !N = GCN 85.11 ± 6.73 74.41 ± 1.77 76.42 ± 1.67 75.62 ± 0.94 0.36 ± 0.01 88.51 ± 0.70 75.41 ± 2.00 88.18 ± 0.26

GCCN !N = GIN 86.38 ± 6.49 72.54 ± 3.07 77.65 ± 1.11 77.19 ± 0.21 0.19 ± 0.00 87.42 ± 1.85 75.13 ± 1.17 88.47 ± 0.27

GCCN !N = GraphSAGE 85.53 ± 6.80 73.62 ± 2.72 78.23 ± 1.47 77.10 ± 0.83 0.24 ± 0.00 88.57 ± 0.58 75.89 ± 1.84 89.40 ± 0.57

GCCN !N = Transformer 83.83 ± 6.49 70.97 ± 4.06 73.00 ± 1.37 73.20 ± 1.05 0.45 ± 0.02 84.61 ± 1.32 75.05 ± 1.67 88.37 ± 0.22

GCCN !N = Best GNN, 1 Aug. Hasse graph 85.96 ± 7.15 73.73 ± 2.95 76.75 ± 1.63 76.94 ± 0.82 0.31 ± 0.01 87.24 ± 0.58 74.26 ± 1.47 88.65 ± 0.55

Simplicial

CCNN (Best Model on TopoBenchmark) 76.17 ± 6.63 75.27 ± 2.14 76.60 ± 1.75 77.12 ± 1.07 0.36 ± 0.02 82.27 ± 1.34 71.24 ± 1.68 88.72 ± 0.50

GCCN !N = GAT 79.15 ± 4.09 74.62 ± 1.95 74.86 ± 1.42 74.81 ± 1.14 0.57 ± 0.03 88.33 ± 0.67 74.65 ± 1.93 87.72 ± 0.36

GCCN !N = GCN 74.04 ± 8.30 74.91 ± 2.51 74.20 ± 2.17 74.13 ± 0.53 0.53 ± 0.05 88.51 ± 0.70 75.41 ± 2.00 88.19 ± 0.24

GCCN !N = GIN 85.96 ± 4.66 72.83 ± 2.72 76.67 ± 1.62 75.76 ± 1.28 0.35 ± 0.01 87.27 ± 1.63 75.05 ± 1.27 88.54 ± 0.21

GCCN !N = GraphSAGE 75.74 ± 2.43 74.70 ± 3.10 76.85 ± 1.50 75.64 ± 1.94 0.50 ± 0.02 88.57 ± 0.59 75.92 ± 1.85 89.34 ± 0.39

GCCN !N = Transformer 74.04 ± 4.09 70.97 ± 4.06 70.39 ± 0.96 69.99 ± 1.13 0.64 ± 0.01 84.4 ± 1.16 74.6 ± 1.88 88.55 ± 0.39

GCCN !N = Best GNN, 1 Aug. Hasse graph 74.04 ± 5.51 74.48 ± 1.89 75.02 ± 2.24 73.91 ± 3.9 0.56 ± 0.02 87.56 ± 0.66 74.5 ± 1.61 88.61 ± 0.27

Hypergraph

CCNN (Best Model on TopoBenchmark) 80.43 ± 4.09 76.63 ± 1.74 75.18 ± 1.24 74.93 ± 2.50 0.51 ± 0.01 88.92 ± 0.44 74.93 ± 1.39 89.62 ± 0.25

GCCNs outperform CCNNs. Table 1 portrays a cross-comparison between top-performing CCNN
models and our class of GCCNs. GCCNs outperform CCNNs in the simplicial and cellular domains
across all datasets. Notably, GCCNs in these domains achieve comparable results to hypergraph
CCNNs, a feat unattainable by existing CCNNs in node-level tasks. Out of the 16 domain/dataset
combinations considered in our experiments, GCCNs outperform the best counterpart CCNN by > 1�
in 11 cases. Evidence supports that GCCN’s architectural novelties contribute to this performance: (i)

Representing complexes as ensembles of augmented Hasse graphs, rather than a single augmented
Hasse graph, consistently improves results (Table 1). (ii) Some GCCNs with per-rank neighborhood
structures outperform not only CCNNs but also other GCCNs with regular neighborhoods. For
example, on MUTAG, a cellular GCCN with a lightweight, per-rank neighborhood structure makes it
19% the size of the best cellular CCNN on this task.

GCCNs perform competitively to CCNNs with fewer parameters. GCCNs are generally more
parameter efficient than existing CCNNs in simplicial and cellular domains, and in some instances
(MUTAG, NCI1, NCI09), even in the hypergraph domain. Even as GCCNs become more resource-
intensive for large graphs with high-dimensional embeddings—as seen in node-level tasks—they
maintain a competitive edge. For instance, on the Citeseer dataset, a GCCN (!N = GraphSAGE)
outperforms the best existing CCNN while being 28% smaller. We refer to Table 4. Training times
provided in Appendix G show that GCCNs train at comparable speeds on smaller datasets, and slow
down for larger datasets, most likely due to TopoTune’s on-the-fly graph expansion. In future work,
we expect that performing this expansion during preprocessing will address this lag.

Generalizing existing CCNNs to GCCNs improves performance. TopoTune makes it easy to
iterate upon and improve preexisting CCNNs by replicating their architecture in a GCCN setting.
For example, TopoTune can generate a counterpart GCCN by replicating a CCNN’s neighborhood
structure, aggregation, and training scheme. We show in Table 2 that counterpart GCCNs often
achieve comparable or better results than SCCN (Yang et al., 2022) and CWN (Bodnar et al., 2021a)
just by sweeping over additional choices of !N (same as in Table 1). In the single augmented Hasse
graph regime, GCCN models are consistently more lightweight, up to half their size (see Table 5).
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Table 2: We compare existing CCNNs with !N -modified GCCN counterparts. We show the result
for best choice of !N . Experiments are run with 5 seeds.

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed

SCCN Yang et al. (2022)

Benchmark results Telyatnikov et al. (2024) 70.64 ± 5.90 74.19 ± 2.86 76.60 ± 1.75 77.12 ± 1.07 82.19 ± 1.07 69.60 ± 1.83 88.18 ± 0.32
GCCN, on ensemble of strictly aug. Hasse graphs 82.13 ± 4.66 75.56 ± 2.48 75.6 ± 1.28 74.19 ± 1.44 88.06 ± 0.93 74.67 ± 1.24 87.70 ± 0.19

GCCN, on 1 aug. Hasse graph 69.79 ± 4.85 74.48 ± 2.67 74.63 ± 1.76 70.71 ± 5.50 87.62 ± 1.62 74.86 ± 1.7 87.80 ± 0.28

CWN Bodnar et al. (2021a)

Benchmark results Telyatnikov et al. (2024) 80.43 ± 1.78 76.13 ± 2.70 73.93 ± 1.87 73.80 ± 2.06 86.32 ± 1.38 75.20 ± 1.82 88.64 ± 0.36
GCCN, on ensemble of strictly aug. Hasse graphs 84.26 ± 8.19 75.91 ± 2.75 73.87 ± 1.10 73.75 ± 0.49 85.64 ± 1.38 74.89 ± 1.45 88.40 ± 0.46

GCCN, on 1 aug. Hasse graph 81.70 ± 5.34 75.05 ± 2.39 75.14 ± 0.76 75.39 ± 1.01 86.44 ± 1.33 74.45 ± 1.59 88.56 ± 0.55

TopoTune finds parameter-efficient GCCNs. By easily exploring a wide landscape of possible
GCCNs for a given task, TopoTune helps identify models that maximize performance while minimiz-
ing model size. Fig. 5 illustrates this trade-off by comparing the performance and size of selected
GCCNs (see Appendix H for more). On the PROTEINS dataset, two GCCNs using per-rank neighbor-
hood structures (orange and purple) achieve performance within 2% of the best result while requiring
as little as 48% of the parameters. This reduction is due to fewer neighborhoods N , resulting in fewer
!N blocks per GCCN layer. Similarly, on ZINC, lightweight neighborhood structures (orange and
dark green) deliver competitive results with reduced parameter costs. Node-level tasks, however, see
less benefit, likely due to the larger graph sizes and higher-dimensional input features.

Impactfulness of GNN choice is dataset specific. Fig. 5 also provides insights into the impact
of neighborhood message functions. On ZINC, GIN clearly outperforms all other models, which
do not even appear in the plot’s range. In the less clear-cut cases of PROTEINS and Citeseer, we
observe a trade-off between neighborhood structure and message function complexity. We find that
more complex base models (GIN, GraphSAGE) on lightweight neighborhood structures perform
comparably to simpler base models (GAT, GCN) on more complete neighborhood structures.

PROTEINS CiteseerZINC

GIN
GraphSAGE

GAT
GCN per-rank

Figure 5: GCCN performance versus size. We compare various GCCNs across three datasets on the
cellular domain, two graph-level (left, middle) and one node-level (right). Each GCCN (point) has a
different neighborhood structure NC , some of which can only be represented as per-rank structures
(⇤ in legend), and message function !N . The amount of layers is kept constant according to the best
performing model. The axes are scaled relative to this model.

7 CONCLUSION

This work introduces a simple yet powerful graph-based methodology for constructing Generalized
Combinatorial Complex Neural Networks (GCCNs), TDL architectures that generalize and subsume
standard CCNNs. Additionally, we introduce TopoTune, the first lightweight software module for
systematically and easily implementing new TDL architectures across many topological domains. In
doing so, we have addressed, either in part or in full, 7 of the 11 open problems of the field defined
by some of its leaders in Papamarkou et al. (2024). Future work includes customizing GCCNs for
application-specific and potentially sparse or multimodal datasets, and leveraging software from
state-of-the-art GNNs. We hope TopoTune will also help bridge the gap with other fields such as
attentional learning and k-hop higher-order GNNs (Morris et al., 2019; Maron et al., 2019).
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