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ABSTRACT

Recent advances in language models have demonstrated their capability to solve
mathematical reasoning problems, achieving near-perfect accuracy on grade-
school level math benchmarks like GSMS8K. In this paper, we formally study how
language models solve these problems. We design a series of controlled experi-
ments to address several fundamental questions: (1) Can language models truly
develop reasoning skills, or do they simply memorize templates? (2) What is
the model’s hidden (mental) reasoning process? (3) Do models solve math ques-
tions using skills similar to or different from humans? (4) Do models trained on
GSMB8K-like datasets develop reasoning skills beyond those necessary for solving
GSMSK problems? (5) What mental process causes models to make reasoning
mistakes? (6) How large or deep must a model be to effectively solve GSM8K-
level math questions? Our study uncovers many hidden mechanisms by which
language models solve mathematical questions, providing insights that extend be-
yond current understandings of LLMs.

INTRODUCTION

Language models like GPT-4 (OpenAl, 2023) have shown initial signs of general intelli-
gence (Bubeck et al., 2023), while smaller models have demonstrated good reasoning abilities by
solving challenging coding/math problems (Li et al., 2023; Gunasekar et al., 2023; Liu et al., 2023).
In this paper, we focus on the ability of small language models to solve grade-school math prob-
lems. Unlike previous works that empirically push the accuracy of models on grade-school math
benchmarks like GSMS8K (Cobbe et al., 2021) and its augmentations (e.g., Liu et al. (2023); Zhang
et al. (2024)), we take a principled approach. We aim to study the following fundamental questions:

1.

How do language models learn to solve grade-school level math problems? Do they just mem-
orize templates, or do they learn reasoning skills similar to humans? Or do they discover new
skills to solve the problems?

Do models trained solely on grade-school math problems only learn to solve these problems, or
do they develop some more general intelligence?

How small can a language model be while still solving grade-school math problems? Is depth
(number of layers) more important than width (number of neurons per layer), or does only size
matter as suggested by practitioners (Kaplan et al., 2020)?

These questions are fundamental to understanding the intelligence of language models. To study
them, it might seem tempting to start with a pre-trained model and fine-tune it on existing datasets
like GSM8K or GPT-4 augmented ones. However, this approach has significant limitations:

* DATA CONTAMINATION. The pretrain data of existing models mostly come from publicly avail-

able internet (Gao et al., 2020), which is a pile of mess. We do not know how many math
problems are included or their structures. There is significant concern regarding whether the
GSMSK benchmark has been leaked to language models’ training datasets (Zhang et al., 2024).
Even if the exact data is not, the pre-trained model might have seen almost identical questions
(e.g., the same problem with different numbers). Thus, this approach cannot answer questions
1-3. We do not know whether a model truly learns the reasoning skills or it simply memorizes
problem templates during training. Therefore, we need full control over the model’s pretrain
data and must train a language model from scratch. This point has been reiterated recently in
(Allen-Zhu & Li, 2024a; 2023b).
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* SOLUTION DIVERSITY. The existing fine-tuning data, such as the GSM8K training set, contains
only 7.5K grade-school math problems, which is insufficient to train a model from scratch. Al-
though recent works use GPT-4 to augment GSMS8K, this is not enough for our purpose. GPT-4
augmented problems might be biased towards a small number of solution templates, since the
original GSM8K data has very few (obviously, at most 8K) solution templates. We need a much
larger, more diverse set of grade-school math problems.

With these points in mind, we introduce our framework to generate a large set of diverse grade-
school math (GSM) problems and use the dataset to train (from scratch) and test a GPT2-like lan-
guage model. In the framework, we focus on the “logical reasoning” aspect of grade-school math
problems, which involves the dependency of parameters in the problem statement, such as “Alice’s
apple is three times the sum of Bob’s orange and Charles’s banana.” We use synthetic sentences to
reduce the difficulty arising from Common Sense, like “a candle burned for 12 hours at 1 inch per
hour” (implying the candle is reducing in length). We also intentionally remove the difficulty from
pure arithmetic: we only consider integers mod23.!

Moreover, our framework ensures that the generated math problems are highly diverse and do
not come from a small subset of templates. Even ignoring all the arithmetic, English, variable
names, and unused parameters, our problems still have more than 90 trillion solution templates (see
Proposition 2.2), much larger than the size of GPT2-small (100M). Thus, language models cannot
solve the math problems in our case by simply memorizing the solution templates.

In this paper, we use the GPT2 model (Radford et al., 2019), but replace its positional embedding
with rotary embedding (RoPE) (Su et al., 2021; Black et al., 2022). We still call it GPT2 for brevity.
‘We summarize our main contributions:

— RESULT 2. We demonstrate that the GPT2 model, pretrained on our synthetic dataset, not only
achieves 99% accuracy in solving math problems from the same distribution but also generalizes
to out-of-distribution problems, such as those requiring longer reasoning lengths than any seen
during training. This is similar to length generalization in arithmetic (Anil et al., 2022; Jelassi
et al., 2023), however, in our case, the model has never seen any training example of such
reasoning length. This signifies that the model can genuinely learn reasoning skills instead of
memorizing solution templates.

— RESULT 3. Crucially, the model can learn to generate shortest solutions, almost always avoiding
unnecessary computations. This suggests that the model formulates a plan before it generates,
avoiding computing any quantities not needed towards solving the underlying math problem.

— RESULT 4. We examine the model’s internal states through probing, introducing six probing
tasks to elucidate how the model solves math problems. For instance, we discover the model
(mentally!) preprocesses the full set of necessary parameters before it starts any generation.
Likewise, humans also do this preprocess although we write this down on scratch pads.

— RESULT 5. Surprisingly, the model also learns unnecessary, yet important skills after pretrain-
ing, such as all-pair dependency. Before any question is asked, it already (mentally!) computes
with good accuracy which parameters depend on which, even though some are not needed for
solving the math problem. Note that computing all-pair dependency is a skill not needed to fit
all the solutions in the training data. To the best of our knowledge, this is the first evidence that a
language model can learn useful skills beyond those necessary to fit its pretraining data.> This
may be a preliminary signal of where the G in AGI can come from.*

— RESULT 6. We explain why mistakes occur. For instance, the model makes systematic errors
that can be explained by probing its internal states. Sometimes, these mistakes can be predicted
before the model generates answers, making them independent of the random generation process.
We connect this to practice, noting that GPT-4/40 also makes similar errors (though we cannot
probe their internal states).

'The conclusions of this paper remain if one replaces 23 with, e.g., 2003. However, for a better-controlled
experiment, we wish to separate reasoning from arithmetic. For instance, if a model fails, we want to ensure it
is not due to an arithmetic error — after all, memorizing the multiplication table for 23 integers is trivial.

2In our case, one can solve all the math problems without computing all-pair dependency. Our pretraining
data never includes such information — all the solutions only compute necessary variables.

3Indeed, the skill to sort relationships among in-context objects is a general skill, which may lead to — via
instruction fine-tuning — skills for solving other tasks, such as discovering causal relationships, determining
the influence of parameter changes, etc.
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Figure 1: Structure and dependency graph corresponding to the Op = 7 easy example in (2.1) and (2.2). De-
pendencies from abstract parameters are drawn in red, and from instance parameters are in black.

— RESULT 7+8. The depth of the language model is crucial for its reasoning ability. For example,
a l6-layer, 576-dim transformer solves harder problems (in reasoning length) than a 4-layer,
1920-dim one, despite the latter being twice as large. This holds even when Chain-of-Thought
(CoT) is used. We explain this necessity in depth by the complexity of the mental processes
involved. We advocate for the use of controlled, synthetic data as a more principled approach to
derive such claims, contrasting with predictions like “only size matters” based on training loss
using internet pretrain data (Kaplan et al., 2020).

While we refrain from overstating that our findings directly apply to foundation models like GPT-4
or more challenging mathematical reasoning tasks, we believe our work significantly advances the
understanding of how language models develop their mathematical reasoning skills, and this has to
be done in a way different from pushing benchmarks.

2 RESULT 1: DATA GENERATION

Motivation. Recall a standard grade-school math problem in the GSMS8K dataset looks like:

Betty is saving money for a new wallet which costs 100. Betty has only half of the money she needs. Her parents decided to give her 15 for
that purpose, and her grandparents twice as much as her parents. How much more money does Betty need to buy the wallet?

This problem involves multiple parameters whose values are connected through various equalities,
such as “Betty’s current money = 0.5 X cost of the wallet” and “money given by grandparents =
2 x money given by parents.” Motivated by this, we build a GSM8K-like math dataset through a
synthetic generation pipeline that captures the dependencies of parameters. We wish to capture at
least the following three types of dependencies.

1. Direct dependency (©): suchas A =5 x (X +Y), so A can be computed after X and Y.

2. Instance dependency (#): such as “every classroom has X chairs, and there are Y classrooms.”
Here, the model must infer the total number of chairs by multiplying X by Y.

3. Implicit dependency (&): such as “Bob has 3 times more fruits than Alice. Alice has 3 apples,
4 eggs and 2 bananas.” Here, the model must learn that apples and bananas are fruits and egg is
not, and “Alice’s fruits” is an abstract parameter derived from the problem statement.

2.1 STEP 1: GRAPH CONSTRUCTION AND PROBLEM GENERATION

Hierarchical categorization. We use a layered structure of categories, each contains possible
items. For instance, categories = (School, Classroom, Backpack) has three layers; category School
= {Central High, Riverview High, ...}; category Classroom = {Dance Studio, Film Studio, ... };
category Backpack = {School Daypack, Messenger Backpack, ... }. We prepare 4 predefined hierar-
chical categorizations, each with 4 layers and 100 items/layer; this represents the world knowledge.

Structure graph. Ineach math problem, only specific items exist, leading to a structure graph that
outlines what sub-items can appear under what item, see Figure 1. For instance,

¢ Connecting Dance Studio and School Daypack with an edge signifies an instance parameter,
“the number of school daypacks in each dance studio,” which is a quantifiable variable that can
be assigned.* This captures the instance dependency (#) as mentioned above.

* Abstract parameters, like “the total number of classrooms in Central High,” cannot be assigned
and are excluded from the structure graph. They reflect implicity dependency (éb) .

“Even though Central High and Rivierside High can both have (possibly multiple) Dance Studios, for sim-
plicity, we assume that each Dance Studio has the same number of School Daypacks.
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Remark 2.1. Rather than using simple objects like Alice’s apple or fake items like Items A/B/C/D,
this structure allows us to describe abstract parameters and adds 2 levels of complexity to the data:

* The model must implicitly learn English concepts, such as a classroom category includes 100
different classroom types. These concepts cannot be derived from individual math problems, as
only a limited selection of classrooms will be mentioned in each problem.

* The model is required to hierarchically access multiple items to calculate abstract parameters, as
opposed to a straightforward retrieval of “Alice’s apple” in the context.’

Dependency graph. The dependency graph is a directed acyclic graph that outlines the dependency
among parameters. For each instance parameter, we choose a random set of (up to 4) parameters it
can depend on — including possibly a special vertex RNG representing a random number generator.
For instance, if “[param A] is X more than the difference of [param B] and [param C]” for X being
randomly generated, then we draw edges from B, C and RNG to parameter A. The dependency
of abstract parameters is implied by the dependency of instance parameters. This captures direct
dependency (©) as mentioned above. We give an examples in Figure 1 (right).

Problem generation. The problem is articulated by describing the dependency graphs in English,

one sentence for each instance parameter.® (Abstract parameters are not described because they are
inherited by the structure graph.) We randomly permute the sentence ordering to further increase
difficulty. A parameter is selected and asked with a question in the end (or at the beginning). Below
is an easy example corresponding to Figure 1; a harder example is in Figure 10.

(Problem - Easy) The number of each Riverview High’s Film Studio equals 5 times as much as the sum of each Film Studio’s Backpack
and each Dance Studio’s School Daypack. The number of each Film Studio’s School Daypack equals 12 more than the sum of each Film
Studio’s Messenger Backpack and each Central High’s Film Studio. The number of each Central High’s Film Studio equals the sum of each
Dance Studio’s School Daypack and each Film Studio’s Messenger Backpack. The number of each Riverview High’s Dance Studio equals
the sum of each Film Studio’s Backpack, each Film Studio’s Messenger Backpack, each Film Studio’s School Daypack and each Central
High’s Backpack. The number of each Dance Studio’s School Daypack equals 17. The number of each Film Studio’s Messenger Backpack
equals 13. How many Backpack does Central High have?
2.1

2.2 STEP 2: SOLUTION CONSTRUCTION (COT)

Let solution be a sequence of sentences describing the necessary steps towards solving the given
problem, where the sentences follow any topological order — also known as Chain-of-Thought,
CoT. For each parameter necessary towards answering the final question, we assign to it a random
letter among the 52 choices (a..z or A..Z), and use a sentence to describe its computation:

Define [param] as X; [intermediate steps]; so X = ...

Throughout this paper, we consider arithmetics mod 23 to avoid errors from computation involving
large numbers. It is perhaps the easiest to directly see a solution example (corresponding to (2.1)),
and a more involved example is in Figure 10:

(Solution - Easy) Define Dance Studio’s School Daypack as p; so p = 17. Define Film Studio’s Messenger Backpack as W; so W = 13.
Define Central High’s Film Studio as B; so B=p+ W =17 + 13 = 7. Define Film Studio’s School Daypack as g; R=W + B =13 + 7 =20;
s0 g =12+R=12+20=09. Define Film Studio’s Backpack as w; so w = g+ W =9 + 13 = 22. Define Central High’s Backpack as c¢; so ¢ =
B *w="7%22=16. Answer: 16.

2.2)

We emphasize that:

* The solution only contain parameters necessary towards calculating the final query parameter.
* The solution follows the correct logical order: i.e. all the parameters used in the calculation must
have appeared and been computed beforehand.

SFor example, the total number of backpacks in Riverview High in Figure 1 is calculated
as ip1 X ap1 + ip2 X apz where ip1 = “Riverview High’s number of Dance Studios”, ip2 =
“Riverview High’s number of Film Studios”, ap1 = “each Dance Studio’s number of Backpacks”, and ap, =
“each Film Studio’s number of Backpacks”, with ¢p1, ip2 being instance parameters and ap1, ap2 abstract pa-
rameters. Here, the model must not only retrieve ip1, ¢p2 but also compute ap1, ap» hierarchically.

SWe use simple English sentence templates to describe the problem, and did not worry about grammar
mistakes such as singular vs plural forms. There are other sources of randomness besides the dependency
graph, such as when parameter A depends on B, C'it could be A + B or A — B.
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5-shot on GPT-4o 230/30 227/30 =28/30 =1430 =
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op=2 op=3 op=4 op=5 op=6 op=7 op=8 o0p=9 o0p=10 op=11 op=12 op=13 op=14 op=15 op=16 op=17 op=18 op=19 o0p=20

Figure 2: GPT-4 (OpenAl, 2023) few-shot accuracies on iGSM-med,,, (with mod5 arithmetics). For each op
we tested 30 problems; and guessing ans = 0 € {0,1,2,3,4} gives a baseline accuracy around
32%. Details are in Appendix H, where we also showcase how GPT-4/40 make mistakes.

* We break computations to binary ops: g = 12413+ 7 is brokeninto g = 124 Rand R = 1347

[T

in the above solution. The number of semicolons ““;” equals the number of operations. This
reduces the arithmetic complexity of the solution, which is not the focus of this paper.’

2.3  DIFFICULTY CONTROL

Although deferring all the data-generation pseudocode to Appendix E, we summarize below the
main randomness used in the data generation process. This includes the random choice of a hi-
erarchical categorization (i.e., the English part); a structure graph (i.e., the instance parameters);
a dependency graph; arithmetic computations on the dependency graph; integer numbers (i.e., the
RNG); problem sentence permutation; and the query parameter.

We use two parameters to control data’s difficulty: ip is the number of instance parameters, and op
is the number of solution operations; the data’s difficulty is an increasing function over them. We
call our dataset iGSM, to reflect the nature that such synthetic dataset can be of infinite size. We

use iIGSMOP=PP=IP 14 denote the data generated with constraint op < op and ip < ip, and use
IGSMPP=PP<P (4 denote those restricting to Op = op.

2.4 TRAIN AND TEST DATASETS

We consider two families of datasets.

¢ In the iGSM-med data family we use ip < 20.

The training data is iGSM-med®='" .= IGSMPPS15P<20 yve evaluate the pretrained model
both in-distribution, on iGSM-med®®='® and iIGSM-med°®=*°, and out-of-distribution (OOD),
on iIGSM-med®®= for op € {20, 21, 22,23} and iGSM-med® =% Here, reask denotes
first generating a problem from iGSM-med®®~? and then resampling a query parameter.®
¢ In the iGSM-hard data family we use ip < 28.

The training data is iGSM-hard®®=?! .= iGSM®P=21P=28 " We evaluate the pretrained model
both in-distribution, on iGSM-hard®®=*! and iGSM-hard®®=>!, and OOD on iGSM-hard®*=*
for op € {28,29, 30, 31, 32} and iIGSM-hard®=°Pe3sk,

Additionally, we use iGSM-med,, to indicate placing question affer problem and iGSM-med,,

the other way (similarly for iGSM-hard). The difficulty of iGSM-med is already quite non-trivial
to humans (at least not solvable with few-shot learning using GPT-4/40, see Figure 2).

Proposition 2.2. Ignoring unused parameters, numerics, sentence orderings, English words,
a-z and A-Z letter choices, IGSM-med®="" still has at least 7 billion solution templates, and

iGSM-hard®®=*" has at least 90 trillion solution templates.”

No data contamination. A goal in synthetic math data generation is to prevent data contamination
in internet-based math datasets, as noted in Zhang et al. (2024). While it may be impossible to certify

"Even GPT-4 can make mistakes on calculating “3 * (4+10) + 12 * (5+6)” without using external calculator.

8Due to the topological nature of our data/solution generation process, reask greatly changes the data
distribution and the number of operations needed. It provides an excellent OOD sample for evaluation. Details
are in Appendix E.

°A solution template is created by replacing all numbers with ‘0’, substituting variables (a-z or A-Z) with
letters in their appearance order, and changing parameters to their types (instance or abstract). For instance,
“Define Owl Forest’s Elephant as y; so y = 11. Define Parrot Paradise’s Raccoon as t; sot =y = 11.” becomes
“Define Inst as a; so a = 0. Define Inst as b; so b =a =0.” We use birthday paradox to estimate the num-
ber of solution templates. If M randomly generated problems yield distinct templates, it suggests with good
probability that the total number of templates exceeds Q(M?).
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Figure 3: (Top): test accuracies on the model pre-trained from iGSM-med,,, /,, and iGSM-hard,,, /,,, datasets.
(Bottom): number of unnecessary params / ops per generated correct solution. Details in Appendix F.

that models trained on internet data are free from contamination, in our setting, we can certify this:

1. We perform OOD evaluation such as on op > 28 while providing only op < 21 training samples.

2. We train with data whose hash value of solution template (see Footnote 9) is < 17 (mod 23),
and test with those > 17. This ensures no template-level overlap between training and testing.

3 RESULT 2-3: SUMMARIZE MODEL’S BEHAVIOR PROCESS

We use the GPT2 architecture (Radford et al., 2019) but replacing its absolute positional embedding
with rotary embedding (Su et al., 2021; Black et al., 2022), yet still referring to it as GPT2 for short. 10
We mostly stick to the 12-layer, 12-head, 768-dim GPT2 (a.k.a. GPT2-small) for experiments, but
we explore larger models in Section 6. We use a context length of 768 / 1024 for pretraining on
iGSM-med/iGSM-hard and 2048 for evaluation. More details are in Appendix F.

Result 2: accuracy. After sufficient pre-training, we give the model a problem from the test
set (without solution) and let it continue to generate (allegedly a solution followed by an answer).
Because we have restricted ourselves to a fixed solution format, language models can learn the
format easily, allowing us to write a solution parser to check if the solution is fully correct.'!
Figure 3 shows that GPT2 performs well when pretrained using iGSM-med or iGSM-hard data,
even when evaluated out-of-distribution on harder (i.e., larger op) math problems. Thus, the model
can truly learn some reasoning skill instead of memorizing solution templates.'”> This could be
reminiscent of language models’ length generalization capability on arithmetics (Zhou et al., 2023;
Jelassi et al., 2023); however, in our case, Op captures the “reasoning length” and our model has
never seen any training example of the same reasoning length as in test time.

Such accuracies also indicate that our iGSM data families are indeed good for pretraining purpose,
allowing us to investigate further how LLMs can solve grade-school math problems.

Remark 3.1. Our controlled experiment distinguishes between “reasoning length generalization”
and “token length generalization”. When designing our test data, we ensured that the test data have
a similar token length compared to the training data (though with longer “reasoning length”, see
Appendix F.1). Thus, Figure 3 primarily addresses the model’s “reasoning length generalization”.
For readers interested in “token length generalization”, we include this in Appendix G.

Result 3: solution redundancy. We examine whether GPT2 achieves high accuracy by

¢ brute-forcedly computing all the parameters during generation (a “level-0" reasoning skill), or
e computing only necessary parameters to give shortest solutions (a “level-1” reasoning skill).
Recall our iGSM (pretrain) data only contains necessary solution steps (i.e., CoT) to simulate what

we see in textbook solutions for math problems. For instance, if a problem describes X=3+2,
E=3+X, Y=X+2 and asks for the value of Y, then a shortest solution would be “X=3+2=5 and

'We also tested Llama architectures (esp. with gated MLP layers) and didn’t see major change. GPT2-rotary
performs no worse than Llama for knowledge tasks (Allen-Zhu & Li, 2024b). We are bounded by resources to
repeat all experiments in this paper with other architectures that have small differences from GPT2-rotary.

""'We check not only the correctness of the final 0..22 but also the calculations and parameter dependencies.

2] Jama (of the same model size) gives similar performance, but we refrain from repeating all the experi-
ments with another model. We are not interested in small model differences in this theoretical study; instead,
we care more about the general behavior of (autoregressive) language models.
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e.g. dep(“Riverview High's Film Studio”,
“Film Studio’s Messenger Bag”) = true

nece(A) — after question is asked, does the model /:[QV?SU'O"]
know if A is necessary for answering question? [Solution]
e.g. nece(“Riverview High's Film Studio”) = false
can_next(A) — in the middle of solution, does the _m
model know if A can be computed next?
eg. can_next(“Riverview High's Film Studio”) = true [Answer] 16.
can_next(“Riverview High's Dance Studio”) = false

dep(A,B) — at the end of problem description, [Problem]
does the model know parameter A depend on B? \

Figure 4: To discover model’s mental (reasoning) process.

Predict necc(A) € {True, False}
7 - add a trainable linear
decoder layer (attention + MLP) [ ] (Classication)laye
; : : : freeze the pretrained LM

I e e s _ trainable rank r update
[BOS] The number of each Riverview High's Film Studio ... How many Backpack does Central High have? [START] Dance Studio’s School Daypack [END] ’ on the embedding layer
T 7

Y Y

decoder layer (attention + MLP)

problem question some parameter A

Figure 5: Illustrations of V-probing on the nece(A) task. For other tasks, see Figure 12.

Y=X+2=7" without ever computing E.

Figure 3 shows that GPT2 predominantly solves the iGSM problems with a “level-1” reasoning
skill, avoiding unnecessary computations, even when evaluated out-of-distribution. This finding is
significant as it suggests that, unlike humans who usually rely on “backward reasoning” and a scratch
pad to write down necessary parameters by backtracking the dependencies from the question (Rips,
1994), the language model can directly generate shortest solutions without using a scratch pad. But,
how does it achieve so? We shall investigate in the next section.

4 RESULT 4-5: DISCOVER MODEL’S MENTAL PROCESS

To understand how the model learns to solve math problems, we propose studying the following
probing tasks, which align closely with human problem-solving strategies:

* nece(A): if parameter A is necessary for computing the answer.

* dep(A, B): if parameter A (recursively) depends on parameter B given the problem statement.

* known(A): if parameter A has already been computed.

» value(A): the value of parameter A (a number between 0-22, or 23 if known(A) = false).

e can_next(A): if A can be computed in the next solution sentence (namely, its predecessors
have all been calculated). Note that A might not be necessary to answer the question.

* nece_next(A): if parameter A satisfies both can_next(A) and nece(A).

For a model to generate the shortest solutions, it must identify nece(A) for all A’s in its mental
process. This is because whether nece(A) is true directly corresponds to whether there is a solution
sentence to compute A. However, how early does the model recognize this, and how is it stored?
Similarly, does it recognize dependencies between parameters (dep)? If so, how early is this mental
process completed? Moreover, in the middle of solution generation, does the model keep track of
each parameter A’s value at all times (value, known)? Does the model mentally know all possible
parameters A that are ready to compute in the next sentence (can_next)? Or does it only focus on
A that is both ready and necessary (nece_next)?

This section proposes probing technique to answer all of these questions.

4.1 V-PROBING: A NEARLY-LINEAR PROBING METHOD

As illustrated in Figure 4, we conduct probing at the end of the problem description for the dep
task, and end of the question description nece task.'? For other tasks, we probe them at the end of
every solution sentence (including the start of the first solution sentence).

Recall that standard linear probing involves freezing a pretrained language model and checking if a
property is linearly encoded at a hidden layer (usually the last layer) for a given token position. This

If the problem format is qp (question asked before the problem) then we probe nece and dep both after
the problem description.
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(a) Probing accuracies on the six tasks: can_next, dep, known, nece,nece_next,value.
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(b) Probing accuracies of can_next(A), dep(A, B) restricted to pos/neg labels in which A is unnecessary

Figure 6: V-probing accuracies; experiment details are in Appendix F.2.

is done by introducing a trainable linear classifier on the hidden states and performing a lightweight
finetuning task for this property (see Hewitt & Manning (2019) and references therein).

Our setting is more complex because the properties have one or two conditional variables, A and B,
described in plain English. To handle this, we truncate the math problems to the probing position
and append tokens [START] and [END] around the descriptions of A (or A, B). We then probe from
the token position of [END] to see if the property is linearly encoded at the last layer.

Unlike standard linear probing, to account for the input change, we introduce a small trainable
rank-8 (linear) update on the input embedding layer. We freeze the pretrained language model and
finetune both the linear classifier and the rank-8 update for the desired property. We refer to this as
V(ariable)-probing and provide details in Appendix C. An illustration of the nece(A) probing task
is shown in Figure 5.

We compute the V-probing accuracies on a language model pretrained from iGSM and compare
them with the V-probing accuracies on a randomly-initialized transformer model. If the former
accuracies are significantly higher, we conclude that the probing signals must have (or be very close
to having) come from the pretrained weights, rather than the (lightweight) finetuning stage.

4.2 PROBING RESULTS AND FINDINGS

We present our probing results in Figure 6. The probing accuracies are high for all the tasks, com-
pared to majority guess and random-model probing — except for the very hard OOD cases (i.e., for
large op where the model’s generation accuracies fall down to 80% anyways in Figure 3),

Result 4: model solves math problems like humans. We make the following observations:

e When generating solutions, the model not only remembers which parameters have been com-
puted and which have not (value, known) but also knows which parameters can be computed
next (can_next,nece_next). These abilities ensure that the model can solve the given math
problem step by step, similar to human problem-solving skills.

* By the end of the problem description, the model already knows the full list of necessary pa-
rameters (nece). This indicates that the model has learned to plan ahead, identifying necessary
parameters before starting to generate the solution. This aligns with human behavior, except that
the model plans mentally while humans typically write this down. This further confirms that the
model reaches the “level-1” reasoning skill discussed in Section 3.

Remark 4.1. The mental process described can be compared to (out-of-context) knowledge ma-
nipulation (Allen-Zhu & Li, 2023b), which involves retrieving factual knowledge and performing
single-step computations (e.g., retrieving two people’s birth dates to determine who was born ear-
lier). Allen-Zhu & Li (2023b) found that even single-step computations cannot be performed men-
tally without a substantial number of pretrain samples. In contrast, this paper studies in-context
reasoning and demonstrates that the model can execute very complex mental calculations.
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Result 5: model learns beyond human reasoning skills. Remarkably, the model learns
dep(A4, B) and can_next(A), even for parameters A not necessary for answering the question,
as shown in Figure 6(b). This differs from human problem-solving, where we typically use back-
ward reasoning from the question to identify necessary parameters, often overlooking unnecessary
ones (Rips, 1994). In contrast, language models pre-compute, for instance, the all-pair dependency
graph dep(A, B) even before a question is raised. This is non-trivial, as the model must dynam-
ically update this graph whenever a new dependency relationship is seen.'* We consider this a
“level-2” reasoning skill that is very different from human behavior or mental processes.

Note also, this skill is not needed for solving the math problems. Although no pretrain data teaches
the model to compute “all-pair dependency” — fitting the data only requires computing necessary
parameters — the model still discovers it after training. This enables the model to sort relationships
among the things it hears, a skill that can be useful for future tasks (via instruction fine-tuning). To
our knowledge, this may be the first evidence of a language model acquiring skills beyond those
needed for learning its pretrain data. This may be a preliminary signal of where the G in AGI can
come from (generalizing to skills not taught in the pretrain data).

Corollary: the backward thinking process. A key question for AGI success is whether the
“backward thinking process” (e.g., “because I want to compute X, but X depends on Y and Y
depends on Z, so let me compute Z first”) needs to be explicitly included in the training data. This
differs from CoT, where CoT breaks down complex computations into simpler steps, but planning
is still required to decide which step to compute first. Our findings suggest that, at least for grade-
school math problems, with abundant data, this backward thinking process can be autonomously
learned through language modeling, without needing to be directly included in the training data.

5 RESULT 6: EXPLAIN MODEL’S MISTAKES

Due to space limitations, we defer Result 6 to Appendix A, which categorizes the model’s erroneous
behaviors in its generated solutions and connects them to our probing results. Probing reveals that
some of the erroneous behaviors trace back to the model’s mental processing errors, which can occur
long before the erroneous behavior manifests (specifically, before the model begins generating its
solution). We also show that GPT-4/40 exhibit the same erroneous behaviors on our dataset, although
we cannot probe their internal states. This finding actually motivates us to write a separate paper
(also in submission to ICLR) regarding how to encourage models to correct their mistakes.

6 RESULT 7-8: DEPTH VS. REASONING LENGTH

Our controlled dataset enables a systematic exploration of the relationship between a language
model’s depth and its reasoning length. Recent studies have demonstrated that for knowledge stor-
age and extraction, only model size matters (even for 2-layer transformers) (Allen-Zhu & Li, 2024b).
Furthermore, both the seminal scaling-law paper by OpenAl (Kaplan et al., 2020) and theoretical
studies in deep learning such as (Allen-Zhu et al., 2019) suggest that model depth/width might have
a minimal impact universally.

Contrary to these findings, we present evidence in Figure 7 that language model’s depth is crucial
for mathematical reasoning (as Result 7)."> Specifically, we experimented with models of depths
4/8/12/16/20 and two sizes (a smaller size 1 and a larger size 2).1% From Figure 7, we observe
that a 4-layer transformer, even with 1920 hidden dimensions, underperforms on our math datasets.
Conversely, deeper but smaller models, such as a 20-layer 576-dim, perform very well. Comparing
accuracies vertically reveals a clear correlation between model depth and performance. Thus, we
infer that depth is likely essential for reasoning tasks, such as solving grade-school math problems.

“Before a question is raised, the model cannot tell if all the dependency statements (such as A is five
times B) have been given. Thus, the model has to pre-compute the all-pair dependency graph both before and
after each sentence; adding a simple relationship such as A depends on B may result in cascading effects, so
everything that depends on A must now also depend on everything that B depends on.

SMath reasoning only occupies a tiny fraction of pretraining data for language models, thus one might not
observe a difference if we only look at the perplexity as in the original scaling law paper (Kaplan et al., 2020).

Y GPT2-0-h represents an ¢-layer, h-head, 64h-dimensional GPT2 model. Size-1 models are GPT2-4-21,
GPT2-8-15, GPT2-12-12, GPT2-16-10, GPT2-20-9, with similar parameter counts; size-2 models are GPT2-
4-30, GPT2-8-21, GPT2-12-17, GPT2-16-15, GPT2-20-13, approximately twice the size of size-1 models.



Under review as a conference paper at ICLR 2025

iGSM-med_pq iGSM-med_gp |

iGSM-hard_pq iGSM-hard_qp | avg
out-of-dist (OOD) out-of-dist (00D)

67.7 62.1 57.1 50.6 99.1 89.8 69.4 62.2 57.8 52.3 45.7
0.6 37.0 32.3 27.399.4 92.1 74.5 69.5 64.7 59.1 53.2

depa - sizel - head21 -EERINEESAY]
depd - size2 - head30 LRI RIA)
dep8 - sizel - head15
dep8 - size2 - head21
depl2 - sizel - head12
depl2 - size2 - head17
dep16 - sizel - head10
dep16 - size2 - head1s
dep20 - sizel - head9
dep20 - size2 - head13 {100 99.8|95.8 93.3 89.2 84.4|100 99.6(93.7 91.8 87.4 81.3

N

PN A L I N A L ) S AP a2 0 oy Al b a2 29 o0 b o
0% 0 0 o o 9% o o o o o ®% 0 0 S U

o7 0%

Figure 7: Accuracies for GPT2 models of different depth/widths pretrained on iGSM datasets, see Appendix F.
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Figure 8: Increasing probing accuracies of nece(A) with increasing layer depth. The x-axis denotes the dis-
tance of parameter A to the query parameter, with colors from light to dark to represent layers 1
to 20. This figure is for a 20-layer GPT2 model; for other model depths/sizes, see Figure 13.

Next, we try to reveal “why” this happens. We delved into how depth influences math problem-
solving skills through the nece probing task, focusing on necessary parameters at distance ¢ from
the query parameter, for ¢t € {1,2,...,8}. These parameters all have nece(A4) = true, but we can
probe the model to see how correct they are at predicting nece(A) at different hidden layers.

Figure 8 shows our result. It reveals a correlation between the model’s layer hierarchy, reasoning
accuracy, and mental reasoning depth. Shallower layers excel at predicting nece(A) for parame-
ters A closer to the query, whereas deeper layers are more accurate and can predict nece(A) for
parameters further from the query. This suggests that the model employs layer-by-layer reasoning
during the planning phase to recursively identify all parameters the query depends on. Furthermore,
the depth of a language model is crucial, likely due to the complexity of its hidden (mental) rea-
soning processes. A t-step mental reasoning, such as mentally computing nece(A) for parameters
A that are a distance t from the query, may require deeper models for larger ¢, assuming all other
hyperparameters remain constant.

We make two disclaimers here. First, if the “backward thinking process” is added as CoT to the data
(see the end of Section 4.2), then deep mental thinking is no longer required, reducing the language
model’s depth requirement. However, in practice, many such “thinking processes” may not be
included in standard math solutions or languages in general. Second, the above claim does not imply
that ““a t-step mental thinking requires a depth-t transformer”. A single-layer transformer (containing
attention and MLP sub-layers) can implement £ > 1 mental thinking steps, though possibly with
reduced accuracy (or requiring the hidden dimension to be extremely large) as ¢ increases. We refrain
from providing an exact correlation in this paper, as it heavily depends on the data distribution.

7 CONCLUSION

We use a synthetic setting to demonstrate that language models can learn to solve grade-school math
problems through true generalization, rather than relying on data contamination or template mem-
orization. We develop probing to examine the models’ hidden reasoning processes. Our findings
reveal that these models can learn math skills aligned with human cognitive processes, as well as
“new thinking processes” not present in the training data. Additionally, we explain why models
make reasoning mistakes, and provide a principled approach to connect the model’s depth to its
capable reasoning length. We believe this research opens doors to study the mathematical reasoning
skills of language models from a different angle compared to pushing math benchmarks.

One may argue that iGSM may be very different from the pretrain data that modern LLMs use.
While this may be true, we attempt to look into the future. Recall, even GPT-4/40 of today cannot
few-shot learn to solve IGSM-med®®="! (see Figure 2). From this perspective, it is reasonable to
believe that future versions of LLMs will rely on synthetic math data to improve their reasoning
skills. While one may not directly use iGSM, it is tempting to use existing LLM:s to turn iGSM into
more natural formats while keeping the logical chains. On the other hand, models trained purely on
the IGSM data make similar mistakes compared to GPT-4/40 (see Appendix H); this further suggests
that our findings do connect to practice, regarding the model’s hidden reasoning process.
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APPENDIX

A MISSING RESULT 6: EXPLAIN MODEL’S MISTAKES

nece(A)

iGSM-med iGSM-hard

on all parameters | pg 99.8% 98.7% 97.9% 96.9% 94.7% 99.6% 99.1% 98.6% 97.9% 97.1% 95.5%
on all parameters | pq (reask) 93.4% 94.9% 95.7% 95.6% 95.9% 89.6% 89.9% 90.5% 91.6% 92.0% 92.0%
on all parameters | gp 99.9% 99.5% 99.4% 99.3% 99.2% 99.8% 99.7% 99.7% 99.6% 99.4% 99.3%

on all parameters | gp (reask) 98.1% 98.3% 98.5% 98.2% 96.6% 96.1% 96.6% 97.1% 97.2% 97.2%

on unnecessary parameter in model's output | pq (reask) | beam1
on unnecessary parameter in model’s output | pq (reask) | beama

on unnecessary parameter in model’s output | ap (reask) | beam1

on unnecessary parameter in model’s output | ap (reask) | beamd.

op=15  0p=20  op=21  op=22 op=23  op=21  op=28  op=20  op=30  op=31  op=32

(a) nece(A) probing accuracies correlate with model’s outputted unnecessary parameters

can_next(A) nece_next(A)

iGSM-med iGSM-hard iGSM-med iGSM-hard
on all parameters | pg 99.3%  99.2%  99.1%  99.0% | 99.1%  99.0%  99.0%  98.9%  98.9% | 99.2%  99.1%  99.0%  98.7% | 98.7%  98.6%  98.4%  98.3%  98.3%
on all parameters | qp 98.8%  98.6%  98.7%  985% | 99.1%  99.0%  99.0%  99.0%  99.0% | 98.7%  983%  98.3%  97.7% | 995%  99.4%  99.3%  992%  99.2%

69.6%  70.9% 63.7% 62,5
on first wrong param | pq | beam1 —330/474 32/521
on first wrong param | pq | beamd
1%  652% 6 6
on first wrong param | ap | beam1 41359 =354/532

on first wrong param | gp | beamd e

op=21 op=22 op=23  op=28 op=32 op=22  op=23

(b) can_next(A) and nece_next(A) probing accuracies correlate with model’s outputted wrong solutions

Figure 9: Probing results correlate with model’s output solutions. We tested 4096 math problems and presented
the probing accuracies restricted to (1) unnecessary parameters in the model’s correct output solution
(top), and (2) the first wrong parameter in model’s wrong output solution (bottom). Details are in
Appendix F.2.

We further examine the relationship between our probing results and the model’s generated solu-
tions, focusing on two questions: (1) When does the model answer correctly but include unnecessary
parameters? (2) What causes incorrect answers? We aim to determine if such erroneous behavior of
the model aligns with errors in the model’s mental process (via probing).

For the first question, given the model rarely produces solutions longer than necessary (see Figure 3),
we turned to out-of-distribution reask data for evaluation.'” On this data, pretrained models produce
an average of ~ 0.5 unnecessary parameters per solution even for op = 32 (see Figure 3). We
examined if these unnecessary parameters A were incorrectly predicted as nece(A) = true in
the probing task. Figure 9(a) reveals that this is often indeed the case, thus language models produce
solutions with unnecessary steps due to errors in their mental planning phase.

For the second question, we focused on the model’s wrong solutions and their first wrong pa-
rameters. (Using synthetic data, we can easily identify such parameters.) Our findings in
Figure 9(b) show that the model’s errors mainly stem from incorrectly predicting nece_next(A)
or can next(A) as true in its internal states when such A’s are not ready for computation.'®

Result 6 (Figure 9). Combining these, we conclude:

e Many reasoning mistakes made by the language model are systematic, stemming from errors in
its mental process, not merely random from the generation process.

* Some of the model’s mistakes can be discovered by probing its inner states even before the
model opens its mouth (i.e., before it says the first solution step).

17Recall this re-samples a query after generating the problem, leading to a different set of necessary param-
eters.

'8In Figure 9(b), we focus on these “first wrong parameters” with correct label being can_next (A) = false
or nece_next(A) = false and present the probability that their probing also correctly predicts false. Low
accuracy indicates that the model “thought” these parameters were ready for computation, but they were not.
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We also observe that GPT-4/40 makes similar mistakes by outputting unnecessary parameters or
insisting on computing parameters A with can_next (A) = false (see Appendix H). This further
hints that our findings may be applicable more broadly.

B RESULT 1 — AN EXAMPLE IN IGSM-HARD WITH OP = 21

(Problem - A Hard Example) The number of each Jungle Jim’s International Market’s Cheese equals the sum of each Parmesan Cheese’s Pear and each The Fresh
Market’s Ice Cream. The number of each Ice Cream’s Pineapple equals 2 more than each Goat Cheese’s Grape. The number of each New Seasons Market’s Goat
Cheese equals the sum of each Residential College District’s Jungle Jim’s International Market, each Jungle Jim’s International Market’s Parmesan Cheese and each
Residential College District’s Supermarket. The number of each Arts Campus’s New Seasons Market equals each Cheese’s Pineapple. The number of each Goat
Cheese’s Banana equals each Vocational School District’s Product. The number of each Residential College District’s Jungle Jim’s International Market equals 5
more than each Ice Cream’s Grape. The number of each Parmesan Cheese’s Pineapple equals each Parmesan Cheese’s Pear. The number of each Residential College
District’s The Fresh Market equals each Arts Campus’s Trader Joe’s. The number of each Arts Campus’s Trader Joe’s equals each Parmesan Cheese’s Ingredient.
The number of each Goat Cheese’s Grape equals 0. The number of each The Fresh Market’s Ice Cream equals 13 more than the difference of each Residential
College District’s The Fresh Market and each Parmesan Cheese’s Grape. The number of each Goat Cheese’s Pineapple equals each New Seasons Market’s Product.
The number of each Vocational School District’s The Fresh Market equals the sum of each Trader Joe’s’s Cheese and each The Fresh Market’s Cheese. The number
of each Trader Joe’s’s Cheese equals 6. The number of each The Fresh Market’s Cheese equals 3. The number of each Jungle Jim’s International Market’s Ice
Cream equals the difference of each Ice Cream’s Banana and each Goat Cheese’s Grape. The number of each Jungle Jim’s International Market’s Parmesan Cheese
equals each Ice Cream’s Pineapple. The number of each Parmesan Cheese’s Pear equals the difference of each Goat Cheese’s Grape and each Ice Cream’s Grape.
The number of each Parmesan Cheese’s Grape equals 12 times as much as each Residential College District’s Jungle Jim’s International Market. The number of
each The Fresh Market’s Parmesan Cheese equals each The Fresh Market’s Cheese. The number of each Ice Cream’s Banana equals the sum of each Parmesan
Cheese’s Pineapple and each Ice Cream’s Pineapple. The number of each School District’s Jungle Jim’s International Market equals each The Fresh Market’s Ice
Cream. The number of each Cheese’s Pineapple equals 20 more than the sum of each Trader Joe’s’s Cheese and each The Fresh Market’s Cheese. The number of
each Trader Joe’s’s Parmesan Cheese equals 16. The number of each Ice Cream’s Pear equals 8. The number of each Ice Cream’s Grape equals each Goat Cheese’s
Grape. How many Product does School District have?

(Solution - A Hard Example) Define Goat Cheese’s Grape as u; so u = 0. Define Ice Cream’s Grape as x; so x = u = 0. Define Residential College District’s Jungle
Jim’s International Market as N; so N =5+ x =5 + 0 = 5. Define Parmesan Cheese’s Pear as G; s0 G =u - x =0 - 0 = 0. Define Parmesan Cheese’s Grape as f; so
f=12*%N=12*5 = 14. Define Parmesan Cheese’s Pineapple as C; so C = G = 0. Define Parmesan Cheese’s Ingredientas Z;e =f+C=14+0=14;50Z=¢e
+ G =14 + 0 = 14. Define Arts Campus’s Trader Joe’s as q; so q = Z = 14. Define Residential College District’s The Fresh Market as j; so j = q = 14. Define Ice
Cream’s Pineapple as X; so X =2 + u =2+ 0 = 2. Define Ice Cream’s Banana as K; so K = C + X =0 + 2 = 2. Define The Fresh Market’s Ice Cream as P;i=j - f=
14-14=0;s0 P=13 +i= 13 + 0 = 13. Define Jungle Jim’s International Market’s Ice Cream as R; so R = K - u =2 - 0 = 2. Define School District’s Jungle Jim’s
International Market as V; so V = P = 13. Define Jungle Jim’s International Market’s Cheese as v; so v =G + P = 0 + 13 = 13. Define Jungle Jim’s International
Market’s Parmesan Cheese as S; so S = X = 2. Define Jungle Jim’s International Market’s Productas y; U=S +R=2+2=4;s0y=U+v =4+ 13 =17. Define
School District’s Product as J; soJ =V *y = 13 * 17 = 14. Answer: 14.

Structure Graph Dependency Graph
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focational Ico reamis Intefiabion  ice Gream's New Seasons
i I Ice Cream's I Markets _Saatini
District [Arts Campus) [School Dist- Trader Joe™ '*° G rap S W apple _Ma
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Figure 10: An example with op = 21 in iGSM-hard, used for training. Don’t forget during testing we
evaluate models on op = 32 which is even much harder.
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Figure 11: Probing accuracies restricted to positives/negatives labels (complement to Figure 6 which is on all
labels.)

C RESULTS 4-5 — DETAILS ON V-PROBING

Recall that we wish to conduct probing at the end of the problem description for the nece and
dep tasks (before the solution for nece; before the solution or even the question for dep). For
other tasks, we probe at the end of every solution sentence (including the start of the first solution
sentence). The goal is to freeze a pretrained language model, then introduce a very small number of
additional trainable parameters on top of it, and finetune them for each probing task.

Specifically, we take a pretrained language model, e.g., pretrained from the iGSM-hard training
data. We freeze its parameters completely except for adding a trainable rank-r update on the em-
bedding layer to account for the task change (from next-token prediction to probing). Throughout
this paper we use a small value r = 8. We feed this network with training data that are the same as
iGSM-hard, but truncated at exactly the position we wish to probe. Importantly, we append such
inputs with a special starting token [START] along with a parameter name (or two names, if it is the
dep(A4, B) task). We then extract the hidden states of the last token position at the last transformer
layer, and add a trainable linear layer (a.k.a. linear head) to perform classification for one of the six
probing tasks.

This probing method is illustrated in Figure 12. We call it V(ariable)-Probing, because it can take
an arbitrary number of variables (i.e., parameters in this paper) to allow us to perform functional
probing inside the transformer.

Note, if it were only a trainable linear head such probing would be called linear probing (Hewitt &
Manning, 2019). Unlike traditional linear probing, we are adding a small low-rank update on the
model’s embedding layer. This is arguably the minimum change needed (to account for the task
change, for special tokens like [START] [MID] [END], etc.) in order to perform any non-trivial
probing. This is related but different from the nearly-linear probing methods introduced in Allen-
Zhu & Li (2023a; 2024a), because they do not support taking variables as probing inputs.

Unbalanced probing tasks. Our probing accuracies for the six tasks were presented in Figure 6.
Note however, the dep and nece_next tasks have unbalanced labels — even guessing “all false”
would give 83% accuracy for dep(A, B) and 92% for nece_next(A). For such reason, we
also present their (high) probing accuracies restricted to positives/negatives labels separately in
Figure 11.

C.1 PROBING DATA PREPARATION

We describe here how we prepare the probing data. We generate math data according to Appendix E.

For each problem and each probing task (such as nece(A), dep(A, B), etc), we need to specify
two things: at which position to probe and what parameters A (or A, B) to probe.

e For nece and dep, the probing always takes place at the end of the problem (and question)
description, so there is no choice to be made; for value, can_next, nece_next tasks, the
probing can take place at the end of each sentence in the solution for (including the beginning of
the first solution sentence), and we uniformly at random make such choices.

e Each parameter A (or B) can be uniformly at random chosen from the set of all (instance or
abstract) parameters in our dependency graph (with the only requirement that A # B).

In the end, we make sure for each problem and each probing task, we make at most 10 such random
choices (over the position and the choice of parameters) and sample without replacement.

Just like in the pretrain data, we prepare our probing data so that only problems with hash values of
their solution template (see Footnote 9) where the hash < 17 (mod 23) are included in the training
set, and the rest are used for testing.
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Predict necc(A) € {True, False}
4
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decoder layer (attention + MLP) i (classification) layer

decoder layer (attention + MLP) i : | freeze the pretrained LM

i e

trainable rank r update
[BOS] The number of each Riverview High's Film Studio ... How many Backpack does Central High have? [START] Dance Studio’s School Daypack [END] | on the embedding layer
< 7

Y

problem question some parameter A

(a) V-probing for the nece(A) task

Predict dep(A,B) € {True, False}
AN
At

decoder layer (attention + MLP) [ ]

decoder layer (attention + MLP)

o |
[BOS] The number of each Riverview High's Film Studio ... each Film Studio's Messenger Backpack equals 13.[START] Riverview High’s Film Studio [MID] Dance Studio’s School Daypack [END]

problem some parameter A some parameter B

(b) V-probing for the dep(A, B) task

Predict known(A) € {True, False}, or value(A) € {0,1,..22,None}, or can_next(A) € {True, False}, or necc_next(A) € {True, False}
A

decoder layer (attention + MLP) [ ]

decoder layer (attention + MLP)

e
[BOS] The number of each Riverview ... How many Backpack ...? [SOL] Define ... Define Central High’s Film Studio as B; so B = p + W = 17 + 13 = 7. [START] Film Studio’s School Daypack [END]

problem question a prefix of solution some parameter A

(c) V-probing for the value(A), can_next(A), nece_next(A) tasks

Figure 12: Illustrations of V-probing, our nearly-linear probing methods to investigate whether a pretrained
model, at a specific input position, knows an arbitrary func(A) for a parameter A described in
text.

In all cases, we freeze the entire pretrained language model, except for a low-rank » = 8 update on
the input embedding layer to accommodate the task change.

The illustration is for pq data (problem precedes question); for gp data, we simply reverse the order,
except for dep(A, B) where the question is added before the problem.
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D RESULT 8 — ADDITIONAL FIGURE
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Figure 13: Increasing probing accuracies of nece(A) with increasing layer depth. This is an extension of
Figure 8 but including more model depths/sizes. The x-axis denotes the distance ¢ of parameter A
from the query parameter for ¢t = 1. .. 8. The colors transition from light to dark to represent layers
1 to max. (Model architecture details are in Footnote 16 and Appendix F.)

Remark. It is not surprising to see in some cases (e.g., (GSM-hard,, for depth-20 and size-2), for
deeper layers, the probing accuracy of nece(A) actually increases as the distance ¢ increases; in
such cases, the information of nece(A) for smaller ¢ is stored (relatively better) in lower layers.
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E RESULT 1 DETAILS — MATH DATA GENERATION

Our math data generation process consists of first generating the structure graph (see Figure 1 and
10 left), which defines the set of parameters we shall use; then generating the dependency graph (see
Figure 1 and 10 right), which defines the arithmetic relationship between the parameters; and finally
generating the English problem and solution descriptions.

Notations. In this section, to make the description concise, when we say “randomly sampling”
in the pseudocode, we mean uniform random unless otherwise noted. Whenever we consider a
(directed) graph G, slightly abusing notation, we write a € G to indicate that a is a vertex in G and
(a — b) € G to indicate that there is an edge from a to b in G.

E.1 GENERATE STRUCTURE GRAPH

Recall the structure graph (see Figure 1 and 10 left) describes the set of possible items (nodes) and
instance parameter (edges) that we shall rely on to construct our math problem.

We use G to denote such structure graph, and it is generated G5 = DrawStructure(e, d, wo, w1)
from a random distribution defined with hyperparameters e, d,wp,w; € N. At a high level, we
construct G so that it has d layers, e edges, and each layer has between wg and w; items.

Specifically, suppose I; € {wg,wp + 1,...,w} represents the number of items for each layer
7. In this configuration, one must have at least e~ = Iy 4+ --- 4 [ edges to ensure the graph is
“connected”, and at most et = [;ly + --- + l4_1l4 edges. Using this formula, we first randomly
choose a configuration (I1,...,l4) sothate™ < e < e for the given parameter e. Then, after the
configuration is chosen, we randomly generate edges accordingly. Details are given in Algorithm 1.

Algorithm 1 G = DrawStructure(e, d, wg, w1 )

Input: e, d,wy, w; € N o satisfying2 < d < 4;2 <wo <w1 <4 (d—Dwo <e<(d—1wi
1: 1+ (wo,wp,...,wy) € z4 < 1; represents the number of items (nodes) for layer i

2: p < uniform random from (0, 1)

3: whilel;«é(wl,wl,...,wl)do

4: e~,eT < minimum and maximum number of edges that [ can give

5: if e < e then

6: | randomly select i € [d] such that [; < wy, and increase it I; < I; + 1.

7 else if e~ = e then

8

: | break
9: else if randomly choose a number in (0, 1) and it is less than p then
10: | randomly select i € [d] such that I; < w;, and increase it [; < [; 4 1.
11: else
12: | break
13: end © after while loop, we must have e~ < e < e and Vi € [d]: wo < l; < wn

14: Construct G with exactly I; items on layer ¢ € [d].

15: for each item a in each layer ¢ > 2 do

16: | randomly select an item b in layer i — 1 and connect (a,b) in Gs. o this creates e~ edges
17: while number of edges < e do

18: \ randomly select two items a, b from adjacent layers to create an edge in Gs.

19: return G, and attach English to it.

E.1.1 ATTACH ENGLISH

As described in Section 2.1, we have prepared 4 predefined hierarchical categorizations, each of
them with 4 total layers of categories:

[

["District", "Supermarket", "Product", "Ingredient"],
["Zoo", "Enclosure", "Animal", "Bone"],

["School", "Classroom", "Backpack", "Stationery"],
["Ecosystems", "Creatures", "Organs", "Cells"]
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In each of the above 16 categories, we have prepared around 100 items (further decomposed into 5
sub-categories). Below is a showcase of them:

"District": {

"Residential Districts": [...],

"Commercial Districts": [
"Shopping District", "Business District", "Financial District", "Industrial District",
"Warehouse District", "Market District", "Restaurant District", "Entertainment District",
"Arts District", "Fashion District", "Silicon Valley", "Wall Street",
"Tech Park", "Automotive District", "Jewelry District", "Medical District",

"Legal District", "Media District", "Research Park", "Manufacturing District"
’
"Historical Districts": [...],
"Educational Districts": [...],
"Government Districts": [...]
}
"Supermarket": {...},
"Product": {

"Canned Foods": [...],

"Snack Foods": [
"Potato Chips", "Pretzels", "Popcorn", "Candy Bars",
"Gummy Candy", "Cookies", "Crackers", "Granola Bars",
"Fruit Snacks", "Cheese Puffs", "Nuts", "Trail Mix",
"Beef Jerky", "Rice Cakes", "Yogurt Covered Raisins", "Chocolate Covered Pretzels",
"Tortilla Chips", "Salsa", "Hummus", "Dried Fruit"

’
"Beverages": [...],
"Baked Goods": P

"Dairy Products":
I
"Ingredient": {...},
"zoo": {...},

"Enclosure": {...},
"Animal": {...},
"Bone": {...},
"School": {...},
"Classroom": {...},
"Backpack": {...},
"Stationery": {...},
"Ecosystems": {...},
"Creatures": {...},

"Organs": {...},
"Cells": {...}

Now, given a constructed structure graph Gs, we first randomly pick one of the four categorizations,
then randomly pick d € {2,3,4} consecutive layers of categories, next randomly pick one of the
five subcategories, and finally pick /; random item names in this subcategory for each layer :.

At this point, we have constructed G as well as added English names to each of its node, just like
Figure 1 and 10 (left).

E.2 GENERATE DEPENDENCY GRAPH

A structure graph G defines the set of possible parameters we consider, while a dependency graph
defines how these parameters depend on each other. We use an edge a — b to indicate that parameter
b depends on a; there is a special vertex RNG and it can happen that RNG — b. What an abstract
parameter depends on is inherited from the structure graph Gs. For each instance parameter, we
shall randomly add edges to indicate what parameters it depends on.

High-level plan. We shall use G4 to denote the dependency graph, we start from an empty graph
and then add vertices/edges incrementally and randomly. Our process is as follows:

* Generate a necessary dependency graph G3°° which covers all the vertices and nodes that are
necessary for the computation of the query parameter.

— Generate necessary abstract parameters (and add parameters they depend on); call this graph
Ggecel.

Generate necessary instance parameters and add them to G1*°%; call this graph G7°°2.

Generate a topological order for parameters G1* and ensure all of them are necessary to-
wards computing the query parameter (which is the last one in this tropologic order). During
this process, we shall add additional edges from G2 to create G}*°3.

Generate additional necessary edges and add them to G5°°®3; call this graph G},
* Add to G*° all the remaining (unnecessary) parameters and edges to form Gyg.
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At a high level, our problem description shall solely depend on G4 — by describing each instance
parameter in it using a sentence, and our solution description shall solely depend on G**® — by
describing the computation of each parameter in it using a sentence.

Before we proceed with the construction let us formally introduce:
Definition E.1 (operation). Given any dependency graph Gy,

* For an (abstract or instance) parameter a € G4 that has in-degree t > 0, we define opg,(a) :=
max{1,t — 1} which is the number of operations needed to compute a."

* Weuse op(Ga) := }_ e\ (rNG} OPc, (@) 10 denote the total number of (arithmetic) operations
needed to compute all the parameters in Gy.
Remark E.2. In our final design of G4, we shall ensure that each parameter (except the special
vertex RNG) has in-degree at least 1; however, during the construction process since we add edges
incrementally, some (instance) parameter may temporarily have in-degree 0. For notation simplicity,
we still say op, (@) = max{1, —1} = 1in such a case.

Hyperparameters. We use hyperparameters 1 < n < m < s to control the difficulty of G4.

¢ we shall ensure op(Ggecel) < n and is as close as possible to n;

« we shall ensure op(G*°?) = op(G°®?) < m and is as close as possible to m;

* we shall ensure op(G5*®) = s is exact.

In other words, hyperparameter s controls exactly how many operations are needed to compute the
query parameter, which is the primary factor controlling the problem’s difficulty.

E.2.1 CONSTRUCTION OF Gjecel, GGnece?

Given a structure graph G, recall its edges represent all the instance parameters we shall use. Its
abstract parameters are those ones that describe quantities across 1 or multiple layers: for instance
in Figure 1, Central High’s number of Classrooms is across 1 layer, and Central High’s number of
Backpacks is across 2 layers. We define this number as the difficulty level of abstract parameters.

With this notion, our construction of G and G*°*? are described together in Algorithm 2.

At a high level, we try to incrementally and randomly add abstract parameters to G5°°®! while main-
taining op(G°°®!) < n. We cannot make this exact equality because when adding a single abstract
parameter requires also (recursively) adding all the other parameters it may depend on. We tried
to prioritize adding abstract parameters with higher difficulty levels. Once we finish constructing
Gheel, we randomly add additional instance parameters from Gy to make it G2,

YFor instance, in Figurel, a = “Riverview High’s total number of Backpacks” is equal
to ip1 X ap1 + ip2 X apz for ip1 = “Riverview High’s number of Dance Studios”, ip> =
“Riverview High’s number of Film Studios”,  ap1 = “each Dance Studio’s number of Backpacks”,
ap2 = ‘“‘each Film Studio’ number of Backpacks”, where ip1,ip2 are instance parameters and api, ap2

are abstract parameters. In this case, this abstract parameter depends on 4 other parameters, and requires 3
arithmetic operations.
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Algorithm 2 G*°*? = DrawNecessary1(Gs, n, m)

Input: structure graph G5 of depth d, n,m € Nwith1 <n <m
1: G5e<e! + empty graph

2: repeat

3: updated < false

4: fori+d—1,...,1do

5: if 3 abstract parameter of difficulty level 7 in Gs that is not yet in G7°°*! then

6 randomly pick one such abstract parameter a of difficulty level ¢

7 G’ + G714+ and all instance/abstract parameters a may (recursively) depend on
< also add their dependency edges

8: if op(G’) < n then
o: \ Ggecel + G’; updated < true; break
10: until updated = false
11: Ggece2 — Ggecel o op(G5) < n and all instance parameters in G7°* have in-degree 0
12: fori < 1,2,...,m — op(G}!) do
13: ‘ if there’s leftover instance parameter in G5 not yet in G}°°®, add a random one to G}
14: return Ggecez o op(GF?) < m and all instance parameters in G2 have in-degree 0

E.2.2 CONSTRUCTION OF G}*¢¢3

Our goal next is to select a random query parameter in G* and construct a random topological
ordering Topo for all the parameters in G}°°°2, so as to ensure that all the parameters are necessary
towards the computation of query.

We start with Topo = [query] and append parameters to its left one by one. During this process, we
may also introduce new edges randomly; we start with G123 = G1*°* and add edges incrementally.
This process may not always succeed — sometimes the created topological ordering cannot make
all the E)Oarameters necessary towards the computation of the query. If this happens we declare a
failure.

We introduce two notions (we use G1°°®3 \ Topo to denote the set of vertices in G'1°°*3 that are not
in Topo):

* Nextlgnes (Topo) := {a € G\ Topo | (a — b) € G3**3 for some b € Topo}

Intuitively, if a ¢ Next1l(Topo) then we cannot immediately append « to the front of Topo,
because it is not yet necessary towards the computation of query.

* Next2gneees (Topo) := {a € G5=3\ Topo | #(a — b) € G*3 for any b € G}**3 \ Topo }

Intuitively, if a & NethGSecea (Topo) then we cannot immediately append a to the front of Topo,

because some other parameter depends on it and is not yet added to Topo. (Obviously we always
have Next2gnes (Topo) # @ unless G§*°** \ Topo = & so we are done.)

Our generation algorithm is now easy to describe: we keep adding parameters that are in
Next1 gneees (Topo) M Next2gueces (Topo) to the front of Topo; and if we get stuck, we introduce new

edges to Ggece3 (or declare failure). The pseudocode is in Algorithm 3.

The outside pseudocode, which comes later, shall go back to regenerate the structure graph and start again.

21



Under review as a conference paper at ICLR 2025

Algorithm 3 (G7*°®3, Topo) = DrawNecessary2(G]°?)

1: G5e°3 < Ge°2; Topo <+ |].

2: while true do

3 if Topo = [] then

4: param, < random parameter in NeXt2Gzece3 (Topo); o this is query parameter
5: else
6.
7

8

| param, + random parameter in Next1gneces (Topo) N Next2gneees (Topo);

Topo = [param,| + Topo < append to the front
: | if G} \ Topo = & then break
9: if Next1 gneees (Topo) M Next2gneces (Topo) = & then

10: If param, is abstract then return failure

11: param; < a “random” parameter in Next2gneces (Topo). © see Remark E.4
12: add edge param, — param, to G, © now param; € NeXt].Ggece:%(TOpO)
13: else if param, is instance parameter then

14: if a probability event p, occurs for py uniform chosen in (0, 1) then

15: param; < a “random” parameter in G1*°*3 \ Topo. ¢ see Remark E.4
16: add edge param, — param, to G7°°3. ¢ now param,; € Nextlcgecez(Topo)

17: return (Ggece3, Topo) ¢ op(G5™*) < m and all instance parameters in G5 have in-degree < 1

Proposition E.3. Every instance parameter in Ggece3 has in-degree < 1 and thus op(Gge°e3) =
op(GI<2).

Remark E.4. In Line 11 and Line 15 of Algorithm 3, when randomly selecting param; from a set,
instead of doing so uniformly at random, to improve the algorithm’s success rate and the problem’s
difficulty level, we introduce a discursion that that biases slightly towards abstract parameters and
parameters already in NethGzeceB(TOpo).zl Specifically, we first generate g ~ N(0,1) a random

Gaussian, then define weight(a) = (La s abstract + Lo eNext1 peces (Topo)) - |9/, and then sample a with
d

a probability oc e¥eignt(a)

E.2.3 CONSTRUCTION OF G

So far we have created G1*°*® and Topo with the property that every instance parameter in G
has in-degree < 1. In the next step, we add additional dependency edges to make in-degree to be a
random number between 1 and 4. We do so by introducing additional edges; and we also introduce
an additional vertex RNG. This is our final necessary dependency graph G3<.

Our pseudocode is given in Algorithm 4. In this step, we shall make sure op(G*®) = s is exact
(and declare failure if this is not possible). We do so to precisely control the solution’s difficulty (so
that when we evaluate the model, we can choose to evaluate it on problems with a fixed value of s).

2IFor those who are interested, abstract parameters are the keys to cause the generation process to fail,
because once they become param, we cannot add edges param, — param,; so we had better select them
earlier than later (thus put them at the back of Topo). On the other hand, for param, that is already in
Nexthgece3(Topo), adding this edge param; — param, does not further change it; this can help us create

a problem whose solution “depth” is higher.
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Algorithm 4 G7** = DrawNecessary3(G*®, Topo, s)

I: cur_op(a) ¢— Opgnees (a) for every parameter a € Gheces,
22

2: max,opTopo(a) := the maximum number of operations an instance parameter a can require.
3: while Zaeazeceg cur_op(a) < s do
4: randomly select an instance parameter a € G52 with cur_op(a) < Max-0Pr,y, (a);
5: If a is found then cur_op(a) < cur_op(a) + 1 else return failure.
6: G «— G134 vertex RNG.
7: for each instance parameter a in G}*°** do
8: pool < RNG + all parameters in front of @ in Topo.
9: if cur_op(a) = 1 then
10: | dep_num < 1 or 2 each w.p. 0.5;
11: else
12: | dep_num < cur_op(a) + 1
13: dep_num < min{|pool|,dep num}
14: if 3(b — a) € G7** for some b € pool then © at most one such b
15: | pool « pool\ {b} and dep_num < dep_num — 1
16: if dep_num = |pool| then
17: \ add b — a to Gg* for all b € pool;
18: else
19: with probability 0.5, add RNG — a to G3**° and dep_num <— dep_num — 1
20: pool < pool \ {RNG}
21: add b — a to G§* for dep_num randomly select elements b in pool.
22: return G°° o op(G5*®) = s is exact

E.2.4 CONSTRUCTION OF Gy

Finally, once we have G3*° the necessary dependency graph, we are left to add unnecessary depen-
dency edges (and unnecessary parameters) to form the complete G4.

During this process, we shall add all the remaining instance parameters from Gy into G4. When
adding each of them, we randomly select the parameters that it shall depend on from all the previ-
ously known parameters.”® Note that during this process, we may also introduce new, unnecessary
abstract parameters, see the full pseudocode in Algorithm 5.

Remark E.5. Gy consists of all the instance and query parameters in G and the abstract parameters
they may (recursively) depend on. There may exist abstract parameters that can be described in G
that are not present in Gi4; but all the instance parameters in G shall be present in Gy.

2If an instance parameter a is the i-th element in Topo, then max_op(a) = min{3, max{1,i— 1}}. (Recall
we require each instance parameter to depend on at most 4 vertices in the dependency graph and this amounts
to no more than 3 operations.)

Z1n fact, we do slightly smarter than the most naive approach. If one simply lets each newly added unneces-
sary parameter to depend, randomly among all the parameters that have already been added to G4, then those
unnecessary parameters will likely appear towards the end of the topological order. For such reason, we give it
0.5 probability to depend only on a set IndList, which consists of newly-added, unnecessary parmaeters, that
do not depend on Gi4. This way, the unnecessary parameters can also appear to the front of the tropologic order.

23



Under review as a conference paper at ICLR 2025

Algorithm 5 G4 = DrawUnnecessary(Gs, G1°°)

1: IndList < J;
2: while 3 instance parameter in G not yet in G4 do
3: K < all params in G4 + all abstract params computable using parameters in Gg;

4: randomly select an instance parameter a in G not yet in Gg4; and add a to Gg;
5: if with half probability then
6: pool < IndList U {RNG}; IndList < IndList U {a};
7: else
8: | pool + K U{RNG};
9: depnum ¢ 1
10: while dep_num < min{4, [pool|} do
11: | with 0.5 probability, dep_num < dep_num + 1; otherwise break
12: if dep_num = |pool| then
13: ‘ selected < pool
14: else
15: selected «+ {}
16: with probability 0.5, add selected = {RNG} and dep_num < dep_num — 1
17: pool < pool \ {RNG}
18: selected < selected U dep_num random elements from pool
19: for each b € selected do
20: If b ¢ G4 then recursively add b and its dependencies to Gg;
21: Add b — ato Gy.

22: return Gy

E.3 GENERATE ENGLISH: PROBLEM, QUESTION AND SOLUTION

At this point, we have constructed a dependency graph G5 where each instance parameter a € G
may depend on between 1 and 4 other vertices (could be abstract, instance parameters or RNG).
We have not yet introduced how a should be computed, and we do this using a random process
GenSentence(Gy, a) in Algorithm 6.

Algorithm 6 GenSentence(Gy,a)

1: str < “The number of [name of a] equals”

2: pool < {b € Gy: I(b— a) € G4}

3: if RNG € pool then

4: str < str + “ [random int between 0 and 22]”; and pool < pool \ {RNG}

5: If |[pool| > 0, str < str + “ more than” or “ times” each with probability 0.5.

6: if [pool| = 1 then

7: str < str + “ [name of b]” for pool = {b}.

8: else if |pool| = |{b,c}| = 2 then

9: \ str <— str + “ the sum of [b] and [c]” or “ the difference of [b] and [c]” each w.p. 0.5.
10: else
11 \ str < str + “the sum of .., .., and ..” with a random order of all elements from pool.

Problem description. The problem description simply consists of listing over all instance param-
eters a € Gy and call GenSentence(Gy,a). We then randomly shuffle the sentences to make the
problem hard. Please note the descriptions of abstract parameters are not present in the problem
description, because they are inherited from the hierarchical categorization. This is our attempt to
make our math data also capture some English meaning, that is the model also needs to learn what
items are in each category, and which category is above another category, etc. This is some knowl-
edge that cannot be learned by reading one problem — it must be learned after reading sufficiently
many data.

Question description. Our query parameter can be either an instance or abstract parameter, and
it is the last element in Topo. We use a single sentence to ask for its value “How many ... does
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have?” and we put this question either at the front or at the end of the problem description
(depending on the data type).

Solution description. We generate the solution text, by going over all the (instance or abstract)
parameters in Topo in its correct order, and generate a single sentence to compute each parameter.
This process is straightforward but notationally heavy, we describe it below by examples.

* Given any instance parameter a € Topo, suppose for instance a is 7 times the sum of parameters
b, c,d. Because of the topological order, the parameters b, c, d must have already defined with
variable names, denoted as vary, var., vary. Then we define solution string of a as

“Define [name of a] as varg; vary = vary, +var, = -+ ;vary = vary +varg = ---;

i)

sovarg =7 X varg = ---.

Here, the arithmetic computation is decomposed into 2-ary operations step by step separated
with semicolons (so op, (a) is exactly the number of semicolons). The varg,vari,vary are
three new (but distinct) random variables and their names are between a-z or A-Z and have 52
possible random choices. The - - - ignores the math calculations.

* Given an abstract parameter a € Topo, suppose for instance a = b x ¢+ d x e+ f x g then we
similarly define its solution text as

“Define [name of a] as varg; var; = vary X var, = --- ; varg = varg X vare = - - - ;

i)

“vars = wvary X varg = --- ;Vary = vary +ovarg = ---;$0 Varg = varz +vary = ---.

Above, once again varg,vari,vars,vars, vary are new (but distinct) random variable names
from a-z or A-Z, and we break down the computation into 2-ary operations.

With the above examples in mind, and combining those with real examples in Figure 10, it should
be very clear how the solution texts are generated.

Remark E.6. op(G§*®) is equal to the total number of semicolons in the solution text, because it
represents the total (and minimum!) number of arithmetic operations needed to compute the final
query parameter.

E.4 PUTTING ALTOGETHER
We put together our data generation process for the structure graph G and the dependency graph
Gg (along with G, Topo) in Algorithm 7.

In particular, we use global parameters ip,,,,. and 0p,,,,.: the former controls the maximum number
of instance parameters, and the latter controls the maximum number of solution operations. We
select n, m, s based on op,, . (to ensure that 1 <n < m < s < 0p,,,.), and d, e, wy, wy based on
iPmax and s. We also provide a boolean switch force and when force = true, we shall force s =
0pP,,,.x SO that the generated math problem will have its solution to be of exactly op,,, ., operations.

We define datasets
¢ IGSMOP=OPmaxP<Pmas a5 the process of invoking DrawAl1l(0P,, . IPmax; force = false).
¢ IGSMOP=OPmaxP<Pumax a5 the process of invoking DrawAl1(Op,,,., IPmax, fOrce = true).
Using this language:

* The training data iGSM-med is iGSMOpSw’ipSQO;

« The eval data of iIGSM-med additionally includes IGSMP=PP<20 for op €
(15,20, 21,22, 23};

¢ The training data iGSM-hard is iGSMPOPS2Lip<28,

« The eval data of iGSM-hard additionally includes IGSMP=PP<® for op €
{21, 28,29, 30,31, 32}.
Remark E.7. During training (regardless of pretrain or finetune for probing tasks), we only use
those data whose hash value of their solution template (see Footnote 9) is < 17 (mod 23), and
during evaluation we only use those whose hash value is > 17 (mod 23). This ensures a strict
separation between train and test data (even in terms of their solution templates).
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Remark E.8. In Algorithm 7, we chose s = min{tg, t1 }, where ¢y and ¢; are two random integers
between 1 and op,, ... This choice encourages more easier math problems in the pretrain data, which
we found improves the model’s learning.

Algorithm 7 DrawA11(0p,,,, IPmax, fOrce) generation

s < min{tp, t1} for ¢, t; being two random integers from 1 and op,,,,.,
If force = true then s <— 0p,,,-
n < max{to, t1 } for to, 1 being two random integers from 1 and s
m < random integer between n and s
d + arandom choice among {2, 3,4} with distribution according to softmax(weight)

¢ forweight = [—(rel — 0.2)%, —(rel — 0.5)2, —(rel — 0.8)2]f0r rel = ipr:;lfl
to, t1 < two random choices among {2, 3,4} with distribution according to softmax(weight)
wo < Inin{to, tl} and wy < HlaX{to, tl}.
e < min{to, t1, (d — 1)w?} for to, t; being random integers between (d — 1)wg and ip .
Gs < DrawStructure(e, d, wop, w1)
G2 < DrawNecessaryl(Gs,n,m)
(Ggece3, Topo) DraWNecessaryQ(Ggece2) o if fail, go to Line 9; if fail for 1000 times, go to
Line 1

SR wh e

,_
A B

Ju—

12: G « DrawNecessary3(G1e=3, Topo, 5) © iffail, go to Line 1
13: G4 < DrawUnnecessary(Gs, G1*°)
14: return (G4, G§*°, Topo) ¢ and generate English descriptions following Section E.3

F EXPERIMENT DETAILS

Model. We use the GPT2 architecture (Radford et al., 2019), replacing its absolute positional em-
bedding with modern rotary positional embedding (Su et al., 2021; Black et al., 2022), still referred
to as GPT2 for short. (We also played with the Llama architecture, especially with gated MLP lay-
ers, and did not see any benefit of using it. This GPT2 performs comparably to Llama/Mistral at
least for knowledge tasks (Allen-Zhu & Li, 2024b).)

Let GPT2-/-h denote an {-layer, h-head, 64h-dim GPT2 model. We primarily use GPT2-12-12
(a.k.a. GPT2-small) in this paper, but in Section 6 we explore larger models with different widths
and depths. Our size-1 models are GPT2-4-21, GPT2-8-15, GPT2-12-12, GPT2-16-10, GPT2-20-9,
roughly the same size as GPT2-small. Our size-2 models are GPT2-4-30, GPT2-8-21, GPT2-12-17,
GPT2-16-15, GPT2-20-13, roughly twice the size of GPT2-small.

We use the default GPT2Tokenizer, and a context length of 768/1024 for language model pretraining
on iGSM-med/iGSM-hard and a context length of 2048 for evaluation.

Data size. For both pretraining and finetuning, we did not limit the amount of training data; we
generated new data on-the-fly. We do not explore sample complexity in this paper, such as the
number of math problems needed to achieve a certain level of accuracy, as it would complicate the
main message of this paper.

F.1 PRETRAIN EXPERIMENT DETAILS

Pretrain parameters. We used the AdamW optimizer with mixed-precision fp16, 5 = (0.9,0.98),
cosine learning rate decay (down to 0.01x of peak learning rate in the end), and 1000 steps of linear
ramp-up. We used a mixture of V100/A100 GPUs, but the GPU specifications are not relevant
here.?* For all of our pretrain experiments:

* On the iGSM-med datasets, we used a (peak) learning rate 0.002, weight decay of 0.05, batch
size of 512, context length of 768, and trained for 100, 000 steps.

¢ On the iGSM-hard datasets, we used a (peak) learning rate 0.002, weight decay of 0.03, batch
size of 256, context length of 1024, and trained for 200, 000 steps.

2*A 128-GPU job with batch size 1 each would be identical to a 32-GPU job with batch size 4 each.
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Our pretrain data is constructed by randomly generating math problems (and solutions), concate-
nating them together, and truncating them (in the right) to fit within the 768 or 1024-sized context
window. If a problem is longer than the context window size, we discard it (this happens very rarely).

Test-time parameters. When evaluating on test data, we discard problems (with ground-truth
solutions) longer than 768 tokens for iGSM-med (or 1024 for iGSM-hard), but allow the generation
process to use up to 2048 tokens. This ensures that all problems evaluated during test time can be
correctly answered within 768 or 1024 tokens (not to say 2048). We did this for a purpose:> for
readers interested in the test-time performance without discarding such problems, see Appendix G.

We use either beam=1 and dosample=False (greedy) or beam=4 and dosample=True (beam-search
multinomial sampling) to present test accuracies. We discover it is better to keep dosample=False
while beam=1 and dosample=True while beam=4. We also tried larger beam sizes and found no
further improvements.

Accuracy statistics. Our main accuracies are presented in Figure 3, where each entry is averaged
over 4096 math problems of that type. Our accuracies are not simply from comparing the answer
integers (between 0 and 22); instead we have written a parser to make sure the model’s intermediate
solution steps are fully-correct.

For the “redundancy” experiment Figure 3, we tested each model again with 4096 math problems
in each case and presented the results among fully-correct solutions. For this figure, we present
beam=1 for cleanness and the results for beam=4 are almost completely identical.

For the “depth matters” experiment Figure 7, because we care about the (relatively small) accuracy
differences across models, we pretrain using two different random seeds, and evaluate with both
beam=1/4; we then present the best accuracies in each entry with respect to the 2 seeds and 2 beam
choices. The accuracies are again over 4096 math problems.

F.2 V-PROBING

Our V-probing was first introduced in Section 4.1 with more details given in Section C. It is a fine-
tuning process upon the pretrained language model, with an additional linear head on the output
layer, and a small rank-r update on the input (embedding) layer. The pretrained model is freezed,
and only this linear head and the rank-r update are trainable parameters during the fine-tuning.

Recall we use 7 = 8 in this paper (in contrast, the hidden dimension of GPT-12-12 is 768). This
small value of r ensures if probing accuracy is high, it mostly comes from the pretrained model and
not the additional trainable parameters.

For V-probing, we use the same configurations as pretrain, except that:

* For V-probing on the iGSM-med datasets, we used a learning rate of 0.002 (with no ramp-up,
linear decay down to 0), weight decay of 0.01, batch size of 256, and trained for 100, 000 steps.
* For V-probing on the iGSM-hard datasets, we used a learning rate of 0.002 (with no ramp-up,
linear decay down to 0), weight decay of 0.01, batch size of 128, and trained for 100, 000 steps.

V-probing statistics. In Figure 6(a), Figure 6(b), Figure 11, Figure 9(a), and Figure 9(b), we tested
at least 4096 random problem-parameter pairs in each cell. In Figure 9(a) and Figure 9(b), when
evaluating probing results on GPT-2 model’s generated correct or wrong solutions, we used beam=1
and dosample=False (greedy) for generation. (Results are similar for beam=4.)

In our layer-wise nece(A) probing experiments (Figure 8 and Figure 13), we tested at least 73728
random problem-parameter pairs in each case and then divided the results into bins based on the
parameter A’s distances to the queries.

1t ensures that if a model fails to solve a hard problem with a large Op at test time, it is mostly not due to
token-length generalization failure (which could be due to rotary embedding), but due to the failure to generalize
from small Op training data to large op test data.
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G ADDITIONAL EXPERIMENTS WITH TOKEN-LENGTH GENERALIZATION

As discussed in Section F.1, in the main body of this paper, when evaluating models on the iGSM
test set, we allowed a context length of 2048 tokens but intentionally discarded problems (with
ground-truth solutions) exceeding 768 tokens for iGSM-med or 1024 tokens for iGSM-hard.

This approach was taken because we pretrained the model with a context length limit of 768 or
1024. To perform controlled experiments, we aimed to separate “length generalization” from “op
generalization”. For instance, in Figure 3, we observe that a model pretrained on iGSM-hard®=*!
shows degraded performance when generalizing to IGSM-hard®®=2%. Since both (train and test)
datasets have a maximum token length of 1024, this degradation is primarily due to the increased
solution difficulty op, not the increased token length.

After our paper appeared, some readers expressed interest in understanding the model’s performance
when both difficulties (i.e., increasing op and token length) arise. In this section, we repeat most
experiments without enforcing the test-time maximum token length of 768 or 1024. We refer to this
as “token-length generalization” to distinguish it from our original results.

To begin with, let us show the length distribution difference on our iGSM-med and iGSM-hard
datasets in Figure 14, either with or without such truncation to 768 or 1024 tokens.

1 iGSM-med I iGSM-hard

in-dist I out-of-dist (O0D) in-dist I out-of-dist (00D)
o truncation | problem len 26422891 | 5204x64.3 32832854 332479.1 33912810

4175£1117 4334%117.8 440.8£1182 44151150 451.3x113.6
no truncation | solution len 109.1+71.6 386.1425.1 40312246 4215x257 437.3%26.8 1512+98.8 5267+30.6 5467+323 562.5+30.9 578.6+32.6 596.2+32.9

no truncation | total length EEEREINN 5798+07.8 | 7065+97.1 73143957 753.9%918 776.4x93.3 PEPXFSEIICN 772.8+122.4 | 944.2£127.1 980.1£133.5 1003.3+132.8 1020.1£129.9 1047.5£129.0

truncate by 768/1024 | problem len 276.0+783 | 28124514 2822+50.1 28054448  275.9+39.7 357.1+99.5 | 368.4+66.3 368.1£66.9 365.0+58.1 361.6x54.9 357.5%50.3

truncate by 768/1024 | solution len -SEEEREZER] 379.6%212 395.9+217 41124215 425.9%216 51824269 5357%27.5 551.0£257 566.04262 5812+25.8

truncate by 768/1024 | total length JEEREESEVEN 571.0486.6 | 660.8+59.9 6782567 6917+50.4  701.8+44.8 PSEERSTCENN 760551080 | 886.5+76.1 9038+75.6 916.0+66.0 927.6460.6 938.7:55.3

ops15 op=15 op=20 op=21 op=22 op=23 op=21 op=21 op=28 op=29 op=30 op=31 op=32

Figure 14: After discarding problems that exceed 768/1024 token length, the average problem length decreases.

We repeat Results 2-3 in Figure 15. The results show that with increasing problem (and solution)
length, the model’s out-of-distribution accuracies further decrease. However, among correctly gen-
erated solutions, the model still mostly generates correct solutions at test time.

We also repeat Results 4-6 in Figure 16. These results indicate no significant difference in our
probing results, confirming that our statements about the model’s mental process hold even for
problems with increased length.

4 iGSM-med_pq iGSM-med_gp iGSM-hard_pq iGSM-hard_gp
4 in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD) in-dist out-of-dist (OOD)
beam1 - nosample 1100 99.1|90.6 86.4 92.0(100 99.2(89.8 91.5 100 98.7|88.4 89.7/100 99.0(89.0 89.1
beam4 - dosample {100 99.2|91.0 87.1 92.0/100 99.2(89.5 86.3 91.5 100 98.7|87.9 89.7/100 99.0(89.7 89.2
——— — — —
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(a) Repetition of Figure 3 but including token-length generalization.

iGSM-med_pq iGSM-med_qp iGSM-hard_pq iGSM-hard_ap
avg unnecessary operation 0.00 0.00 0.00 0.00 0.00 0.00]0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00
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(b) Repetition of Figure 3 but including token-length generalization.

Figure 15: We repeat Results 2-3, allowing test-time problems to exceed the 768- or 1024-token maximum
length used in the training set.
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pretrained model probing (qp) . . . . 1100 100/100 100 99.9 99.9]100 100109.8 99.8 99.8 99.7 99.5
random model probing (pa) AR RS 2 6 E 6 78.475.8 75.4 74.7 74.6 85.4 76.0 73.8 73.6 73.0 72.8 71.9
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nece(A) T nece_next(A) 1 value(A) |
1 iGSM-med | iGSM-hard | iGSM-med | SM-hard | iGSM-med | iGSM-hard |

out-of-dist (00D)

OUEOF-Tst (O0D) out-of-dist (00D) out-of-dist (00D)

out-of-dist (00D) out-of-dist (00D)

baseline - majority guess 5 0.3 53.1 56, 5 992.9 6 86.5 82.5 81.7 77.8 79.2 77.8 86.7 81.9 75.2 77.0 75.6 71.0 80.4|
pretrained model probing (pa) 8 96. .9 98.6 98. 100 100[100 100 100 100|100 100[99.8 99.8 99.7 99.5 99.4|
pretrained model probing (qp) .5 99. .499.4 99. wo mo 100 100 100 100|100 100(99.8 9.8 99.7 9.6 99.5
random model probing (pa) 5 69. 6. ¥ 94.693.593.192.992.9 5 92.692.292.7 93.0 92.5 448.547.446.7 45.5 73.6 55.2 50.2 50.6 48.9 48.8 48.2
random model probing (qp) 0 56. 9.1 48.9 50.4 50.8 50. 94.793.593.192.992.992.8 94.593.0 92.6 92.2 92.7 93.0 92.5 70.952 647.8 46.7 46.3 45.1 75.2 57.3 52.5 53.2 51.6 51.2 50.5
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(a) Repetition of Figure 6(a) but including token-length generalization.
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(b) Repetition of Figure 6(b) but including token-length generalization.
nece(A)
o ollporameters 1 g san  sesw  seox  serw  sasw | svew  wsa%  sas  sasw  siew 969w
on all parameters | pq (reask) 94.1% 94.6% 95.2% 95.0% 95.2% 89.6% 89.2% 88.6% 89.6% 89.1% 89.4%
on all parameters | gp 99.9% 99.6% 99.5% 99.2% 98.9% 99.8% 99.7% 99.7% 99.6% 99.5% 99.4%
o all parameters  ap eas : % s

on unnecessary parameter in model's output | pq (reask) | beam1
on unnecessary parameter in model's output | pq (reask) | beam4
on unnecessary parameter in model's output | ap (reask) | beam1

on unnecessary parameter in model's output | ap (reask) | beamd.

=264/1487

op=15  0p=20  op=21  op=22 0p=23  op=21  op=28  op=29  op=30  op=31

(c) Repetition of Figure 9(a) but including token-length generalization.

can_next(A) nece_next(A)

iGSM-med iGSM-hard iGSM-med iGSM-hard
on all parameters | pq 99.2% 99.1% 99.0% 98.9% 98.7% 98.5% 98.4% 99.0% 98.8% 98.7% 98.9% 98.6% 98.4% 98.4% 98.3%
on all parameters | qp 987%  985%  983%  981% | 98.9% 98.7% 99.3%

71.8%
181/252

69.4%
11/448

67.3% 8.2%
08/606 *551/567 7153/230

56.0%
=445/794

44.4%

on first wrong param | pq | beam1 205/462

717%  711%  67.7%  63.6%  624%  56.7%  54.8% 0%

RS LU RS Ll — 185/258 =322/453 =423/625 =561/882 =171/274 =220/388 =273/498 =204/498
639%  635%  652%  626%  524% 5 52.5% 49.6%

RAME AU R ~204/319 =313/493 =473/726 =635/1014 =162/309 =197/391 =272/518 5
66.0%  655%  653%  622%  52.6%  50.0 53.5%

o 515%
8 =156/319 =255/495
0p=20  op=21

378 =

RS R R —210/318 =324/495 =479/733 =633/1017 =172/327 =18

0p=20 op=21  op=22 op=28

op=23 0p=30  op=31

(d) Repetition of Figure 9(b) but including token-length generalization.

Figure 16: We repeat Results 4-6, allowing test-time problems to exceed the 768- or 1024-token maximum
length used in the training set.
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H FAILURE EXAMPLES ON GPT-4 / GPT-40

In Figure 2, we conduct few-shot experiments using the latest versions of GPT-4 turbo (2024-04-09)
and GPT-40 (2024-05-13) models to evaluate their accuracies on our iGSM-med,,, dataset, with
respect to different op € {2,3,...,20}.

To ensure meaningful evaluation:

¢ We replaced mod23 with mod5 to ensure that any errors are not due to arithmetic mistakes.
We also provided a few arithmetic computation examples.

* We minimized English diversity to ensure that any errors are not due to misunderstanding the
problem description. Specifically,

— We fixed a simple categorization (School, Classroom, Backpack, Stationerys), with only four
items in each category.

— We provided an English background paragraph to fully describe the structure graph (i.e.,
which item has which subitem), as well as the number of items in each category. The math
problem is preceded by this background paragraph.

* We provided five-shot problem/solution examples to ensure that GPT-4 understands how to solve
such math problems step by step.

We did not verify each step of GPT-4’s solution but checked if the final output number (between 0O
and 4) matched the correct answer. The accuracy results are presented in Figure 2. It shows that the
GPT-40 model is almost randomly guessing for op > 11, and GPT-4 turbo for op > 9.

Furthermore, Figure 17 shows that when the GPT-4/40 models fail to answer the math problems,
it is mostly not due to format errors or misunderstanding of the problem. Instead, just like
what we discovered in Section 5, GPT-4/40 fail also because they compute unnecessary parame-
ters (i.e., nece(A) = false) or compute parameters that are not yet ready to be computed (i.e.,
can-next(A) = false). This further confirms that our findings do connect to practice, regarding
the model’s hidden reasoning process.
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P T |
istant i
assistan [ ] five-shot
examples

assistant

add background to describe the
structure graph, to further help GPT-4

user

The number of each €

Ruler equals each Dance Studio's Canvas Backpack

Failure reason: instant parameter “Canvas

Backpack’s Ruler” cannot be computed in step 5

assistant Canvas Backpack's Ruler x
Dance Studio's Canvas Backpack .
x GPT-40 on |GSM—medpq (op=20)
- system }— user\ | |
”Si“a?t‘ l I five-shot add background to describe the
: structure graph, to further help GPT-4
user| | | examples
assistant‘ [ ]
user
The number of each X Backpack equals each Messenger Backpack's Stationery
Lakeshore High's Dance Studio Failure reason: instance parameter “Dance Studio's
. Canvas Backpack” cannot be computed in step 5
assistan* Dance Studio's Canvas Backpack x
unnecessary 0 _
p——— % GPT-40 on iGSM-med,, (op=10)
- system }— user‘ | |
assista?t\ l I five-shot add background to describe the
: structure graph, to further help GPT-4
user| | | examples
assistant‘ [ ]
user ‘ The number of each Canvas equals each Laptop Backpack's Stationery
Failure reason: instance parameter “Canvas
. Backpack's Scissors” cannot be computed in step 5
assistant Canvas Backpack's Scissors x
x GPT-4-turbo on iGSM-med,,, (op=10)
r system ’— user‘ | I
assmaf‘t‘ l ] five-shot add background to describe the
: structure graph, to further help GPT-4
user| | I examples
assistant‘ [ ]
user
Failure reason: abstract parameter “Lakeshore High's
assistant Backpack” can’t be computed yet; it equals L x “Film
e Studio's Backpack (= m + c)” but it is not computed yet.
unnecessary ; .
e —— Lakeshore High's Backpack x GPT-4—turbo on iGSM edpq (Op:5)

Figure 17: Failure examples for GPT-4/GPT-40 on iGSM-med,,,. They make mistakes similar to what we

discover in this paper, that is to compute unnecessary parameters in the solutions (i.e., nece(A)
false), as well as computing parameters that are not yet ready to compute (i.e., can_next(A)

false).

31




	1 Introduction
	2 Result 1: Data Generation
	2.1 Step 1: Graph Construction and Problem Generation
	2.2 Step 2: Solution Construction (CoT)
	2.3 Difficulty Control
	2.4 Train and Test Datasets

	3 Result 2-3: Summarize Model's Behavior Process
	4 Result 4-5: Discover Model's Mental Process
	4.1 V-Probing: A Nearly-Linear Probing Method
	4.2 Probing Results and Findings

	5 Result 6: Explain Model's Mistakes
	6 Result 7-8: Depth vs. Reasoning Length
	7 Conclusion
	A Missing Result 6: Explain Model's Mistakes
	B Result 1 — An Example in iGSM-hard with op=21
	C Results 4-5 — Details on V-probing
	C.1 Probing Data Preparation

	D Result 8 — Additional Figure
	E Result 1 Details — Math Data Generation
	E.1 Generate Structure Graph
	E.1.1 Attach English

	E.2 Generate Dependency Graph
	E.2.1 Construction of Gdnece1, Gdnece2
	E.2.2 Construction of Gdnece3
	E.2.3 Construction of Gdnece
	E.2.4 Construction of Gd

	E.3 Generate English: Problem, Question and Solution
	E.4 Putting Altogether

	F Experiment Details
	F.1 Pretrain Experiment Details
	F.2 V-probing

	G Additional Experiments With Token-Length Generalization
	H Failure Examples on GPT-4 / GPT-4o

