
A Systematic Study of Compositional Syntactic Transformer Language
Models

Anonymous ACL submission

Abstract

Syntactic language models (SLMs) enhance001
Transformers by incorporating syntactic biases002
through the modeling of linearized syntactic003
parse trees alongside surface sentences. This004
paper focuses on compositional SLMs that are005
based on constituency parse trees and contain006
explicit bottom-up composition of constituent007
representations. We identify key aspects of de-008
sign choices in existing compositional SLMs009
and propose a unified framework encompassing010
both existing models and novel variants. We011
conduct a comprehensive empirical evaluation012
of all the variants in our framework across lan-013
guage modeling, syntactic generalization, sum-014
marization, and inference efficiency. Based on015
the experimental results, we make multiple rec-016
ommendations on the design of compositional017
SLMs. Our code will be publicly available018
upon acceptance of the paper.019

1 Introduction020

Transformer language models (LMs) have achieved021

remarkable success on various NLP tasks (Devlin022

et al., 2019; Radford et al., 2019; Brown et al.,023

2020; Ouyang et al., 2022). While the Transformer024

architecture (Vaswani et al., 2017) is highly pow-025

erful, it lacks the inductive bias of syntactic struc-026

tures, which is believed to be critical for effective027

generalization (Everaert et al., 2015). Syntactic lan-028

guage models (SLMs) (Qian et al., 2021; Yoshida029

and Oseki, 2022; Sartran et al., 2022; Murty et al.,030

2023; Zhao et al., 2024; Hu et al., 2024) incorpo-031

rate such syntactic biases into Transformers with a032

straightforward method: modeling linearized syn-033

tactic parse trees along with the surface sentences.034

A major class of SLMs, which we call composi-035

tional SLMs, are based on constituency parse trees036

and contain explicit composition of sub-constituent037

representations to form constituent representations038

(Sartran et al., 2022; Yoshida and Oseki, 2022; Hu039

et al., 2024). These compositional SLMs differ in040

some key aspects, including the form of parse trees, 041

the tree linearization strategy, the composition func- 042

tion, and the attention masking scheme. However, 043

the specific impact of these aspects on SLM per- 044

formance in language modeling and downstream 045

tasks remains under-explored. 046

In this paper, we propose a unified framework of 047

compositional SLMs that encompasses all these as- 048

pects. Our framework subsumes not only existing 049

models as special cases but also more than ten novel 050

variants. We then conduct a systematic empirical 051

comparison of all the variants in language mod- 052

eling, syntactic generalization, summarization (as 053

a representative downstream task), and inference 054

efficiency. The experimental results indicate that, 055

compared with the Transformer LM baseline, com- 056

positional SLMs may underperform in language 057

modeling, but the top-performing variants demon- 058

strate significantly improved syntactic generaliza- 059

tion and summarization performance, thus confirm- 060

ing the benefit of incorporating syntactic biases and 061

explicit composition. We also observe significant 062

performance and efficiency differences between 063

the variants and make several recommendations on 064

the design choices of compositional SLMs, such as 065

discouraging sub-constituent masking and encour- 066

aging the combination of a specialized composition 067

function and binary parse trees. 068

In summary, our contributions are two-fold: 069

• We identify key aspects of design choices seen 070

in existing compositional SLMs and propose 071

a unified framework encompassing both exist- 072

ing models and novel variants. 073

• We conduct a comprehensive empirical eval- 074

uation of all the variants within our frame- 075

work across a range of metrics, which leads 076

to multiple recommendations on the design of 077

compositional SLMs. 078

1

Parse tree 𝒚

Write an essay quickly

sentence 𝒙

Non-binary

∙

∙

∙ ∙ ∙ ∙

Top-down

Bottom-up

(Write (an essay) quickly)

Write an essay) quickly)

((Write (an essay)) quickly)

Write an essay)) quickly)

Binary

∙

∙

∙ ∙ ∙ ∙

∙

Figure 1: An example sentence, its binary and non-
binary parse trees, and their linearizations produced by
the two methods. For the bottom-up linearization of the
non-binary tree, arcs are used to point from ")" actions
to their corresponding start positions.

2 Compositional SLM: A Framework079

This section defines a framework that subsumes080

existing compositional SLMs as special cases. We081

start with an overview of the framework before082

delving into details of four key aspects of design083

choices.084

A compositional syntactic language model085

(SLM) defines a joint distribution of sentences x086

and their constituency parse trees y. For simplicity,087

we focus on unlabeled constituency trees in this pa-088

per. Following previous work on generative parsing089

and SLMs (Dyer et al., 2016; Choe and Charniak,090

2016; Sartran et al., 2022), we define a sequence091

of actions a = (a0, a1, ..., aL−1) of length L that092

construct (x,y) in a left-to-right manner, where ai093

is an action that either generates a token in x or094

indicates bracketing within a parse tree in y. We095

say a is a linearization of (x,y). Figure 1 shows096

examples of two types of constituency parse trees097

and two linearization methods, which will be ex-098

plained in section 2.1 and 2.2 respectively. The099

joint probability of (x,y) can then be computed in100

an autoregressive way:101

p(x,y) = p(a) = ∏
i

p(ai∣a<i)102

A Transformer is utilized to model the autoregres-103

sive generation of action sequence a.104

A compositional SLM also leverages explicit105

composition that calculates a composed represen-106

tation for each nonterminal constituent in a con-107

stituency parse tree from the representations of its108

sub-constituents. How the composed representa-109

tion is calculated and integrated into the Trans-110

former will be discussed in section 2.3. Since the111

information of the sub-constituents is contained in112

the composed representation, once the composi-113

tion is done, the sub-constituents can be optionally114

masked in the Transformer for subsequent action 115

generation (section 2.4). 116

2.1 Parse Tree Binarization 117

A linguistically defined constituency tree y is gen- 118

erally a non-binary tree. However, previous studies 119

on SLMs (Murty et al., 2023; Hu et al., 2024) often 120

model binarized parse trees, highlighting the poten- 121

tial practical benefits of binarization. We consider 122

both options in our framework. (i) Non-binary 123

trees, denoted as Nb. We eliminate all unary chains 124

from any constituency trees, so structures like "(125

quickly)" are simplified to "quickly". (ii) Binary 126

trees, denoted as Bi. We convert any non-binary 127

tree into the Chomsky normal form using left bina- 128

rization. 129

2.2 Linearization Methods 130

We consider two linearization methods for con- 131

verting a constituency parse tree into an action 132

sequence: top-down and bottom-up. Top-down 133

linearization (Dyer et al., 2016; Sartran et al., 2022; 134

Yoshida and Oseki, 2022), denoted as Dn, con- 135

structs a tree using pre-order traversal from the 136

root to the terminals, with each nonterminal visited 137

right before its children. In contrast, bottom-up 138

linearization (Hu et al., 2024), denoted as Up, con- 139

structs a tree using post-order traversal from the 140

leaf terminals to the root, with each nonterminal 141

visited right after all its children are visited. 142

The choice between top-down and bottom-up lin- 143

earization results in different action spaces. In top- 144

down linearization, there are three types of actions: 145

(i) opening a nonterminal (indicating the start of a 146

new constituent), represented by "(", (ii) generating 147

a terminal (a new token), represented directly by 148

the token, and (iii) closing a nonterminal (indicat- 149

ing the end of the current constituent), represented 150

by ")". On the other hand, bottom-up linearization 151

does not require action (i), leaving only the other 152

two actions. Consequently, bottom-up linearization 153

is shorter than top-down linearization. Figure 1 154

presents examples of the two linearization methods 155

on binary and non-binary trees. 156

As illustrated in the figure, a special case arises 157

for bottom-up linearization of a non-binary tree, 158

which has not been studied in previous work: 159

for each closing-nonterminal action ")", the start 160

of the current constituent is unknown and hence 161

needs to be predicted. Concretely, if action ak 162

is predicted to be ")", we additionally predict the 163

start position sk ∈ Ck given prefix a<k, where 164

2

(1,2)

"Write"

+

(2,4)

S2,4
+

Transformer × N

+

LayerNorm

S1,4

Figure 2: The Transformer-based external composition
function f . The example input consists of the represen-
tations and position embeddings of two sub-constituents:
"Write" and "an essay".

Ck ⊆ {1,⋯, k − 1} is the set of feasible start po-165

sitions, at each of which is either a token or ")" of166

a closed nonterminal that is not subsumed by any167

closed nonterminals yet at step < k. In the example168

of "Write an essay) quickly)", the feasible start po-169

sition set of the first ")" is {1, 2, 3}. For position i,170

we concatenate the outputs of the first two attention171

heads in the final layer of the Transformer as its172

representation hi. We then compute p(sk ∣ a<k)173

as follows:174

p(sk = i ∣ a<k) ∝ {exp (h
⊤
k−1Θhi) if i in Ck

0 otherwise
175

where Θ is an extra learnable matrix. We then176

define p(ak ∣ a<k) as the product of probabilities177

of predicting ")" and the start position:178

p(ak = (")", sk) ∣ a<k) = p(")" ∣ a<k)⋅p(sk ∣ a<k)179

2.3 Composition Function180

When a constituent is completed, i.e., a ")" is gen-181

erated, we use a composition function to compose182

all its sub-constituents into a single representation,183

which is then integrated into the Transformer and184

influences subsequent action generation. Previous185

studies use two different methods for this purpose:186

internal composition functions (Sartran et al., 2022)187

and external composition functions (Yoshida and188

Oseki, 2022; Hu et al., 2024).189

An internal composition function, denoted as190

In, regards each composition as an additional ac-191

tion within the action sequence a and relies on the192

Transformer for composition computation. Specifi- 193

cally, for each predicted ak = ")", we directly input 194

a ")" to the Transformer at step k and set the at- 195

tention mask such that only the sub-constituents 196

of the current constituent can be attended to, thus 197

forcing the computed hidden states to represent the 198

composition of these sub-constituents. Note that 199

step k has an attention range limited to a single 200

constituent and hence uninformative for predicting 201

the next action. Therefore, we input a duplicate ")" 202

to the Transformer at step k + 1, allow attention to 203

the full context (more details in section 2.4), and 204

output the next action prediction. The duplicate ")" 205

is then permanently masked in subsequent steps. 206

The internal composition function, as described 207

above, integrates the composition process into 208

the Transformer, thus simplifying implementation 209

and enabling parallelized training as in a standard 210

Transformer LM. Its downside is that recursive 211

composition through multiple Transformer layers 212

has a receptive-field limitation as explained by sec- 213

tion 2.3 of Sartran et al. (2022)) and the action 214

sequence length is increased by the number of du- 215

plicate ")". 216

An external composition function, denoted as 217

Ex, employs an additional module f with separate 218

parameters from the Transformer. Specifically, for 219

each predicted αk = ")", module f takes as input 220

the representations of the sub-constituents, which 221

are either token embeddings or representations pre- 222

viously computed by the module, and outputs a 223

single representation of the current constituent: 224

Sp0,pm = f(Sp0,p1 ,⋯, Spm−1,pm) 225

where p0, . . . , pm are left-inclusive and right- 226

exclusive indexes of the sub-constituent spans. The 227

newly composed representation Sp0,pm is then used 228

as the input embedding at step k in the Transformer. 229

We adopt the Transformer-based composition func- 230

tion from GPST (Hu et al., 2024) shown in Fig- 231

ure 2. 232

The external composition function leverages the 233

composed representation as the input to the Trans- 234

former, thereby avoiding the limitation of recursive 235

composition in the internal composition function. 236

However, it requires implementing and running 237

an external module in addition to the Transformer. 238

During training, all the compositions in the parse 239

trees of the training set are typically pre-computed 240

before the parallelized training of the Transformer, 241

resulting in a slightly increased training time. 242

3

<s>

Write

an

essay

)

)'

)

)'

quickly

)

)'

<s>
Write

an
essay))'))'

quickly))'

(a) Attention masks for modeling a binary tree with the inter-
nal composition function. ")’" represents a duplication of its
preceding ")".

<s>

Write

an

S2,4

essay

quickly

S1,4

S1,5

<s>
Write

an
essay

S
2,4

S
1,4

quickly
S
1,5

(b) Attention masks for modeling a binary tree with the ex-
ternal composition function. S2,4 = f(an, essay), S1,4 =

f(Write, S2,4), S1,5 = f(S1,4, quickly).

Figure 3: Examples of different mask patterns combined with different composition functions. We use gray for
masked positions, orange for the attention ranges of internal compositions, dark blue for ordinary attended positions,
light blue for already composed positions that are only accessible in Nm.

2.4 Sub-Constituent Masking243

After each composition, we may follow Sartran244

et al. (2022) and prevent subsequent steps from245

directly accessing information about already com-246

posed sub-constituents, creating a syntactic bottle-247

neck that encourages learning informative compo-248

sitions. On the other hand, from a language model-249

ing perspective, allowing access to sub-constituent250

information, as done in Hu et al. (2024), could en-251

hance performance by providing additional context.252

Therefore, we consider two contrasting settings:253

(i) Mask the already composed sub-constituents,254

denoted as M, and (ii) No mask for the already com-255

posed sub-constituents, denoted as Nm. An example256

illustrating different mask patterns combined with257

different composition functions is presented in Fig-258

ure 3. Note that the choice of M or Nm does not affect259

the mask used for internal composition described260

in section 2.3.261

2.5 Variants Within the Framework262

Our framework specifies two options for each of263

the four key aspects and hence contains sixteen dis-264

tinct SLMs, each named based on its configuration265

across the four aspects. For example, Bi-Dn-In-M266

represents an SLM that models linearized binary267

trees in a top-down manner with an internal com-268

position function and sub-constituent masking. We 269

use the symbol # to denote any option within a 270

particular aspect. For instance, Bi-#-#-# signifies 271

an SLM that models binary trees, regardless of the 272

choices made in the other aspects. 273

Compositional SLMs from previous studies can 274

be accommodated within our framework with mi- 275

nor modifications: (i) Transformer Grammars (Sar- 276

tran et al., 2022) are classified as Nb-Dn-In-M if 277

modeling unlabeled trees. (ii) Composition At- 278

tention Grammars (Yoshida and Oseki, 2022) are 279

classified as Nb-Dn-Ex-M if we change the compo- 280

sition function from a bidirectional LSTM to a 281

Transformer. (iii) Generative Pretrained Structured 282

Transformers (Hu et al., 2024) are classified as 283

Bi-Up-Ex-Nm if we set the depth of token layers to 284

zero, i.e., we task type layers to predict both ac- 285

tions and tokens. Apart from these three models, 286

the other thirteen SLMs within our framework are 287

novel SLM variants not studied before. 288

2.6 Inference 289

The space of token generation (type ii actions) is 290

much larger than that of structure generation ac- 291

tions (type i & iii actions) in SLMs, leading to 292

an imbalance between their probabilities. Word- 293

synchronous beam search, first introduced by Stern 294

et al. (2017), groups beams by the length of gener- 295

4

ated tokens instead of the whole action sequence,296

forcing SLMs to generate high-entropy tokens. We297

implement word-synchronous beam search for each298

SLM variant in our framework. There are two cases299

in which our implementation deviates from the stan-300

dard implementation: (i) For Nb-#-#-#, the number301

of nonterminals is not fixed given a sentence. We302

apply an additional hyperparameter nc as the maxi-303

mum number of nonterminals, preventing models304

from composing too many times. (ii) For #-Dn-#-#,305

the model tends to generate a lot of successive "("306

because structure generation is of low entropy. We307

also apply a hyperparameter pc as the maximum308

number of consecutive generation of "(".309

3 Experiments310

We compare the sixteen compositional SLMs from311

our framework with two Transformer baselines:312

(i) GPT2-token, a traditional language model of313

token sequences, and (ii) GPT2-tree, a syntactic314

language model of linearized trees without explicit315

composition. Following the setting in Sartran et al.316

(2022), GPT2-tree models non-binary trees in a top-317

down manner. We train all the models from scratch318

on the same corpus with comparable parameter319

sizes. We first evaluate all the models on language320

modeling and syntactic generalization. Then, we321

select eight best-performing compositional SLMs322

on both tasks, along with two baseline models, for323

further evaluation on summarization—a generation324

task that we consider representative of downstream325

applications. Finally, we compare the inference326

efficiency of SLMs within the word-synchronous327

beam search setup.328

Dataset and Preprocessing. All the models are329

trained on the BLLIP-LG dataset of Charniak330

et al. (2000), with training splits from Hu et al.331

(2020). We use an off-the-shelf CRF constituency332

parser (Zhang et al., 2020) , implemented in Supar1,333

to reparse the dataset and obtain silver constituency334

trees for training. All the silver trees parsed or335

sampled in the rest of the experiments are also pro-336

duced with the same parser. Left-binarization is337

done with nltk2. Note that we model each sentence338

as a whole during both training and evaluation, and339

cutoff can only take place between two sentences340

to maintain the integrity of parse trees.341

1
https://github.com/yzhangcs/parser

2
https://www.nltk.org/

Hyper-parameters. Following GPT-2small (Rad- 342

ford et al., 2019), we use 768-dimensional em- 343

beddings, a vocabulary size of 50257, 3072- 344

dimensional hidden layer representations, 12 Trans- 345

former layers, and 12 attention heads for all SLMs 346

and baselines. To maintain comparable parameter 347

numbers between internal and external composition 348

functions, we use a relatively small Transformer 349

as the external composition function for #-#-Ex-#, 350

setting the input dimension to 256 and the number 351

of layers to 4, following (Hu et al., 2024). Token 352

embeddings are down-scaled before composition 353

and the constituent representations are up-scaled 354

before fed into the main SLM Transformer. The 355

module increases the total parameter number by 356

only 5%, which we believe does not significantly 357

affect the comparability between models. We dis- 358

cuss other training details and training variances in 359

appendix A. 360

3.1 Document-Level Language Modeling 361

Dataset. We evaluate all the models on the test- 362

ing split of BLLIP-LG from Hu et al. (2020). 363

Setup. Since SLMs model p(x,y), the joint 364

probability of sentences and parse trees, we com- 365

pute the probability of a sentence as p(x) = 366

∑y p(x,y). It is impossible to compute the sum- 367

mation exactly due to the large space of possi- 368

ble constituency trees, so we follow Sartran et al. 369

(2022) to approximate it using a relatively small set 370

of trees sampled from a proposal model. We use a 371

CRF parser as the proposal model and sample 300 372

unlabeled constituency trees without replacement 373

as a proposal tree set Y′. p(x) is then approxi- 374

mated by ∑y∈Y′ p(x,y), which is a lower bound 375

of the true value (hence leading to an upper bound 376

of perplexity). 377

For document-level language modeling, we com- 378

pute the probability of a document consisting of M 379

sentences. When computing p(xi∣x0
,⋯,x

i−1), 380

the probability of the i-th sentence in the document 381

conditioned on its i − 1 preceding sentences, in 382

theory we have to marginalize over all the i parse 383

trees, each having 300 samples, which demands 384

unacceptable computational costs. Following Sar- 385

tran et al. (2022), we approximate this by greedily 386

choosing a single tree y that maximizes p(x,y) 387

for each of the preceding i − 1 sentences, serving 388

as a single-path prefix for the i-th sentence. 389

Results. We report the perplexity of all the mod- 390

els in Table 1. All the SLMs, including GPT2-tree, 391

5

https://github.com/yzhangcs/parser
https://www.nltk.org/

Model PPL† (↓) SG (↑)

GPT2-token 17.31 64.1
GPT2-tree 19.97 73.1
Bi-Up-Ex-Nm 20.51 80.1
Bi-Up-Ex-M 24.15 82.4
Bi-Up-In-Nm 19.99 77.5
Bi-Up-In-M 21.32 79.7
Bi-Dn-Ex-Nm 23.62 80.2
Bi-Dn-Ex-M 27.21 80.9
Bi-Dn-In-Nm 22.02 79.4
Bi-Dn-In-M 26.50 80.9
Nb-Up-Ex-Nm 23.85 40.8
Nb-Up-Ex-M 24.07 51.8
Nb-Up-In-Nm 19.36 79.6
Nb-Up-In-M 22.01 73.4
Nb-Dn-Ex-Nm 20.88 51.1
Nb-Dn-Ex-M 25.15 51.9
Nb-Dn-In-Nm 18.11 78.1
Nb-Dn-In-M 22.30 75.6

Table 1: Perplexity (PPL) and syntactic generalization
(SG) results of our models and baselines. †: All the
reported PPLs except that of GPT2-token are upper
bounds of the true values.

show higher perplexity than GPT2-token baselines,392

seemingly implying that document-level language393

modeling may not benefit from the inductive bias of394

syntax. However, this observation is inconclusive395

because the reported SLM PPLs are upper bounds396

of the true values. Another observation is that only397

Nb-Dn-In-Nm and Nb-Up-In-Nm outperform GPT2-398

tree, and Bi-Up-In-Nm shows comparable perfor-399

mance with GPT2-tree. Since the main difference400

between GPT2-tree and our models is that it does401

not involve explicit composition, this observation402

indicates that explicit composition may not be criti-403

cal for language modeling and only helps in certain404

configurations.405

Comparing compositional SLMs in our frame-406

work, we have two major findings: (i) Fixing the407

first three aspects, #-#-#-Nm consistently shows sig-408

nificantly better language modeling performance409

than #-#-#-M, which is to be expected because less410

information is directly available at each generation411

step in the setting of M, making it harder for next412

token prediction. (ii) #-#-In-# achieves lower PPL413

than #-#-Ex-#, showing that directly reusing param-414

eters of the main Transformer for composition is a415

better choice for language modeling than using a416

small external composition function.417

3.2 Syntactic Generalization418

Dataset. we evaluate all the models on the syn-419

tactic generalization (SG) task (Hu et al., 2020),420

consisting of test suites for six fine-grained syntac- 421

tic phenomena. 422

Setup. Each test suite is evaluated by a specific 423

inequality formula, which requires computing the 424

surprisal values, i.e., − log p(xt∣x<t). We com- 425

pute the surprisal values for SLMs using the word- 426

synchronous beam search described in section 2.6. 427

As the target token xt is given, we modify the algo- 428

rithm by directly predicting the given token. The 429

beam size is set to 300. The maximum number of 430

nonterminals nc is dynamically set to the length of 431

each sentence and the maximum number of consec- 432

utive opening nonterminals pc is set to 3. Further 433

details on the selection of these hyperparameters 434

are provided in appendix B. 435

Results. The results are reported in Table 1. Most 436

of the SLMs outperform the GPT2-token baseline 437

with a significant gain in the SG score, which is 438

to be expected because of their explicit modeling 439

of syntax. Furthermore, most of the compositional 440

SLMs outperform GPT2-tree, proving that explicit 441

composition is helpful to SLMs in syntactic model- 442

ing. 443

It is notable that four compositional SLMs have 444

extremely low SG scores and they all belong to 445

the configuration of Nb-#-Ex-#, i.e., modeling non- 446

binary trees with an external composition function. 447

This is likely because the relatively small exter- 448

nal composition model fails to capture the com- 449

plicated interactions among varying numbers of 450

sub-constituents. In sharp contrast, external compo- 451

sition functions applied to binary trees (Bi-#-Ex-#) 452

achieve impressive SG scores, occupying four of 453

the top five spots, suggesting that they are expres- 454

sive enough to handle binary composition and even 455

outperform internal composition functions of much 456

larger sizes. A similar trend can be observed on 457

internal composition functions regarding the rela- 458

tive difficulty of modeling non-binary composition 459

in comparison with binary composition (i.e., Nb- 460

#-In-# vs. Bi-#-In-#), although to a much lesser 461

extent. 462

For sub-constituent masking, we observe that 463

Bi-#-#-M always performs better than Bi-#-#-Nm, 464

confirming that the information bottleneck created 465

by sub-constituent masking can benefit syntactic 466

modeling. On the other hand, when it comes to 467

non-binary trees (excluding worst-performing Nb- 468

#-Ex-#), we observe that Nb-#-In-M performs worse 469

than Nb-#-In-Nm. Considering that non-binary com- 470

position is more difficult as discussed above, we 471

6

Model R-1 R-2 R-L R-AVG

GPT2-token 27.14 7.67 21.65 18.82
GPT2-tree 29.59 9.47 23.58 20.88
Bi-Up-Ex-Nm 29.04 8.95 23.01 20.33
Bi-Up-Ex-M 23.48 5.75 18.84 16.02
Bi-Up-In-Nm 28.93 8.97 22.97 20.29
Bi-Up-In-M 24.84 6.64 19.88 17.12
Nb-Up-In-Nm 29.05 9.06 23.21 20.44
Nb-Up-In-M 24.30 6.28 19.45 16.68
Nb-Dn-In-Nm 29.48 9.40 23.54 20.81
Nb-Dn-In-M 26.10 7.31 20.98 18.07

Table 2: Results on the summarization task.

may conclude that sub-constituent masking is use-472

ful to syntactic modeling only when composition473

is effective.474

3.3 Summarization475

Dataset. We use summarization as a represen-476

tative task of NLP downstream applications and477

conduct experiments on the BBC extreme dataset478

(Xsum) (Narayan et al., 2018) to assess the perfor-479

mance of SLMs in terms of generation abilities.480

Setup. We truncate the documents and their sum-481

maries to 600 and 70 respectively, and concatenate482

them with a short prompt "Summary:". Following483

Hu et al. (2024), we finetune each model for 15484

epochs with a batch size of 16 on the training split485

of Xsum. ROUGE (Lin and Hovy, 2003) is em-486

ployed as the evaluation metric. To evaluate SLMs,487

we apply the word-synchronous beam search to488

top-k random sampling with k set to 2. The max-489

imum number of nonterminals nc is dynamically490

set to the length of each sentence and the maximum491

number of consecutive opening nonterminals pc is492

set to 5. For all the SLMs, the input contains the493

linearization of the sentences in the document and494

their corresponding silver parse trees.495

We only conduct experiments on eight compo-496

sitional SLMs and discard the other eight as ex-497

plained below: (i) The four models of Nb-#-Ex-#498

show poor performance on language modeling and499

syntactic generalization, indicating a failure in com-500

position learning. (ii) The four models of Bi-Dn-501

#-# model both the opening-nonterminal and the502

closing-nonterminal actions. However, for binary503

trees, these two actions are redundant, and predict-504

ing one of them for each constituent is enough (as505

done in Bi-Up-#-#). The four models also show506

poor language modeling performance.507

Model bsz-10 bsz-30 bsz-100 bsz-300

GPT2-tree 2.06 2.94 3.98 5.81
Bi-Up-Ex-Nm 1.28 1.46 1.77 2.62
Bi-Up-Ex-M 1.33 1.49 1.97 3.23
Bi-Up-In-Nm 4.28 4.81 5.95 8.69
Bi-Up-In-M 4.28 4.80 5.91 8.70
Bi-Dn-Ex-Nm 1.20 1.33 2.13 3.76
Bi-Dn-Ex-M 1.14 1.61 2.44 4.53
Bi-Dn-In-Nm 3.79 4.46 6.03 9.73
Bi-Dn-In-M 3.91 4.44 5.93 10.43
Nb-Up-Ex-Nm 1.35 1.83 2.53 4.53
Nb-Up-Ex-M 3.04 3.51 4.71 7.74
Nb-Up-In-Nm 7.98 8.90 11.23 16.97
Nb-Up-In-M 10.52 11.12 13.97 20.84
Nb-Dn-Ex-Nm 0.93 1.25 1.70 3.35
Nb-Dn-Ex-M 1.11 1.71 2.66 5.17
Nb-Dn-In-Nm 3.99 5.03 7.22 11.37
Nb-Dn-In-M 4.43 5.34 7.72 12.17

Table 3: Inference time (in seconds, lower is better).
"bsz" refers to beam size.

Results. The results are presented in Table 2. 508

First of all, #-#-#-Nm significantly outperforms #-#- 509

#-M, which is consistent with the language model- 510

ing results and highlights the importance of direct 511

access to composed sub-constituents in generation 512

tasks. 513

Second, all the four SLMs of #-#-#-Nm outper- 514

form GPT2-token, which can be attributed to two 515

possible reasons: (i) SLMs may have better gener- 516

ation abilities than GPT2-token. (ii) GPT2-token 517

only receives the input text as the prompt, while 518

SLMs receive additional information—linearized 519

parse trees of the input text. Regardless of the rea- 520

sons, The results suggest that SLMs aided by an 521

off-the-shelf parser have great potential in down- 522

stream generation tasks. 523

Finally, GPT2-tree achieves the best scores while 524

compositional SLMs of #-#-#-Nm show compara- 525

ble or slightly lower scores, suggesting again that 526

explicit composition is not critical in generation 527

tasks. 528

3.4 Inference Efficiency 529

Setup. In practice, SLMs reply on word- 530

synchronous beam search to generate meaningful 531

sentences and proper tree structures. Therefore, we 532

compare the inference efficiency of all the SLMs 533

with word-synchronous beam search. GPT2-token 534

is not considered here because it only generates to- 535

kens without the need for synchronization of struc- 536

tures. We follow the same setup in the syntactic 537

generalization experiment. The sentence is fixed 538

in advance, ensuring a fair comparison between 539

7

the inference time of different SLMs. We evaluate540

the SLMs on five sentences of 20 tokens each. For541

beam sizes of {10, 30, 100, 300}, we repeat the542

inference for 5 times and compute the average time543

for each beam size. We also choose one sentence544

and count the number of model forward calls for545

each beam size as a supplement in appendix C. All546

the efficiency evaluation experiments are run on a547

single H800 GPU.548

Results. The results are shown in Table 3. All549

the models with external composition functions550

(Ex) show much less inference time than those with551

internal ones (In), because the external compo-552

sition module is smaller and faster than reusing553

the main Transformer for composition. More-554

over, a large gap in inference time exists be-555

tween #-#-Ex-M and #-#-Ex-Nm. This is because556

when Nm is combined with Ex, the attention mask557

becomes a simple casual mask which can be558

accelerated by various optimization methods in559

scaled_dot_product_attention of PyTorch.560

The Nb-Up-#-# models require more time than561

the Nb-Dn-#-# models, despite having shorter ac-562

tion sequences. We also find that Bi-#-#-# is gen-563

erally faster than Nb-#-#-#, which is quite surpris-564

ing because a non-binary tree usually has fewer565

nonterminals than a binary tree and thus a shorter566

linearization. We speculate that these two observa-567

tions result from an intrinsic problem of applying568

word-synchronous beam search to modeling lin-569

earized non-binary trees, which we discuss further570

in appendix D.571

3.5 Overall Observations572

Based on the overall experimental results, we rec-573

ommend several design choices for compositional574

SLMs:575

(i) SLMs without sub-constituent masks gener-576

ally outperform their masked counterparts in both577

effectiveness and efficiency except for a potentially578

small disadvantage in syntax-focused tasks.579

(ii) External composition excels for efficiency.580

If efficiency is the main concern, modeling binary581

trees with an external composition function is a582

good choice with decent performance on all the583

tasks.584

(iii) Binary trees align better with bottom-up585

linearization in terms of both efficiency and per-586

formance, while non-binary trees seem to be more587

compatible with top-down linearization.588

(iv) Modeling non-binary trees using an exter-589

nal composition function can result in suboptimal 590

performance on certain tasks. 591

4 Related Work 592

Augmenting language models with syntactic bias 593

has been a longstanding area of research. One line 594

of work focuses on SLMs that jointly model the dis- 595

tribution of sentences and their structures (Chelba, 596

1997; Roark, 2001; Henderson, 2004; Choe and 597

Charniak, 2016; Kim et al., 2019; Dyer et al., 2016). 598

More recent SLMs are mostly based on Transform- 599

ers. Among them, TGs (Sartran et al., 2022), CAGs 600

(Yoshida and Oseki, 2022), and GPSTs (Hu et al., 601

2024) are closely related to our work as they are 602

constituency-based SLMs with explicit composi- 603

tion. There are also recent studies not covered 604

by our framework: Zhao et al. (2024) propose 605

dependency-based SLMs, and Qian et al. (2021) 606

and Murty et al. (2023) study constituency-based 607

SLMs without explicit composition. Another line 608

of work augments language models with learnable 609

structures, such as stack-structured memory where 610

syntax patterns are learned from data rather than 611

predefined (Joulin and Mikolov, 2015; Yogatama 612

et al., 2018; DuSell and Chiang, 2021, 2023), and 613

learning structural attention patterns (Kim et al., 614

2017; Wang et al., 2019; Shen et al., 2021, 2022). 615

5 Conclusion 616

We propose a unified framework for compositional 617

syntactic language models (SLMs) that encom- 618

passes four key aspects of design choices. Instances 619

of this framework include not only existing models 620

but also over ten novel variants. Our experiments 621

demonstrate that compositional SLMs outperform 622

the Transformer language model baseline in syntac- 623

tic generalization and summarization, underscor- 624

ing the potential of syntactic biases with explicit 625

composition. Furthermore, we comprehensively 626

compare the performance and efficiency of all the 627

SLM variants, resulting in recommendations on the 628

design of compositional SLMs. 629

Limitations 630

Our framework is currently limited to unlabeled 631

constituency trees and is tested on a relatively 632

small corpus using a GPT-2 backbone due to lim- 633

ited computational resources. Future research will 634

explore other syntactic structures, larger corpora, 635

and more advanced Transformer backbones. The 636

composition functions employed in our framework 637

8

show suboptimal performance when modeling non-638

binary trees. This limitation arises from the sim-639

plicity of their architecture and the absence of an640

explicit learning target to guide the composition641

process beyond the language modeling loss. We642

identify these as two key areas for enhancing the643

composition function.644

For training and inference, most compositional645

SLMs are unable to readily leverage recent ad-646

vancements in Transformer efficiency, such as647

Flash-Attention (Dao et al., 2022), due to their spe-648

cific attention patterns. Additionally, we approxi-649

mate the probability of a sentence by greedily se-650

lecting a single-path prefix and marginalizing over651

300 sampled trees. Although this approach is com-652

monly used in SLM studies, it is time-consuming653

and only provides an upper bound for the perplexity654

metric. We plan to explore more efficient approxi-655

mation methods in future work.656

References657

Tom Brown, Benjamin Mann, Nick Ryder, Melanie658
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind659
Neelakantan, Pranav Shyam, Girish Sastry, Amanda660
Askell, Sandhini Agarwal, Ariel Herbert-Voss,661
Gretchen Krueger, Tom Henighan, Rewon Child,662
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens663
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-664
teusz Litwin, Scott Gray, Benjamin Chess, Jack665
Clark, Christopher Berner, Sam McCandlish, Alec666
Radford, Ilya Sutskever, and Dario Amodei. 2020.667
Language models are few-shot learners. In Ad-668
vances in Neural Information Processing Systems,669
volume 33, pages 1877–1901. Curran Associates,670
Inc.671

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,672
John Hale, and Mark Johnson. 2000. Bllip 1987-89673
wsj corpus release 1. Linguistic Data Consortium,674
36.675

Ciprian Chelba. 1997. A structured language model. In676
35th Annual Meeting of the Association for Compu-677
tational Linguistics and 8th Conference of the Euro-678
pean Chapter of the Association for Computational679
Linguistics, pages 498–500, Madrid, Spain. Associa-680
tion for Computational Linguistics.681

Do Kook Choe and Eugene Charniak. 2016. Parsing682
as language modeling. In Proceedings of the 2016683
Conference on Empirical Methods in Natural Lan-684
guage Processing, pages 2331–2336, Austin, Texas.685
Association for Computational Linguistics.686

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and687
Christopher R’e. 2022. Flashattention: Fast and688
memory-efficient exact attention with io-awareness.689
ArXiv, abs/2205.14135.690

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 691
Kristina Toutanova. 2019. BERT: Pre-training of 692
deep bidirectional transformers for language under- 693
standing. In Proceedings of the 2019 Conference of 694
the North American Chapter of the Association for 695
Computational Linguistics: Human Language Tech- 696
nologies, Volume 1 (Long and Short Papers), pages 697
4171–4186, Minneapolis, Minnesota. Association for 698
Computational Linguistics. 699

Brian DuSell and David Chiang. 2021. Learning hierar- 700
chical structures with differentiable nondeterministic 701
stacks. arXiv preprint arXiv:2109.01982. 702

Brian DuSell and David Chiang. 2023. Stack attention: 703
Improving the ability of transformers to model hier- 704
archical patterns. arXiv preprint arXiv:2310.01749. 705

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, 706
and Noah A. Smith. 2016. Recurrent neural network 707
grammars. In Proceedings of the 2016 Conference 708
of the North American Chapter of the Association 709
for Computational Linguistics: Human Language 710
Technologies, pages 199–209, San Diego, California. 711
Association for Computational Linguistics. 712

Martin BH Everaert, Marinus AC Huybregts, Noam 713
Chomsky, Robert C Berwick, and Johan J Bolhuis. 714
2015. Structures, not strings: Linguistics as part of 715
the cognitive sciences. Trends in cognitive sciences, 716
19(12):729–743. 717

James Henderson. 2004. Discriminative training of 718
a neural network statistical parser. In Proceedings 719
of the 42nd Annual Meeting of the Association for 720
Computational Linguistics (ACL-04), pages 95–102, 721
Barcelona, Spain. 722

Jennifer Hu, Jon Gauthier, Peng Qian, Ethan Wilcox, 723
and Roger Levy. 2020. A systematic assessment 724
of syntactic generalization in neural language mod- 725
els. In Proceedings of the 58th Annual Meeting of 726
the Association for Computational Linguistics, pages 727
1725–1744, Online. Association for Computational 728
Linguistics. 729

Xiang Hu, Pengyu Ji, Qingyang Zhu, Wei Wu, and 730
Kewei Tu. 2024. Generative pretrained structured 731
transformers: Unsupervised syntactic language mod- 732
els at scale. In Proceedings of the 62nd Annual 733
Meeting of the Association for Computational Lin- 734
guistics (Volume 1: Long Papers), pages 2640–2657, 735
Bangkok, Thailand. Association for Computational 736
Linguistics. 737

Armand Joulin and Tomas Mikolov. 2015. Inferring 738
algorithmic patterns with stack-augmented recurrent 739
nets. Advances in neural information processing 740
systems, 28. 741

Yoon Kim, Carl Denton, Luong Hoang, and Alexan- 742
der M. Rush. 2017. Structured attention networks. 743
In International Conference on Learning Representa- 744
tions. 745

9

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.3115/976909.979681
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://api.semanticscholar.org/CorpusID:249151871
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.3115/1218955.1218968
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2020.acl-main.158
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://doi.org/10.18653/v1/2024.acl-long.145
https://openreview.net/forum?id=HkE0Nvqlg

Yoon Kim, Alexander Rush, Lei Yu, Adhiguna Kuncoro,746
Chris Dyer, and Gábor Melis. 2019. Unsupervised747
recurrent neural network grammars. In Proceedings748
of the 2019 Conference of the North American Chap-749
ter of the Association for Computational Linguistics:750
Human Language Technologies, Volume 1 (Long and751
Short Papers), pages 1105–1117, Minneapolis, Min-752
nesota. Association for Computational Linguistics.753

Chin-Yew Lin and Eduard Hovy. 2003. Automatic754
evaluation of summaries using n-gram co-occurrence755
statistics. In Proceedings of the 2003 Human Lan-756
guage Technology Conference of the North American757
Chapter of the Association for Computational Lin-758
guistics, pages 150–157.759

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and760
Christopher Manning. 2023. Pushdown layers: En-761
coding recursive structure in transformer language762
models. In Proceedings of the 2023 Conference on763
Empirical Methods in Natural Language Processing,764
pages 3233–3247, Singapore. Association for Com-765
putational Linguistics.766

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.767
2018. Don‘t give me the details, just the summary!768
topic-aware convolutional neural networks for ex-769
treme summarization. In Proceedings of the 2018770
Conference on Empirical Methods in Natural Lan-771
guage Processing, pages 1797–1807, Brussels, Bel-772
gium. Association for Computational Linguistics.773

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,774
Carroll Wainwright, Pamela Mishkin, Chong Zhang,775
Sandhini Agarwal, Katarina Slama, Alex Gray, John776
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,777
Maddie Simens, Amanda Askell, Peter Welinder,778
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.779
Training language models to follow instructions with780
human feedback. In Advances in Neural Information781
Processing Systems.782

Peng Qian, Tahira Naseem, Roger Levy, and Ramón783
Fernandez Astudillo. 2021. Structural guidance for784
transformer language models. In Proceedings of the785
59th Annual Meeting of the Association for Compu-786
tational Linguistics and the 11th International Joint787
Conference on Natural Language Processing (Vol-788
ume 1: Long Papers), pages 3735–3745, Online. As-789
sociation for Computational Linguistics.790

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,791
Dario Amodei, Ilya Sutskever, et al. 2019. Language792
models are unsupervised multitask learners. OpenAI793
blog, 1(8):9.794

Brian Roark. 2001. Probabilistic top-down parsing795
and language modeling. Computational Linguistics,796
27(2):249–276.797

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,798
Miloš Stanojević, Phil Blunsom, and Chris Dyer.799
2022. Transformer grammars: Augmenting trans-800
former language models with syntactic inductive bi-801
ases at scale. Transactions of the Association for802
Computational Linguistics, 10:1423–1439.803

Yikang Shen, Shawn Tan, Alessandro Sordoni, Peng 804
Li, Jie Zhou, and Aaron Courville. 2022. Unsuper- 805
vised dependency graph network. In Proceedings 806
of the 60th Annual Meeting of the Association for 807
Computational Linguistics (Volume 1: Long Papers), 808
pages 4767–4784, Dublin, Ireland. Association for 809
Computational Linguistics. 810

Yikang Shen, Yi Tay, Che Zheng, Dara Bahri, Donald 811
Metzler, and Aaron Courville. 2021. StructFormer: 812
Joint unsupervised induction of dependency and con- 813
stituency structure from masked language modeling. 814
In Proceedings of the 59th Annual Meeting of the 815
Association for Computational Linguistics and the 816
11th International Joint Conference on Natural Lan- 817
guage Processing (Volume 1: Long Papers), pages 818
7196–7209, Online. Association for Computational 819
Linguistics. 820

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef- 821
fective inference for generative neural parsing. In 822
Proceedings of the 2017 Conference on Empirical 823
Methods in Natural Language Processing, pages 824
1695–1700, Copenhagen, Denmark. Association for 825
Computational Linguistics. 826

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 827
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 828
Kaiser, and Illia Polosukhin. 2017. Attention is all 829
you need. Advances in neural information processing 830
systems, 30. 831

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen. 832
2019. Tree transformer: Integrating tree structures 833
into self-attention. In Proceedings of the 2019 Con- 834
ference on Empirical Methods in Natural Language 835
Processing and the 9th International Joint Confer- 836
ence on Natural Language Processing (EMNLP- 837
IJCNLP), pages 1061–1070, Hong Kong, China. As- 838
sociation for Computational Linguistics. 839

Dani Yogatama, Yishu Miao, Gabor Melis, Wang Ling, 840
Adhiguna Kuncoro, Chris Dyer, and Phil Blunsom. 841
2018. Memory architectures in recurrent neural net- 842
work language models. In International Conference 843
on Learning Representations. 844

Ryo Yoshida and Yohei Oseki. 2022. Composition, at- 845
tention, or both? In Findings of the Association 846
for Computational Linguistics: EMNLP 2022, pages 847
5822–5834, Abu Dhabi, United Arab Emirates. As- 848
sociation for Computational Linguistics. 849

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020. Fast 850
and accurate neural crf constituency parsing. In Pro- 851
ceedings of the Twenty-Ninth International Joint Con- 852
ference on Artificial Intelligence, IJCAI-20, pages 853
4046–4053. International Joint Conferences on Arti- 854
ficial Intelligence Organization. Main track. 855

Yida Zhao, Chao Lou, and Kewei Tu. 2024. De- 856
pendency transformer grammars: Integrating depen- 857
dency structures into transformer language models. 858
In Proceedings of the 62nd Annual Meeting of the 859
Association for Computational Linguistics (Volume 1: 860

10

https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://doi.org/10.18653/v1/N19-1114
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://aclanthology.org/N03-1020/
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/2023.emnlp-main.195
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.18653/v1/2021.acl-long.289
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2022.acl-long.327
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/2021.acl-long.559
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D17-1178
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://doi.org/10.18653/v1/D19-1098
https://openreview.net/forum?id=SkFqf0lAZ
https://openreview.net/forum?id=SkFqf0lAZ
https://openreview.net/forum?id=SkFqf0lAZ
https://doi.org/10.18653/v1/2022.findings-emnlp.428
https://doi.org/10.18653/v1/2022.findings-emnlp.428
https://doi.org/10.18653/v1/2022.findings-emnlp.428
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84
https://doi.org/10.18653/v1/2024.acl-long.84

Long Papers), pages 1543–1556, Bangkok, Thailand.861
Association for Computational Linguistics.862

A Training Details and Variances863

SLMs model linearized trees, which consist of864

more action tokens than traditional token se-865

quences. To ensure a fair comparison, we train all866

SLMs with a cutoff length of 2048 and GPT-2 with867

a cutoff length of 1024. All models are trained with868

a fixed learning rate of 5e-5 , and we modify the869

batch size for each model to fit within the available870

GPU memory. We spent 4 NVIDIA A6000 GPUs871

for each training, which lasted approximately 35872

hours on average. To address training variance, we873

provide the evaluation results for Bi-Up-Ex-Nm as874

an example, as shown in Table 4, which was trained875

three times with different random seeds. The vari-876

ance was found to be small and does not affect the877

experimental results presented in the paper.878

B Hyperparameters Selection879

The beam size of 300 is commonly used in previous880

studies (Qian et al., 2021; Murty et al., 2023; Hu881

et al., 2024), so we also fix the beam size at 300.882

It is reasonable to set the maximum number of883

nonterminals nc to be the length of a sentence be-884

cause, for a binary tree, there are exactly ntoken−1885

nonterminals with a sentence of length ntoken. For886

a non-binary tree, there are even fewer nontermi-887

nals. Therefore, the length of a sentence is a good888

upper bound for the number of nonterminals nc.889

We tune the maximum number of consecutive890

opening nonterminals pc on the training set of891

BLLIP-LG. As the sentences in SG test suites are892

short in length (usually no more than 20 tokens), so893

we randomly choose 10 sentences from BLLIP-894

LG of no more than 15 tokens. We run word-895

synchronous beam search to get top-300 p(x,y)896

and approximate p(x) by ∑y p(x,y). We tune pc897

from 2 to 10 and find that when pc is set to 3, p(x)898

remains large for the 10 sentences. So we fix pc to899

be 3 for SG evaluation. We also hypothesize that900

if the sentence is longer, there is likely to be more901

consecutive opening nonterminals. Therefore, we902

set pc to 5 for summarization as the summaries are903

longer.904

C Number of Model Forward Calls905

We record the number of the main Transformer906

forward calls of running word-synchronous beam907

search on a sentence of twenty tokens and present908

Model PPL (std) SG (std) R-AVG (std)

Bi-Up-Ex-Nm 20.51 (0.09) 80.1 (0.3) 20.33 (0.06)

Table 4: Mean and Variance.

Model bsz-10 bsz-30 bsz-100 bsz-300

GPT2-tree 147 202 236 250
Bi-Up-Ex-Nm 165 175 179 182
Bi-Up-Ex-M 165 170 180 183
Bi-Up-In-Nm 309 329 341 345
Bi-Up-In-M 309 327 339 351
Bi-Dn-Ex-Nm 167 178 221 239
Bi-Dn-Ex-M 158 201 212 237
Bi-Dn-In-Nm 267 300 339 407
Bi-Dn-In-M 275 295 324 403
Nb-Up-Ex-Nm 215 268 328 356
Nb-Up-Ex-M 385 390 399 405
Nb-Up-In-Nm 547 587 617 659
Nb-Up-In-M 713 725 747 763
Nb-Dn-Ex-Nm 129 145 168 190
Nb-Dn-Ex-M 159 182 219 248
Nb-Dn-In-Nm 280 339 402 425
Nb-Dn-In-M 310 352 416 435

Table 5: The number of model forward calls.

it in Table 5 as a supplement for inference time 909

results. We exclude the forward calls of the exter- 910

nal composition function, as it has a much smaller 911

parameter size and each forward pass takes signifi- 912

cantly less time. 913

D Discussion on Inference Time of 914

Modeling Linearized Non-binary Trees 915

As shown in Table 5, compared to Bi-#-#-#, Nb- 916

#-#-# generally incurs more forward calls (except 917

in the case of Bi-Dn-Ex-Nm vs. Nb-Dn-Ex-Nm). This 918

discrepancy arises from word-synchronous beam 919

search, where at each synchronous step, the top-k 920

beams of non-binary trees tend to exhibit wide vari- 921

ation in the number of compositions, which is sig- 922

nificantly higher than in binary trees. Consequently, 923

during each pair of synchronous steps, some beams 924

have few composed constituents, while others have 925

many more. Those with fewer composed con- 926

stituents perform multiple compositions, while oth- 927

ers immediately generate a new token and wait 928

for synchronization, leading to a consistently high 929

number of forward calls during each pair of the 930

synchronous steps, a phenomenon absent in binary 931

settings. This phenomenon is more pronounced 932

in Nb-Up-#-# than in Nb-Dn-#-#, resulting in more 933

forward calls for Nb-Up-#-#. We consider this an 934

intrinsic challenge of applying word-synchronous 935

beam search to SLMs that model non-binary trees. 936

11

	Introduction
	Compositional SLM: A Framework
	Parse Tree Binarization
	Linearization Methods
	Composition Function
	Sub-Constituent Masking
	Variants Within the Framework
	Inference

	Experiments
	Document-Level Language Modeling
	Syntactic Generalization
	Summarization
	Inference Efficiency
	Overall Observations

	Related Work
	Conclusion
	Training Details and Variances
	Hyperparameters Selection
	Number of Model Forward Calls
	Discussion on Inference Time of Modeling Linearized Non-binary Trees

