
Towards smaller language models via layer looping

Sabri Eyuboglu 1 Dylan Zinsley 2 Jon Saad-Falcon 1 Simran Arora 1 Atri Rudra 2 James Zou 1 Chris Ré 1

Abstract
Language models store a huge amount of knowl-
edge in their parameters. Typically, these param-
eters are organized as a deep stack of dense lay-
ers. This dominant architecture bears little resem-
blance to the implementations of optimized data
stores (e.g. a database management system like
PostgreSQL), which begs the question: are there
other architectures that can store and query the
same information more efficiently? In this work,
we explore two simple modifications to the stan-
dard architecture: looping — sharing parameters
across layers — and mixture-of-experts (MoE).
We compare the space complexity of standard and
looped-moe models on a simple task where the
model must memorize a knowledge graph (KG)
during training and answer multi-hop queries over
it at inference time. We prove that the looped-moe
model can store a KG of size T and answer q-hop
queries with O(T) parameters. In contrast, we
argue that the size of a standard model must scale
with the complexity of the queries q, providing a
lower bound of Ω(qT) parameters for a restricted
class of standard models. We confirm this scaling
with experiments on synthetic KGs, finding that
looped-conditional models can reliably answer
four-hop queries over KGs that are 9× larger than
parameter-matched standard models can.

1. Introduction
Modern language models store an enormous amount of
information in their parameters, from details on rulings
from specific US jurisdictions (Guha et al., 2024) to func-
tion signatures of arcane software libraries (Nijkamp et al.,
2022). Increasing the parameter count reliably improves the
breadth of a model’s knowledge (Kaplan et al., 2020), so
the strongest models have billions parameters organized as

*Equal contribution 1Department of Computer Science, Stan-
ford University 2University at Buffalo, The State University of
New York. Correspondence to: Sabri Eyuboglu <eyuboglu@stan-
ford.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

a deep stack of dense layers (Touvron et al., 2023; Team
et al., 2024; Workshop et al., 2022; Brown et al., 2020).
However, this standard architecture (defined in Section 2)
eschews many basic principles that enable traditional data
stores to process queries with limited memory consumption.
Are there alternatives that use fewer parameters to store and
query the same information?

In this work, we study the space complexity with which
different architectures can store and query knowledge in
their parameters. To facilitate the evaluation, we compare
architectures on a simplified task we call knowledge graph
learning: each model is trained to memorize a knowledge
graph (KG) (Vrandečić & Krötzsch, 2014; Suchanek et al.,
2007) and answer multi-hop queries over it. In this setting,
we can carefully control the amount of information stored
in the model and the complexity of those queries.

We illustrate several limitations of the standard model ar-
chitecture (defined in Section 2) when applied to the knowl-
edge graph learning task. (1) In order to answer composi-
tional queries (e.g. multi-hop QA), a standard model must
store information redundantly. (2) Standard models access
and move every single byte of stored information on every
query (Brown et al., 2020). This means answering queries
from one domain requires processing data from another
(e.g. answering questions about the US constitution requires
processing information about C++ syntax).

We show that two well-known but non-standard modifica-
tions can address these limitations.

1. Looped layers (Yang et al., 2023) (also referred to as
universal (Dehghani et al., 2018), weight-tied (Lan
et al., 2020; Xue et al., 2022), or iterative (Jaegle
et al., 2021) models) reuse the same parameters at
every layer, enabling them to answer complex queries
without maintaining redundant copies of information.

2. Mixture-of-expert layers (Fedus et al., 2022; Jiang et al.,
2024; Shazeer et al., 2017) activate different subsets of
model parameters dependent on the input. This allows
us to scale the parameter count with limited effect on
FLOP count.

We combine these techniques into a single looped-moe
model and prove it can answer q-hop queries over a knowl-
edge graph with T triples using only O(T) parameters

1

Submission and Formatting Instructions for ICML 2023

Figure 1. Overview of knowledge graph learning with looped models. (Left) A toy knowledge graph with entities, ei, connected to
other entities, ej , via relations rj . In knowledge graph learning (see Section 4), a language model is trained to memorize a knowledge
graph and answer queries over it. (Center) Schematic of a looped language model (B = 1 and l = 3) in which the same layer is repeatedly
applied to the input (see Section 3). The triples from the knowledge graph are stored in the parameters of the layer. (Right) Looped models
can answer multi-hop queries over the knowledge graph without storing information redundantly (see Appendix B).

(ignoring the dependency on vocab size c). In contrast,
no upper bound better than O(Tq) parameters is known
for standard models. Thus, looped-moe models effectively
break the dependency between the complexity of the query
and the requisite model size. In Section 5, we discuss these
results in further detail.

In experiments, we measure the size of the largest knowl-
edge graph over which a model can reliably answer queries.
As we increase the number of parameters in the model, the
rates of growth for both architectures are consistent with
the rates predicted by our theoretical analysis in Section 5.
Strikingly, we find that looped-moe models can perfectly an-
swer four hop queries (q=4) over knowledge graphs that are
up to 9× larger than parameter-matched standard models
can.

In summary, our contributions are:
• We formalize the problem of knowledge graph learning

to facilitate the evaluation of language model space
complexity.

• We provide the first known upper bounds on the space
complexity of standard and looped-moe models in the
context of knowledge graph learning.

• In experiments, we show that looped-moe models can
internalize knowledge graphs 9× larger than standard
models can.

See Appendix A for a more detailed discussion of related
work.

2. Preliminaries
In this section, we describe the standard language model
architecture. Note that for the sake of brevity we omit some
details including biases and residual connections below. For
a full description of architectures, see Appendix B.2.

Language models with the standard architecture consist
of L layers. Each layer is defined as the composition of

a sequence mixer (e.g. attention (Vaswani et al., 2017))
and a state mixer (e.g. MLP). The `th layer takes as input
x` ∈ RN×d of length N and dimension d, and computes
output y` ∈ RN×d. The layers are applied sequentially
such that y` = x`+1.

In this work, we assume the sequence mixer is attention,
parameterized by a projection matrix W qkv ∈ Rd×3d. At-
tention first projects the input x: q = xW qkv[:,0 : d],
k = xW qkv[:, d : 2d], v = xW qkv[:,2d : 3d]. Then, the
projected embeddings are aggregated along the sequence
dimensions according to:

Attn(W qkv;x) = softmax(
1√
d
qk>)v (1)

We also assume that the state mixer is an MLP variant
called a gated-linear unit (Shazeer, 2020). This MLP, which
includes an elementwise multiplication of the input with
itself, is now used in most large language models (e.g.
LLaMa (Touvron et al., 2023)). It is defined as

MLP(Win,Wout;x) = (σ(xW in[:, : d′])�xWin[:, d′ :])W out

(2)
where σ is an element-wise non-linearity (e.g. ReLU),
Win ∈ Rd×2d′

, and Wout ∈ Rd′×d.

A layer is simply the composition of these two operations
(with residual connections omitted for brevity):

Layer(W qkv,W in,W out;x) =

MLP(W in,W out;Attn(W qkv;x))
(3)

In the standard architecture, different weights are used
at each layer, so at the `th layer we compute x`+1 =
Layer(Q`,K`,V `,W in,`,W out,`;x`).

2

Submission and Formatting Instructions for ICML 2023

3. Looped-MoE Models
In this section, we describe two familiar modifications to the
standard architecture: looped layers and mixture-of-experts.
We then combine them into a single looped-moe model. 1.

Looped layers In a standard language model, different
weights are used at every layer. In a looped language model,
a single block of B layers is repeatedly applied L

B times. In
other words, we only maintain B layers worth of weights
and at layer l we use the weights from layer l mod B.

In the extreme case (B = 1), we maintain one set of weights
W qkv,W in,W out, and reuse them at every layer:

∀` ∈ [L] x`+1 = Layer(W qkv,W in,W out;x`) (4)

This is sometimes referred to as a universal model (De-
hghani et al., 2019), weight-tied (Lan et al., 2020; Xue et al.,
2022), or iterative (Jaegle et al., 2021) model in the litera-
ture.

Mixture-of-experts A mixture-of-experts (MoE) layer
routes each input to a different subset of its parame-
ters (Shazeer et al., 2017). This allows us to increase the
number of parameters in a model without increasing the
number of FLOPs required for inference. Below we define
a simple MoE for the MLP. We use softmax and a single
linear layer with weight W switch ∈ Rd×m to route to k (typ-
ically k = 2) experts. Each token x[j] in the input is routed
separately.

s[j, i] = softmax(x[j]W switch)[i] (5)

s̃[i] =

{
s[i] if s[i] in top k

0 otherwise
(6)

MLPMoE({W in
i }ki=1, {W out

i }ki=1,W
switch;x)[j] =

m∑
i=1

MLP(W in
i ,W out

i ;x[j])
s̃[j, i]∑m

p=1 s̃[j, p]

(7)

In a looped-moe model with B = 1, we use the same set of
MoE weights at each layer.

∀` ∈ [L] x`+1 =

Layer(W qkv, {W in
i }ki=1, {W out

i }ki=1,W
switch;x`)

(8)

In our experiments, we use B = 1.

4. Knowledge Graph Learning
In this section, we formally define the problem of knowledge
graph learning, the task of memorizing a knowledge graph
and answering queries over it.

1Similar models also based on these modifications are also
referred to as sparse universal transformers (Tan et al., 2023) and
MoE universal transformers (Csordás et al., 2024) in the literature

Knowledge Graphs A knowledge graph G is a directed,
labeled graph made up of a set of triples (e1, r1, e2) that
connect two entities ei, ej with a relation rk. Each triple
encodes a fact. For example, if e1 represented France
and r1 the relation capital then e2 would be the entity
Paris. We denote the number of distinct entities with E,
relations with R, and triples with T . 2

Queries A query is a request for one or more entities
which satisfy a predicate.3 The predicate uses a combina-
tion literal entities and relations with query variables. For
example, the query below requests all entities x for which
there is a triplet (e1, r1, x):

select x where (e1, r1, x)︸ ︷︷ ︸
predicate

(9)

Continuing with the example above, this query is effectively
asking: what is the capital of France?

In our theoretical analysis, we focus on path queries over
matching graphs. A graph G is matching if relations are one-
to-one. That is, for all entities ei and relations r, there exists
exactly one entity ej for which a triple (ei, r, ej) exists and
exactly one entity ek for which a triple (ek, r, ej) exists. A
path query requires composing one or more triples together.
It consists of a starting entity e and a sequence relations
r1, r2, r3. The output is found by following the relations
from start entity. We denote the length of the path with q.
The path query below is of length q = 2.

select y where (e, r1, x) and (x, r2, y)︸ ︷︷ ︸
predicate

(10)

For example, a length-two path query might ask: what
nationality is Chelsea’s current manager?

Encoding The input to the model is a sequence tokens
representing the query. For example, the input to the model
for the query in Equation (10) is shown below where each
item in brackets is one token.

Input:[e1] [r1] [y] [and] [y] [r2] [x] (11)

The input token sequence is encoded as a matrix u ∈ RN×d

where N is the length of the sequence and d is the hidden
dimension of model. In our theoretical analysis, we assume
each token u[i] in the vocabulary is represented by a unique
binary code u[i] ∈ {−1, 1}d. Representing the full binary

2In practice, knowledge graphs (e.g. WikiData) are typically
stored in a format specified by the resource description framework
(RDF) (Klyne & Carroll, 2004)

3There are a few different DSLs, like SPARQL (Harris et al.,
2013), that allow you to make queries over an RDF graph.

3

Submission and Formatting Instructions for ICML 2023

Standard Model Looped-MoE Model

Figure 2. Looped-MoE models exhibit improved parameter-efficiency for multi-hop path queries. The x-axis shows the number of
parameters in the model and the y-axis shows the size of the largest knowledge graph (measured in number of triples, see Section 4) over
which the model can answer k-hop queries with accuracy > 97%. Each plot shows results for a different number of hops k. Each hue
represents a different model architecture. The figure illustrates how a standard model’s capacity scales inversely with the length of the
queries while the capacity of looped conditional models is affected less by the query length.

code for each token requires d ≥ log2 c. If d > log2 c, the
rest of embedding is padded with zeros. In our experiments,
token embeddings are initialized randomly and learned.

The model transforms u into a matrix y ∈ RN×d. The
output matrix can be decoded into a sequence of N tokens
(e.g. via a nearest neighbor lookup). This sequence is then
compared with a ground truth label sequence of the same
length as the input. The labels corresponding to the input in
Equation (22) are:

Labels:[-] [-] [-] [-] [-] [-] [e4] (12)

When computing loss and accuracy, the labels [-] are
ignored.

Training We assume that the model is trained via gradient
descent on a sample of queries over a knowledge graph G.
We assume that every triple in the graph appears at least
once in the training set.

Evaluation The model is then evaluated on queries over
the same knowledge graph G. The queries might be differ-
ent, but the underlying triples are the same as those seen
during training. So, we are testing whether or not the model
has stored the triples in its parameters in such a way that
they can be applied to answer the queries.

5. Bounds on Model Size for Knowledge
Graph Learning

In this section, we theoretically analyze the space and time
complexity that standard and looped-conditional models
require to answer path queries over a matching graph.

Recall that T is the number of triples in the KG, q is length
of the multi-hop query, and c is the vocab size. We begin
with upper bounds for standard models.

Theorem 5.1. For a matching graph G(E,R, T), a stan-

dard model with O(qT log c + log2 c) parameters and
O(q2T log c+ q log2 c) FLOPs can answer any path query
Q with q hops over G.

For this upper bound, we show how to construct a model
with O(q) layers and O(T) parameters per layer that can
answer any query with q hops over a graph G with T triples.
In this construction, we simply keep a separate copy of each
triple at every layer. Interestingly, the amount of redundancy
in this solution scales with the complexity of the queries q.

The natural question is whether this redundancy can be
avoided. Proving a general lower bound for all standard
models is challenging. Instead, we consider a restricted
class of solutions based on constant-depth “shortcuts" like
those studied by Liu et al. (2023). In this class of solutions,
instead of storing each triple separately, we explicitly store
q̃ − hop paths, enabling models with less than q layers.
Intuitively, these strategies are unlikely to provide parameter
reductions because there are exponentially-many (Rq̃) paths,
leading to a blow-up in required layer width.

Theorem 5.2. To answer all path queries Q with q hops
over a matching graph G(E,R, T) with R ≥ e, a standard
model with L ≤ q layers requires Ω(qER) parameters.

We conjecture that this redundancy is unavoidable for any
standard model and reasonable values of R and q. Prov-
ing more general lower bounds for standard models is an
important area for future work.

Next, we provide upper bounds for looped-moe models.

Theorem 5.3. For a matching graph G(E,R, T), a
looped model with O(T log c + log2 c) parameters and
O(q2

√
T log c + q log2 c) FLOPs can answer any path

query Q with q hops over G.

Here we show how to construct a looped-moe model consist-
ing of a single MoE block with a total of O(T) parameters.
In this construction, the triples are split among

√
T experts

4

Submission and Formatting Instructions for ICML 2023

and at each iteration of the block, the router selects the ex-
pert containing the next triple in the path. Critically, this
model requires only a single copy of each triple, avoiding
the redundancy of the standard model’s construction.

6. Knowledge Graph Learning Experiments
In this section, we assess whether the theoretical rates de-
scribed above are consistent with the rates we observe in
practice.

6.1. Synthetic Knowledge Graphs

First, we run experiments on synthetic KGs that measure
the maximum number of triples T over which a model can
answer queries with high accuracy.

Setup We compare two model architectures, a standard
model and a looped-conditional model (see Section 2), at six
model sizes (with model dimensions [64, 96, 128, 160, 192,
224]). To estimate, the maximum size knowledge graph
each model can store, we use the following procedure:

1. Generate a synthetic matching knowledge graph G
with E = 128 entities, R = 8 relations, and T =
1,024 triples.

2. Train the model on a sample of 128×R×E training
queries over G.

3. Evaluate the model on a different (potentially over-
lapping) sample of R × E test queries over the same
graph G. If the accuracy of the model is above 97%,
we increase the size of the knowledge graph by adding
R new relations and continue training the model (move
to step 2). Otherwise, we record the current size of the
knowledge graph and exit.

The input and label tokens for the queries are generated as
described in Section 4. For training, we use cross entropy
loss and the Adam optimizer. We sweep over four log-
spaced learning rates in the range [10−4, 10−2.5] and report
the maximum knowledge graph size achieved.

Figure 2 can be reproduced or extended to new architectures
using the scripts provided at https://github.com/
<blinded-url>.

Results In these experiments, we measure how the size of
the knowledge graph that the model can store scales with the
number of parameters. We find that looped-moe models can
answer four hop queries (q=4) over knowledge graphs that
are up to 9x larger than parameter-matched standard models
can. As illustrated in Figure 2, the gap between looped-moe
and standard models grows as the number of hops in the

queries increases. When only evaluating on 1-hop queries,
there is no difference between the architectures.

The rates of growth in the size of the knowledge graph
are consistent with the rates predicted by our theoretical
analysis in Section 5.

Notice how the standard model’s rate of improvement (slope
of green lines in Figure 2) drops from approximately 0.061
triples per parameter at q = 1 to 0.0002 triples per parame-
ter at q = 3 (a 30.5× decrease). This drop in the slope as
we increase q is consistent with the O(Tq) bound on model
size provided by Theorem 5.1 and with the conjecture that
there exists a matching lower bound of Ω(Tq).

In contrast, the looped-moe model’s rate of improvement
only drops from 0.053 to 0.015 triples per parameter (a 3.5×
decrease). This is closer to the ideal rate of O(T) predicted
by Theorem 5.3, but there is still a modest dependency on q.
Closing this gap between theory and practice is an important
challenge going forward.

7. Conclusion
In this work, we show that looping, sharing the same pa-
rameters across layers, enables small models to memorize
and answer queries over larger knowledge graphs. Our ex-
periments are limited to a simple setting where a model is
trained and evaluated directly on the triples in a knowledge
graph. Future work should evaluate the benefits of looped
models when trained on large, unstructured text and code
corpora (Gao et al., 2020; Kocetkov et al., 2022).

References
Adolphs, L., Dhuliawala, S., and Hofmann, T. How to query

language models? arXiv preprint arXiv:2108.01928,
2021.

AlKhamissi, B., Li, M., Celikyilmaz, A., Diab, M., and
Ghazvininejad, M. A review on language models as
knowledge bases. arXiv preprint arXiv:2204.06031,
2022.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli,
M., Zou, J., Rudra, A., and Ré, C. Zoology: Measur-
ing and improving recall in efficient language models.
International Conference on Learning Representations,
2023.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium mod-
els. Advances in neural information processing systems,
32, 2019.

Bevilacqua, M., Ottaviano, G., Lewis, P., Yih, S., Riedel, S.,
and Petroni, F. Autoregressive search engines: Generating

5

https://github.com/<blinded-url>
https://github.com/<blinded-url>

Submission and Formatting Instructions for ICML 2023

substrings as document identifiers. Advances in Neural
Information Processing Systems, 35:31668–31683, 2022.

Borgeaud, S., Mensch, A., Hoffmann, J., Cai, T., Rutherford,
E., Millican, K., van den Driessche, G., Lespiau, J.-B.,
Damoc, B., Clark, A., de Las Casas, D., Guy, A., Menick,
J., Ring, R., Hennigan, T., Huang, S., Maggiore, L., Jones,
C., Cassirer, A., Brock, A., Paganini, M., Irving, G.,
Vinyals, O., Osindero, S., Simonyan, K., Rae, J. W., Elsen,
E., and Sifre, L. Improving language models by retrieving
from trillions of tokens, 2022.

Bosselut, A., Rashkin, H., Sap, M., Malaviya, C., Celikyil-
maz, A., and Choi, Y. Comet: Commonsense transform-
ers for automatic knowledge graph construction. arXiv
preprint arXiv:1906.05317, 2019.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Csordás, R., van Steenkiste, S., and Schmidhuber, J. Are
neural nets modular? inspecting functional modular-
ity through differentiable weight masks. arXiv preprint
arXiv:2010.02066, 2020.

Csordás, R., Piękos, P., and Irie, K. Switchhead: Accelerat-
ing transformers with mixture-of-experts attention. arXiv
preprint arXiv:2312.07987, 2023.

Csordás, R., Irie, K., Schmidhuber, J., Potts, C., and Man-
ning, C. D. Moeut: Mixture-of-experts universal trans-
formers. arXiv preprint arXiv:2405.16039, 2024.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
Kaiser, Ł. Universal transformers. arXiv preprint
arXiv:1807.03819, 2018.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and
ukasz Kaiser. Universal transformers, 2019.

Fedus, W., Zoph, B., and Shazeer, N. Switch transform-
ers: Scaling to trillion parameter models with simple
and efficient sparsity. The Journal of Machine Learning
Research, 23(1):5232–5270, 2022.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T.,
Foster, C., Phang, J., He, H., Thite, A., Nabeshima, N.,
et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027,
2020.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. In International Conference on
Machine Learning, pp. 11398–11442. PMLR, 2023.

Guha, N., Nyarko, J., Ho, D., Ré, C., Chilton, A., Chohlas-
Wood, A., Peters, A., Waldon, B., Rockmore, D., Zam-
brano, D., et al. Legalbench: A collaboratively built
benchmark for measuring legal reasoning in large lan-
guage models. Advances in Neural Information Process-
ing Systems, 36, 2024.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-
W. Realm: Retrieval-augmented language model pre-
training, 2020.

Harris, S., Seaborne, A., and Prud’hommeaux, E. Sparql 1.1
query language. http://www.w3.org/TR/2013/
REC-sparql11-query-20130321/, 2013. W3C
Recommendation.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General perception with it-
erative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Kandpal, N., Deng, H., Roberts, A., Wallace, E., and Raffel,
C. Large language models struggle to learn long-tail
knowledge, 2023.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models,
2020.

Khandelwal, U., Fan, A., Jurafsky, D., Zettlemoyer, L., and
Lewis, M. Nearest neighbor machine translation, 2021.

Klyne, G. and Carroll, J. J. Resource descrip-
tion framework (rdf): Concepts and abstract syn-
tax. 2004. URL http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/.

Kocetkov, D., Li, R., Allal, L. B., Li, J., Mou, C., Ferrandis,
C. M., Jernite, Y., Mitchell, M., Hughes, S., Wolf, T.,
et al. The stack: 3 tb of permissively licensed source
code. arXiv preprint arXiv:2211.15533, 2022.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P.,
and Soricut, R. Albert: A lite bert for self-supervised
learning of language representations, 2020.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., tau Yih, W., Rock-
täschel, T., Riedel, S., and Kiela, D. Retrieval-augmented
generation for knowledge-intensive nlp tasks, 2021.

6

http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

Submission and Formatting Instructions for ICML 2023

Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A., and Zhang,
C. Transformers learn shortcuts to automata, 2023.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou,
Y., Savarese, S., and Xiong, C. Codegen: An open large
language model for code with multi-turn program synthe-
sis. arXiv preprint arXiv:2203.13474, 2022.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H.,
Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma,
M., Luan, D., et al. Show your work: Scratchpads for
intermediate computation with language models. arXiv
preprint arXiv:2112.00114, 2021.

Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu, X.
Unifying large language models and knowledge graphs:
A roadmap. IEEE Transactions on Knowledge and Data
Engineering, pp. 1–20, 2024. doi: 10.1109/TKDE.2024.
3352100.

Petroni, F., Piktus, A., Fan, A., Lewis, P., Yazdani, M.,
De Cao, N., Thorne, J., Jernite, Y., Karpukhin, V., Mail-
lard, J., et al. Kilt: a benchmark for knowledge intensive
language tasks. arXiv preprint arXiv:2009.02252, 2020.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Press, O., Zhang, M., Min, S., Schmidt, L., Smith, N. A.,
and Lewis, M. Measuring and narrowing the com-
positionality gap in language models. arXiv preprint
arXiv:2210.03350, 2022.

Qin, G. and Eisner, J. Learning how to ask: Query-
ing lms with mixtures of soft prompts. arXiv preprint
arXiv:2104.06599, 2021.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer,
2017.

Shen, Y., Zhang, Z., Cao, T., Tan, S., Chen, Z., and Gan,
C. Moduleformer: Modularity emerges from mixture-of-
experts, 2023.

Suchanek, F. M., Kasneci, G., and Weikum, G. Yago: a
core of semantic knowledge. In Proceedings of the 16th
International Conference on World Wide Web, WWW ’07,
pp. 697706, New York, NY, USA, 2007. Association for
Computing Machinery. ISBN 9781595936547. doi: 10.
1145/1242572.1242667. URL https://doi.org/
10.1145/1242572.1242667.

Tan, S., Shen, Y., Chen, Z., Courville, A., and Gan,
C. Sparse universal transformer. arXiv preprint
arXiv:2310.07096, 2023.

Taylor, W. L. cloze procedure: A new tool for measuring
readability. Journalism quarterly, 30(4):415–433, 1953.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Vrandečić, D. and Krötzsch, M. Wikidata: a free collabora-
tive knowledgebase. Commun. ACM, 57(10):7885, sep
2014. ISSN 0001-0782. doi: 10.1145/2629489. URL
https://doi.org/10.1145/2629489.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Workshop, B., Scao, T. L., Fan, A., Akiki, C., Pavlick, E.,
Ilić, S., Hesslow, D., Castagné, R., Luccioni, A. S., Yvon,
F., et al. Bloom: A 176b-parameter open-access multilin-
gual language model. arXiv preprint arXiv:2211.05100,
2022.

Wu, K., Wu, E., Cassasola, A., Zhang, A., Wei, K., Nguyen,
T., Riantawan, S., Riantawan, P. S., Ho, D. E., and Zou,
J. How well do llms cite relevant medical references?
an evaluation framework and analyses. arXiv preprint
arXiv:2402.02008, 2024.

Xue, F., Shi, Z., Wei, F., Lou, Y., Liu, Y., and You, Y. Go
wider instead of deeper. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp.
8779–8787, 2022.

Yang, L., Lee, K., Nowak, R., and Papailiopoulos, D.
Looped transformers are better at learning learning al-
gorithms. arXiv preprint arXiv:2311.12424, 2023.

Yuksekgonul, M., Chandrasekaran, V., Jones, E., Gunasekar,
S., Naik, R., Palangi, H., Kamar, E., and Nushi, B. At-
tention satisfies: A constraint-satisfaction lens on factual
errors of language models, 2024.

7

https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/2629489

Submission and Formatting Instructions for ICML 2023

Zhang, X., Bosselut, A., Yasunaga, M., Ren, H., Liang, P.,
Manning, C. D., and Leskovec, J. Greaselm: Graph rea-
soning enhanced language models for question answering.
arXiv preprint arXiv:2201.08860, 2022a.

Zhang, X., Shen, Y., Huang, Z., Zhou, J., Rong, W., and
Xiong, Z. Mixture of attention heads: Selecting atten-
tion heads per token. arXiv preprint arXiv:2210.05144,
2022b.

Zhang, Y., Backurs, A., Bubeck, S., Eldan, R., Gu-
nasekar, S., and Wagner, T. Unveiling transformers
with lego: a synthetic reasoning task. arXiv preprint
arXiv:2206.04301, 2022c.

8

Submission and Formatting Instructions for ICML 2023

A. Extended Related Work
Mixture of experts Mixture-of-expert layers have received increased attention recently (Fedus et al., 2022; Jiang et al.,
2024; Shazeer et al., 2017). An MoE model is a neural network that uses only a subset of its parameters to process each input.
In principle, MoE models can store factual information at a lower computational cost than traditional models. However,
realizing these efficiency gains in practice is challenging (Shazeer et al., 2017). Because MoE models have a huge number of
parameters, they are often IO-bound during inference, requiring low-level implementations that carefully manage memory.
Research into making MoE models more efficient is ongoing (Fedus et al., 2022; Jiang et al., 2024).

Mixture of experts is typically applied to the MLP and not the sequence mixer (e.g. attention). However, recently, several
works have studied the application MoEs to the attention mechanism (Zhang et al., 2022b; Shen et al., 2023; Tan et al.,
2023; Csordás et al., 2023). These works differ in which part of the attention mechanism they make conditional/sparse.
For example, in SwitchHead (Csordás et al., 2023) only the value and output projections are made conditional, while in
Mixture of Attention Heads and Sparse Universal Transformers (Zhang et al., 2022b; Tan et al., 2023) the query and the
output projections are made conditional.

Looping layers. In the context of large language models, weight-tying was first studied in works on universal transform-
ers (Dehghani et al., 2018), deep equilibrium models (Bai et al., 2019), and Albert (Lan et al., 2020), perceiver (Jaegle et al.,
2021).

Several works have studied looped models on synthetic tasks. More recently, Giannou et al. (2023) showed that looped
models can implement simple programs. In a follow-on work, they show that looped transformers are better at in-context
learning (Yang et al., 2023). Related to our study, Csordás et al. (2020) study weight-tying in the context of modularity.
The Learning Equality and Group Operations (LEGO) synthetic task (Zhang et al., 2022c) is equivalent to the path queries
over a matching graph studied in our work (see Section 4). (Zhang et al., 2022c) show that weight-tied models (specifically
Albert (Lan et al., 2020)) demonstrate improved generalization for longer path lengths. However, they do not study the
space complexity.

Language models as knowledge bases. A number of works have explored techniques for improving the access of
knowledge through fine-tuning or prompting (AlKhamissi et al., 2022). For single-hop queries, cloze-style prompting is
the default strategy (Adolphs et al., 2021; Taylor, 1953), optionally augmented with a mixture of prompts (Qin & Eisner,
2021). For more complicated, multi-step queries, “scratchpads" emerged as a way to perfrom iterated computation (Nye
et al., 2021). (Wei et al., 2022; Press et al., 2022) built on this work with “chain-of-thought" reasoning.

A number of papers propose datasets or methodology for evaluating the factuality of language models (Petroni et al., 2020).
(Kandpal et al., 2023) show the limitations of language models in encoding long-tail knowledge. Most related to our work is
(Yuksekgonul et al., 2024) who show that large language models struggle to answer constraint satisfaction problems.

Several works highlight a compositionality gap in language models. For example, Press et al. show that language models
often fail to answer multi-hop questions even when they can answer the constituent single-hop questions. Strikingly, they
find that this gap increases with model and dataset scale (Press et al., 2022).

Augmenting generation with external knowledge sources. One approach to addressing the information storage and
access problem is to augment generations with external knowledge bases. In this approach, connects large language models
to external databases, allowing the model to dynamically retrieve and integrate relevant information as part of the generation
process. Recently, retrieval-augmented generation (RAG) approaches, in which language models retrieve from large corpora
of unstructured text, has received significant interest from both industry and academic communities (Borgeaud et al., 2022;
Guu et al., 2020; Khandelwal et al., 2021; Lewis et al., 2021; Bevilacqua et al., 2022). Related to RAG, there is also a long
line of work on leveraging structured knowledge graphs (KG) in language model predictions (Zhang et al., 2022a; Bosselut
et al., 2019; Pan et al., 2024).

In principle, RAG and KG based approaches enable AI systems to cheaply access huge amounts of factual information.
However, in practice, the strongest RAG models still store huge amounts of factual information stored in their parameters
and can “hallucinate" just like non-RAG models (Wu et al., 2024). Thus, we view RAG as a complementary to work on
parametric knowledge, not a replacement.

9

Submission and Formatting Instructions for ICML 2023

B. Theoretical Analysis
B.1. Summary of results

In Appendix B.2 (Model Architectures), we define the standard architecture and looped-conditional architectures. In
Appendix B.4 (Primitives), we define a set of basic primitives we will use in later proofs. We’ll prove the space and time
complexity standard and looped-moe models require to implement the primitives. In Appendix B.5 (Path Queries), we
provide bounds on the space and time complexity required for each architecture to solve path queries on matching graphs.

In the following, all vectors are assumed to be column vectors.

B.2. Model Architectures

Standard architecture Language models with the standard architecture consist of L layers. Each layer is defined as the
composition of a sequence mixer (e.g. attention (Vaswani et al., 2017)) and a state mixer (e.g. MLP). The `th layer takes as
input x` ∈ RN×d of length N and dimension d, and computes output y` ∈ RN×d. The layers are applied sequentially such
that y` = x`+1. Our focus is on the state mixer and assume the attention module is defined as in (Arora et al., 2023).

In this work, we assume the sequence mixer is attention, parameterized by three projection matrices Q,K,V ∈ RN×d.
Attention first projects the input x: q = Qx, k = Kx, v = V x. Then, the projected embeddings are aggregated along the
sequence dimensions according to:

Attn(Q,K,V ,B;x) = softmax(
1√
d
qk> +B)v (13)

To simplify the theoretical analysis, instead of positional embeddings, we assume there is a fixed bias matrix BN×N added to
the attention scores before the softmax. This resembles ALiBi, a popular technique commonly used when training language
models with length extrapolation (Press et al., 2021). The values of the bias matrix are controlled by a hyperparameter so
they do not count towards the parameter count.

In this work, we assume that the state mixer is a GLU defined as:

GLU(W in,W gate,W out, b1, b2;x) = (σ(xW in + b1)� (xWgate + b2))W out (14)

where σ is an element-wise non-linearity (e.g. ReLU), Win ∈ Rd×d′
,W gate ∈ Rd×d′

,Wout ∈ Rd′×d, b1 ∈ R1×d′
, and

b2 ∈ R1×d′
.

A layer is simply the composition of these two operations (with residual connections):

y = Attn(Q,K,V ,B;x) (15)

Layer(Q,K,V ,B,W in,W gate,W out, b1, b2;x) = GLU(W in,W gate,W out, b1, b2;y + x) + y + x (16)

In the standard architecture, different weights are used at each layer, so at the `th layer we compute y` =
Layer(Q`,K`,V `,B`,W in,`,W gate,`,W out,`, b1,`, b2,`;x`).

Below we describe the variations on the standard architecture that we study in this work.

Mixture-of-experts layers A mixture-of-experts (MoE) model routes each input to a different subset of its parame-
ters (Shazeer et al., 2017). This allows us to increase the number of parameters in a model without increasing the number of
FLOPs required for inference. Below we define a simple MoE for an MLP. We use softmax and a single linear layer with
weight W switch ∈ Rd×m to route to k (typically k = 2) experts. Each token x[j] in the input is routed separately.

s[j, i] = softmax(x[j]W switch)[i] (17)

s̃[i] =

{
s[i] if s[i] in top k

0 otherwise
(18)

MOE({W in
i }ki=1, {W

gate
i }ki=1, {W out

i }ki=1, {b1
i}ki=1, {b2

i}ki=1,W
switch;x)[j] =

m∑
i=1

GLU(W in
i ,W gate

i W out
i , b1, b2;x)[j]

s̃[j, i]∑m
p=1 s̃[j, p]

(19)

10

Submission and Formatting Instructions for ICML 2023

Looped layers In a standard language model, different weights are used at every layer. In a looped language model, a
single block of B layers is repeatedly applied L

B times. In other words, we only maintain B layers worth of weights and at
layer l we use the weights from layer l mod B.

In the extreme case (B = 1), we maintain one set of weights Q,K,V ,B,W in,W gate,W out, b1, b2, and reuse them at
every layer:

∀` ∈ [L] y` = Layer(Q,K,V ,B,W in,W gate,W out, b1, b2;x`) (20)

This is sometimes referred to as a universal model (Dehghani et al., 2019), weight-tied (Lan et al., 2020; Xue et al., 2022),
or iterative (Jaegle et al., 2021) model in the literature.

B.3. Problem Formulation

We study the formal problem of memorizing a knowledge graph and answering queries over the information in it. In our
theoretical analysis, we use the problem formulation from Section 4 with the following modifications to the encoding
scheme.

As described in Section 4, the input to the model is a sequence of tokens representing the query. For example, the input to
the model for the query in Equation (10) is shown below where each item in brackets is one token.

Input:[e1] [r1] [v] [and] [v] [r2] [s] (21)

The input token sequence is encoded as a matrix u ∈ RN×d where N is the length of the sequence and d is the hidden
dimension of model.

Because we only study path queries, in our theoretical analysis, we drop the conjunction token [and] from the predicate.
Further, we “flatten" each triple so that the input is u ∈ Rq×d.

u ≡
(
e>1 r>1 v> 0 0
v> r>2 s> 0 0

)
Both of these modifications could be implemented with attention, but we exclude them to simplify the presentation.

Encoding The input to the model is a sequence tokens representing the query. For example, the input to the model for the
query in Equation (10) is shown below where each item in brackets is one token.

Input:[e1] [r1] [y] [and] [y] [r2] [x] (22)

The input token sequence is encoded as a matrix u ∈ RN×d where N is the length of the sequence and d is the hidden
dimension of model. In our theoretical analysis, we assume each token u[i] in the vocabulary is represented by a unique
binary code u[i] ∈ {−1, 1}d. Representing the full binary code for each token requires d ≥ log2 c. If d > log2 c, the rest of
embedding is padded with zeros. In our experiments, token embeddings are initialized randomly and learned.

The model transforms u into a matrix y ∈ RN×d. The output matrix can be decoded into a sequence of N tokens (e.g. via a
nearest neighbor lookup). This sequence is then compared with a ground truth label sequence of the same length as the
input. The labels corresponding to the input in Equation (22) are:

Labels:[-] [-] [-] [-] [-] [-] [e4] (23)

When computing loss and accuracy, the labels [-] are ignored.

B.4. Primitives

Definition B.1. KeepNegatives(Q,K,V ,B,W in,W gate,W out, b1, b2, l, r;x)→ z

INPUT: Q ∈ Rd′×d′
,K ∈ Rd′×d′

,V ∈ Rd′×d′
,B ∈ RN×N ,W in ∈ Rd′×d′

,W gate ∈ Rd′×d′
,W out ∈ Rd′×d′

, b1 ∈
R1×d′

, b2 ∈ R1×d′
,x ∈ RN ′×d′

, l ∈ Z, r ∈ Z.

11

Submission and Formatting Instructions for ICML 2023

OUTPUT: z ∈ RN ′×d′
such that it is defined as:

y = Attn(Q,K,V ,B;x) + x

z[:, i] =
(((

xW in + b1)� (xW gate + b2))W out)+ y if i < l or i ≥ r

z[:, i] = GLU(W in,W gate,W out, b1, b2) if l ≤ i < r.

Note that we can set l = r so that all negatives are kept or l < 0 and r > d′ so that the normal functionality of a GLU
is implemented.

Definition B.2. NoResidual(W in,W gate,W out, b1, b2;x)→ y

INPUT: W in ∈ Rd′×d′
,W gate ∈ Rd′×d′

,W out ∈ Rd′×d′
, b1 ∈ R1×d′

, b2 ∈ R1×d′
,x ∈ RN ′×d′

OUTPUT: y ∈ RN ′×d′

Allows a layer to apply an arbitrary GLU function without the residual being added. Specifically,

y = GLU(W in,W gate,W out, b1, b2;x).

Definition B.3. InvertColumn(k;x)→ y

INPUT: x ∈ RN ′×d, k ∈ Z,x[:, i] ∈ {−1, 0, 1}N ′×1.
OUTPUT: y ∈ RN ′×d′

. Where y is defined as:

y[i, j] =


x[i, j] if j 6= k

1 if j = k and x[i, j] = 0

0 if j = k and |x[i, j]| = 1

Definition B.4. lookupG(x)→ y

• Input: a sequence y ∈ RN×d where each row contains the encoding for a head entity h ∈ Rlog2 c, a relation
r ∈ Rlog2 c, and a variable v ∈ Rlog2 c.

• Output: a sequence z ∈ RN×d where the first three column blocks of the row are identical to the input. If there
exists a triple (h, r, t) in G, then the fourth and fifth column blocks of each row contain v and t, respectively. If no
such triple exists, that row is identical to the corresponding row in the input. Here is an example of a lookup hit:

y[i] ≡
(
e> r> v> 0 0

)
z[i] ≡

(
e> r> v> v> t>

)
If there is no hit for a row, this is how lookup effects the row:

y[i] ≡
(
v> r> s> 0 0

)
z[i] ≡

(
v> r> s> 0 0

)

Definition B.5. substitute(y)→ z

12

Submission and Formatting Instructions for ICML 2023

• Input: a sequence y ∈ RN×d containing query predicates, as defined in Equation (9) in the first three column
blocks of each row(i.e. y[i, : 3 log2 c] =

(
h, r, t

)
) and containing solutions(variable-entity pairs) in the fourth

and fifth column blocks(i.e. y[i, 3 log2 c+ 1 : 5 log2 c] =
(
v, e

)
). These rows need not have values and can hold

01×d to indicate no query and no solution.
• Output: a sequence z ∈ RN×d containing the same first three column blocks as y except that any row i where

the 1st column block matches the 4th column block of j, i has its first column block replaced by the 5th column
block of j. The remaining column blocks are zeroed out.

y ≡



...
e> r> v> v> t>

...
v> r> s> 0 0

...


z ≡



...
e> r> v> 0 0

...
t> r> s> 0 0

...



Proposition B.6. For any x there is a constant-depth block of layers that computes KeepNegatives.

Proof. Here are the steps to implement KeepNegatives exclusively through Layer.

1. INPUT: x ∈ RN×d, l, r.
OUTPUT: y ∈ RN×d where y is defined by:

y = GLU(W
in
,W

gate
,W

out
, b

1
, b

2
;x).

Where W
in ∈ Rd×2d′

,W
gate ∈ Rd×2d′

,W
out ∈ R2d′×d, b

1 ∈ R1×2d′
, b

2 ∈ R1×2d′
,x ∈ RN×2d are defined as:

W out′[i, :] = 01×d′
if l ≤ i < r

W out′[i, :] = W out[i, :] otherwise

W
in

=
(
W in,−W in

)
,W

gate
=
(
W gate,W gate

)
,W

out
=

 W out

−W out′

 ,

b
1
=
(
b1,−b1

)
, b

2
=
(
b2, b2

)
,x =

(
x,0N×d

)
.

From the output, take the first d columns and that is the final solution. The correctness of this follows from the fact that
u = Relu(u)−Relu(−u).

Corollary B.7. KeepNegatives(f, l, r,x). Being that keep negatives can implement Layer, any f that is composed to
exclusively Layer can be implemented through KeepNegatives with any subset of negatives being kept.

Proposition B.8. For any x ∈ RN×d there is a constant-depth(2) block of layers that computes
NoResidual(W in,W gate,W out, b1, b2;x).

Proof. Here are the steps to implement NoResidual exclusively through Layer.

13

Submission and Formatting Instructions for ICML 2023

1. INPUT: xN×d

OUTPUT: y1 ∈ RN×d where y1 is defined as KeepNegatives(f1, 0, 0,x) where:

f1 = Layer(0d×d,0d×d,0d×d,0N×N ,W
in

1 ,W
gate

1 ,W
out

1 , b
1

1, b
2

1;x).

Where W
in

1 ∈ R2d×2d′
,W

gate

1 ∈ R2d×2d′
,W

out

1 ∈ R2d′×2d, b
1

1 ∈ R1×2d′
, b

2

1 ∈ R1×2d′
are defined as:

W
in

1 =

0d×d′
W in

0d×d′
0d×d′

 ,W
gate

1 =

0d×d′
W gate

0d×d′
0d×d′

 ,W
out

1 =

0d′×d 0d′×d

0d′×d W gate

 ,

b
1

1 =
(
01×d′

b1
)
, b

2

1 =
(
01×d′

b2
)
.

This computes the layer we want to compute and stores it in the second portion of the matrix. So now the left half of
the matrix stores the original values as they get added in by the residual, while the right portion stores the computed
output of our desired layer without residual.

2. INPUT: y1

OUTPUT: y ∈ RN×d where y is defined as KeepNegatives(f2, 0, 0,y1). Where,

f2 = Layer(0d×d,0d×d,0d×d,0N×N ,02d×2d′
, I2d×2d′

,W
out

2 ,11×2d′
,01×2d′

;y1).

Where W
out

2 is defined as:

W
out

2 =

−1d′×d 0d′×d

1d′×d −1d′×d

 .

This moves that calculated value to the left half of the matrix while negating out the residuals, giving us our desired
output in the original portion of the matrix.

Proposition B.9. For any x ∈ RN×d and 1 ≤ i ≤ d′, and the additional restriction that x[:, i] ∈ {−1, 0, 1}N×1, there is a
constant-depth(4) block of layers that computes InvertColumn(i,x).

Proof. Here are the steps to implement InvertColumn exclusively through Layer.

1. INPUT: x ∈ RN×d

OUTPUT: y1 ∈ RN×d, where y1 is defined as: KeepNegatives(f1, 0, 0,x). Where

f1 = NoResidual(Id×d′
,W

gate

1 , Id′×d,11×d′
, b

2

1;x),

where W
gate

1 ∈ Rd×d′
, b

2

1 ∈ R1×d′
are defined as:

W gate
1 =


0(i−1)×d′

01×(i−1) 1 01×(d′−i)

0(d−i)×d′

 , b21 =
(
01×(i−1) 1 01×(d′−i)

)
.

This element wise squares the column we want to invert while keeping all other values the same. The goal of this step
is to convert all −1 in the column to be inverted to 1s.

14

Submission and Formatting Instructions for ICML 2023

2. INPUT: y1

OUTPUT: y where y = KeepNegatives(f2, 0, 0,y1). Where

f2 = NoResidual(0d×d′
,W

gate

2 , Id′×d,11×d′
, b

2

1;y1).

Where W
gate

2 , b
2

1 are defined as:

W
gate

2 =


I(i−1)×(i−1) 0(i−1)×(d′−i+1)

01×(i−1) −1 01×(d′−i)

0(d−i)×i I(d−i)×(d′−1)

 , b
2

2 =
(
01×(i−1), 1,0d′−i

)
.

This negates all values in our target column and adds 1, successfully flipping the bit values while maintaining the other
values in the matrix.

Proposition B.10. A constant-depth(4) block of layers using O(T log c+ log2 c) parameters and O(qT log c+ q log2 c)
FLOPs can implement Lookup for all T triples from a matching graph G(E,R, T).

Proof. Here are the steps to implement Lookup.

1. INPUT: x ∈ RN×d

OUTPUT: y1 ∈ RN×d where y1 = KeepNegatives(f1, 4 log2 c, 5 log2 c,x) where:

f1 = NoResidual(W in
1 ,0d×d′

,W out
1 , b1,01×d′

;x),

where W in
1 ∈ Rd×d′

,W out
1 ∈ Rd′×d are defined as:

W in
1 =



I log2 c×log2 c,0log2 c×log2 c,0log2 c×log2 c,0log2 c×log2 c, e1, . . . , eT ,0→

0log2 c×log2 c, I log2 c×log2 c,0log2 c×log2 c,0log2 c×log2 c, r1, . . . , rT ,0→

0log2 c×log2 c,0log2 c×log2 c, I log2 c×log2 c, I log2 c×log2 c,0→

← 0→


,

b1 =
(
01×4 log2 c, (1− d)→

)
,W out

1 =



I4 log2 c×4 log2 c,0→

01×4 log2 c, t1, 1,0→

...

01×4 log2 c, tT , 1,0→


.

This step maintains the first three column blocks, repeats the third column block into the fourth block, puts the tail of a
relation into the fifth column block if column blocks one and two are a valid head-relation pair, and in the next column
puts a 0/1 flag where 1 means there was a match and 0 meaning no match. At this point, a row where we have a valid
match looks exactly as desired, although a row that did not have a match should not have any non-zero values in the 4th
column block.

2. INPUT: y1

OUTPUT: y ∈ RN×d where y = KeepNegatives(f2, 0, 0,y1) and f2 is defined as:

f2 = NoResidual(W in
2 ,0d×d′

, Id′×d,01×d′
,01×d′

;y1).

15

Submission and Formatting Instructions for ICML 2023

where W in
2 ∈ Rd×d′

is defined as:

W in
2 =


← 0→

01×3d′
,11×d′

,0→

← 0→

 b1 =
(
11×3 log2 c,01×log2 c,1→

)
.

This step zeros out the 4’th column block for the rows that didn’t have a match, producing our final output.

Proposition B.11. A constant-depth block of MoE layers can implement Lookup for all T triples from a matching graph
G(E,R, T) using O(T log c) parameters and O(

√
T log c) FLOPs.

Proof. We split the graph G into a set of
√
T distinct subgraphs {Gi(E,R,

√
T)}

√
T

i=1. Each subgraph Gi is assigned a unique
binary key ki ∈ {−1, 1}log

√
T . Each triple (h, r, t) is then assigned to a subgraph by matching the first log

√
T dimensions

of h against the keys {ki}
√
T

i=1.

By Proposition B.10, we can perform LookupGi
over any graph Gi(E,R,

√
T) with a constant-depth block of layers using

O(
√
T log c+ log2 c) parameters and FLOPs.

Note that changing the graph from Gi to Gj only affects the weights of the GLU (the attention part of the layer is unaffected).
This means we can create a single constant-depth block of MoE layers with

√
T experts that contains all of the weights

necessary to compute LookupGi
for all

√
T subgraphs Gi. If the MoE routing distribution is s[i] = 1 fix, this block of MoE

layers exactly performs LookupGi
for any i using O(T log c+ log2 c) parameters and O(

√
T log c+ log2 c) FLOPs.

For any arbitrary lookup query (h, r) assigned to Gi, we can achieve the desired routing distribution by using k = 1 and
setting the routing matrix W switch ∈ Rd×

√
T to be

W switch =

(
↑
k1
↓

↑
k2
↓

...
↑

k√
T

↓

)
.

Proposition B.12. A constant-depth(9) block of layers with O(log2 c) parameters and O(q log2 c) FLOPs can perform
substitute.

Proof. Here are the steps to implement substitute.

1. INPUT: x ∈ RN×d

OUTPUT: y1 ∈ RN×d where y1 = KeepNegatives(f1, 0, 0,x) where:

f1 = Layer(Q,K,V ,B,0d×d′
,0d×d′

,0d′×d,01×d′
,01×d′

;x).

For the attention portion of the layer, Q ∈ Rd×d,K ∈ Rd×d,V ∈ Rd×d,B ∈ RN×N are defined as:

V =

I log2 c×log2 c,0log2 c×(d−log2 c)

0(d−log2 c)×d

 ,K =


03 log2 c×d

I log2 c×log2 c,0log2 c×d

0(d−4 log2 c)×d

 ,V =


04 log2 c×d

I log2 c×log2 c,0log2 c×(d−log2 c)

0(d−1)×d

 ,

B = (d− 1)N×N .

The attention layer uses the values in the first column block as queries, the 4’th column block as keys, and the 5’th
column block as values. The GLU implements identity as it lets the residual pass through without any modification.

16

Submission and Formatting Instructions for ICML 2023

2. INPUT: y1

OUTPUT: y2 ∈ RN×d Where y2 = KeepNegatives(f2, 0, 0,y1) where

f2 = NoResidual(0d×d′
,W gate

2 , Id′×d,11×d′
,01×d′

;x).

Where

W gate
1 =



I3 log2 c×3 log2 c 03 log2 c×(d−3 log2 c)

02 log2 c×d

0log2 c×3 log2 c I
log2 c×log2 c
1 e

(log2 c×(d−4 log2 c))>

1

0(N−6 log2 c)×d


.

The GLU keeps the first 3 column blocks the same, overwrites the 4’th with the 5’th and takes a single bit of the 4’th
and stores it in the first position of the 5’th. This bit is either -1 or 1 if there was a matching key due to our embedding
format. We use this as a flag to in the later steps.

3. INPUT: y2

OUTPUT: y3 ∈ RN×d Where y3 = KeepNegatives(f3, 0, 0,y2) where

f3 = InvertColumn(4 log2 c+ 1,y2).

This step inverts the flag mentioned in the previous step.

4. INPUT: y3

OUTPUT: y ∈ RN×d where y = KeepNegatives(f4, 0, 0,y3) where:

f4 = NoResidual(W in
4 , Id×d,W out

4 ,01×d′
,11×d′

;y3).

Where W gate
4 ,W out

4 are defined as follows:

W in
4 =


04 log2 c×d′

11×log2 c 01×(d′−log2 c)

0(N−4 log2 c−1)×d′

 ,

W out
4 =



I log2 c×log2 c 0log2 c×(d−log2 c)

0log2 c×log2 c I log2 c×log2 c 0log2 c×(d−2 log2 c)

0log2 c×log2 c 0log2 c×log2 c I log2 c×log2 c 0log2 c×(d−3 log2 c)

I log2 c×log2 c 0log2 c×(d−log2 c)

0(d′−4 log2 c)×d


.

This masks the first column based on the flag, and moves and values that were matched into this column, producing the
final output.

17

Submission and Formatting Instructions for ICML 2023

B.5. Upper Bounds for Path Queries

First, we upper bound the number of parameters and FLOPs required by a looped model.

Proposition B.13. For a matching graph G(E,R, T), a looped model withO(T log c+log2 c) parameters andO(q2T log c+
q log2 c) FLOPs can answer any path query Q with q hops over G.

Proof. Our high-level strategy is to construct a constant-depth stack of Layer that composes the lookup and substitute
and loop it q times.

The looped-moe model is parameterized by a single constant-depth stack of Layer as defined in equation 16. By Proposi-
tion B.10, with a constant-depth block of layers, we can store and lookup all T distinct triples in the matching graph G using
O(T log c) parameters and O(T log c) FLOPs. After looking up the value of a variable, we can replace all instances of that
variable with its value using the substitute primitive. By Proposition B.12, with a constant-depth block of layers, we
can perform substitution using O(log2 c) parameters and O(log2 c) FLOPs. We then loop the stack q times, producing the
desired output.

Theorem B.14. For a matching graph G(E,R, T), a looped-moe model with O(T log c + log2 c) parameters and
O(q2

√
T log c+ q log2 c) FLOPs can answer any path query Q with q hops over G.

Proof. We use the same strategy as in Proposition B.13. However, by Proposition B.11 the lookup can now be implemented
by an MoE using O(q

√
T log c) FLOPs.

Next, we provide upper bounds for the standard model.

Theorem B.15. For a matching graph G(E,R, T), a standard model with O(qT log c + log2 c) parameters and
O(q2T log c+ q log2 c) FLOPs can answer any path query Q with q hops over G.

Proof. We use the same high-level strategy as in Proposition B.13. However, because standard models do not implement
looping, we create a O(q)-depth stack that simply repeats the stack q times.

B.6. Lower Bound for Path Queries

Finally, under some assumptions on model expressity, we provide a lower bound on the number of parameters that a standard
model requires to perform path queries

Relation product models. We’ll begin by describing the restricted class of models we consider, which we refer to as
Relation Product Models. This is a restricted model class that includes a number of the most obvious solutions to the
problem of storing and answering path queries. Importantly, the class of relation product models includes the models that we
constructed above to prove the upper bounds in Theorem B.15 and Theorem B.14 as a special case. As a recap, the solutions
above handle q-hop queries using q layers, each storing every relation separately. Inspired by Liu et al. (2023), we also want
to consider "shortcut" solutions that use depth less than the number of hops (L < q). In this class of solutions, instead of
storing each triple separately, we explicitly store the product of multiple relations in a single layer. In the extreme case, we
can store all Rq possible products of q relations in a single layer.

Intuitively, these constant-depth solutions are unlikely to provide parameter reductions because there are exponentially-many
(Rq̃) paths, leading to a blow-up in required layer width. In what follows, we provide formal guarantees that there is no way
to do better than our upper bound of O(qT log c) parameters using a relation product model and standard architecture.

Now we will define relation product models more formally. We can represent any matching graph G(E,R, T) with R
permutation matrices {Pi}Ri=1, where each Pi ∈ {0, 1}E×E is a matrix with 1-hot rows. The answer to any q-hop path
query over a matching graph is given by simply multiplying a one-hot encoding of the start entity with q transition matrices.
For example, if the starting entity i is represented by a one-hot vector ei ∈ {0, 1}E , then the answer to the following
two-hop path query is given by e>P3P6.

select y where (e, r3, x) and (x, r6, y)

18

Submission and Formatting Instructions for ICML 2023

The set of all such products — capturing all possible q-hop paths for all q > 1 — are the monomials over the set of
permutation matrices.

We consider the class of models where each layer can be expressed as multiplication with a polynomial over the transition
matrices of the knowledge graph. We’ll refer to this class of models as a Relation Product Model.

Definition B.16 (Relation Product Model). A model where each layer can only transform input entities ei according to the
following expression:

e>i

m∑
i=1

gi(x)P̃i (24)

where each P̃i =
∏R

j=1 P
yij

j is a monomial over the transition matrices, yij ∈ N0 are non-negative integer powers, x is the
full input, and gi : RE → R is an arbitrary function that produces coefficients of the polynomial dependent on the input x.

A full L-layer relation product model can then only transform the starting entity e according to the following expression:

e>i

L∏
`=1

m∑̀
i=1

g`i(x)P̃`i (25)

Note that this definition of a relation product model is agnostic to the architecture and encoding scheme used. It simply
restricts the kinds of transformations a layer can perform on entity. How that transformation is implemented would depend
on the specific architecture and encoding scheme used.

Assumptions and Lower Bound. In our proof of the lower bound below, we rely on one assumption about the number of
parameters that the standard architecture requires to implement a layer of a relation product model.

Assumption B.17. To implement the entity transformation e>i
∑m

i=1 gi(x)P̃i over a matching graph G(E,R, T), requires
Ω(mE) parameters.

Why is this a reasonable assumption? In Lemma B.18, we show that implementing m arbitrary permutations requires
Ω(mE) parameters. In a relation product model, the permutations are not arbitrary, but products of k base permutationns.
It’s possible that there is a scheme that allows us to leverage the structure in the m products of k permutations with fewer
than Ω(mE) parameters. However, because a single layer of the standard model includes a constant number of matrix
multiplications, we conjecture that it is not possible to achieve a better than constant factor reduction in parameters.

Lemma B.18. To implement the entity transformation e>i
∑m

i=1 gi(x)Pi over a matching graph G(E,R, T), we require
Ω(mE) parameters.

Each layer in a vacuum, that is without other layers, needs to be able to, given any set of m permutations, have its values set
so that they can all be represented.

Proof. First, we show that it takes mE parameters to represent m distinct permutations. With E entities, there are E!
different choices of permutations, thus there are

(
E!
m

)
choices of m distinct tuple choices. We take the logarithm of this as B

bits can represent 2B choices. When m is poly(E),

log

(
E!

m

)
= Ω(mE logE)

via Stirlings approximation. Further, with the assumption that each parameter is logE bits, the layer requires Ω(mE)
number of parameters.

Stirling’s approximation for binomial. Stirlings approximation is:

n! ≈
√
2πn

(n
e

)n
(26)

19

Submission and Formatting Instructions for ICML 2023

Stirling’s approximation for log(n!):

log(n!) = Ω
(
log
(√

2πn
(n
e

)n))
= Ω

(
log
(√

2πn
)
+ log

((n
e

)n))
= Ω

(
1

2
log (2πn) + n log

(n
e

))
= Ω(log n+ n (log n− log e))

= Ω (n log n)

Known bound for all 1 ≤ a ≤ b: (
a

b

)
≥
(
b

a

)a

Stirling’s approximation for log
(
E!
m

)
: (

E!

m

)
≥
(
E!

m

)m

.

Applying log to both sides we get

log

(
E!

m

)
≥ log

((
E!

m

)m)
.

With log rules,

log

(
E!

m

)
≥ m log

(
E!

m

)
.

With log rules,

log

(
E!

m

)
≥ m (log (E!)− log (m)) .

Since E! > m,

log

(
E!

m

)
= Ω(m log (E!)) .

Via Stirling’s approximation,

log

(
E!

m

)
= Ω(mE logE) .

Finally, we provide a lower bound on the number of parameters required by a relation product model to answer all path
queries over a matching graph.
Theorem B.19. To answer all path queriesQ with q hops over a matching graph G(E,R, T) with R ≥ e, a relation product
model using the standard architecture and L ≤ q layers requires Ω(qER) parameters.

Proof. We use a counting argument to lower bound the number of parameters required by a standard model.

The number of monomial terms in the polynomial representing the model
∏L

`=1

∑m`

i=1 g`i(x)P̃`i (see Equation (25)) is at
most

∏L
`=1 m`. There are Rq possible path queries of length q over G, each corresponding to a distinct monomial. Thus, in

order for the model to answer all possible path queries, we require that

Rq ≤
L∏

`=1

m`. (27)

Let us assume for the sake of contradiction that n < β · qER for all β > 0. By Lemma B.18, we can bound the total number
of parameters in the model n in terms of the number of monomials per layer m`

α · E
L∑

`=1

m` ≤ n < β · qER,

20

Submission and Formatting Instructions for ICML 2023

where α > 0 are constants. This is the same as
L∑

`=1

m` < qR.

By the inequality of arithmetic and geometric means, we have

L∏
`=1

m` ≤

(
1

L

L∑
`=1

m`

)L

<

(
qR

L

)L

. (28)

Further, assuming that R ≥ e and using the fact that q
L − 1 is non-negative when q ≥ L, we have by Taylor’s theorem that

R
q
L−1 ≥ e

q
L−1 ≥ 1 +

(q
L
− 1
)
≥ q

L
.

We can condense this inequality and rearrange to show:

R
q
L−1 ≥ q

L
,

or equivalently

R
q
L ≥ qR

L
,

which is the same as

Rq ≥
(
qR

L

)L

.

Combining the above inequalities with Equation (28) yields

L∏
`=1

m` < Rq,

which contradicts Equation (27).

21

