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Abstract

Diffusion models have gained traction as powerful algorithms for synthesizing
high-quality images. Central to these algorithms is the diffusion process, which
maps data to noise according to equations inspired by thermodynamics and can
significantly impact performance. A widely held assumption is that the ELBO
objective of a diffusion model is invariant to the noise process (Kingma et al.,
2021). In this work, we dispel this assumption—we propose multivariate learned
adaptive noise (MULAN), a learned diffusion process that applies Gaussian noise
at different rates across an image. Our method consists of three components—a
multivariate noise schedule, instance-conditional diffusion, and auxiliary variables—
which ensure that the learning objective is no longer invariant to the choice of the
noise schedule as in previous works. Our work is grounded in Bayesian inference
and casts the learned diffusion process as an approximate variational posterior that
yields a tighter lower bound on marginal likelihood. Empirically, MULAN sets a
new state-of-the-art in density estimation on CIFAR-10 and ImageNet compared to
classical diffusion. Code is available at https://github.com/s-sahoo/MuLAN

1 Introduction

A diffusion process q transforms an input datapoint denoted by x0 and sampled from a distribution
q(x0) into a sequence of noisy data instances xt for t ∈ [0, 1] by progressively adding Gaussian
noise of increasing magnitude. (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020). The
marginal distribution of each latent is defined by q(xt|x0) = N (xt;αtx0, σtI) where the diffusion
parameters αt, σt ∈ R+ implicitly define a noise schedule as a function of t, such that ν(t) = α2

t /σ
2
t

is a monotonically decreasing function in t. Given any discretization of time into T timesteps of
width 1/T , we define t(i) = i/T and s(i) = (i − 1)/T and we use x0:1 to denote the subset of
variables associated with these timesteps; the forward process q can be shown to factorize into a
Markov chain q(x0:1) = q(x0)

(∏T
i=1 q(xt(i)|xs(i))

)
.

The diffusion model pθ is defined by a neural network (with parameters θ) used to denoise
the forward process q. Given a discretization of time into T steps, p factorizes as pθ(x0:1) =

pθ(x1)
∏T

i=1 pθ(xs(i)|xt(i)). We treat the xt for t > 0 as latent variables and fit pθ by maximizing
the evidence lower bound (ELBO) on the marginal log-likelihood given by:

log pθ(x0) = ELBO(pθ, q) + DKL[q(xt(1):t(T )|x0)∥pθ(xt(1):t(T )|x0)] ≥ ELBO(pθ, q) (1)

In most works, the noise schedule, as defined by ν(t), is either fixed or treated as a hyper-
parameter (Ho et al., 2020; Chen, 2023; Hoogeboom et al., 2023). Chen (2023); Hoogeboom
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et al. (2023) show that the noise schedule can have a significant impact on sample quality. Kingma
et al. (2021) consider learning ν(t), but argue that the KL divergence terms in the ELBO are invariant
to the choice of function ν, except for the initial values ν(0), ν(1), and they set these values to
hand-specified constants in their experiments. They only consider learning ν for the purpose of
minimizing the variance of the gradient of the ELBO. In this work, we show that the ELBO is not
invariant to more complex forward processes.

2 Diffusion Models With Multivariate Learned Adaptive Noise

Why Learned Diffusion? Perhaps the most direct motivation for our work comes from Bayesian
inference. Notice that the gap between the evidence lower bound ELBO(p, q) and the marginal log-
likelihood (MLL) in Eq. 1 is precisely the KL divergence DKL[q(xt(1):t(T )|x0)∥pθ(xt(1):t(T )|x0)]
between the diffusion process q over the latents xt and the true posterior of the diffusion model.
The diffusion process takes the role of an approximate variational posterior in ELBO(p, q). This
observation suggests that the ELBO can be made tighter by choosing a diffusion processes q that
is closer to the true posterior pθ(xt(1):t(T )|x0); this in turn brings the learning objective of closer
to log p(x), which is often the ideal objective that we wish to optimize. In fact, the key idea of
variational inference is to optimize maxq∈Q ELBO(p, q) over a family of approximate posteriors
Q to induce a tighter ELBO (Kingma & Welling, 2013). Most diffusion algorithms, however
optimize maxp∈P ELBO(p, q) within some family P with a fixed q. Our work seeks to jointly
optimize maxp∈P,q∈Q ELBO(p, q); we will show in our experiments that this improves the likelihood
estimation.

2.1 A Forward Diffusion Process With Multivariate Adaptive Noise

This subsection focuses on defining Q; the next sections will show how to parameterize and train a
reverse model p ∈ P .

Notation. Given two vectors a and b, we use the notation ab to represent the Hadamard product
(element-wise multiplication). Additionally, we denote element-wise division of a by b as a / b. We
denote the mapping diag(.) that takes a vector as input and produces a diagonal matrix as output.

2.1.1 Multivariate Gaussian Noise Schedule Conditioned on Context

Formally, our definition of a forward diffusion process with a multivariate noise schedule fol-
lows previous work (Kingma et al., 2021; Hoogeboom & Salimans, 2022) and defines q via
the marginal for each latent noise variable xt for t ∈ [0, 1], where the marginal is given by:
q(xt|x0) = N (xt;αtx0, diag(σ2

t )), where xt,x0 ∈ Rd, αt,σt ∈ Rd
+ and d is the dimension-

ality of the input data. For more details please refer Sec. B. In Sec. D.4, we argue that this class
of diffusion process Q induces an ELBO that is not invariant to q ∈ Q. The ELBO consists of
a line integral along the diffusion trajectory specified by ν(t). A line integrand is almost always
path-dependent, unless its integral corresponds to a conservative force field, which is rarely the case
for a diffusion process (Spinney & Ford, 2012). See Sec. D.4 for details.

Next, we extend the diffusion process to support context-adaptive noise. This enables injecting noise
in a way that is dependent on the features of an image. Formally, we introduce a context variable
c ∈ Rm which encapsulates high-level information regarding x0. Examples of c could be a class
label, a vector of attributes (e.g., features characterizing a human face), or even the input x0 itself. We
define the marginal of the latent xt in the forward process as q(xt|x0, c) = N (xt;αt(c)x0,σ

2
t (c));

the reverse process kernel can be similarly derived as Hoogeboom & Salimans (2022):

q(xs|xt,x0, c) = N

(
µq =

αt|s(c)σ
2
s(c)

σ2
t (c)

xt +
σ2
t|s(c)αs(c)

σ2
t (c)

x0, Σq = diag

(
σ2
s(c)σ

2
t|s(c)

σ2
t (c)

))
(2)

where the diffusion parameters αt, σt are now conditioned on c via a neural network. Specifically,
we parameterize the diffusion parameters αt(c),σt(c),ν(t, c) as α2

t (c) = sigmoid(−γϕ(c, t)),
σ2
t (c) = sigmoid(γϕ(c, t)), and ν(c, t) = exp (−γϕ(c, t)). Here, γϕ(c, t) : Rm × [0, 1] →

[γmin, γmax]
d is a neural network with the property that γϕ(c, t) is monotonic in t. Following Kingma

2



et al. (2021); Zheng et al. (2023), we set γmin = −13.30, γmax = 5.0. We express γϕ(c, t) as a
monotonic degree 5 polynomial in t. Details about the exact functional form of this polynomial and
its implementation can be found in Suppl. D.2. More such parameterizations are discussed in C.

2.2 Auxiliary-Variable Reverse Diffusion Processes

We introduce a class of approximate reverse processes P that match the structure of Q and that are
naturally suited to the joint optimization maxp∈P,q∈Q ELBO(p, q).

Formally, we define a diffusion model where the reverse diffusion process is conditioned on the
context c. Specifically, given any discretization of t ∈ [0, 1] into T time steps as in Sec. 1, we
introduce a context-conditional diffusion model pθ(x0:1|c) that factorizes as the Markov chain

pθ(x0:1|c) = pθ(x1|c)
T∏

i=1

pθ(xs(i)|xt(i), c). (3)

Given that the true reverse process is a Gaussian as specified in Eq. 2, the ideal pθ matches this
parameterization (the proof mirrors that of regular diffusion models; Suppl. C), which yields

pθ(xs|c,xt) = N

(
µp =

αt|s(c)σ
2
s(c)

σ2
t (c)

xt +
σ2

t|s(c)αs(c)

σ2
t (c)

xθ(xt, t), Σp = diag

(
σ2

s(c)σ
2
t|s(c)

σ2
t (c)

))
,

(4)

where xθ(xt, t), is a neural network that approximates x0. Instead of parameterizing xθ(xt, t)
directly using a neural network, we consider 2 other parameterizations. One is the noise pa-
rameterization (Ho et al., 2020) where ϵθ(xt, c, t) is the denoising model which is parameter-
ized as ϵθ(xt, t) = (xt −αt(c)xθ(xt, t, c))/σt(c); see Suppl. D.1.1 and the other is veloc-
ity parameterization (Salimans & Ho, 2022) where vθ(xt, c, t) is a neural network that models
vθ(xt, c, t) = (αt(c)xt − xθ(xt, c, t))/σt(c); see Suppl. D.1.2.

2.2.1 Conditioning Noise on an Auxiliary Latent Variable

In Suppl. C.3, we highlight the challenges when c is deterministic, and hence, propose an alternative
strategy for learning conditional forward and reverse processes p, q that feature the same structure
and hence support efficient noise parameterization. Our approach is based on the introduction of
auxiliary variables (Wang et al., 2023), which lift the distribution pθ into an augmented latent space.

Specifically, we define z ∈ Rm as a low-dimensional auxiliary latent variable and define a lifted
pθ(x, z) = pθ(x|z)pθ(z), where pθ(x|z) is the conditional diffusion model from Eq. 3 (with context
c set to z) and pθ(z) is a simple prior (e.g., unit Gaussian or fully factored Bernoulli). The latents z
can be interpreted as a high-level semantic representation of x that conditions both the forward and
the reverse processes. Unlike x0:1, the z are not constrained to have a particular dimension and can
be a low-dimensional vector of latent factors of variation. They can be continuous or discrete.

We form a learning objective for the lifted pθ by applying the ELBO twice to obtain:
log pθ(x0) ≥ Eqϕ(z|x0)[log pθ(x0|z)]− DKL(qϕ(z|x0)∥pθ(z)) (5)

≥ Eqϕ(z|x0)[ELBO(pθ(x0:1|z), qϕ(x0:1|z))]− DKL(qϕ(z|x0)∥pθ(z)), (6)

where ELBO(pθ(x0:1|z), qϕ(x0:1|z)) denotes the variational lower bound of a diffusion model
(defined in Eq. 1) with a forward process qϕ(x0:1|z) (defined in Eq. 2 and Sec. 2.1.1) and and an
approximate reverse process pθ(x0:1|z) (defined in Eq. 3), both conditioned on z. The distribution
qϕ(z|x0) is an approximate posterior for z parameterized by a neural network with parameters ϕ.

Crucially, note that in the learning objective (Eq. 6), the context, which in this case is z, is available
at training time in both the forward and reverse processes. At generation time, we can still obtain a
valid context vector by sampling an auxiliary latent from pθ(z). Thus, this approach addresses the
aforementioned challenges and enables us to use the noise parameterization in Eq. 4.

2.3 Variational Lower Bound

Next, we derive a precise formula for the learning objective (6) of the auxiliary-variable diffusion
model. Using the objective of a diffusion model in (1) we can write (6) as the sum of four terms:

log pθ(x0) ≥ Eqϕ [Lrecons + Ldiffusion + Lprior + Llatent], (7)
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Table 1: Likelihood in bits per dimension (BPD) on the test set of CIFAR-10 and ImageNet. Results
with “/” means they are not reported in the original papers. Model types are autoregressive (AR),
diffusion models (Diff), diffusion ODEs (Diff ODE). The likelihood for “Diff” type models is
computed using the VLB-based method described in appendix Sec. H.1, while “Diff ODE” type
models utilize an ODE-based exact likelihood estimate as detailed in appendix Sec. H.2. Additionally,
for MULAN , we present the mean and a 95% confidence interval.

Model Type CIFAR-10 (↓) ImageNet (↓)
DDPM (Ho et al., 2020) Diff 3.69 /
Score SDE (Song et al., 2020) Diff 2.99 /
Improved DDPM (Nichol & Dhariwal, 2021) Diff 2.94 /
VDM (Kingma et al., 2021) Diff 2.65 3.72
Flow Matching (Lipman et al., 2022) Flow 2.99 /
i-DODE (Zheng et al., 2023) (VLB-based) Diff 2.61 /
i-DODE (Zheng et al., 2023) (ODE-based) Diff ODE 2.56 3.69
MULAN (Ours, VLB-based; see Sec. H.1) Diff 2.60 3.71
MULAN (Ours, ODE-based; see Sec. H.2) Diff ODE 2.55 ±10−3 3.67 ±10−3

The reconstruction loss, Lrecons, can be (stochastically and differentiably) estimated using stan-
dard techniques; see (Kingma & Welling, 2013), Lprior = −DKL[qϕ(x1|x0, z)∥pθ(x1)] is the
diffusion prior term, Llatent = −DKL[qϕ(z|x0)∥pθ(z)] is the latent prior term, and Ldiffusion =
− 1

2Et∼[0,1]

[
(ϵt − ϵθ(xt, z, t))

⊤diag (∇tγ(z, t)) (ϵt − ϵθ(xt, z, t))
]

where ∇tγ(z, t) ∈ Rd de-
notes the Jacobian of γ(z, t) with respect to the scalar t. We try two different kinds of priors
for pθ(z): discrete (z ∈ {0, 1}m) and continuous (z ∈ Rm). The exact expression for Lprior can be
found in Suppl. D.3.

3 Experiments

This section reports experimental results on the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-
32 (Van Den Oord et al., 2016) datasets. More details can be found in Sec. F.
Likelihood Estimation. In Table 1, we present likelihood estimation results for MULAN and
recent methods on CIFAR-10 and ImageNet-32 using the VLB-estimate; details in Sec. H.1. Trained
for 10M steps on CIFAR-10 and 2M steps on ImageNet-32, this MULAN version employs noise
parameterization, akin to VDM (Kingma et al., 2021). Applied on VDM, MULAN with a learned
multivariate noising schedule conditioned on auxiliary latent variables significantly improves BPD
over vanilla VDM. Additionally, using the ODE-based exact likelihood estimate, MULAN outper-
forms existing methods in density estimation on both datasets, trained for 8M steps on CIFAR-10
and 2M steps on ImageNet-32. In inference, we extract the underlying probability flow ODE, similar
to Zheng et al. (2023). While Zheng et al. (2023) used additional techniques, combining them with
MULAN could enhance its performance.
Ablations and Noise Schedule. In Fig. 3 we ablate each component of MULAN. As γϕ(z, t) is mul-
tivariate, diverse noise schedules are expected for distinct input dimensions and z ∼ pθ(z). In Fig. 2
with our CIFAR-10 model, we visualize the time-dependent variance of the noise schedule for
different pixels, based on 128 samples z ∼ pθ(z). Early schedule segments show increased variation,
yet absolute variance is smaller than anticipated. Attempts to visualize noise schedules across diverse
dataset images and areas (see Fig. 11) and with synthetic datasets exhibit no interpretable patterns,
despite observable differences in likelihood estimation. We posit that alternative architectures and
conditioning forms may unveil interpretable variations, a direction for future exploration.

4 Conclusion

In this study, we introduce MULAN, a context-adaptive noise process that applies Gaussian noise at
varying rates across input data. We present theoretical arguments challenging the prevailing notion
that the likelihood of diffusion models remains independent of the noise schedules. We contend that
this independence only holds true for univariate schedules, and in the case of multivariate schedules
like MULAN, different diffusion trajectories yield distinct likelihood estimates. Our evaluation of
MULAN spans multiple image datasets, where it outperforms state-of-the-art generative diffusion
models.In general, MULAN represents a promising avenue for advancing generative modeling.
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A Standard Diffusion Models

We have a Gaussian diffusion process that begins with the data x0, and defines a sequence of
increasingly noisy versions of x0 which we call the latent variables xt, where t runs from t = 0 (least
noisy) to t = 1 (most noisy). Given, T , we discretize time uniformly into T timesteps each with a
width 1/T . We define t(i) = i/T and s(i) = (i− 1)/T .

A.1 Forward Process

q(xt|xs) = N (αt|sxs, σ
2
t|sIn) (8)

where

αt|s =
αt

αs
(9)

σ2
t|s = σ2

t −
α2
t|s

σ2
s

(10)

A.2 Reverse Process

Kingma et al. (2021) show that the distribution q(xs|xt,x0) is also gaussian,

q(xs|xt,x0) = N

(
µq =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

x0, Σq =
σ2
sσ

2
t|s

σ2
t

In

)
(11)

Since during the reverse process, we don’t have access to x0, we approximate it using a neural
network xθ(xt, t) with parameters θ. Thus,

pθ(xs|xt) = N

(
µp =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

xθ(xt, t), Σp =
σ2
sσ

2
t|s

σ2
t

In

)
(12)

A.3 Variational Lower Bound

This corruption process q is the following markov-chain as q(x0:1) = q(x0)
(∏T

i=1 q(xt(i)|xs(i))
)

.
In the reverse Rrocess, or the denoising process, pθ, a neural network (with parameters θ)
is used to denoise the noising process q. The reverse Rrocess factorizes as: pθ(x0:1) =

pθ(x1)
∏T

i=1 pθ(xs(i)|xt(i)). Let xθ(xt, t) be the reconstructed input by a neural network from
xt. Similar to Sohl-Dickstein et al. (2015); Kingma et al. (2021) we decompose the negative lower
bound (VLB) as:

− log pθ(x0) ≤ Eqϕ

[
− log

pθ(xt(0):t(T ))

qϕ(xt(1):t(T )|x0)

]
= Ext(1)∼q(xt(1)|x0)[− log pθ(x0|xt(1))]

+

T∑
i=2

Ext(i)|x0)DKL[pθ(xs(i)|xt(i))∥qϕ(xs(i)|xt(i),x0)]

+ DKL[pθ(x1)∥qϕ(x1|x0)]

= Ext(1)∼q(xt(1)|x0)[− log pθ(x0|xt(1))]︸ ︷︷ ︸
Lrecons

+
T

2
Eϵ∼N (0,In),i∼U{2,T}DKL[pθ(xs(i)|xt(i))∥qϕ(xs(i)|xt(i),x0)]︸ ︷︷ ︸

Ldiffusion

+ DKL[pθ(x1)∥qϕ(x1|x0)]︸ ︷︷ ︸
Lprior

(13)
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The prior loss, Lprior, and reconstruction loss, Lrecons, can be (stochastically and differentiably)
estimated using standard techniques; see Kingma & Welling (2013). The diffusion loss, Ldiffusion,
varies with the formulation of the noise schedule. We provide an exact formulation for it in the
subsequent sections.

A.4 Diffusion Loss

For brevity, we use the notation s for s(i) and t for t(i). From Eq. 25 and Eq. 26 we get the following
expression for q(xs|xt,x0):

DKL(q(xs|xt,x0)∥pθ(xs|xt))

=
1

2

(
(µq − µp)

⊤Σ−1
θ (µq − µp) + tr

(
ΣqΣ

−1
p − In

)
− log

|Σq|
|Σp|

)
=

1

2
(µq − µp)

⊤Σ−1
θ (µq − µp)

Substituting µq,Σq,µp,Σp from equation 12 and equation 11; for the exact derivation see Kingma et al. (2021)

=
1

2
(ν(s)− ν(t)) ∥(x0 − xθ(xt, t))∥22 (14)

Thus Ldiffusion is given by

Ldiffusion

= lim
T→∞

T

2
Eϵ∼N (0,In),i∼U{2,T}DKL[pθ(xs(i)|xt(i))∥qϕ(xs(i)|xt(i),x0)]

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In) (ν(s)− ν(t)) ∥x0 − xθ(xt, t)∥22

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

(ν(s)− ν(t)) ∥x0 − xθ(xt, t)∥22

]

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

T (ν(s)− ν(t)) ∥x0 − xθ(xt, t)∥22
1

T

]

Substituting lim
T→∞

T (ν(s)− ν(t)) =
d
dt
ν(t) ≡ ν′(t); see Kingma et al. (2021)

=
1

2
Eϵ∼N (0,In)

[∫ 1

0

ν′(t)∥x0 − xθ(xt, t)∥22
]

dt (15)

In practice instead of computing the integral is computed by MC sampling.

= −1

2
Eϵ∼N (0,In),t∼U [0,1]

[
ν′(t)∥x0 − xθ(xt, t)∥22

]
(16)

B Multivariate noise schedule

Our proposed forward diffusion process progressively induces varying amounts of Gaussian noise
across different areas of the image. We introduce two new components relative to previous work:
multivariate noise scheduling and context-adaptive noise.

Intuitively, a multivariate noise schedule injects noise at different rates for each pixel of an input
image. This enables adapting the diffusion process to spatial variations within the image. We will
also see that this change is sufficient to make the ELBO no longer invariant in q.

Formally, our definition of a forward diffusion process with a multivariate noise schedule follows
previous work (Kingma et al., 2021; Hoogeboom & Salimans, 2022) and defines q via the marginal
for each latent noise variable xt for t ∈ [0, 1], where the marginal is given by:

q(xt|x0) = N (xt;αtx0, diag(σ2
t )), (17)
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where xt,x0 ∈ Rd, αt,σt ∈ Rd
+ and d is the dimensionality of the input data. The αt,σt denote

varying amounts of signal and associated with each component (i.e., each pixel) of x0 as a function
of time t(i). Similarly to Kingma et al. (2021), we may define the multivariate signal-to-noise ratio
as ν(t) = α2

t/σ
2
t and we choose αt,σt such that ν(t) is monotonically decreasing in t along all

dimensions and is differentiable in t ∈ [0, 1]. Let αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|s/σ

2
s with

all operations applied elementwise. In Hoogeboom & Salimans (2022), show that these marginals
induce transition kernels of the true reverse process between steps s < t that are given by:

q(xs|xt,x0) = N

(
xs;µq =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

x0, Σq = diag

(
σ2
sσ

2
t|s

σ2
t

))
(18)

In Sec. D.4, we argue that this class of diffusion process Q induces an ELBO that is not invariant to
q ∈ Q. The ELBO consists of a line integral along the diffusion trajectory specified by ν(t). A line
integrand is almost always path-dependent, unless its integral corresponds to a conservative force
field, which is rarely the case for a diffusion process (Spinney & Ford, 2012). See Sec. D.4 for
details.

For a multivariate noise schedule we have αt,σt ∈ Rn×n where t ∈ [0, 1]. αt,σt are diagonal
matrices. The timesteps s, t satisfy 0 ≤ s < t ≤ 1. Furthermore, we use the following notations
where arithmetic division represents element wise division between 2 diagonal matrices:

αt|s =
αt

αs
(19)

σ2
t|s = σ2

t −
α2

t|s

σ2
s

(20)

B.1 Forward Process

q(xt|xs) = N
(
αt|sxs,σ

2
t|s

)
(21)

Change of variables. We can write xt explicitly in terms of the signal-to-noise ratio, ν(t), and
input x0 in the following manner:

νt =
α2

t

σ2
t

We know α2
t = 1− σ2

t for Variance Preserving process; see Sec. 1.

=⇒ 1− σ2
t

σ2
t

= νt

=⇒ σ2
t =

1

1 + νt
and α2

t =
νt

1 + νt
(22)

νt =
α2
t

σ2
t

We know α2
t = 1− σ2

t for Variance Preserving process; see Sec. 1.

=⇒ 1− σ2
t

σ2
t

= νt

=⇒ σ2
t =

1

1 + νt
and α2

t =
νt

1 + νt
(23)

Thus, we write xt in terms of the signal-to-noise ratio in the following manner:

xν(t) = αtx0 + σtϵt; ϵt ∼ N (0, In)

=

√
ν(t)√

1 + ν(t)
x0 +

1√
1 + ν(t)

ϵt Using Eq. 22 (24)
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B.2 Reverse Process

The distribution of xt given xs is given by:

q(xs|xt,x0) = N

(
µq =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

x0, Σq = diag

(
σ2
sσ

2
t|s

σ2
t

))
(25)

Let xθ(xt, t) be the neural network approximation for x0. Then we get the following reverse process:

pθ(xs|xt) = N

(
µp =

αt|sσ
2
s

σ2
t

xt +
σ2
t|sαs

σ2
t

xθ(xt, t), Σp = diag

(
σ2
sσ

2
t|s

σ2
t

))
(26)

B.3 Diffusion Loss

For brevity we use the notation s for s(i) and t for t(i). From Eq. 25 and Eq. 26 we get the following
expression for q(xs|xt,x0):

DKL(q(xs|xt,x0)∥pθ(xs|xt))

=
1

2

(
(µq − µp)

⊤Σ−1
θ (µq − µp) + tr

(
ΣqΣ

−1
p − In

)
− log

|Σq|
|Σp|

)
=

1

2
(µq − µp)

⊤Σ−1
θ (µq − µp)

Substituting µq,µp,Σp from equation 26 and equation 25.

=
1

2

(
σ2
t|sαs

σ2
t

x0 −
σ2
t|sαs

σ2
t

xθ(xt, t)

)⊤

diag

(
σ2
sσ

2
t|s

σ2
t

)−1(
σ2
t|sαs

σ2
t

x0 −
σ2
t|sαs

σ2
t

xθ(xt, t)

)

=
1

2
(x0 − xθ(xt, t))

⊤diag

(
σ2
t|sαs

σ2
t

)⊤

diag

(
σ2
sσ

2
t|s

σ2
t

)−1

diag

(
σ2
t|sαs

σ2
t

)
(x0 − xθ(xt, t))

=
1

2
(x0 − xθ(xt, t))

⊤diag

(
σ2
t|sαs

σ2
t

⊙ σ2
t

σ2
sσ

2
t|s

⊙
σ2
t|sαs

σ2
t

)
(x0 − xθ(xt, t))

=
1

2
(x0 − xθ(xt, t))

⊤diag

(
σ2
t|sα

2
s

σ2
tσ

2
s

)
(x0 − xθ(xt, t))

Simplifying the expression using eq. 19 and eq. 20 we get,

=
1

2
(x0 − xθ(xt, t))

⊤diag
(
α2

s

σ2
s

− α2
t

σ2
t

)
(x0 − xθ(xt, t))

Using the relation ν(t) = α2
t/σ

2
t we get,

=
1

2
(x0 − xθ(xt, t))

⊤diag (ν(s)− ν(t)) (x0 − xθ(xt, t)) (27)
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Like Kingma et al. (2021) we train the model in the continuous domain with T → ∞.

Ldiffusion

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In)DKL(q(xs(i)|xt(i),x0)∥pθ(xs(i)|xt(i)))

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In)(x0 − xθ(xt(i), t(i)))
⊤diag

(
νs(i) − νt(i)

)
(x0 − xθ(xt(i), t))

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

(x0 − xθ(xt(i), t(i)))
⊤diag

(
νs(i) − νt(i)

)
(x0 − xθ(xt(i), t))

]

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

T (x0 − xθ(xt(i), t(i)))
⊤diag

(
νs(i) − νt(i)

)
(x0 − xθ(xt(i), t))

1

T

]
Let lim

T→∞
T (νs(i) − νt(i)) =

d
dt

ν(t) denote the scalar derivative of the vector ν(t) w.r.t t

=
1

2
Eϵ∼N (0,In)

[∫ 1

0

(x0 − xθ(xt, t))
⊤diag

(
d
dt
ν(t)

)
(x0 − xθ(xt, t))dt

]
(28)

In practice instead of computing the integral is computed by MC sampling.

= −1

2
Eϵ∼N (0,In),t∼U [0,1]

[
(x0 − xθ(xt, t))

⊤diag
(

d
dt
ν(t)

)
(x0 − xθ(xt, t))

]
(29)

B.4 Vectorized Representation of the diffusion loss

Let ν(t) be the vectorized representation of the diagonal entries of the matrix ν(t). We can rewrite
the integral in eq. 28 in the following vectorized form where ⊙ denotes element wise multiplication
and ⟨, ⟩ denotes dot product between 2 vectors.

Ldiffusion

= −1

2

∫ 1

0

(x0 − xθ(xt, t))
⊤diag

(
d
dt
ν(t)

)
(x0 − xθ(xt, t))dt

= −1

2

∫ 1

0

〈
(x0 − xθ(xt, t))⊙ (x0 − xθ(xt, t)),

d
dt
ν(t)

〉
dt

Using change of variables as mentioned in Sec. 2.1 we have

= −1

2

∫ 1

0

〈
(x0 − x̃θ(xν(t),ν(t)))⊙ (x0 − x̃θ(xν(t),ν(t))),

d
dt
ν(t)

〉
dt

Let fθ(x0,ν(t)) = (x0 − x̃θ(xν(t),ν(t)))⊙ (x0 − x̃θ(xν(t),ν(t)))

=

∫ 1

0

〈
fθ(x0,ν(t)),

d
dt
ν(t)

〉
dt (30)

Thus Ldiffusion can be interpreted as the amount of work done along the trajectory ν(0) −→ ν(1) in the
presence of a vector field fθ(x0,ν(z, t)). From the perspective of thermodynamics, this is precisely
equal to the amount of heat lost into the environment during the process of transition between 2
equilibria via the noise schedule specified by ν(t).

B.5 Log likelihood and Noise Schedules: A Thermodynamics perspective

A diffusion model characterizes a quasi-static process that occurs between two equilibrium distri-
butions: q(x0) −→ q(x1), via a stochastic trajectory (Sohl-Dickstein et al., 2015). According to
Spinney & Ford (2012), it is demonstrated that the diffusion schedule or the noising process plays
a pivotal role in determining the "measure of irreversibility" for this stochastic trajectory which is
expressed as log PF (x0:1)

PB(x1:0)
. PF (x0:1) represents the probability of observing the forward path x0:1

and PB(x1:0) represents the probability of observing the reverse path x1:0. It’s worth noting that
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log PF (x0:1)
PB(x1:0)

corresponds precisely to the ELBO Eq. 1 that we optimize when training a diffusion
model. Consequently, thermodynamics asserts that the noise schedule indeed has an impact on the
log-likelihood of the diffusion model which contradicts Kingma et al. (2021).

C Multivariate noise schedule conditioned on context

Let’s say we have a context variable c ∈ Rm that captures high level information about x0.
αt(c),σt(c) ∈ Rn×n are diagonal matrices. The timesteps s, t satisfy 0 ≤ s < t ≤ 1. Furthermore,
we use the following notations:

αt|s(c) =
αt(c)

αs(c)
(31)

σ2
t|s(c) = σ2

t (c)−
α2

t|s(c)

σ2
s(c)

(32)

The forward process for such a method is given as:

qϕ(xt|xs, c) = N
(
αt|s(c)xs,σ

2
t|s(c)

)
(33)

The distribution of xt given xs is given by (the derivation is similar to Hoogeboom & Salimans
(2022)):

qϕ(xs|xt,x0, c)

= N

(
µq =

αt|s(c)σ
2
s(c)

σ2
t (c)

xt +
σ2
t|s(c)αs(c)

σ2
t (c)

x0, Σq = diag

(
σ2
s(c)σ

2
t|s(c)

σ2
t (c)

))
(34)

We explore various parameterizations for γϕ(c, t). These schedules are designed in a manner that
guarantees γϕ(c, 0) = γmin1d and γϕ(c, 1) = γmax1d, Below, we list these parameterizations. The
polynomial parameterization is novel to our work and yields significant performance gains.

Monotonic Neural Network. (Kingma et al., 2021) We use the monotonic neural network γvdm(t),
proposed in VDM to express γ as a function of t such that γvdm(t) : [0, 1] → [γmin, γmax]

d. Then we
use FiLM conditioning (Perez et al., 2018) in the intermediate layers of this network via a neural
network that maps z. The activations of the FiLM layer are constrained to be positive.

Sigmoid. (Ours) We express γϕ(c, t) as a sigmoid function in t such that:
γϕ(c, t) = γmin + (γmax − γmin)

sigmoid(aϕ(c)t+bϕ(c))−sigmoid(bϕ(c))
sigmoid(aϕ(c)+bϕ(c))−sigmoid(bϕ(c))

where the coefficients aϕ,bϕ are
parameterized by a neural network such that aϕ : Rm → Rd

>0, bϕ : Rm → Rd.

Polynomial. (Ours) We express γϕ(c, t) as a monotonic degree 5 polynomial in t . Details about the
exact functional form of this polynomial and its implementation can be found in Suppl. D.2.

C.1 context is available during the inference time.

Even though c represents the input x0, it could be available during during inference. For example
c could be class labels (Dhariwal & Nichol, 2021) or prexisting embeddings from an auto-encoder
(Preechakul et al., 2022).

C.1.1 Reverse Process: Approximate

Let xθ(xt, c, t) be an approximation for x0. Then we get the following reverse process (for brevity
we write xθ(xt, c, t) as xθ):

pθ(xs|xt, c) = N

(
µp =

αt|s(c)σ
2
s(c)

σ2
t (c)

xt +
σ2
t|s(c)αs(c)

σ2
t (c)

xθ, Σp = diag

(
σ2
s(c)σ

2
t|s(c)

σ2
t (c)

))
(35)
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C.1.2 Diffusion Loss

Similar to the derivation of multi-variate Ldiffusion in Eq. 27 we can derive Ldiffusion for this case too:

Ldiffusion = −1

2
Eϵ∼N (0,In),t∼U [0,1]

[
(x0 − xθ(xt, c, t))

⊤diag
(

d
dt
ν(t)

)
(x0 − xθ(xt, c, t))

]
(36)

C.1.3 Limitations of this method

This approach is very limited where the diffusion process is only conditioned on class labels. Using
pre-existing embeddings like Diff-AE (Preechakul et al., 2022) is also not possible in general and is
only limited to tasks such as attribute manipulation in datasets.

C.2 context isn’t available during the inference time.

If the context, c is an explicit function of the input x0 things become challenging because x0 isn’t
available during the inference stage. For this reason, Eq. 34 can’t be used to parameterize µp,Σp in
pθ(xs|xt). Let pθ(xs|xt) = N (µp(xt, t),Σp(xt, t)) where µp,Σp are parameterized directly by a
neural network. Using Eq. 2 we get the following diffusion loss:

Ldiffusion = T Ei∼U [0,T ]DKL
(
q(xs(i)|xt(i),x0)∥pθ(xs(i)|xt(i))

)
= Eqϕ

T2 (µq − µp)
⊤Σ−1

θ (µq − µp)︸ ︷︷ ︸
term 1

+
T

2

(
tr
(
ΣqΣ

−1
p − In

)
− log

|Σq|
|Σp|

)
︸ ︷︷ ︸

term 2

 (37)

C.2.1 Reverse Process: Approximate

Due to the challenges associated with parameterizing µp,Σp directly using a neural network we
parameterize c using a neural network that approximates c in the reverse process. Let xθ(xt, t) be an
approximation for x0. Then we get the following reverse Rrocess (for brevity we write xθ(xt, t) as
xθ, and cθ denotes an approximation to c in the reverse process.):

pθ(xs|xt)

= N

(
µp =

αt|s(cθ)σ
2
s(cθ)

σ2
t (cθ)

xt +
σ2
t|s(cθ)αs(cθ)

σ2
t (cθ)

xθ, Σp = diag

(
σ2
s(cθ)σ

2
t|s(cθ)

σ2
t (cθ)

))
(38)

Consider the limiting case where T → ∞. Let’s analyze the 2 terms in Eq. 37 separately.

Using Eq. 2 and Eq. 4, term 1 in Eq. 37 simplifies in the following manner:

lim
T→∞

T

2
(µq − µp)

⊤Σ−1
θ (µq − µp)

lim
T→∞

T

2

d∑
i=1

((µq)i − (µp)i)
2

(Σθ)i
(39)

Substituting 1 / T as δ

lim
δ→0+

d∑
i=1

1

δσi
2(xθ, t− δ)

(
1− νi(xθ,t)

νi(xθ,t−δ)

)×
[
αi(x, t− δ)

αi(x, t)

νi(x, t)

νi(x, t− δ)
zt +αi(x, t− δ)

(
1− νi(x, t)

νi(x, t− δ)

)
xi

− αi(xθ, t− δ)

αi(xθ, t)

νi(xθ, t)

νi(xθ, t− δ)
zt +αi(xθ, t− δ)

(
1− νi(xθ, t)

νi(xθ, t− δ)

)
(xθ)i

]2
(40)
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Consider the scalar case: substituting δ = 1/T ,

lim
δ→0

1

δσ2(xθ, t− δ)
(
1− ν(xθ,t)

ν(xθ,t−δ)

)×
[
α(x, t− δ)

α(x, t)

ν(x, t)

ν(x, t− δ)
zt + α(x, t− δ)

(
1− ν(x, t)

ν(x, t− δ)

)
x

− α(xθ, t− δ)

α(xθ, t)

ν(xθ, t)

ν(xθ, t− δ)
zt + α(xθ, t− δ)

(
1− ν(xθ, t)

ν(xθ, t− δ)

)
xθ

]2
(41)

Notice that this equation is in indeterminate for when we substitute δ = 0. One can apply L’Hospital
rule twice or break it down into 3 terms below. For this reason let’s write it as

expression 1: lim
δ→0

1

δ
×

[
α(x, t− δ)

α(x, t)

ν(x, t)

ν(x, t− δ)
zt + α(x, t− δ)

(
1− ν(x, t)

ν(x, t− δ)

)
x

− α(xθ, t− δ)

α(xθ, t)

ν(xθ, t)

ν(xθ, t− δ)
zt + α(xθ, t− δ)

(
1− ν(xθ, t)

ν(xθ, t− δ)

)
xθ

]
(42)

expression 2: lim
δ→0

1(
1− ν(xθ,t)

ν(xθ,t−δ)

) ×

[
α(x, t− δ)

α(x, t)

ν(x, t)

ν(x, t− δ)
zt + α(x, t− δ)

(
1− ν(x, t)

ν(x, t− δ)

)
x

− α(xθ, t− δ)

α(xθ, t)

ν(xθ, t)

ν(xθ, t− δ)
zt + α(xθ, t− δ)

(
1− ν(xθ, t)

ν(xθ, t− δ)

)
xθ

]2
(43)

Applying L’Hospital rule in expression 1 we get,

d

dδ

(
α(x, t− δ)

α(x, t)

ν(x, t)

ν(x, t− δ)

) ∣∣∣∣∣
δ=0

=
ν(x, t)

α(x, t)

−ν(x, t)α′(x, t) + α(x, t)ν′(x, t)

ν2(x, t)

=
−α′(x, t)

α(x, t)
+
ν′(x, t)

ν(x, t)
(44)

d

dδ
α(x, t− δ)

(
1− ν(x, t)

ν(x, t− δ)

) ∣∣∣∣∣
δ=0

= −α(x, t)ν
′(x, t)

ν(x, t)
(45)

[(
−α′(x, t)

α(x, t)
+
ν′(x, t)

ν(x, t)
+
α′(xθ, t)

α(xθ, t)
− ν′(xθ, t)

ν(xθ, t)

)
zt (46)

−α(x, t)ν
′(x, t)

ν(x, t)
x+ α(xθ, t)

ν′(xθ, t)

ν(xθ, t)
xθ

]2
× ν(x, t)

ν′(x, t)
(47)

Thus the final result:
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d∑
i=1

[(
−αi

′(x, t)

αi(x, t)
+

νi
′(x, t)

νi(x, t)
+

αi
′(xθ, t)

αi(xθ, t)
− νi

′(xθ, t)

νi(xθ, t)

)
zt

−αi(x, t)
νi

′(x, t)

νi(x, t)
x+αi(xθ, t)

νi
′(xθ, t)

νi(xθ, t)
xθ

]2
× νi(x, t)

νi
′(x, t)

= Λ⊤diag
(
ν(x, t)

ν′(x, t)

)
Λ

where Λ =

[(
−α′(x, t)

α(x, t)
+

ν′(x, t)

ν(x, t)
+

α′(xθ, t)

α(xθ, t)
−

ν′(xθ, t)

ν(xθ, t)

)
zt − α(x, t)

ν′(x, t)

ν(x, t)
x + α(xθ, t)

ν′(xθ, t)

ν(xθ, t)
xθ

]
(48)

For the second term we have the following:

lim
T→∞

T

2

(
tr
(
ΣqΣ

−1
p − In

)
− log

|Σq|
|Σp|

)
= lim

T→∞

T

2

[
tr
(

diag
(
σ2(c, s)

(
1− ν(c, t)

ν(c, s)

))/
diag

(
σ2(cθ, s)

(
1− ν(cθ, t)

ν(cθ, s)

))
− In

)

− log

∣∣∣∣∣diag
(
σ2(c, s)(1− ν(c,t)

ν(c,s) )
) ∣∣∣∣∣∣∣∣∣∣diag

(
σ2(cθ, s)(1− ν(cθ,t)

ν(cθ,s)
)
) ∣∣∣∣∣
]

= lim
T→∞

T

2

d∑
i=1

 σi
2(c, s)

(
1− νi(c,t)

νi(c,s)

)
σi

2(cθ, s)
(
1− νi(cθ,t)

νi(cθ,s)

) − 1− log
σi

2(c, s)
(
1− νi(c,t)

νi(c,s)

)
σi

2(cθ, s)
(
1− νi(cθ,t)

νi(cθ,s)

)
 (49)

(50)

Let pi =
σi

2(c,s)
(
1− νi(c,t)

νi(c,s)

)
σi

2(cθ,s)
(
1− νi(cθ,t)

νi(cθ,s)

)
The sequence limT→∞

T
2

∑d
i=1(pi − 1− log pi) converges iff limT→∞

∑d
i=1(pi − 1− log pi) = 0.

Notice that the function f(x) = x− 1− log x ≥ 0 ∀x ∈ R and the equality holds for x = 1. Thus,
the condition limT→∞

T
2

∑d
i=1(pi − 1− log pi) holds iff limT→∞ pi = 0 ∀i ∈ {1, . . . , d}. Thus,
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lim
T→∞

pi = 1

=⇒ lim
T→∞

 σi
2(c, s)

(
1− νi(c,t)

νi(c,s)

)
σi

2(cθ, s)
(
1− νi(cθ,t)

νi(cθ,s)

)
 = 1

Substituting 1/T as δ,

=⇒ lim
δ→0+

 σi
2(c, t− δ)

(
1− νi(c,t)

νi(c,t−δ)

)
σi

2(cθ, t− δ)
(
1− νi(cθ,t)

νi(cθ,t−δ)

)
 = 1

=⇒ σi
2(c, t)

σi
2(cθ, t)

lim
δ→0+

1− νi(c,t)
νi(c,t−δ) )

1− νi(cθ,t)
νi(cθ,t−δ)

 = 1

Applying L’Hospital rule,

=⇒ σi
2(c, t)

σi
2(cθ, t)

 −νi
′(c,t)

νi(c,t)
)

−νi
′(cθ,t)

νi(cθ,t)

 = 1

=⇒ σi
2(c, t)

σi
2(cθ, t)

(
νi

′(c, t)νi(cθ, t)

νi(c, t)νi
′(cθ, t))

)
= 1 (51)

In the vector form the above equation can be written as,

σ2
t (c)νt(cθ)∇tν(c, t)

σ2
t (cθ)νt(c)∇tν(cθ, t)

→ 1d (52)

Eq. 52 holds if:

• xθ = x0 i.e. the unet can perfectly map xt to x0 ∀t ∈ [0, 1] which is unrealistic.
• Clever parameterizations for σ,α,ν that ensure Eq. 52 holds.

Because of aforementioned challenges we evaluate this method with finite T = 1000. We demonstrate
the performance of the model empirically in Fig. 1.

C.2.2 Recovering VDM

If we substitute νt(c),νt(cθ) with ν(t) (since the SNR isn’t conditioned on the context c),
σt(cθ),σt(c) with σt and αt(cθ),αt(c) with αt, Eq. 39 reduces to the intermediate loss in VDM
i.e. 1

2 (xθ − x0)
⊤(∇tν(t)) (xθ − x0) and Eq. 49 reduces to 0.

C.3 Challenges in Conditioning on Context

Note that the model pθ(x0:1|c) implicitly assumes the availability of c at generation time. Sometimes,
this context may be available, such as when we condition on a label. We may then fit a conditional
diffusion process with a standard diffusion objective Ex0,c[ELBO(x0, pθ(x0:1|c), qϕ(x0:1|c)], in
which both the forward and the backward processes are conditioned on c (see Sec. 2.3).

When c is not known at generation time, we may fit a model pθ that does not condition on c. Unfortu-
nately, this also forces us to define pθ(xs|xt) = N (µp(xt, t),Σp(xt, t)) where µp(xt, t),Σp(xt, t)
is parameterized directly by a neural network. We can no longer use a noise parameterization
ϵθ(xt, t) = (xt −αt(c)xθ(xt, t, c))/σt(c) because it requires us to compute αt(c) and σt(c),
which we do not know. Since noise parameterization plays a key role in the sample quality of
diffusion models (Ho et al., 2020), this approach limits performance.

The other approach is to approximate c using a neural network, cθ(xt, t). This would allow us
to write pθ(xs|xt) = qϕ(xs|xt,x0 = xθ(xt, t), c = cθ(xt, t)). Unfortunately, this introduces
instability in the learning objective, which we observe both theoretically and empirically. Specifically,
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Figure 1: For c = “class labels” or c = x0 the likelihood estimates are worse than VDM. For c = x0

we see that the VLB degrades with increasing T whereas for VDM and MULAN it improves for
increasing T; see Kingma et al. (2021). This empirical observation is consistent with our mathematical
insights earlier. As these models consistently exhibit inferior performance w.r.t VDM, in line with
our initial conjectures, we refrain from training them beyond 300k iterations due to the substantial
computational cost involved.

in Suppl. C we show that the learning objective diverges unless the following condition holds true:
limT→∞ T

σ2
t (x0)νt(x0)ν

′
t(xθ)

σ2
t (xθ)νt(xθ)ν′

t(x0)
→ Id pointwise across t. Experiments in Suppl. C.4 confirm this issue.

C.4 Experimental results

In Fig. 1 we demonstrate that the multivariate diffusion processes where c = “class labels” or c = x0

perform worse than VDM. Since a continuous time formulation i.e. T → ∞ for the case when c = x0

isn’t possible (unlike MULAN or VDM) we evaluate these models in the discrete time setting where
we use T = 1000. Furthermore we also ablate T = 10k, 100k for c = x0 to show that the VLB
degrades with increasing T whereas for VDM and MULAN it improves for increasing T; see Kingma
et al. (2021). This empirical observation is consistent with our mathematical insights earlier. As these
models consistently exhibit inferior performance w.r.t VDM, in line with our initial conjectures, we
refrain from training them beyond 300k iterations due to the substantial computational cost involved.

D MULAN: MUltivariate Latent Auxiliary variable Noise Schedule

D.1 Parameterization in the reverse process

D.1.1 Noise parameterization

Since the forward pass is given by xt = αt(z)x0 + σt(z)ϵt, we can write the noise ϵt in terms of
x0,xt in the following manner:

ϵt =
xt −αt(z)x0

σt(z)
(53)

Following Dhariwal & Nichol (2021); Kingma et al. (2021), instead of parameterizing xθ(xt, z, t)
using a neural network, we use Eq. 53 to parameterize the denoising model in terms of a noise
prediction model ϵθ(xt, z, t),

ϵθ(xt, z, t) =
xt −αt(z)xθ(xt, z, t)

σt(z)
(54)

17



Table 2: Likelihood in bits per dimension (BPD) (mean and 95% confidence interval), on the test set
of CIFAR-10 computed using VLB estimate.

parameterization Num training steps CIFAR-10 (↓)
Noise parameterization 10M 2.60± 10−3

Velocity parameterization 8M 2.59± 10−3

D.1.2 Velocity parameterization

Following Salimans & Ho (2022); Zheng et al. (2023), we explore another parameterization of the
denoising network which is given by

vθ(xt, z, t) =
αt(z)xt − xθ(xt, z, t)

σt(z)
(55)

In practice, Velocity parameterization leads to a better performance than noise parameterization; as
illustrated in Table 2.

D.2 Polynomial Noise Schedule

Let f(x;ψ) be a scalar-valued polynomial of degree n with coefficients ψ ∈ Rn+1 expressed as:

f(x;ψ) = ψnx
n + ψn−1x

n−1 + · · ·+ ψ1x+ ψ0,

and denote its derivative with respect to x as d
dxf(x;ψ), represented by f ′(x;ψ). Now we’d like to

find least n such that f(x;ψ) satisfies the following properties:

1. f(x;ψ) is monotonically increasing, i.e. f ′(x;ψ) ≥ 0 ∀x ∈ R, ψ ∈ Rn+1.
2. f ′(x1;ψ) = 0, f ′(x2;ψ) = 0 ∃x1, x2 ∈ C, x1 ̸= x2,∀ψ ∈ Rn+1.

For the first condition to hold, we can design f ′(x;ψ) such that it’s a perfect square with real /
imaginary roots. That way f ′(x;ψ) ≥ 0 ∀x ∈ R, ψ ∈ Rn+1 . This means that f ′(x;ψ) is an even
degree polynomial, i.e. the degree of f ′(x;ψ) can take the following values: 2, 4, . . . . Also, note that
at least half of the roots of f ′(x;ψ) are repeated since f ′(x;ψ) can be expressed as a perfect square,
i.e., if f ′(x;ψ) has a degree 2 then it has exactly 1 unique root (real / imaginary), if f ′(x;ψ) has a
degree 4 then it has at most 2 unique roots (real / imaginary), and so on.

For the second condition to hold, f ′(x;ψ) needs to have at least 2 unique roots ∃ψ ∈ Rn+1. For this
reason f ′(x;ψ) is a polynomial of degree 4. Thus, f ′(x;ψ) can be written as f ′(x;ψ) = (ψ3x

2 +
ψ2x+ψ1)

2. This ensures that ∃ψ ∈ R5 s.t. f ′(x;ψ) = 0 twice in x ∈ R, and f ′(x;ψ) ≥ 0 ∀ψ ∈ R5.

Thus, f(x;ψ) takes the following functional form:

f(x;ψ) =

∫
(ψ3x

2 + ψ2x+ ψ1)
2dx

=
ψ2
3

5
x5 +

ψ3ψ2

2
x4 +

ψ2
2 + 2ψ3ψ1

3
x3 + ψ2ψ1x

2 + ψ2
1x+ constant. (56)

For the above-mentioned reasons we express γ(c, t) : Rm × [0, 1] → Rd as a degree 5 polynomial in
t. We define neural networks aϕ(c) : Rm → Rd, bϕ(c) : Rm → Rd, and dϕ(c) : Rm → Rd with
parameters ϕ. Let fϕ : Rm × [0, 1] → Rd be defined as:

fϕ(c, t) =
a2ϕ(c)

5
t5 +

aϕ(c)bϕ(c)

2
t4 +

b2
ϕ(c) + 2aϕ(c)dϕ(c)

3
t3 + bϕ(c)dϕ(c)t

2 + d2
ϕ(c)t

where the multiplication and division operations are elementwise. The the noise schedule, γ(c, t), is
given as follows:

γϕ(c, t) = γmin + (γmax − γmin)
fϕ(c, t)

fϕ(c, t = 1)
(57)

Notice that γϕ(c, t) has these interesting properties:
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• Is increasing in t ∈ [0, 1] which is crucial as mentioned in Sec. D.4.

• γϕ(c, t) has end points at t = 0 and t = 1 which the user can specify via γmin and γmax.
Specificaly, γϕ(c, t = 0) = γmin and γϕ(c, t = 1) = γmax.

• Its time-derivative i.e. ∇tγϕ(c, t) can be zero twice in t ∈ [0, 1]. This isn’t a necessary
condition but it’s nice to have a flexible noise schedule whose time-derivative can be 0 at the
beginning and the end of the diffusion process.

D.3 Variational Lower Bound

In this section we derive the VLB. For ease of reading we use the notation xt to denote xt(i) and
xt−1 to denote xt(i−1) ≡ xs(i) in the following derivation.

− log pθ(x0)

≤ Eqϕ

[
− log

pθ(z,x0:T )

qϕ(z,x1:T |x0)

]
= Eqϕ

[
− log

pθ(x0:T−1|z,xT )

qϕ(z,x1:T |x0)
− log pθ(xT )− log pθ(z)

]
= Eqϕ

[
− log

pθ(x0:T−1|z,xT )

qϕ(x1:T |z,x0)
− log

1

qϕ(z|x0)
− log pθ(xT )− log pθ(z)

]
= Eqϕ

[
− log

pθ(x0:T−1|z,xT )

qϕ(x1:T |z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]
= Eqϕ

[
−

T∑
t=1

log
pθ(xt−1|z,xt)

qϕ(xt|xt−1, z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log

pθ(x0|z,x1)

qϕ(x1|x0, z)
−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt|xt−1, z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log

pθ(x0|z,x1)

qϕ(x1|x0, z)
−

T∑
t=2

log
pθ(xt−1|z,xt)qϕ(xt−1|z,x0)

qϕ(xt−1|xt, z,x0)qϕ(xt|z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log

pθ(x0|z,x1)

qϕ(x1|x0, z)
−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt−1|xt, z,x0)
−

T∑
t=2

log
qϕ(xt−1|z,x0)

qϕ(xt|z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log

pθ(x0|z,x1)

qϕ(x1|x0, z)
−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt−1|xt, z,x0)
− log

q(x1|z, x0)

qϕ(xT |z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log pθ(x0|z,x1)−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt−1|xt, z,x0)
− log

1

qϕ(xT |z,x0)
− log pθ(xT )− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

[
− log pθ(x0|z,x1)−

T∑
t=2

log
pθ(xt−1|z,xt)

qϕ(xt−1|xt, z,x0)
− log

pθ(xT )

qϕ(xT |z,x0)
− log

pθ(z)

qϕ(z|x0)

]

= Eqϕ

− log pθ(x0|z,x1)︸ ︷︷ ︸
Lrecons

+

T∑
t=2

DKL[pθ(xt−1|z,xt)∥qϕ(xt−1|xt, z,x0)]︸ ︷︷ ︸
Ldiffusion


+ Eqϕ

DKL[pθ(xT )∥qϕ(xT |z,x0)]︸ ︷︷ ︸
Lprior

+DKL[pθ(z)∥q(z|x0)]︸ ︷︷ ︸
Llatent

 (58)
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Switching back to the notation used throughout the paper, the VLB is given as:
− log pθ(x0)

≤ Eqϕ

− log pθ(x0|z,x1)︸ ︷︷ ︸
Lrecons

+

T∑
i=2

DKL[pθ(xs(i)|z,xt(i))∥qϕ(xs(i)|xt(i), z,x0)]︸ ︷︷ ︸
Ldiffusion


+ Eqϕ

DKL[pθ(x1)∥qϕ(x1|z,x0)]︸ ︷︷ ︸
Lprior

+DKL[pθ(z)∥qϕ(z|x0)]︸ ︷︷ ︸
Llatent

 (59)

Next, we derive a precise formula for the learning objective (6) of the auxiliary-variable diffusion
model. Using the objective of a diffusion model in (1) we can write (6) as the sum of four terms:

log pθ(x0) ≥ Eqϕ [Lrecons + Ldiffusion + Lprior + Llatent], (60)
The reconstruction loss, Lrecons, can be (stochastically and differentiably) estimated using standard
techniques; see (Kingma & Welling, 2013), Lprior = −DKL[qϕ(x1|x0, z)∥pθ(x1)] is the diffusion
prior term, Llatent = −DKL[qϕ(z|x0)∥pθ(z)] is the latent prior term, and Ldiffusion is the diffusion loss
term, which we examine below. The complete derivation is given in Suppl. D.3.

D.3.1 Diffusion Loss

Discrete-Time Diffusion. We start by defining pθ in discrete time, and as in Sec. 1, we let T > 0
be the number of total time steps and define t(i) = i/T and s(i) = (i− 1)/T as indexing variables
over the time steps. We also use x0:1 to denote the subset of variables associated with these timesteps.
Starting with the expression in Eq. 1 and following the steps in Suppl. D, we can write Ldiffusion as:

Ldiffusion = −
T∑

i=2

DKL[qϕ(xs(i)|xt(i),x0, z)∥pθ(xs(i)|xt(i), z)]

=
1

2

T∑
i=2

[
(ϵt − ϵθ(xt, z, t(i)))

⊤diag (γ(z, s(i))− γ(z, t(i))) (ϵt − ϵθ(xt, z, t(i)))
]
(61)

Continuous-Time Diffusion. We can also consider the limit of the above objective as we take an
infinitesimally small partition of t ∈ [0, 1], which corresponds to the limit when T → ∞. In Suppl. D
we show that taking this limit of Eq. 61 yields the continuous-time diffusion loss:

Ldiffusion = −1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, z, t))

⊤diag (∇tγ(z, t)) (ϵt − ϵθ(xt, z, t))
]

(62)

where ∇tγ(z, t) ∈ Rd denotes the Jacobian of γ(z, t) with respect to the scalar t. We observe that
the limit of T → ∞ yields improved performance, matching the existing theoretical argument by
Kingma et al. (2021).

D.3.2 Auxiliary latent loss

We try two different kinds of priors for pθ(z): discrete (z ∈ {0, 1}m) and continuous (z ∈ Rm).

Continuous Auxiliary Latents. In the case where z is continuous, we select pθ(z) as N (0, Im).
This leads to the following KL loss term:
DKL(qϕ(z|x0)∥pθ(z)) = 1

2 (µ
⊤(x0)µ(x0)) + tr(Σ2(x0)− Im)− log |Σ2(x0)|).

Discrete Auxiliary Latents. In the case where z is discrete, we select pθ(z) as a uniform dis-
tribution. Let z ∈ {0, 1}m be a k-hot vector sampled from a discrete Exponential Family dis-
tribution pθ(z; θ) with logits θ. Niepert et al. (2021) show that z ∼ pθ(z; θ) is equivalent to
z = argmaxy∈Y ⟨θ + ϵg, y⟩ where ϵg denotes the sum of gamma distribution Suppl. E, Y denotes
the set of all k-hot vectors of some fixed length m. For k > 1, To differentiate through the argmax
we use a relaxed estimator, Identity, as proposed by Sahoo et al. (2023). This leads to the following
KL loss term: DKL(qϕ(z|x0)∥pθ(z)) = −

∑m
i=1 qϕ(z|x0)i(log qϕ(z|x0)i + logm).
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D.4 The Variational Lower Bound as a Line Integral Over The Noise Schedule

Having defined our loss, we now return to the question of whether it is invariant to the choice of
diffusion process. Notice that we may rewrite Eq. 62 in the following vectorized form:

Ldiffusion = −1

2

∫ 1

0

(x0 − xθ(xt, z, t))
2 · ∇tν(z, t)dt (63)

where the square is applied elementwise. We seek to rewrite (63) as a line integral
∫ b

a
f(r(t))· d

dtr(t)dt
for some vector field f and trajectory r(t). Recall that ν(z, t) is monotonically decreasing in each
coordinate as a function of t; hence, it is invertible on its image, and we can write t = ν−1

z (ν(z, t))
for some ν−1

z . Let x̄θ(xν(z,t), z,ν(z, t)) = xθ(xν−1
z (ν(z,t)), z,ν

−1
z (ν(z, t))) and note that for all t,

we can write xt as xν(z,t); see Eq. 24, and have x̄θ(xν(z,t), z,ν(z, t)) = xθ(xt, z, t). We can then
write the integral in (63) as

∫ 1

0
(x0 − x̄θ(xν(z,t), z,ν(z, t)))

2 · d
dtν(z, t)⟩dt, which is a line integral

with f(r(t)) ≡ (x0 − x̄θ(xν(z,t), z,ν(z, t)))
2 and r(t) ≡ ν(z, t) and .

Thus the diffusion loss, Ldiffusion, can be interpreted as a measure of work done along the trajectory
ν(z, t) in the presence of a vector field f . Different "trajectories" yield different results for most
integrands, unless its integral corresponds to a conservative force field, which is rarely the case for a
diffusion process (Spinney & Ford, 2012). We empirically observe this in our experiments where
swapping out different multivariate ν yields different values of the ELBO. In Sec. D.6, we show that
variational diffusion models can be viewed as following only linear trajectories ν(t), hence their
objective is invariant to the noise schedule. Our method learns a multivariate ν that yields paths
corresponding to a better ELBO.

D.5 Diffusion Loss

To derive the diffusion loss, Ldiffusion in Eq. 60, we first derive an expression for
DKL(qϕ(xs|z,xt,x0)∥pθ(xs|z,xt)) using Eq. 2 and Eq. 4 in the following manner (details in
Suppl. D):

DKL(qϕ(xs|z,xt,x0)∥pθ(xs|z,xt))

=
1

2

(
(µqϕ − µp)

⊤Σ−1
θ (µqϕ − µp) + tr

(
ΣqϕΣ

−1
p − In

)
− log

|Σqϕ |
|Σp|

)
=

1

2

(
(x0 − xθ)

⊤diag(ν(z, s)− ν(z, t))(x0 − xθ)
)

(64)

Let limT→∞ T (νs(z) − νt(z)) = −∇tν(z, t) be the partial derivative of the vector ν(z, t) w.r.t
scalar t. Then we derive the diffusion loss, Ldiffusion, for the continuous case in the following manner
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(for brevity we use the notation s for s(i) = (i− 1)/T and t for t(i) = i/T ):

Ldiffusion

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In)DKL(q(xs|xt,x0, z)∥pθ(xs|xt, z))

Using Eq. 64 we get,

= lim
T→∞

1

2

T∑
i=2

Eϵ∼N (0,In)(x0 − xθ(xt, t(i)))
⊤diag (ν(s(i), z)− ν(t(i), z)) (x0 − xθ(xt, t(i)))

=
1

2
Eϵ∼N (0,In)

[
lim

T→∞

T∑
i=2

T (x0 − xθ(xt, t(i)))
⊤diag (ν(s(i), z)− ν(t(i), z)) (x0 − xθ(xt, t(i)))

1

T

]
Using the fact that lim

T→∞
T (ν(s, z)− ν(z, t)) = −∇tν(t, z) we get,

= −1

2
Et∼{0,...,1}

[
(x0 − xθ(xt, t))

⊤ (∇tνt(z)) (x0 − xθ(xt, t))
]

Substituting x0 = α−1
t (z)(xt − σt(z)ϵt) from Eq. 53 and

Substituting xθ(xt, z, t) = α−1
t (z)(xt − σt(z)ϵθ(xt, t)) from Eq. 54 we get,

= −1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤
(
σ2
t (z)

α2
t (z)

×∇tνt(z)

)
(ϵt − ϵθ(xt, t))

]
Let ν−1(z, t) denote the reciprocal of the values in the vector ν(z, t).

= −1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤diag
(
ν−1(t)(z)∇tνt(z)

)
(ϵt − ϵθ(xt, t))

]
Substituting ν(z, t) = exp(−γ(z, t)) from Sec. D.1.1

= −1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤diag (exp (γ(z, t))∇t exp (−γ(z, t))) (ϵt − ϵθ(xt, t))
]

=
1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤diag (exp (γ(z, t)) exp (−γ(z, t))∇tγ(z, t)) (ϵt − ϵθ(xt, t))
]

=
1

2
Et∼[0,1]

[
(ϵt − ϵθ(xt, t))

⊤diag (∇tγ(z, t)) (ϵt − ϵθ(xt, t))
]

(65)

D.6 Recovering VDM from the Vectorized Representation of the diffusion loss

Notice that we recover the loss function in VDM when ν(z, t) = ν(t)1d where νt ∈ R+ and 1d

represents a vector of 1s of size d and the noising schedule isn’t conditioned on z.

∫ 1

0

⟨fθ(x0,ν(z, t)),
d
dt
ν(t)⟩dt =

∫ 1

0

⟨fθ(x0,ν(t)),
d
dt
(ν(t)1n)⟩dt

=

∫ 1

0

⟨fθ(x0,ν(t)),1d⟩ν′(t)dt

=

∫ 1

0

ν′(t)∥fθ(x0,ν(t))∥11dt

=

∫ 1

0

ν′(t)∥(x0 − x̃θ(xν(t),ν(t)))∥22dt (66)∫ 1

0
d
dtν(t)∥(x0 − x̃θ(xν(t),ν(t)))∥22dt denotes the diffusion loss, Ldiffusion, as used in VDM; see

Kingma et al. (2021).

E Subset Sampling

Sampling a subset of k items from a collection of collection of n items, x1, x2, . . . , x3 belongs
to a category of algorithms called reservoir algorithms. In weighted reservoir sampling, every
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xi is associated with a weight wi ≥ 0. The probability associated with choosing the sequence
Swrs = [i1, i2, . . . , ik] be a tuple of indices. Then the probability associated with sampling this
sequence is

p(Swrs|w) =
wi1

Z

wi2

Z − wi1

. . .
wik

Z −
∑k−1

j=1 wij

(67)

Efraimidis & Spirakis (2006) give an algorithm for weighted reservoir sampling where each item

is assigned a random key ri = u
1
wi
i where ui is drawn from a uniform distribution [0, 1] and wi is

the weight of item xi. Let TopK(r, k) which takes keys r = [r1, r2, . . . , rn] and returns a sequence
[i1, i2, . . . , ik]. Efraimidis & Spirakis (2006) proved that TopK(r, k) is distributed according to
p(Swrs|w).

Let’s represent a subset S ∈ {0, 1}n with exactly k non-zero elements that are equal to 1. Then the
probability associated with sampling S is given as,

p(S|w) =
∑

Swrs∈Π(S)

p(Swrs|w) (68)

where Π(S) denotes all possible permutations of the sequence S. By ignoring the ordering of the ele-
ments in Swrs we can sample using the same algorithm. Xie & Ermon (2019) show that this sampling
algorithm is equivalent to TopK(r̂, k) where r̂ = [r̂1, r̂2, . . . , r̂n] where r̂i = − log(− log(ri)) =
logwi+ Gumbel(0, 1). This holds true because the monotonic transformation − log(− log(x))
preserves the ordering of the keys and thus TopK(r, k) ≡ TopK(̂r, k).

Sum of Gamma Distribution. Niepert et al. (2021) show that adding SOG noise instead of Gumbel
noise leads to better performance.

Niepert et al. (2021) show that z ∼ pθ(z; θ) is equivalent to z = argmaxy∈Y ⟨θ + ϵg, y⟩ where ϵg is
a sample from Sum-of-Gamma distribution given by

SoG(k, τ, s) =
τ

k

( s∑
i=1

Gamma
(1
k
,
k

i

)
− log s

)
, (69)

where s is a positive integer and Gamma(α, β) is the Gamma distribution with (α, β) as the shape
and scale parameters.

And hence, given logits logw, we sample a k-hot vector using TopK(logw + ϵ). We choose a
categorical prior with uniform distribution across n classes. Thus the KL loss term is given by:

−
n∑

i=1

wi

Z
log
(
n
wi

Z

)
(70)

F Experiment Details

F.1 Model Architecture

Denoising network. Our model architecture is extremely similar to VDM. The UNet of our pixel-
space diffusion has an unchanged architecture from Kingma et al. (2021).This structure is specifically
designed for optimal performance in maximum likelihood training. We employ features from VDM
such as the elimination of internal downsampling/upsampling processes and the integration of Fourier
features to enhance fine-scale prediction accuracy. In alignment with the configurations suggested by
Kingma et al. (2021), our approach varies depending on the dataset: For CIFAR-10, we employ a
U-Net with a depth of 32 and 128 channels; for ImageNet-32, the U-Net also has a depth of 32, but
the channel count is increased to 256. Additionally, all these models incorporate a dropout rate of 0.1
in their intermediate layers.

Encoder network. qϕ(z|x) is modeled using a sequence of 4 Resnet blocks with a channel count
of 128 for CIFAR-10 and 256 for ImageNet-32 with a drop out of 0.1 in their intermediate layers.
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Table 3: Likelihood in bits per dimension (BPD) on the test set of CIFAR-10 and ImageNet. Results
with “/” means they are not reported in the original papers. Model types are autoregressive (AR),
normalizing flows (Flow), variational autoencoders (VAE), diffusion models (Diff), diffusion ODEs
(Diff ODE). The likelihood for “Diff” type models is computed using the VLB-based method
described in appendix Sec. H.1, while “Diff ODE” type models utilize an ODE-based exact likelihood
estimate as detailed in appendix Sec. H.2. Additionally, for MULAN , we present the mean and a
95% confidence interval.

Model Type CIFAR-10 (↓) ImageNet (↓)
PixelCNN (Van den Oord et al., 2016) AR 3.03 3.83
PixelCNN++ (Salimans et al., 2017) AR 2.92 /
Glow (Kingma & Dhariwal, 2018) Flow / 4.09
Image Transformer (Parmar et al., 2018) AR 2.90 3.77
DDPM (Ho et al., 2020) Diff 3.69 /
Score SDE (Song et al., 2020) Diff 2.99 /
Improved DDPM (Nichol & Dhariwal, 2021) Diff 2.94 /
VDM (Kingma et al., 2021) Diff 2.65 3.72
Flow Matching (Lipman et al., 2022) Flow 2.99 /
i-DODE (Zheng et al., 2023) (VLB-based) Diff 2.61 /
i-DODE (Zheng et al., 2023) (ODE-based) Diff ODE 2.56 3.69
MULAN (Ours, VLB-based; see Sec. H.1) Diff 2.60 3.71
MULAN (Ours, ODE-based; see Sec. H.2) Diff ODE 2.55 ±10−3 3.67 ±10−3

Noise schedule. For polynomial noise schedule, we use an MLP that maps the latent vector z
to aϕ(z),bϕ(z), c(z); see Eq. D.2 for details. The MLP has 2 hidden layers of size 3072 with
swish activation function. The final layer is a linear mapping to 3× 3072 values corresponding to
aϕ(z),bϕ(z), c(z). Note that aϕ(z),bϕ(z), c(z) have the same dimensionality of 3072.

F.2 Hardware.

For the ImageNet experiments, we used a single GPU node with 8-A100s. For the cifar-10 experi-
ments, we used several GPUs types including V100, A5000s, A6000s, A100-40GBs, and 3090s but
the experiments were trained on 4 GPUs with float32 precision.

F.3 Training

This section reports experimental results on the CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-
32 (Van Den Oord et al., 2016) datasets. We chose to employ a discrete prior for the auxiliary latent
space rather than a Gaussian prior due to training instability issues that frequently led to NaNs. In all
our experiments, we set the parameters for the discrete latent distribution as m = 50 and k = 15.

F.4 Likelihood Estimation.

In Table 1, we present the likelihood estimation results for MULAN, and other recent methods on
CIFAR-10 and ImageNet-32 using the VLB-estimate; details in Sec. H.1. This version of MULAN
was trained with noise parameterization for 10M steps on CIFAR-10 and 2M steps on Imagenet-32,
similar to VDM (Kingma et al., 2021). We apply MULAN on top of the VDM, endowing it with a
learned multivariate noising schedule conditioned on auxiliary latent variables. We find that these
new components result in a significant improvement in BPD over a vanilla VDM.

We also compute the likelihood using ODE-based exact likelihood estimate with which we outperform
all existing methods in denstity estimation on CIFAR-10 and ImageNet-32. We train MULAN for 8M
steps using velocity parameterization on CIFAR-10 and 2M steps on Imagenet-32. During inference,
we extract the underlying probability flow ODE; see Sec. H.2, just like Zheng et al. (2023). Although
Zheng et al. (2023) used various other techniques, such as importance-sampled training, variance
minimization, and higher-order score matching, MULAN did not incorporate these. Combining these
strategies with MULAN could further improve its performance.
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Figure 2: Noise schedule visualizations for MULAN on CIFAR-10. In this figure, we plot the
variance of νϕ(z, t) across different z ∼ pθ(z) where each curve represents the SNR corresponding
to an input dimension.
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latent space. We see that MULAN performs the best.

0 0.5M 1M 1.5M 2M 2.5M
Iterations

2.65

2.70

2.75

2.80

2.85

2.90

Te
st

 lo
ss

 (b
its

 / 
di

m
) Polynomial

Film
sigmoid
VDM
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monotonic neural network with FiLM conditioning.
We observe that the polynomial parameterization per-
forms the best.

Figure 3: CIFAR-10 ablation studies with a reduced batch size and fewer training steps.

F.5 Ablation Analysis

Due to the expensive cost of training, we only performed ablation studies on CIFAR-10 with a reduced
batch size of 64 and trained the model for 2.5M training steps. In Fig. 3 we ablate each component of
MULAN: when we remove the conditioning on an auxiliary latent space from MULAN so that we
have a multivariate noise schedule that is solely conditioned on time t, our performance becomes
comparable to that of VDM, on which our model is based. Modifying our method to have a scalar
noise schedule conditioned on the auxiliary latent variable z leads to slightly lower performance than
VDM in the initial training stages. However, it gradually converges toward VDM.

Loss curves for different noise schedules. We investigate different parameterizations of the noise
schedule in Fig. 3. Among polynomial, sigmoid, and monotonic neural network, we find that the
polynomial parameterization yields the best performance. The polynomial noise schedule is a novel
component introduced in our work.

Replacing the noise schedules in a trained denoising model. We also wish to confirm experimen-
tally our claim that the learning objective is not invariant to our choice of multivariate noise schedule.
To investigate this, we replace the noise schedule in the trained denoising model with two alternatives:
MULAN with scalar noise schedule, and a linear noise schedule: γϕ(z, t) = γmin + t(γmax −γmin)1d;
see (Kingma et al., 2021). For both the noise schedules the likelihood worsens to the same value as
that of the VDM: 2.65. This experimental result strongly supports our theory that all scalar noise
schedules are equivalent, as they compute the likelihood along the same diffusion trajectory. It also
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underscores that it is not the multivariate nature or the auxiliary latent space individually, but the
combination of both, that makes MULAN effective.

Examining the noise schedule. Since the noise schedule, γϕ(z, t) is multivariate, we expect to
learn different noise schedules for different input dimensions and different inputs z ∼ pθ(z). In Fig. 2,
we take our best trained model on CIFAR-10 and visualize the variance of the noise schedule at each
point in time for different pixels, where the variance is taken on 128 samples z ∼ pθ(z). We note
an increased variation in the early portions of the noise schedule. However, on an absolute scale,
the variance of this noise is smaller than we expected. We also tried to visualize noise schedules
across different dataset images and across different areas of the same image; refer to Fig. 11. We
also generated synthetic datasets in which each datapoint contained only high frequencies or only low
frequencies, and with random masking applied to parts of the data points; see Sec. G. Surprisingly,
none of these experiments revealed human-interpretable patterns in the learned schedule, although
we did observe clear differences in likelihood estimation. We hypothesize that other architectures and
other forms of conditioning may reveal interpretable patterns of variation; however, we leave this
exploration to future work.

G Datasets and Visualizations

In this section we provide a brief description of the datasets used in the paper and visualize the
generated samples and the noise schedules.

G.1 CIFAR-10

The CIFAR-10 dataset (Krizhevsky et al., 2009) is a collection of images consisting of 60,000 32×32
color images in 10 different classes, with each class representing a distinct object or scene. The
dataset is divided into 50,000 training images and 10,000 test images, with each class having an equal
representation in both sets. The classes in CIFAR-10 include: Airplane, Automobile, Bird, Cat, Deer,
Dog, Frog, Horse, Ship, Truck.

Randomly generated samples for the CIFAR-10 datasaet are provided in Fig. 4a for MULAN and
Fig. 4b for VDM. We visualize the noise schedule in Fig. 11.

(a) MULAN with velocity reparameterization after
8M training iterations.

(b) VDM after 10M training iterations.

Figure 4: CIFAR-10 samples generated by different methods.
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G.2 ImageNet-32

ImageNet-32 is a dataset derived from ImageNet Deng et al. (2009), where the original images have
been resized to a resolution of 32×32. This dataset comprises 1,281,167 training samples and 50,000
test samples, distributed across 1,000 labels.

Randomly generated samples for the ImageNet datasaet are provided in Fig. 5 for MULAN and
Fig. 6 for VDM. We visualize the noise schedule in Fig. 11.

Figure 5: MULAN with noise parameterization after 2M training iterations.
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Figure 6: VDM after 2M training iterations.

G.3 Frequency

To see if MULAN learns different noise schedules for images with different intensities, we modify
the images in the CIFAR-10 dataset where we modify an image where we randomly remove the low
frequency component an image or remove the high frequency with equal probability. Fig. 7a shows
the training samples. MULAN was trained for 500K steps. The samples generated by MULAN is
shown in Fig. 7b. The corresponding noise schedules is shown in Fig. 11. As compared to CIFAR-10,
we notice that the spatial variation in the noise schedule increases (SNRs for all the pixels form a
wider band) while the variance of the noise schedule across instances decreases slightly.
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(a) Training samples. (b) Samples generated by MULAN with noise pa-
rameterization after 500K training iterations.

Figure 7: Frequency Split CIFAR-10 dataset.

G.4 Frequency-2

To see if MULAN learns different noise schedules for images with different intensities, we modify
the images in the CIFAR-10 dataset where we modify an image where we randomly remove the low
frequency component an image or remove the high frequency with equal probability. Fig. 7a shows
the training samples. MULAN was trained for 500K steps. The samples generated by MULAN is
shown in Fig. 7b. The corresponding noise schedules is shown in Fig. 11. As compared to CIFAR-10,
we notice that the spatial variation in the noise schedule increases (SNRs for all the pixels form a
wider band) and the variance of the noise schedule across instances increases as well.

(a) Training samples. (b) Samples generated by MULAN with noise pa-
rameterization after 500K training iterations.

Figure 8: Frequency Split-2 CIFAR-10 dataset.

G.5 CIFAR-10: Intensity

To see if MULAN learns different noise schedules for images with different intensities, we modify
the images in the CIFAR-10 dataset where we randomly convert an image into a low intensity or
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a high intensity image with equal probability. Originally, the CIFAR10 images are in the range [0,
255]. To convert an image into a low intensity image we multiply all pixel values by 0.5. To convert
an image into a high intensity image we multiply all the pixel values by 0.5 and add 127.5 to them.
Fig. 9a shows the training samples. MULAN was trained for 500K steps. The samples generated by
MULAN is shown in Fig. 9b. The corresponding noise schedules is shown in Fig. 11. As compared
to CIFAR-10, we notice that the spatial variation in the noise schedule slightly increases (SNRs for
all the pixels form a wider band) while the variance of the noise schedule across instances slightly
decreases.

(a) Training samples. (b) Samples generated by MULAN with noise pa-
rameterization after 500K training iterations.

Figure 9: Intensity CIFAR-10 dataset.

G.6 Mask

We modify the CIFAR-10 dataset where we randomly mask (i.e. replace with 0s) the top of an
image or the bottom half of an image with equal probability. Fig. 10a shows the training samples.
MULAN was trained for 500K steps. The samples generated by MULAN is shown in Fig. 10b. The
corresponding noise schedules is shown in Fig. 11. As compared to CIFAR-10, we notice that the
spatial variation in the noise schedule slightly increases (SNRs for all the pixels form a wider band)
while the variance of the noise schedule across instances decreases.
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(a) Training samples. (b) Samples generated by MULAN with noise pa-
rameterization after 500K training iterations.

Figure 10: Intensity CIFAR-10 dataset.

31



CI
FA

R-
10

Im
ag

eN
et

CI
FA

R-
10

 
Fr

eq
ue

nc
y 

Sp
lit

CI
FA

R-
10

In
te

ns
ity

 S
pl

it
CI

FA
R-

10
 

Fr
eq

ue
nc

y 
Sp

lit 
- 2

CI
FA

R-
10

M
as

k

Figure 11: signal-to-noise ratio for different datasets.
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H Likelihood Estimation

We used both Variance Lower Bound (VLB) and ODE-based methods to compute BPD.

H.1 VLB Estimate

In the VLB-based approach, we employ Eq. 60. To compute Ldiffusion, we use T = 128 in Eq. 61,
discretizing the timesteps, t ∈ [0, 1] into 128 bins.

H.2 Exact likelihood computation using Probability Flow ODE

A diffusion process whose marginal is given by (the same as in Eq. 71),

q(xt|x0) = N (xt;αtx0, diag(σ2
t )), (71)

can be modeled as the solution to an Itô Stochastic Differential Equation (SDE):

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0(x0), (72)

where f(t) ∈ Rd,g(t) ∈ Rd take the following expressions (Song et al., 2020):

f(t) =
d
dt

logαt,

g2(t) =
d
dt
σ2
t − 2σ2

t

d
dt

logαt

The corresponding reverse process, Eq. 2, can also be modelled by an equivalent reverse-time SDE:

dxt = [f(t)− g(t)2∇xt
log q(xt|x0)]dt+ g(t)dw̄t, x1 ∼ pθ(x1), (73)

where w̄ is a standard Wiener process when time flows backwards from 1 → 0, and dt is an
infinitesimal negative timestep. Song et al. (2020) show that the marginals of Eq. 73 can be described
by the following Ordinary Differential Equation (ODE) in the reverse process:

dxt =

[
f(t)xt −

1

2
g2(t)∇xt

log q(xt|x0)

]
dt. (74)

This ODE, also called the probablity flow ODE, allows us to compute the exact likelihood on any
input data via the instantaneous change of variables formula as proposed in Chen et al. (2018). Note
that during the reverse process, the term q(xt|x0) is unknown and is approximated by parameterized
by pθ(xt). For the probability flow defined in Eq. 74, Chen et al. (2018) show that the log- likelihood
of pθ(x0) can be computed using the following equation:

log pθ(x0) = log pθ(x1)−
∫ t=1

t=0

tr (∇xthθ(xt, t)) dt, (75)

where hθ(xt, t) ≡ f(t)xt −
1

2
g2(t)∇xt

log pθ(xt)

H.2.1 Probability Flow ODE for MULAN.

Similarly for the forward process conditioned on the auxiliary latent variable, z,

qϕ(xt|x0, z) = N (xt;αt(z)x0, diag(σ2
t (z))), x0 ∼ q0(x0), z ∼ qϕ(z|x0), (76)

we can extend Eq. 72 in the following manner,

dxt = f(z, t)xtdt+ g(z, t)dwt, x0 ∼ q0(x0), z ∼ qϕ(z|x0), (77)

to obtain the corresponding SDE formulation. Notice that the random variable z in the above equation
doesn’t have a subscript t, and hence, z is drawn from qϕ(z|x0) once and the same z is used as x0

diffuses to x1. The expressions for f(z, t) : Rm × [0, 1] → Rd, g(z, t) : Rm × [0, 1] → Rd is given
as follows:

f(z, t) =
d
dt

logαt(z),

g2(z, t) =
d
dt
σ2
t (z)− 2σ2

t (z)
d
dt

logαt(z)

33



Recall that α2
t (z) = sigmoid(−γϕ(z, t)), σ2

t (z) = sigmoid(γϕ(z, t)). Substituting these in the
above equations, the expressions for f(z, t) and g2(z, t) simplify to the following:

f(z, t) = −1

2
sigmoid(γϕ(z, t))

d
dt
γϕ(z, t),

g2(z, t) = sigmoid(γϕ(z, t))
d
dt
γϕ(z, t)

The corresponding reverse-time SDE is given as:

dxt = [f(t)− g(t)2∇xt log qϕ(xt|x0, z)]dt+ g(t)dw̄t, x1 ∼ pθ(x1), z ∼ pθ(z), (78)

where w̄ is a standard Wiener process when time flows backwards from 1 → 0, and dt is an
infinitesimal negative timestep. Given, sθ(xt, z), an approximation to the true score function,
∇xt

log qϕ(xt|x0, z), Song et al. (2020) show that the marginals of Eq. 78 can be described by the
following Ordinary Differential Equation (ODE):

dxt =

[
f(z, t)− 1

2
g2(z, t)sθ(xt, z)

]
dt, (79)

Zheng et al. (2023) show that the score function, sθ(xt, z), for the noise and the velocity parameteri-
zation is given as follows:

sθ(xt, z) =


−ϵθ(xt, t)

σt(z)
Noise parameterization; see Sec. D.1.1 (80a)

−xt − exp

(
−1

2
γϕ(z, t)

)
vθ(xt, z, t) Velocity parameterization; see Sec. D.1.2 (80b)

Applying the change of variables formula (Chen et al., 2018) on Eq. 79, log pθ(x0|z) can be computed
in the following manner:

log pθ(x0|z) = log pθ(x1)−
∫ t=1

t=0

tr (∇xthθ(xt, z, t)) dt, (81)

where hθ(xt, z, t) ≡ f(z, t)− 1

2
g2(z, t)sθ(xt, z)

The expression for log-likelihood (Eq. 6) is as follows,

log pθ(x0) ≥ Eqϕ(z|x0)[log pθ(x0|z)]− DKL(qϕ(z|x0)∥pθ(z))
Using Eq. 81,

= Eqϕ(z|x0)

[
log pθ(x1)−

∫ t=1

t=0

tr (∇xthθ(xt, t, z)) dt
]
− DKL(qϕ(z|x0)∥pθ(z))

(82)

Computing tr (∇xt
hθ(xt, t, z)) is expensive and we follow Chen et al. (2018); Zheng et al. (2023);

Grathwohl et al. (2018) to estimate it with Skilling-Hutchinson trace estimator (Skilling, 1989;
Hutchinson, 1989). In particular, we have

tr (∇xt
hθ(xt, t, z)) = Ep(ϵ)

[
ϵ⊤∇xt

hθ(xt, t, z)ϵ
]
, (83)

where the random variable ϵ satisfies Ep(ϵ)[ϵ] = 0 and Covp(ϵ)[ϵ] = I. Common choices for p(ϵ)
include Rademacher or Gaussian distributions. Notably, the term ∇xthθ(xt, t, z)ϵ can be computed
efficiently using “Jacobian-vector-product” computation in JAX. In our experiments, we follow the
exact evaluation procedure for computing likelihood as outlined in Song et al. (2020); Grathwohl
et al. (2018). Specifically, for the computation of Eq. 83, we employ a Rademacher distribution for
p(ϵ). To calculate the integral in Eq. 82, we utilize the RK45 ODE solver (Dormand & Prince, 1980)
provided by scipy.integrate.solve_ivp with atol=1e-5 and rtol=1e-5.
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H.2.2 Dequantization.

Real-world datasets for images or texts often consist of discrete data. Attempting to learn a continuous
density model directly on these discrete data points can lead to degenerate outcomes (Uria et al.,
2013) and fail to provide meaningful density estimations. Dequantization (Salimans et al., 2017; Ho
et al., 2020; Zheng et al., 2023) is a common solution in such cases. To elaborate, let x0 represent
8-bit discrete data scaled to [-1, 1]. Dequantization methods assume that we have trained a continuous
model distribution pθ for x0, and define the discrete model distribution by

Pθ(x0) =

∫
[− 1

256 ,
1

256 )
d

pθ(x0 + u)du.

To train Pθ(x0) by maximum likelihood estimation, variational dequantization (Ho et al., 2020;
Zheng et al., 2023) introduces a dequantization distribution q(u|x0) and jointly train pmodel and
q(u|x0) by a variational lower bound:

logPθ(x0) ≥ Eq(u|x0)[pθ(x0 + u)− log q(u|x0)]. (84)

Truncated Normal Dequantization. Zheng et al. (2023) show that truncated Normal distribution,

q(u|x0) = T N
(
0, I,− 1

256
,

1

256

)
with mean 0, covariance I, and bounds

[
− 1

256 ,
1

256

]
along each dimension, leads to a better likelihood

estimate. Thus, Eq. 84 simplifies to the following (for details please refer to section A. in Zheng et al.
(2023)):

logPθ(x0) ≥Eϵ̂∼T N (0,I,−τ,τ)

[
log pθ

(
x0 +

σϵ
αϵ
ϵ̂

)]
+
d

2
(1 + log(2πσ2

ϵ ))− 0.01522× d (85)

with
σϵ

αϵ
= exp(−1

2
× 13.3),

σϵ = sqrt(sigmoid(−13.3)), and τ = 3.

log pθ

(
x0 +

σϵ

αϵ
ϵ̂
)

is evaluated using Eq. 82.

Importance Weighted Estimator. Eq. 85 can also be extended to obtain an importance weighted
likelihood estimator to get a tighter bound on the likelihood. The variational bound is given by (for
details please refer to section A. in Zheng et al. (2023)):

logPθ(x0) ≥Eϵ̂(1),...,ϵ̂(K)∼T N (0,I,−τ,τ)

log
 1

K

K∑
i=1

pθ

(
x0 +

σϵ

αϵ
ϵ̂(k)
)

q(ϵ̂(i))

+ d log σϵ (86)

with
σϵ

αϵ
= exp(−1

2
× 13.3), log σϵ =

1

2
(−13.3 + softplus(−13.3)),

q(ϵ̂) =
1

(2πZ)2
exp
(
−1

2
∥ϵ̂∥22

)
, Z = 0.9974613, and τ = 3.

Note that for K = 1, Eq. 86 is equivalent to Eq. 85; see Zheng et al. (2023). log pθ
(
x0 +

σϵ

αϵ
ϵ̂
)

is
evaluated using Eq. 82. In Table 4, we report BPD values for MULAN on CIFAR10 (8M training
steps, velocity parameterization) and ImageNet (2M training steps, noise parameterization) using
both the VLB-based approach, and the ODE-based approach with K = 1 and K = 20 importance
samples.

I MULAN vs other methods

MULAN is a noise schedule that can be integrated into any diffusion model such as VDM (Kingma
et al., 2021), InfoDiffusion (Wang et al., 2023), or i-DODE (Zheng et al., 2023). The shared
components among these models are summarized and compared in Table 5.
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Table 4: NLL (mean and 95% Confidence Interval for MULAN) on CIFAR10 (8M training steps,
velocity parameterization) and ImageNet (2M training steps, noise parameterization) using both the
VLB-based approach, and the ODE-based approach. K = 1 means that we do not use importance
weighted estimator since Eq. 86 is equivalent to Eq. 85 for this case; see Zheng et al. (2023).

Likelihood Estimation type CIFAR-10 (↓) Imagenet (↓)
VLB-based 2.59 ±10−3 3.71 ±10−3

ODE-based (K = 1; Eq. 85) 2.59 ±3× 10−4 3.71 ±10−3

ODE-based (K = 20; Eq. 86) 2.55 ±3× 10−4 3.67 ±10−3

Table 5: MULAN is a noise schedule that can be integrated into any diffusion model such as
VDM (Kingma et al., 2021), InfoDiffusion (Wang et al., 2023), or i-DODE (Zheng et al., 2023). The
shared components between MULAN and these models are summarized and compared in this table.

Method learned
noise

multivariate
noise

input con-
ditioned

noise

auxiliary
latents

noise
parameter-

ization

VDM (Kingma
et al., 2021) Yes No No No

Monotonic
neural

network
Blurring Diffusion
Model (Hoogeboom
& Salimans, 2022)

No Yes No No Frequency
scaling

InfoDiffusion (Wang
et al., 2023) No No No

In
denoising
process

Cosine
schedule

MULAN (Ours) Yes Yes Yes

In noising
and

denoising
process

Polynomial,
sigmoid
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