Additive Causal Bandits with Unknown Graph

Alan Malek ' Virginia Aglietti' Silvia Chiappa '

Abstract

We explore algorithms to select actions in the
causal bandit setting where the learner can choose
to intervene on a set of random variables related
by a causal graph, and the learner sequentially
chooses interventions and observes a sample from
the interventional distribution. The learner’s goal
is to quickly find the intervention, among all in-
terventions on observable variables, that maxi-
mizes the expectation of an outcome variable. We
depart from previous literature by assuming no
knowledge of the causal graph except that latent
confounders between the outcome and its ances-
tors are not present. We first show that the un-
known graph problem can be exponentially hard
in the parents of the outcome. To remedy this, we
adopt an additional additive assumption on the
outcome which allows us to solve the problem
by casting it as an additive combinatorial linear
bandit problem with full-bandit feedback. We pro-
pose a novel action-elimination algorithm for this
setting, show how to apply this algorithm to the
causal bandit problem, provide sample complex-
ity bounds, and empirically validate our findings
on a suite of randomly generated causal models,
effectively showing that one does not need to ex-
plicitly learn the parents of the outcome to identify
the best intervention.

1. Introduction

What setting of our factory production system should we
choose to maximize efficiency? Which nutrients would in-
duce maximal crop yield increase? What combination of
drugs and dosages would optimize patients outcomes? All
these questions ask which variables and values would op-
timize the causal effect on an outcome Y. In a system of
variables X|x] = {Xi,..., Xk} and Y, these questions

'DeepMind, London, UK. Correspondence to: Alan Malek
<alanmalek @deepmind.com>>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

can be phrased as asking which set X C X and values
x € supp(X) would produce an optimal outcome under
the intervention do(X = ), whose effect is to alter the
observational distribution p(X[7,Y") describing the exist-
ing relationships between X U Y by setting X to the
fixed value «. Indicating with p(Y | do(X = «)) the dis-
tribution of Y under such an intervention, answering these
questions is equivalent to solving the optimization problem

MAX X C X |),z€supp(X)) E[Y [do(X = x)].

The causal bandit problem, proposed in Lattimore et al.
(2016), is an extension of the multi-armed bandit problem
to the setting where many variables can be intervened on
and a causal graph G is used to describe the causal rela-
tionships among Xz U Y. The learner solves this opti-
mization problem by repeatedly choosing an intervention
(X, ), also called an action, and observing a sample from
p(Y | do(X = x)). A naive approach to the problem would
be to treat each of the combinatorially many actions as in-
dependent and run a typical bandit algorithm. Instead, the
causal graph enables us to reason about acting on sub-parts
of the system and exploit the causal structure to reduce
the action set .A. For example, consider a system of vari-
ables X, X5, and Y with causal graph X; — Xy — Y.
Fact 1.1 below tells us that intervening on pa(Y’), the par-
ents of Y (or direct causes, i.e. the variables with an edge
into Y'), can always produce an expectation as high as the
best intervention on any other set. As pa(Y) = {Xs},
this means that the optimization problem can simplified to
MAX g, csupp(X,) E[Y [do(Xo = x2)].

Causal bandits have been explored under various assump-
tions on G, A, and the interventional distribution. Lattimore
et al. (2016) assumed full knowledge of G and of the distri-
bution of pa(Y’) under any intervention in .A and proposed
an algorithm that selects all actions at the start to minimize
a lower bound on sample complexity. Lu et al. (2020) pro-
posed a UCB algorithm for the cumulative regret setting
which exploits the observation that one does not need a con-
fidence bound on individual actions but on how the actions
affect pa(Y'). Lu et al. (2021) was the first to considered an
unspecified graph and instead considered the special case
of a tree G with a singleton pa(Y"), which allowed pa(Y") to
be identified via binary search. De Kroon et al. (2022) did
not place constraints on the structure of G and instead used
causal discovery algorithms to learn a separating set (i.e. a



Additive Causal Bandits with Unknown Graph

set that d-separates variables we may intervene on from Y')
which thereby allowed them to decompose the problem into
learning the effect of the actions on the separating set and
learning the distribution of Y conditioned on the separat-
ing set. This algorithm can be viewed as a generalization
of previous causal bandit algorithms which effectively use
pa(Y’) as the separating set. Bilodeau et al. (2022) devel-
oped an algorithm that performs optimally when a given
set is a separating set but fell back to a normal bandit al-
gorithm otherwise. With the exception of Bilodeau et al.
(2022), De Kroon et al. (2022), and Maiti et al. (2022), these
works assumed no latent confounders (i.e. latent common
causes), and many assumed that the learner could make
arbitrary interventions on all variables excluding Y. Xiong
& Chen (2023) were the first to consider the PAC (i.e. the
fixed-confidence) setting and, similar to this work, provides
instance-dependent PAC bounds. They study the known-
graph case (potentially with unobserved variables), whereas
we focus on the unknown-graph case with the additional
assumptions that (i) there are no unobserved confounders
between Y and its ancestors, and (ii) we may intervene on
all variables in X g} (which is a common assumption in the
causal bandit literature, see (Lee & Bareinboim, 2018; Lu
et al., 2020)).

We refer to this problem as the causal bandit with an un-
known graph (CBUG) problem. While the first assumption
is self-explanatory and the third assumption common in
the literature, our second assumption is a relaxation of the
typical no-latent-confounders assumption and natural in sev-
eral situations. For example, if one has a list that contains
the parents of Y (e.g. built from domain experts or a noisy
causal discovery algorithm), our assumption is still satisfied
for arbitrary joint distributions on these variable (even with
latent confounding between them and between other vari-
ables). Finally, this confounding assumption implies that
the optimal intervention set is pa(Y’), as demonstrated in
Lee & Bareinboim (2018, Proposition 2).

Fact 1.1. If there are no latent confounders between 'Y and
any of its ancestors, then

E[Y |do(X = z)]

max
X CXk),xz€supp(X)

< max
@’ €supp(pa(Y))

E[Y |do(pa(Y) = 2')].

This fact suggests that we can solve the CBUG problem by
first learning pa(Y") then searching for the optimal values
in supp(pa(Y")); we refer to this approach as parents-first.
Since a global intervention do( X[x| = x) cuts all incoming
edges into X in G such that only the edges from pa(Y")
to Y remain, it suffices to use global interventions and avoid
learning the parents.

Fact 1.2. Under the conditions of Fact 1.1,
E[Y |do(X (k) = )] = E[Y |do(pa(Y) = 2')],

where ' = x Nsupp(pa(Y')) are the values of x limited to
pa(Y).

Using the two above facts, the CBUG problem can be recast
as a regression problem over supp(X(gj). In other words,
when there are no latent confounders between Y and any of
its ancestors and when we may intervene on all variables, the
optimal intervention may be found by a global intervention
which circumvents the need to know the causal graph. To
our surprise, this observation does not seem to have been
used to design algorithms before.

Unfortunately, even with this simplification, the CBUG
problem can be intractable. In Section 2, we show that, for
any algorithm, there exists a problem instance with sample
complexity exponential in the size of pa(Y’); therefore, we
need additional structural assumptions to make the problem
tractable. Turning towards the causal inference literature, we
see that the most common structural assumption is that the
outcome is a noisy additive function of its parents, the dis-
crete analog of the linear assumption. It has been developed
into its own theory (Hastie, 2017) and is used throughout
social and biomedical sciences: see e.g. Imbens & Rubin
(2015, Chapter 13) and Biihlmann et al. (2014)), and more
recently Maeda & Shimizu (2021) for examples. This as-
sumption leads us to define the additive CBUG (aCBUG)
problem, where we additionally assume that Y is an additive
function of pa(Y’) plus a random term. We emphasize that
additive outcome settings are of significant interest to the
causal inference community.

As developed in Section 3, the key implication of the addi-
tive assumption is that the aCBUG problem can be recast
as a linear bandit problem (Lattimore & Szepesvari (2020,
Chapter 19) provides a good introduction) where the action
set is combinatorial and we only have full-bandit feedback,
meaning that we never observe the effect of individual vari-
ables on the outcome and only observe a single sample of
the outcome from p(Y | do(X = x)).

By considering the specific problem of aCBUG, we have
naturally arrived at the additive combinatorial linear ban-
dit problem with full-bandit feedback problem. To the best
of our knowledge, we are the first to consider this prob-
lem, which extends previous causal bandit settings in two
ways: (1) the action set is combinatorial, whereas most
prior pure-exploration linear bandits cannot scale to combi-
natorial actions, and (2) we only have full-bandit feedback,
meaning that we can never observe the individual additive
components of Y and must infer them from only their sum.

Existing pure-exploration linear bandit algorithms either
have complexities that scale with the number of actions
or cannot exploit the structure of the problem; hence, in
Section 4, we propose a novel action-elimination algorithm
that alternates between selecting actions that approximately



Additive Causal Bandits with Unknown Graph

solve an optimal design problem with decreasing tolerances
and using the resulting observations to eliminate suboptimal
actions. Noting that storing a combinatorial action set and
solving optimal design problems are generally intractable,
we solve both computational challenges by restricting A to
marginal action sets that decomposes over variables, which
also allows for an easy approximation of the optimal design
problem. We name our algorithm marginal optimal design
linear bandit (MODL). We analyze the algorithm in the
PAC setting and provide one of the first instance-dependent
analysis of the sample complexity (with Xiong & Chen
(2023) being the only other, to be best of our knowledge).
Finally, in Section 5, we show that MODL performs well
for aCBUG problems and, in particular, significantly out-
performs the parents-first approach while being only slightly
behind an oracle version of the algorithm that knows pa(Y").

2. Additive Causal Bandits with Unknown
Graphs (aCBUG)

This section gives a formal definition of the CBUG prob-
lem, presents a lower bound showing that any algorithm for
solving this problem must have exponential dependence on
the number of parents, and introduces the additive outcome
assumption.

Notation. We refer to sets of variables or values using bold
face, e.g. X and x, respectively. We use a subscript k to
indicate variable number, superscripts ¢ or j to indicate a
discrete value, and superscripts n or ¢ to indicate sample
or round number. For example, :11c§C is the value of X, for
the tth sample, and 6, is a parameter corresponding to Xj’s
ith value. Finally, [n] := {1,...,n} and z[" indicates a
sequence of sets of values.

2.1. CBUG Problem Formulation

We assume a system formed by random variables V' =
X[K] U Y, where X[K] = {X1,..., Xk}, supp(Xy) =
{1,..., My} (i.e. each X has finite integer support), and
Y is an outcome of interest that can be real-valued or dis-
crete. The variables are causally related by an acyclic causal
graph G with associated observational distribution p(V').
The learner acts by selecting a set X C X} and values
x € supp(X) and performing the intervention do(X = x),
which corresponds to replacing p(V') with the interven-
tional distribution p(V\X |do(X = x)) resulting from
removing all incoming edges into X from G and fixing
the value of X to . When there are no unobserved con-
founders (i.e. a latent common cause between variables in
V, usually represented by a bidirected edge in G), p(V') =
p(Y |pa(Y)) HkK:1 p(Xk | pa(Xk)), and the interventional
distribution can be expressed as p(V\X |do(X =

z)) = p(Y |pa(Y)) [Tieronx, gx P(Xk | Pa(Xk))dx —a

with d x—, a delta function centered at .

The learner’s goal in causal bandits is to find the set X and
values & which result in the greatest expectation of Y under
the interventional distribution, denoted E[Y" | do(X = x)].
The learner accomplishes this task by interacting with the
environment sequentially, choosing, at every round ¢, an
intervention (X, ) (also called an action) and obtaining
a sample from p(Y |do(X? = x!)). Without loss of gen-
erality, we assume pa(Y’) = {X1,..., Xp, } where Py is
the number of parents of Y (of course the learner does not
know this ordering).

We consider the causal bandit problem in the setting where
G is unknown and the learner must ﬁnAd, for e > 0
and 6 € (0,1), an (e,0)-PAC solution (X, &) satisfying
]P(maxx,m E[Y |do(X = )] — E[Y |do(X = &)] < e)

> 1 — 4. in as few rounds (or samples, we use the two in-
terchangeably) as possible. We refer to this problem as the
causal bandit with an unknown graph (CBUG) problem.

2.2. Global Intervention Approach

Recall that the CBUG problem assumes no latent con-
founders between Y and any of its ancestors (i.e. variables
with a directed (or causal) path into Y') and that we can
simultaneously intervene on all observable variables except
for Y, i.e. we can make global interventions. A discussed
previously, global interventions are a common model in the
literature. They also model settings where statistical units
are expensive relative to the cost of intervening on additional
variables for a single unit, which implies that the sample
complexity (the number of units used) is the key quantity to
minimize, not the number of variables intervened on.

As stated in Fact 1.1, these two assumptions imply that
pa(Y) is the optimal intervention set. Thus, a natural solu-
tion to solving the CBUG problem would be to first find
pa(Y") and then search for the optimal value in supp(pa(Y")).
Instead, we make the key observation that a global inter-
vention do(X|x) = x) cuts all incoming edges into Xk
in G, leaving only the edges from pa(Y) to Y, which im-
plies that performing a global intervention is equivalent to
intervening on pa(Y’); precisely, E[Y [do(X g = x)] =
E[Y |do(pa(Y) = «')], where x’ are the values of x for
pa(Y’) (recall Fact 1.2 above). This claim can be proved by
invoking rule 3 of do-calculus (Pearl, 2000) which, in this
case, states that E[Y" | do(X[x;)] = E[Y | do(pa(Y"))] since
Y L G XK \pa(Y) | pa(Y), where QX[K] is the graph
G with all incoming edges into X[} removed. We can
therefore restrict the problem to finding Z € supp(X|x)

that satisfies P(manesupp(x[K]) E[Y [do(Xx] = )] —
E[Y [do(X g = 2)] < e) > 1 — 4, meaning that learning

the parents, in some sense, is optional.



Additive Causal Bandits with Unknown Graph

2.3. The CBUG Problem is Exponentially Hard

While using global interventions saves us from having to
consider all intervention sets in the powerset of X (K]> the
CBUG problem can be exponentially hard in Py . For a
fixed ¢ and €, let £* € supp(pa(Y")) be fixed and unknown,
and let E[Y |do(pa(Y) = x)] = 0 + el {x = z*}: the
expectation is flat except at a single value * where it is
equal to e. We can strengthen the example by choosing p
such that, for any intervention do(X’ = &) with ' D a*
(indicating that " agrees with * in supp(pa(Y’))) we have
p(Xy = x} |do(X' = a’)) = 0 for all X}, ¢ X’. Only
interventions with ' O x* can provide information about
x*, so this problem is difficult as the learner has to try
actions blindly until one containing «* is found. We assume
that Y | do(X = ) is 1-sub-Gaussian for any intervention.

Obtaining an upper bound on this problem is easy. Con-
sider the algorithm that picks a ordering all values
', 2% ... in supp(X[k;) uniformly at random. Begin-

xl x?. ..
ning at t = 1, it collects O (W log (%)) sam-
ples from p(Y | do(X g = z') and tests E[Y |do(X =
x)] > € against the null hypothesis E[Y |do(X =
x)] = 0. If the null hypothesis is rejected, then x!

is optimal and the algorithm terminates; otherwise, the
algorithm moves on to ¢t + 1. The sample complexity

is O (|supp(pa(Y))\ M log (%)) since P(z* €
x') = 1/|supp(pa(Y))|, we have to test, on average,
O (| supp(pa(Y))|) actions before stumbling upon one con-
taining «*. This naive algorithm matches the following
lower bound with proof in Appendix C.

Theorem 2.1. There is an instance of the CBUG
problem such that any (€,0)-PAC algorithm must take

Q (‘S“pp(:w log (%)) samples in expectation.

2.4. Additive Outcome Assumption

As the example from the previous section illustrates, a prob-
lem where information about the optimal intervention is
hyper-localized (i.e. where one only learns about the opti-
mal intervention by trying it) is information-theoretically
difficult. Therefore, we need some assumptions to make
the problem tractable and, as discussed in the introduction,
turn to the additive assumption from the causal inference
literature (Biihlmann et al., 2014).

Assumption 2.2 (Additive Outcome). There exist functions
fi,..., fp, and a 0®-sub-Gaussian random variable 1 such

that Y = 317 fu(X3) + 1.

This assumption implies that the causal effect of pa(Y)
on Y decomposes into the sum of individual effects from
each parent, which results in an additive CBUG (aCBUG)
problem. We focus on the homoscedastic case where 7 is

an i.i.d. o2-sub-Gaussian random variable, by far the most
common assumption in the literature.

3. Pure-Exploration Linear Bandits

This section defines the additive combinatorial linear bandit
with full-bandit feedback problem and shows how aCBUG
is a special case. With the additive outcome assumption, the
CBUG problem can be cast as a pure-exploration linear ban-
dit problem with a combinatorial action set .4. The linear
bandit problem is a sequential decision problem where, at
round ¢, the learner chooses an action 2! € A and observes
yt = (x!, 0%)+€', where € is a zero-mean o-2-sub-Gaussian
random variable and §* € R? is a fixed but unknown param-
eter. The goal of the learner is to find an (¢, §)-PAC action
in a few rounds/samples as possible.

We cast aCBUG as a linear bandit problem using one-
hot-encoding. For k& € [K], let ex(i) be the ith
unit vector in RM* and for © € supp(X[g1), de-
fine e(x) = (e1(x1),...,ex(xk)) to be the concatena-
tion of the one-hot vectors, which produces a mapping
from supp(Xg) to R? with d := >, Mj. Defining
the vector 0 = (f1(1), f1(2),..., fx(Mk)), we obtain
E[Y [do(X (k] = )] = (0%, e(x)). Therefore, the goal is
to find arg maxycsupp(xx) (0*, €(2)). Note that the terms
of 6* corresponding to X, ¢ pa(Y') are zero, so 6* is sparse.
It is important to note that we only have full-bandit feed-
back because we observe (0*, e(x)) and not the individual
fr components. Even though the action set .4 has a combi-
natorial structure with size Hle M., as it is the Cartesian
product of choosing one value for each variable, the additive
assumption allows us to consider the dimension-d linear
problem instead.

Casting aCBUG as a linear bandit problem enables us to
borrow from the extensive literature on pure-exploration
linear bandits. One successful approach has been to treat the
action selection as a optimal experimental design problem:
that is, selecting actions to reveal as much information about
a hidden parameter vector estimated through regression.
While these optimal design problems tend to be intractable
except for special cases, we show how to approximate our
action set to avoid these difficulties.

This approach was pioneered by Soare et al. (2014), who
had the insight a that the optimal design problem should op-
timize for learning the gaps between actions. Improvements
in sample complexity were made by Xu et al. (2018) and
Tao et al. (2018) by using a different estimator and a differ-
ent design approximation strategy, respectively, while Fiez
et al. (2019) considered the more general problem of trans-
ductive experimental design. A survey of optimal design
in linear bandits can be found in Lattimore & Szepesvari
(2020, Chapter 22). Unfortunately, all of these algorithms



Additive Causal Bandits with Unknown Graph

have complexity that is linear in the number of actions and
are therefor not tractable for our combinatorial action space.
Another line of work, (Chen et al., 2014; Gabillon et al.,
2011), had the same additive action structure as us but as-
sumed semi-bandit feedback, i.e. where noisy observations
of individual fi(x;) are possible. Because we only observe
yt = ZZ:ZI fx(x}) 4+ n, we are in the full-bandit setting
and cannot use these algorithms either.

The only work we are aware of in the pure-exploration com-
binatorial linear bandit with full-bandit feedback setting is
by Du et al. (2021), who claimed the first efficient algorithm
for this setting. Their approach uses a pre-sampling step to
select a subset of the actions of size O(poly(d)) and then
runs the algorithm of (Constantinou & Dawid, 2017). The
resulting algorithm is fairly complex (requiring multiple
sub-procedures including an entropy mirror-descent stage)
and requires finding a size-d subset of actions with rank d.
In our case, the rank of any subset of actions is at most d — 1
so we cannot use this algorithm. Further, their algorithm
is general purpose and cannot fully exploit the structure
of our action space. Hence, we created a new algorithm,
introduced in the following section.

4. Marginal Optimal Design Linear Bandit

Given data {(x*,y")}?_,, we need to learn about the un-
known parameter vector 6* in a way that lets us quantify the
uncertainty. With V,, = >, x!(z')" denoting the data
covariance and V,:f its pseud?)inverse, we use the ordinary
least squares (OLS) estimator, § = VI > i< 'yt which
has the following Azuma-style confidence interval for 6
(see, e.g. Soare et al. (2014)):

Lemma 4.1. Let 0 be the OLS estimator calculated
from data =™ with covariance matrix V,. For any
z € RY 6 € (0,1), and for o?-sub-Gaussian n,

P(@—Gﬂﬁthﬁdaﬁbgﬂﬁ>§&

This proof, as well as all other omitted proofs, are given in
Appendix C. The lemma requires 2™ to not be a function of
the data. The main challenge in using this inequality is that
we need to solve for a sequence of covariates to minimize
the bound.

Following Lattimore & Szepesvari (2020, Chapter 22), we
propose an action-elimination algorithm that proceeds in
phases. Each phase begins with a set S of plausibly best
actions and a desired tolerance ~. The algorithm chooses
actions to optimize the upper bound in Lemma 4.1, then uses
this guarantee to prune S. The tolerance is then decreased
before the next phase. Phases repeat until an optimal action
is identified or all sub-¢ actions have been removed. There
are two main computational difficulties. First, the number

of actions, |A| = [], M, is very large, which makes the
pruning step potentially intractable. We need algorithms
that scale with the exponentially smaller ambient dimension
d = Zk M. Second, the action selection (known as an
optimal design problem) is a combinatorial optimization
problem and generally difficult. We solve both problems at
once by limiting S to sets that decompose over variables,
defined below.

Marginal Action Sets. We say that a set of actions
S C A = supp(X[k]) is marginal if there exist
Sk C supp(Xk), ¥ = 1,...,K such that § =
{U1,725 -5 JK) 151 € 81,J2 € S2,...,jk €Sk} In
other words, S consists of the Cartesian product of
S1, ..., Sk. Marginal action sets are intuitive: if we have
eliminated, say, X = j as a good action, then we should
never consider any action where X = j. Marginal action
sets solve the combinatorial action set problem, since such
sets can be represented by >, M, binary values.

Optimal Design. In linear bandits, our goal is to choose
actions ! to reveal as much about the optimal action as
possible. While the most obvious goal would be to choose
actions to minimize a bound on (0 — 6*, e(x)) simultane-
ously for all actions & € S, estimating the gaps between
actions  and &', defined as A(x, ') == (0*, e(x) —e(x’)),
is more efficient (Fiez et al., 2019). Defining V,, =
Sr e(z!)e(z!) ", the optimal design problem is

argmin max_le(x) —e(@)|ly,+ - (1)
Generally, the optimal design problem (1) is intractable (Xu
et al., 2018), and the state-of-the-art algorithms are linear
in S (Allen-Zhu et al., 2021). Fortunately, marginal action
sets afford a computationally simple solution with an easy
to calculate upper bound.

Lemma 4.2. Assume that S is marginal, and let # pe
any sequence of actions that are uniform in every marginal,
ie foreveryk, Y.  1{x} =i} — 1{z} =j} < 1 for
alli,j € Sg. With V,, as the covariance matrix of &M, we
have
/ 2|5 2|Si|
ax_le(@) - e(@)lly; < Do 7S >

] %

Roughly, the proof proceeds by noting that V;, can be writ-
ten as a diagonal matrix of counts plus the cross terms,
both of which are positive semi-definite. We can upper
bound the total expression the norm defined only with the
diagonal terms, which permits a particularly simple form
of [le(x) — ()| s that we can explicitly calculate for
uniform sequences of marginals.

Remark 4.3. The embedding that we use for the linear
bandits is not full rank. For example, for any vector
v € RE with 1Tv = 0, the null space of V}, includes



Additive Causal Bandits with Unknown Graph

(111(My),...,vg1(Mkg)) (where 1(n) is the ones vector
of length n). However, what is important is that the projec-
tion of the nullspace onto the coordinates in Sy, is always in
the all-ones direction, which allows us to calculate unbiased
estimates of the gaps, even though we may not be able to
identify . This insight provides another reason why Eq. (1)
is the correct optimization objective.

4.1. Deriving the Elimination Algorithm

At each phase of the algorithm, we have an action set S and
an error tolerance vy, and we wish to find a set of actions R
to remove from S that can be guaranteed to be suboptimal.
The crux is that we can only calculate the empirical gaps
Az, ') = (0, e(z) — e(z')), thus we need to bound the
error A(z, z') — Az, ).

Suppose that we choose ™ according to Lemma 4.2;
Lemma 4.1 then guarantees that (0 — 0* e(x) — e(a’)) <
\/ 402W log (1) holds with high probability for all
x,' € S. This means that it suffices to take n =

10° IEI» Sl log (% )W if we want to ensure that (f —

9*,6(98) —efa')) <.

The usual choice in the bandit literature is R = {z € S :
Jx' € Ss.t. A(x,x’) > ~}. Letting * be the optimal
action, we see that

(07 e(®) — (7)) < (07, e(m) — e(z))

< (0,e(@) —e(@')) -
for all x € R. Using the inequality in the other direction,
any x € S\ R must have (6%, e(x) — e(x*)) < (6* —
0,e(x) - e(x")) + (0, e(@) — e(z")) < 2v.
This rejection procedure is guaranteed, with probability at

least 1 — 9, to eliminate all 2y-suboptimal actions and never
eliminate the optimal action.

¥<0

The reader may notice that S \ R, is not marginal even with
this choice of R, even if S is marginal. Instead, we want
a R such that 1) S \ R is marginal, and 2) R is as large
as possible. Such a marginal-preserving rejection rule is
necessary for the tractability of Eq. (1).

Since we require S’ := S\ R to be marginal, we can define
Ry, := S\ S}, to be the values removed from X;’s marginal.
How must we constrain Ry, so that, for every « € R, there
must be some ' € S with A(x, ') > 4?2

We use the fact that gaps decompose by variables: if
we define A”J = 9’ — 93 and AJ ‘= max; Hk -
‘%’ then the gap between x and x’ decomposes as
Ax,z') = > kelK] A7FT*. Taking &' = x*, we have

that A(z,z*) = 3, A®*. Thus, we may only include
i € Ry if, for all x € S with &, = 4, we can guaran-

Algorithm 1 MODL
Input: 6 > 0, ¢ > 0, X[g1, 0%, B
Optional: upper bound Py on Py

Sk() [Mk]forkzl,...7K
L+ Llog (QBK)J
for{=1,...,Ldo
")/(6) € 2L7Z+1
n {40 \Zk)sk 0] log( )"
Choose !, ..., x" € supp(X[k1) using Lemma 4.2

Collect y* ~ P(Y |do(X (g = x")) Vt < n
Update V,, 6(¢) = Vif 3, ., =ty
Calculate empirical gaps Ai

fork=1,...,Kdo
Se(t+1) {j € Su(0): Al < 7(12)}
end for

Py (6) < 2 L{ISk(O] =1}
if Py({ +1) = K or Py (¢) > Py then
Break
end if
end for
Return arg maxges(0(¢), e(z)) and 6(¢)

tee that A(z,z*) = 3, A¥* > ~. Using *(4) to de-
note x* with the kAth value set to i, it is easy to check that
A(z*(i),x*) = Al, which implies that we can only in-
clude 7 in Ry, if A}C > .

4.2. The MODL Algorithm

With the optimal design and rejection procedures derived,
we can present the marginal optimal design linear ban-
dit (MODL) algorithm and its sample complexity bound.
MODL proceeds in phases £ = 1, ..., L, and in each phase
it solves an X' YV-optimal design problem, using the results
of Lemma 4.2 with error v = €247, ensuring that y = §
by the time the algorithm terminates. The algorithm uses
the rejection rule of Section 4.1 to maintain a marginal ac-
tion set S. We also consider the case when Py is provided,
which allows termination once Py variables have their opti-
mal value identified. The intuition is that 6}, . . . ,H,iw’“‘ are
approximately equal for all for X ¢ pa(Y’), so the algo-
rithm is not able to limit Sy, to a single value. Pseudocode
is provided in Algorithm 1.

We remark that restricting to marginal action sets does not
eliminate any action. Instead, this restriction potentially
reduces the number of actions that can be eliminated by
requiring that the set of remaining actions be expanded to
the smallest marginal action set containing it. In essence,
marginal action sets allow us to trade-off some statistical
efficiency for computational tractability.



Additive Causal Bandits with Unknown Graph

10 variables 30 variables
x10° Py known Py known

—

—
L
L

o
1
\
\

samples needed

10 variables 30 variables
Py unknown Py unknown

_
— — .
/ / Algorithm
00— 1 . T A : Pl
5 10 0 20 5 10 0 20

0.02 1 1

@
£.0.014 E E
©0

——

0.00 4 1 1

MODL
—— Oracle

o

T T T

5 10 0 20

T T T

5 10 0 20

number of parents

Figure 1. Sample complexity and average gaps versus number of parents of Y.

We analyzed the expected sample complexity of the al-
gorithm and present an upper bound in Theorem 4.4.
We find the typical sum-of-reciprocal-squared-gaps de-
pendence common to best-arm-identification problems,

0] (Zi’k(A}; v e)_Q), however, instead of a sum over the

combinatorial action set, the sum is over the all gaps for
individual variables, which is the sample complexity one
would expect if each variable could be played independently.
In other words, despite only having full-bandit feedback,
we obtain the sample complexity as if we had semi-bandit
feedback. A substantial part of the complexity comes from
the 3y gpavy M 1€~ 2 term, which arises because the non-
parents are the most difficult: to differentiate between the
cases when a variable is a non-parent or when there is a
single value that is ¢/ K better than the rest, all values must
be estimated within ¢/ K.

For the known-Py case, the (A} V (¢/K))~? term is re-
placed by (AL V Apin V (€/K))~2 which could be sub-
stantially smaller if Ay;, > ¢/K. We see this reduction
because we no longer need to identify the non-parents, but
rather can terminate once the minimum gap among the par-
ents is found.

Theorem 4.4. Algorithm 1 is (¢, 0)-PAC. The expected sam-
ple complexity has an upper bound of

1602 log (B KU
o (25 3, v

where A, = ming<p, minge(ay,) A}; is the minimum
gap in the parents in the case when number of parents Py
is provided, and 0 otherwise.

Due mostly to the additive assumption, the sample com-
plexity contains Y, Mj, terms of order O ((AVe)™2),

which is the same order as the sample complexity of run-
ning a separate bandit algorithm for each variable despite
only observe the sum of rewards. In contrast, a naive ap-
proach which, ignoring the structure, simply uses a best-
arm-identification algorithm over the combinatorial action
set would have [ [, M;, terms in the complexity bound of

M,y Mg 1
order » "1 ... > » .
Z]lfl ijfl (Amin\/(zk Aik)\/e)z

Recovering the Parents of Y. With simple assumptions
on fi, we may recover a good estimate for pa(Y’) upon
termination of the algorithm. Using the parameter estimates
returned by the algorithm, we define pa(Y’) to be all the
nodes X, where V¢, |0 (£) — 67.(¢)| < 2v(¢) Vi, j € Sk(f).
This formula follows the intuition that non-parents k have
all ¢! identically equal and thus 67 (£) should be within the
error tolerance y(¢). We can show that this method works
with high probability, provided an identifiability condition
holds. Without any identifiability assumptions, no algorithm
can be guaranteed to recover the parents.

Theorem 4.5. Assume that there is some €5, > 0 such
that, for all k < Py, there exist i,i’ € [My] with | fi.(i) —
fe(i)| = €min. Let & and 0 be the output of Algorithm 1 run
with € < €min and § > 0. Then pa(Y') as defined above has
P(pa(Y) = pa(Y')) > 1 — 4. Furthermore, the intervention
Tpa(yy = {Xs = & : X; € pa(Y)}, which is & limited to
pa(Y), is (e,6)-PAC.

S. Experiments

This section presents an empirical evaluation of the MODL
algorithm on a collection of randomly generated causal ad-
ditive models'. Additional experiments studying the effect

!Code has been released at https://github.com/
deepmind/additive_cbug.


https://github.com/deepmind/additive_cbug
https://github.com/deepmind/additive_cbug

Additive Causal Bandits with Unknown Graph

of graph structure and the sensitivity to the additive outcome
assumption’s violation can be found in Appendix B.

Baselines. Since we are the first to consider the general
setting of unknown G without assumptions on its structure,
it is difficult to compare MODL to other algorithms in the
causal bandit literature. The closest algorithms are those of
De Kroon et al. (2022) and Bilodeau et al. (2022) with the
separating set taken to be all intervenable random variables.
In this settings, these algorithms reduces to a multi-armed
bandit on the full, product action space. As the number of
actions is exponential in the number of variables, we were
only able to include this baseline for experiment with few
variables. Since these algorithms were designed for the
cumulative regret setting, we have implemented a version
using Successive Elimination (SE) (Even-Dar et al., 2006).

We also compare MODL to (i) a parents-first (P1) method
which first performs hypothesis testing to find an approx-
imate parents set pa(Y’) and then runs Algorithm 1 with
X (k) = pa(Y’) (i.e. considering pa(Y’) as the intervention
set), and (ii) an oracle method which runs Algorithm 1 with
X(x) = pa(Y’). Fact 1.2 guarantees that intervening on
pa(Y’) alone is sufficient to solve the problem; therefore,
the difference in performance between MODL and the or-
acle method quantifies the value of knowing the parents.
Comparing MODL with the P1 method answers whether
spending samples to explicitly learn the parents is efficient.

For learning pa(Y’), we were not able to find any suitable
algorithm in the literature that exploits the ability to inter-
vene on all X (k). Thus, we designed our own algorithm
for finding an approximate parents set pa(Y’) using global
interventions. Let o € supp(X|x)) be some fixed inter-
vention; for each k in some random order, we enumerate
J € [My] and test a null hypothesis of E[Y" |do(X [k =
:130)] = E[Y ‘ dO(Xk = j, X[K] \ {Xk} = wo)]; Xk is
added to pa(Y") only if we find a j where the null hypothesis
is rejected. We terminate early if pa(Y") is large enough to
meet a bound on Py . Provided that, for all X}, ¢ pa(Y),
there exists some j with | f(j)| > e, this algorithm is guar-
anteed to find pa(Y’) with high probability. Pseudocode and
a complexity bound are provided in Appendix A.

Experimental Set-up. We performed the evaluation on ran-
domly sampled structural causal models (SCMs) generated
as followed. The causal graph, excluding Y, was a sampled
directed acyclic graph from the Erds-Rényi model with the
degree 3 and K — 1 variables. We randomly choose set of
variables of size Py as the parents of Y, then each variable
topologically greater than Y is independently set as a child
to Y with probability .5.

To sample the conditional probability distributions, we
chose Mj, uniformly between specified upper and lower
bounds and generated the conditional probability distribu-

tion for each X, by sampling p(X = j|pa(Xy) = x) x
Beta(2,5) independently for all j and «. Finally, we gen-
erated fi(j) = BW], with B = 5 and W} sampled i.i.d.
from Beta(2, 5) and set ) to a standard normal variable. If
X; had Y as a parent, we used the same construction but
with Y rounded to an integer.

Results. Using ¢ = 1/2 and 6 = .1 for our (e, §)-PAC
criterion, we considered a variety of settings of Py, K,
and upper and lower bounds for M. Each point all graphs
corresponds to the average over 20 different SCMs sampled
using the process described above and 50 independent runs
of the methods on independently generated data.

4 variables 6 variables
% 107Py unknown Py unknown

| T~

samples needed
o

04

2 4 2 4
Number Parents Number Parents

Figure 2. Sample complexities including SE.

In the figure above, the sample complexity and the average
gaps are plotted for the Successive Elimination baseline (in
red) as well as MODL, parents first, and the oracle methods.
The SE baseline are almost too large to be comparable
(roughly 200 times the other methods, all which appear
comparatively as zero) and does not scale to more than a
few variables. The sample complexity decreases with the
number of parents as a greater portion of arms are able to
be eliminated.

Figure 1 plots the same, without SE, for more interest-
ing numbers of variables in four different combinations
of K = {10, 30} and known/unknown Py (the lower and
upper bounds for M}, are 3 and 6). As predicted by Theo-
rem 4.4, the sample complexity decreases with Py : many
samples are required to distinguish between non-parents and
a potential parents with 0%, e, so the complexity increases
with the number of non-parents. Overall, the performance
of MODL is much closer to the performance of the ora-
cle method. We see that the performance coincides when
Py = K since MODL and the oracle method become the
same algorithm. We also note that the P1 method does not
benefit from Py = K. The P1 method also has consistently
higher gaps (since, on occasion, it fails to identify a parent
which would cause a large error), but all gaps are well within
the desired error tolerance of € = 1/2. See the appendix for
more figures: e.g. Figure 3 plots the sample complexity for



Additive Causal Bandits with Unknown Graph

K = 30 versus the support sizes M.

To summarize, we found that across all the settings that
we investigated MODL was substantially better than the
P1 method, and its performance (in terms of the gap of the
final action and the sample complexity) was closer to the
performance of the oracle method than to the performance
of the P1 method. Hence, we conclude that the penalty of
not knowing the parents is relatively small and much smaller
than the cost of learning the parents first.

6. Discussion

In this paper, we have proposed an approach to solving
the causal bandit problem under the general setting of an
unknown causal graph (CBUG). Using the key insight that
having no latent confounding between Y and any of its
ancestors implies that a global intervention is equivalent to
an intervention on the optimal set pa(Y), we showed that an
additive outcome assumption allows us to solve the CBUG
problem as a combinatorial linear bandit.

Limiting our algorithm to marginal action sets alleviated
the computational burden by providing an easy approxima-
tion to the optimal design problem and a factorization of
the action set. Two immediate direction for improving our
algorithm and analysis is to consider the quality of approxi-
mation in the rejection procedure. A rejection procedure that
outputs a marginal action set must reject fewer points than
an unconstrained procedure. Are there principled ways of
interpolating between marginal and full actions sets, perhaps
using unions of marginal sets, which would let us trade-off
computation and a larger number of rejected actions? The
bound presented in this paper decomposes by variable, but
a more nuanced rejection procedure and analysis should
involve how the gaps between variables relate.

Other possible extensions include: (i) relaxing the additive
outcome assumption, for example by adding “interaction
terms,” (ii) investigating what assumption allow for algo-
rithms that adapt to sparsity, and (iii) considering the linear
and continuous case. More generally, how can our method
generalize to the case of latent confounders between Y and
its ancestors?

Finally, we contrast our setting with the most common set-
ting of causal inference where the goal is to learn the causal
graph with as few experiments as possible. This setting is
typical in the infinite data case, so the problem difficulty
is measured in the number of experiments. As we are in
the finite sample case, the number of statistical units (i.e.
samples or rounds) is the most important quantity. With
this distinction in mind, intervening on many variables is
justified so long as we can reduce the sample complexity.
However, budgeted versions of the causal bandit problem
have been considered (Nair et al., 2021) and are another

interesting direction.

Acknowledgements We wish to thank Eleni Sgouritsa for
help in designing the code and technical support and Yasin
Abbasi-Yadkori for technical feedback and many fruitful
discussions.

References

Allen-Zhu, Z., Li, Y., Singh, A., and Wang, Y. Near-optimal
discrete optimization for experimental design: A regret
minimization approach. Mathematical Programming,
186:439-478, 2021.

Bilodeau, B., Wang, L., and Roy, D. M. Adaptively ex-
ploiting d-separators with causal bandits. In Advances in
Neural Information Processing Systems, 2022.

Biihlmann, P., Peters, J., and Ernest, J. Cam: Causal additive
models, high-dimensional order search and penalized
regression. The Annals of Statistics, 42(6):2526-2556,
2014.

Chen, S., Lin, T., King, L., Lyu, M. R., and Chen, W. Com-
binatorial pure exploration of multi-armed bandits. In
Advances in Neural Information Processing Systems, vol-
ume 27, 2014.

Constantinou, P. and Dawid, A. P. Extended conditional in-
dependence and applications in causal inference. Annals
of Statistics, 45(6):2618-2653, 2017.

De Kroon, A., Mooij, J., and Belgrave, D. Causal bandits
without prior knowledge using separating sets. In Con-
ference on Causal Learning and Reasoning, pp. 407-427.
PMLR, 2022.

Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F. Is
a good representation sufficient for sample efficient re-
inforcement learning? In International Conference on
Learning Representations, 2020.

Du, Y., Kuroki, Y., and Chen, W. Combinatorial pure ex-
ploration with full-bandit or partial linear feedback. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 7262-7270, 2021.

Even-Dar, E., Mannor, S., Mansour, Y., and Mahadevan,
S. Action elimination and stopping conditions for the
multi-armed bandit and reinforcement learning problems.
Journal of Machine Learning Research, 7(6):1079-1105,
2006.

Fiez, T., Jain, L., Jamieson, K. G., and Ratliff, L. Sequen-
tial experimental design for transductive linear bandits.
In Advances in Neural Information Processing Systems,
volume 32, 2019.



Additive Causal Bandits with Unknown Graph

Gabillon, V., Ghavamzadeh, M., Lazaric, A., and Bubeck,
S. Multi-bandit best arm identification. In Advances
in Neural Information Processing Systems, volume 24,
2011.

Hastie, T. J. Generalized additive models. In Statistical
models in S, pp. 249-307. Routledge, 2017.

Imbens, G. W. and Rubin, D. B. Causal inference in statis-
tics, social, and biomedical sciences. Cambridge Univer-
sity Press, 2015.

Lattimore, F., Lattimore, T., and Reid, M. D. Causal bandits:
Learning good interventions via causal inference. In

Advances in Neural Information Processing Systems, pp.
1181-1189, 2016.

Lattimore, T. and Szepesvari, C. Bandit Algorithms. Cam-
bridge University Press, 2020.

Lee, S. and Bareinboim, E. Structural causal bandits: where
to intervene? In Advances in Neural Information Pro-
cessing Systems, pp. 2568-2578, 2018.

Lu, Y., Meisami, A., Tewari, A., and Yan, W. Regret analysis
of bandit problems with causal background knowledge.
In Conference on Uncertainty in Artificial Intelligence,
pp. 141-150. PMLR, 2020.

Lu, Y., Meisami, A., and Tewari, A. Causal bandits with
unknown graph structure. In Advances in Neural Informa-
tion Processing Systems, volume 34, pp. 24817-24828,
2021.

Maeda, T. N. and Shimizu, S. Causal additive models with
unobserved variables. In Uncertainty in Artificial Intelli-
gence, pp. 97-106, 2021.

Maiti, A., Nair, V., and Sinha, G. A causal bandit ap-
proach to learning good atomic interventions in presence
of unobserved confounders. In Uncertainty in Artificial
Intelligence, pp. 1328-1338. PMLR, 2022.

Nair, V., Patil, V., and Sinha, G. Budgeted and non-budgeted
causal bandits. In International Conference on Artificial
Intelligence and Statistics, pp. 2017-2025. PMLR, 2021.

Pearl, J. Causality: Models, Reasoning, and Inference.
Cambridge University Press, 2000.

Soare, M., Lazaric, A., and Munos, R. Best-arm identifica-
tion in linear bandits. In Advances in Neural Information
Processing Systems, volume 27, 2014.

Tao, C., Blanco, S., and Zhou, Y. Best arm identification
in linear bandits with linear dimension dependency. In

International Conference on Machine Learning, pp. 4877—
4886, 2018.

10

Xiong, N. and Chen, W. Combinatorial pure exploration of
causal bandits. In The Eleventh International Conference
on Learning Representations, 2023.

Xu, L., Honda, J., and Sugiyama, M. A fully adaptive algo-
rithm for pure exploration in linear bandits. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pp- 843-851, 2018.



Additive Causal Bandits with Unknown Graph

A. A simple test for the parents of Y

In the experiments, we compared MODL with an algorithm that first learns the parents of Y then ran a bandit algorithm on
the remaining variables.

The algorithm is intuitively simple: we will construct confidence intervals of width €/2 for E[Y |do(Xy = j, X = ©_4)]
for all values of j, and if the intersection of the confidence intervals do not overlap, then one of the values of X, is
statistically significantly different from the others. Because we have intervened to fix all the other variables, this difference
must be because X}, is a parent of Y. Formally, we have the following lemma.

Lemma A.1. Let xg € supp(X) be fixed, and x _y, be xq with the kth variable’s value removed. For 6 € (0,1) and € > 0,
assume that Y;!, ..., Y™™ ~ p(Y |do(Xy = j, X_j, = x_}), where

[802 <2K supp(Xk)>—‘
ng=|—log| —— || -
€ 1)
Then Sy

kY

i=1"k — _
77% E[Y|d0(Xk ],X,k :E,k)] 2 5

Hence, by the union bound, all the confidence intervals are simultaneously correct with probability at least 1 — 6.

36)21—1.

Proof. With the nj, defined in the lemma, we can verify that
202 log 2K supp(Xy) <€
Thus, Lemma 4.1 implies that

ey 9K supp(X
P(‘ZZ;““—E[YMO(Xk :j,X_k::c_k)]‘ < ;) > 1—%(’“).
k

Finally, by the union bound, all the confidence intervals are simultaneously correct with probability at least 1 — §, as
claimed. O

Under the event that the bounds are all correct, X}, is a parent of Y if there exist two intervals that do not overlap; in this case,
the means of the two interventions must be different with high probability. See Algorithm 2 for pseudocode. In addition to
having few false positives, we can argue that the algorithm has few false negatives, as presented in the following lemma.

Algorithm 2 Finding pa(Y)
Given: € > 0,6 € (0,1), 0%, ¢ € supp(X(x)) -
pa(Y) « 0
fork=1,...,K:do
Cr+R
n ’7% lOg (2Ksu;;p(Xk))-‘ )
forj=1,..., My do
Collecty',...,y" ~ p(Y [do(Xy = j, X ; = a'))
Cy, < Cp N (2%11747 _ 57 Z%Ll?/ + g)
if Cj, = () then
pa(Y)  pa(Y) U {X,}
Skip the rest of the tests for Xk.
end if
end for
end for
Return pa(Y)

Lemma A.2. Assume that for all X), € pa(Y), there exists i, j € supp(Xy) such that |fi.(i) — fr(§)| > e Then, with
probability 1 — 6§, Algorithm 2 correctly recovers the parents.

11



Additive Causal Bandits with Unknown Graph

10 parents 30 parents 10 parents 30 parents
% 10° Py known Py known Py unknown Py unknown
g
g4
E Algorithm
@
=2 - P
E —_— / MODL
§i— — e — ——— —— Oracle
5 10 15 5 10 15 5 10 15 5 10 15
support size
Figure 3. Sample complexity versus lower bound on Mj,.
%107 Py known Py unknown
g 1.0 b
s
Q
]
8
= 0.51 b
«10-2 1 2 3 1 2 3
1.51 b
=5
20 107 7 Algorithm
Eﬂo — P1
£ 057 ] MODL
’\/—\/\/\/\/ ’\/—\/\/\/\/ —— Oracle
00+ ————— — — e
1 2 3 1 2 3
average graph degree

Figure 4. Sample complexity and average gap vs. number of variables with 30 variables and 10 parents.

B. Additional Experiments
This section holds additional experiments under the same setup in Section 5.

Figure 3 plots the sample complexity for K = 30 versus the support sizes M}, where the x-axis specifies the lower bound
on Mj, (the upper bound is 3 larger). As above, the performance of MODL is much closer to the performance of the oracle
method than to the performance of the P1 method, and almost identical for Py = K = 30.

Figure 4 plots the sample complexity as the degree of the sampled graph changes, when Py = 10 and K = 30. Unsur-
prisingly, the degree has very little effect on the sample complexity, confirming our intuition from causal inference that
intervening on all parents renders the rest of the causal graph unimportant.

Figure 5 confirms our suspicion that the linear bandit is very sensitive to model mispecification. We generated non-linear
data by using the outcome model

Py
Y = fe(Xe) + aBM L (X, X, Xy Xy + X5, X5, Xy + X, Xi,)
k=1
for randomly chosen (without replacement) indices i1, iz, @3, 44, j1, jo, j3, and k1, ko from [Py and My, is the upper
bound on the support size (6 in this case). This model was chosen to resemble the effect of adding “interaction terms”
that are the product of several variables. The leading coefficient is chosen to keep the maximum interaction term roughly
aB so choosing « € [0, 1] keeps the scale of the interactions terms roughly equivalent to the additive terms. Despite this
scaling, we still find that the performance is very sensitive to model mismatch, as illustrated in Figure 5. We also note
that the parents-first approach is much more sensitive to model mispecification, at least in the average gap, because the
mispecification increases the probability of the parents being misspecified, which in turn causes a large error. MODL and

12



Additive Causal Bandits with Unknown Graph

%107 Parents known Parents unknown

= =
o ot
s s
L L

samples needed
I
wt
f
.

().OIOO 0.(325 ()4(;5() ().OI75 041I00 ().OIOO 04(;25 0.()'50 04(;75 ().1I00

£ 24 .

:)D Algorithm
2 — Pl

: ] MODL

/ﬁ\ /ﬁ\ —— Oracle
0 B

0.000  0.025 0.050 0.075 0.100 0.000  0.025 0.050 0.075 0.100

nonlinear scaling

Figure 5. Sample complexity and average gap vs. model mispecification. The x-axis details the coefficient of a multiplicative nonlinear
term in the expected response function.

the oracle algorithms are more immune to this effect.

C. Proofs
Proof of Theorem 2.1. This lower bound can by shown by invoking Theorem 33.5 from (Lattimore & Szepesvari, 2020).

For any « € supp(X(k]), we define ¢(x) to be the x values of pa(Y’); in particular, the reward of any two actions x and
x' are equal if g(x) = q(x’). We invoke the theorem for a bandit with supp(X(x7) arms, one for each action, and with
a set £ of bandit environments indexed by x,, € supp(pa(Y)); for a bandit v(x,a) € £ corresponding to ,,, we set
Y |do(X = z) ~ Bernoulli($ + el {q(z) = xy}). We can explicitly calculate &, (v(@pa)) = {v(@p) : Ty # Tpa)s
which are the set of bandit environments with a different optimal arm than v’s. We also use v, to indicate the reward
distribution of action « under bandit v. Then, examining the terms in the theorem, we need to calculate

c(v) = max _min g e D(Vg, Vo) |,
QGASUPP(X[K]) v/ €Eq1 (V) wesupp(X(x))

where D(-, -) is the relative entropy. If " € £4;;(v), this means that the @, corresponding to v/ is different from the x,
corresponding to v. Fix one x;,; we can see that D (v, v,,) is zero for all z, 2" with ¢(x) = ¢(z'). We also use the fact

that D(vy, v,) = O(e?) when € is small. Hence

min azD(vg, V) = min O(})ag: ,

v €€q1t (V) Z oDl va) x}, #@pEsupp(pa(Y)) () i

xesupp(X|k7)

where xp, corresponds to v. Taking the max over «, we see that any o must spread mass evenly across all x with

x,, # Tpa € supp(pa(Y')), which leads to c(v) = O ( :
find that

. .. . .
W) . Combining these calculations with the theorem, we

E[r] > O <Supp(§a(Y)) log (;)) ,

where E[7] is the expected stopping time of any sound (i.e. (¢, §)-PAC) algorithm, as claimed.

We could also follow the techniques from the lower bound of (Du et al., 2020) and reduce the index-query problem to the
CBUG problem. O

13



Additive Causal Bandits with Unknown Graph

Proof of Lemma 4.2. Let x', ... x™ be a sequence of actions. To calculate V;,, we write

n

n K K
Vo= S (er(@), . en(@io)er(@h), . vex(@ie) = 3233 ej@hes (@) = Do+ Co,

i=1 i=1 j=1j'=1

where D, is the matrix of on-diagonal components and C), contains all the off-diagonal terms; both are positive semi-definite.
Using the fact that if A and B are PSD matrices, then 2" (A + B)f2z < 2T ATz, we can upper bound ||e(x) — e(z’) Iy, + by

le(z) — e(@)lp, -

Letting N} = > i<n 1{z}, = j} be the round x] took on the jth value, we can show that

Dy =Y e(@)e(@)T =3 ding((er(@h). .., ex(@h)) = diag (N}, N, MM NG, N

t<n t<n

D,, is the diagonal matrix of the counts of the values. We can upper bound the optimal design problem over " with
another problem over counts of values that appears in S and add to n. Formally, this set is

N(8,n) =< (N},N{,... ,N{®) : Vk,N] = 0if j ¢ Spand > N} =n

J
We can easily check that, for any z, ' € S,
le(z) —e(@')||p 1 = (e(x) —e(x') Vi (e(x) — e(x))

= Xk:(ek(m) —ex(wy)) " (e%gf) - ek(f?)

= (Nmk Nl )n{wksﬁwk}

Thus, the X' YV-optimal has an upper bound

x¥Y(S,n) =arg  min max_|le(x) —e(x')]|y, +
{N/}eN(S,n) T:®' €S "

= arg min Z max i + L
(N]}eN(S,n) S 39'€8: Ni| N}

2
=arg  min —_
{N]}YeN(S,n) L Minjes, N/g

We can solve the problem in closed from: for all ¢ < V, allocate Nf evenly among all j € S;. Because |S;| may not divide
n, we may have rounding errors and can only guarantee that (N7)~! € [|n/S;], [n/S;]], which results in an objective

Si
value of ), W <23 n|—|5‘ﬂ.

O
Theorem 4.4. Algorithm 1 is (€, §)-PAC. The expected sample complexity is

16 log(BK /e
HE:—30210g<g(6/)> Z Z Al e/K 5+ Z Mk =

kepa(Y) i=1 képa(Y)
If the number of parents Py is provided, the complexity is instead

K My

16 log(BK /¢) K?
He,'Py _ 21
37 Og( )ZZ Amin A A} A (e/K))?

k=1 i=1

where Ay = ming<p, minge(p,) A}; is the minimum gap in the parents.

14



Additive Causal Bandits with Unknown Graph

Proof of Theorem 4.4. Recall that MODL alternates between two stages, data-collection and action elimination, and uses an
exponentially decreasing error tolerance. Let Sk (¢), v(¢), and n.ll be the corresponding the values during phase .

It is easy to verify that y = B/2for ¢ = 1 and y = 55 for ¢ = L. We will show that, with the chosen n,,
P (<é — 0 e(x) — e(a)) < y(OVz, 2’ € S(0), L € [L]) >1-4.

That is, with high probability, all our confidence intervals used by the algorithm are correct.

Let Sy (¢) be the kth marginal of S during phase £ of the algorithm. By choosing

e 1250 1))

vt <2k 25:M] 1 emma 4.1 provides

@—eﬁdw—e@»w<¢%ﬂk@y—dwmwd%(§)<VP“5%fM”H%(§)<m

with probability at least 1 — § for all & € S(¢) simultaneously.

Lemma 4.2 guarantees that max, ,cs |le(z) — e(x’)

At each stage /, the elimination algorithm proceeds only eliminating & where there exists &’ with (0, e(z') — e(z)) > ~(£).
If such a 2’ exists, then we can conclude that

(07 e(z) — e(2")) < (07, e(z) — e(a)) < (0, e(x) — e(@') —(¢) 0.
Hence, we have shown that, for all stages ¢, the algorithm never eliminates any action that is (¢)-suboptimal.

The last step to checking correctness is to show that an e-suboptimal action is returned. In round ¢ = L, Lemma 4.1,
guarantees that (0%, e(x) — e(2’)) < ¢/2 for all z, z’ in S(¢). Applying this to the action & returned by the algorithm and
the fact that, under the event that the confidence intervals are correct, x* € S(¢), we have

A - K
(0%, (@) — ef@")) < (07— ,e(@) — e(a") + (0.e(&) — e(@")) < T + 5
where the last step used the fact that each vairable’s error was controlled to ¢/2k.
The total sample complexity is

iim log <§>

(=1 k=1

We now look to bound Zle Zszl |Sk(¢)] in terms of instance-dependent quantities. With no bound on |pa(Y’)|, the
complexity also decomposes. Let G = {y1 > ... > 7 = €/2K} be the set of v used by the algorithm. Setting
¢ = 40%log(L/4) and using the fact that A} are all unbiased, the expected sample complexity can be upper bounded by
calculating

K L M;,
D) DECIIESIGIED ) 3) RTINS
k=1/¢=1 k=1~v€G i= 1

—iz DR

=1i=1 {yeGy>ALAe/K}

K My K My de
DD o E=
k111]>02j —io 3 (A )
Z Z N < 5+ Z Mk4cK2
pa(Y) i=1 K ktpa(Y)



Additive Causal Bandits with Unknown Graph

To summarize, the sample complexity is the sum the sample complexity of the parents with a linear term for the non-parents.
Intuitively, it is very difficult to differentiate between a parent with some | f(-)| > € and a non-parent, so we expect to see
these terms in the sample complexity.

Recall that Ayiny = mingepay) minge(ag, Al. When the number of parents is given, the algorithm will terminate as
soon as y(¢) < Apnin. Hence, the sample complexity can be decomposed into the samples needed to learn the parents,
2 kepa(v) SoMk S(A‘f#ﬁ, and the extra samples from all the remaining variables

k

SR DRVETD SN TR SR

{’YEG '7>Amm/\€} kﬁpa(y) k%pa(y) {'YEG"Y>Amm/\€} "
< D Mgy
gy S(Bmm AT

Hence, the total sample complexity is

L S D D T
kad () i=1 k¢pa(Y) (Amin A ?) 3 k=1i=1 (Amin N AZ A %)2

O

Proof of Theorem 4.5. We need to prove two things: first, all parents are discovered, and second, no erroneous parents are
included. Throughout, we condition of the event that the confidence intervals are all correct, which happens with probability
at least 1 — 9, and demonstrated in the proof of Theorem 4.4.

Recalling that QA}C (¢) and ~(¥) are the respective quantities at phase £ of the algorithm, we argue that non-parents are not
added to pa(Y"). Consider some non-parent k& > pa, . The concentration inequality from Lemma 4.1, applied to , «’ that
only differ in that the first corresponds to X = ¢ and the second to X = j, yields

6 — 0" e(x) —e(x)) <v=0i -6, <.
Taken with the fact that 6% — 67 = 0 for all i, j € My, we have 8% (¢) — 67.(£) < 2y(£), so k is not added to pa(Y’) on the
event that the confidence intervals are collect.

To show that all parents are included, we consider two cases. First, assume that the algorithm does not terminate early so
~vL = €/2. For every k < Py, the algorithm must have found the i, satisfying | (i) — fr(i')] > €min > €/2, s0 k in
included in pay, .

The second case is when the algorithm terminates early. In this case, there must be Py variables with only one action
remaining. These variables must be parents, since, with high probability no non-parents are added.

Under the event that pa(Y) = pa(Y’), Fact 1.2 implies that the expected response of actions & and @,y are equal,
completing the proof. O

16



