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Abstract

Event Argument Extraction (EAE) facilitates001
comprehension of the text related to an event002
by extracting and analyzing event arguments.003
The superiority of previous studies typically004
rises from the abundance of high-quality event005
annotations, which is labor-intensive to pro-006
duce and hard to satisfy by reality. In this pa-007
per, we approach data-scarce EAE in both low-008
resource and few-shot scenarios, which have009
far-reaching implications for practice. Specif-010
ically, we propose a model called Dynamic011
Modular Prompt Tuning based on Slot-Transfer012
(DAMPT)1, which dispenses with any man-013
ual effort usually required in existing methods.014
DAMPT turns to large-scale language models015
to generate dynamic modular prompts, which016
are more adaptable than the static ones manu-017
ally given by experts. Furthermore, DAMPT018
incorporates a prompt-tuning algorithm called019
slot-transfer to facilitate event-specific knowl-020
edge transfer. An extensive experimental evalu-021
ation validates the effectiveness and generaliza-022
tion ability of DAMPT in data-scarce scenarios.023

1 Introduction024

Event extraction is an essential text comprehen-025

sion task aiming to extract structured event infor-026

mation from unstructured text. The downstream027

applications of event extraction consist of event028

relation extraction and knowledge graph construc-029

tion. As a crucial sub-task of event extraction,030

Event Argument Extraction (EAE) seeks to deter-031

mine event roles (such as participants, time, and032

location of an event) when given trigger words.033

As shown in Figure 1(a), given a context with the034

event type Personnel.Start-Position whose trigger035

word “hired” is indicated by ‘<t>’ and ‘</t>’, EAE036

aims to extract the arguments of the event, that is,037

“tabloid” (i.e., role Entity), “peter arnett” (i.e.,038

1We will publicize our code after the paper has been ac-
cepted

(a) An EAE example

(b) Static and dynamic prompts

Figure 1: (a) An EAE example. (b) Static and dynamic
prompts for the context in (a): compared to the static
discrete prompts, the dynamic modular prompts have
tunable components and generalized and event-specific
knowledge by learning continuous vectors.

role Person), “correspondent” (i.e., role Position), 039

and “baghdad” (i.e., role Place). 040

EAE learning usually relies on supervised so- 041

lutions with abundant annotated event arguments 042

(Chen et al., 2015; Nguyen et al., 2016; Yang and 043

Mitchell, 2016). However, data scarcity is a preva- 044

lent challenge in the real world, rendering EAE a 045

pragmatic yet challenging approach. One feasible 046

solution for data-scarce EAE is transfer learning 047

(Lyu et al., 2021; Zhang et al., 2021), which can 048

transfer knowledge from other tasks such as Tex- 049

tual Entailment (TE), Question Answering (QA), 050

and Semantic Role Labeling (SRL). However, this 051

strain of approaches depends on the capabilities of 052

the models originally designed for other tasks, and 053

the specific challenges and properties of EAE are 054

not explicitly addressed. 055
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Another solution is Pre-trained Language056

Model (PLM), which has demonstrated great lan-057

guage understanding ability by inducing prompts058

for new events (Li et al., 2021; Hsu et al., 2022;059

Ma et al., 2022). As depicted in Figure 1(b), these060

prompts are typically event templates designed by061

experts. While PLM-based methods have shown062

great promise, they depend on manually crafted063

discrete prompts2. In addition to high costs of064

human labeling, static discrete prompts offer no065

opportunity for tuning, making them nearly impos-066

sible to transfer event knowledge from insufficient067

event annotations. To alleviate these restrictions,068

Liu et al. (2022) introduced dynamic prefix tuning069

for EAE. This approach still relies on manually070

designed event description templates and focuses071

only on tuning type information.072

Considering the aforementioned shortcomings073

of current methodologies, two questions lead us074

to propose a PLM-based EAE model: (i) How to075

induce dynamic prompts that eliminate any manual076

intervention while maintaining semantic informa-077

tion for a newly emerging event type, and (ii) how078

to utilize the capabilities of PLM to acquire both079

generalized and event-specific knowledge for EAE.080

As portrayed in Figure 1(b), we propose to structure081

prompts with generalized knowledge (suggesting082

common information) and event-specific knowl-083

edge (describing specific event types and roles),084

facilitating the tunability of prompts from multiple085

perspectives.086

The proposed model, which we call Dynamic087

Modular Prompt Tuning based on Slot-Transfer088

(DAMPT), generates dynamic prompts for new089

events through an Event Type Module and an Event090

Template Module, which separately refine the type091

and role semantic information. To generate event092

templates contained in Event Template Module093

without any manual intervention, we utilize Large094

Language Models (LLMs) through in-context learn-095

ing. To model generalized knowledge, we intro-096

duce continuous module indicator vectors. Addi-097

tionally, we propose a Slot-Transfer algorithm to098

model event-specific knowledge, where top-level099

sub-types and event roles are treated as specific100

slots. We allow PLMs to transfer knowledge from101

only a few accessible events to new events by tun-102

ing slot representations.103

To sum up, our contributions are as follows:104

2Discrete prompts are actual strings in text, while continu-
ous prompts are extracted from embedding spaces (Liu et al.,
2023b).

• We propose DAMPT - the first attempt to au- 105

tomatic prompt construction in EAE without 106

any additional annotations. 107

• We improve knowledge transfer in both gen- 108

eralized and event-specific prompt representa- 109

tions, which enables dynamic prompts incor- 110

porating tunable components. 111

• Experiments carried out in both low-resource 112

and few-shot settings effectively demonstrate 113

the efficiency and effectiveness of DAMPT in 114

scenarios characterized by data scarcity. 115

2 Related Work 116

2.1 PLM-Based EAE 117

The powerful language ability of PLM enables ex- 118

isting PLM-based methods to achieve high perfor- 119

mance. Given a few example data, PLM-based 120

methods can accomplish data-scarce EAE by in- 121

ducing appropriate prompts. These methods can 122

be roughly split into two types, QA-based methods 123

and generation-based methods. 124

QA-based methods formulate the EAE task as a 125

question-answering problem wherein prompts are 126

designed as questions asked against events. Du 127

and Cardie (2020) developed a series of steps to 128

generate questions for different event types and 129

roles. Liu et al. (2020) treated EAE as a machine 130

reading comprehension (MRC) problem and built 131

large corpora with manually designed descriptive 132

statements to train a question generation model. 133

Liu et al. (2021) leveraged MRC to generate aug- 134

mented training data and transferred knowledge 135

using a unified MRC framework. 136

In contrast, generation-based methods fill event 137

templates with the missing event arguments. Li 138

et al. (2021) constructed prompts by replacing 139

the event role in ontology event templates with 140

placeholders. Hsu et al. (2022) utilized additional 141

weakly supervised information and semantic infor- 142

mation of event roles for EAE. Ma et al. (2022) con- 143

structed prompts incorporating event templates and 144

treated role representations as selectors to jointly 145

select argument spans. Dai et al. (2022) presented 146

a bi-directional iterative prompt-tuning method. 147

Liu et al., 2022 devised a prefix-tuning strategy in 148

the PLM-based template-filled process. Ren et al. 149

(2023) designed the retrieval strategy for EAE to 150

augment text generation. 151

2.2 EAE in Data-Scarce Scenarios 152

Hsu et al. (2022) focuses on low-resource event 153
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Figure 2: Overview of DAMPT. An example context of type Life.Marry is input with its trigger word. Firstly, the
context representation is generated through PLM. Next, Dynamic Modular Prompt is automatically constructed
from event type and event template generated by LLM. In Decoder Embedding Layer, the Role slots of Person and
Place and top-level Type slot of Life are fused with prompt semantic embedding. Finally, after interacting with the
context in PLM Decoder, the prompt is fed into Transformer Encoder to capture interactions between argument
selectors, which then extract argument spans from context presentation.

extraction and formulates event extraction as a con-154

ditional generation problem. Yao et al. (2023)155

introduces a retrieval-augmented approach for156

data-efficient knowledge graph construction, dy-157

namically leveraging schema-aware Reference As158

Prompt. Liu et al. (2023a) employed a chain rea-159

soning paradigm to capture long-range interdepen-160

dence. Hsu et al. (2023) integrated abstract mean-161

ing representation into the model.162

EAE in the zero/few-shot setting is a more chal-163

lenging task. Huang et al. (2018) designed a164

transferable neural network model that could map165

event mentions and types into a shared semantic166

space. Liu et al. (2020) turned to abundant MRC167

datasets to generate schema-defining questions.168

Lyu et al. (2021) transferred pre-trained TE/QA169

models to EAE, while Zhang et al. (2022) per-170

formed transfer learning from SRL to EAE. Zhang171

et al. (2023) leveraged both overlapping knowledge172

across datasets and dataset-specific knowledge.173

2.3 Prompt-Tuning Methods174

It is natural to guide PLM using discrete prompts175

for appropriate text comprehension (Brown et al.,176

2020; Gao et al., 2021). However, the power of177

discrete prompts may be restrained during manual178

construction. To settle this issue, a few studies have179

proposed prompt tuning methods, which aimed to180

learn continuous prompts that were integrated into181

the inputs (Li and Liang, 2021; Hambardzumyan182

et al., 2021; Zhong et al., 2021).183

3 Methodology 184

An overview of DAMPT is illustrated in Figure 2. 185

Task Definition: Given a context ci ∈ C repre- 186

sented as ci = [wi,1, wi,2, ..., ⟨t⟩, vi, ⟨/t⟩, ..., wi,L], 187

where the trigger word vi is surrounded by tokens 188

⟨t⟩ and ⟨/t⟩, and its event type ej ∈ E with specific 189

event roles {rj,1, rj,2, ..., rj,k}, the task is to extract 190

argument spans {ai1, ai2, ..., aik} by inducing an 191

appropriate prompt pj ∈ P . ai,k is represented 192

as ai,k = {(mk, nk)|mk, nk ∈ (0, L)}, where mk 193

and nk are the begin and end positions. 194

3.1 Dynamic Modular Prompt 195

Dynamic Modular Prompt is devised to induce 196

pj whose top-level subtype etopj of event type ej 197

and event roles {rj,1, rj,2, ..., rj,k} are tunable. As 198

shown in Figure 3, Dynamic Modular Prompt con- 199

sists of two modules, Event Type Module and Event 200

Template Module. 201

3.1.1 Event Type Module 202

The semantics of an event argument is closely re- 203

lated to its event type. Additionally, the same event 204

role may appear in different event types with differ- 205

ent semantics. Based on these observations, Event 206

Type Module enriches event-type information for 207

an automatic construction of dynamic prompts. 208

In particular, module indicator tokens 209

<eventType_01> and <eventType_02> are 210

embedded for each level of ej in module3, where 211

3For the datasets with more levels of event type hierarchies,
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Figure 3: Dynamic Modular Prompt. It consists of the Event Type Module and Event Template Module.

the top-level type represents the general category212

of event and contains multiple sub-level types. For213

example, in the event type Life.Die, Life is the214

top-level type and Die is the sub-level type. Under215

the top-level Life, there are other event types such216

as Life.Injure, Life.Marry, Life.Born, etc. Thus, the217

top-level types embody the coarse-grained type218

information that shared among events. As a result,219

we treat the top-level types as slots in Section 3.2.220

3.1.2 Event Template Module221

An event template is a natural language sentence222

used to describe an event type containing its roles.223

As indicated in Figure 3, an event template is sur-224

rounded by two indicator tokens <template_start>225

and <template_end>.226

Existing models use event templates obtained227

from the dataset ontology created by experts. On228

the contrary, we use in-context learning with LLMs229

(such as GPT-3.5 4) to automatically generate event230

templates without any human effort.231

GPT-generated template We utilize the large-232

scale model GPT-3.5 for template generation due233

to its strong in-context learning capability (Brown234

et al., 2020). Specifically, we feed it with a few235

event templates to generate new templates for all236

event types. The example section in the context237

given to GPT-3.5 includes event type names, event238

role names, and the corresponding templates. In the239

output section, we guide the generation of output240

with event type and event role names.241

Eventually, the dynamic modular prompt pj for242

the event type ej is constructed as243

pj = Concate(M1(ej),M2(ej , rj,1, rj,2, ..., rj,k)), (1)244

where M1 and M2 respectively denote Event Type245

Module and Event Template Module, Concate(·, ·)246

represents concatenation of two outputs.247

3.2 Prompt Tuning with Slot-Transfer248

To improve the prompt pj with event-specific249

knowledge, we propose a prompt tuning method,250

we add more component indicator tokens and treat the levels
beyond the last level as slots.

4https://openai.com/blog/chatgpt

called Slot-Transfer. Continuous event Role Slots 251

and event Type Slots with Dynamic Modular 252

Prompt help to transfer event role and type knowl- 253

edge. Finally, we fuse Role Slot embedding and 254

Type Slot embedding with the semantic embedding 255

of pj . 256

3.2.1 Role Slot Transfer 257

To incorporate event-specific knowledge beyond 258

the semantic information related to event roles, we 259

propose to transfer event role knowledge by tuning 260

Role Slots in the prompt. In our Dynamic Modular 261

Prompt, we fuse Role Slots at the position of each 262

role in {rj,1, rj,2, ..., rj,k}. For each specific Role 263

Slot, we derive a particular slot embedding, and 264

each event role shares its slot embedding across all 265

event types in which it appears. 266

We first embed the semantic information of pj 267

as follows: 268

ρj = DecEmd(pj) = {t1, t2, ..., tz}, (2) 269

where DecEmd(·) represents the embedding layer 270

of PLM decoder. Then, for the event role rj,k in 271

ρj , we fuse its specific Role Slot embedding with 272

its semantic embedding via a gate vector gj,k as 273

follows: 274

idx = Index(rj,k),

gj,k = Sigmoid(W1tidx +W2Rj,k + b1),

t′idx = gj,k ⊙ tidx + (1− gj,k)⊙Rj,k,

(3) 275

where Index(·) returns the index of rj,k in ρj and 276

W1 and W2 are learnable parameters. tidx is the 277

token embedding of rj,k in ρj obtained in Eq. (2), 278

and Rj,k is the specific Role Slot embedding of 279

rj,k, which is randomly initialized and tuned by 280

PLM. 281

3.2.2 Top-Level Type Slot Transfer 282

The Role Slot embedding t′idx is befitting for a 283

specific event type, while an event type can form 284

different contexts for different roles. Additionally, 285

there exist semantic differences for the same event 286

role in different top-level event types. For example, 287

the role Agent means “a person whose job is to 288

manage the affairs of other people in business” in 289

4
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the Personnel.Nominate events; in the Life.Injure290

events, it means “the person or thing that does an291

action”.292

Based on the above observations, we introduce293

top-level Type Slot to enrich the event-specific294

knowledge of prompts from the type view. In addi-295

tion to treating top-level event types as Type Slots296

in the Event Type Module, we also fuse top-level297

Type Slots with event roles in Event Template Mod-298

ule. Top-level Type Slots can transfer knowledge299

across different event types, facilitating improving300

prompts with event type commonality information.301

For the top-level event type etopj in the Event302

Type Module, whose semantic embedding in ρj303

is γj , we fuse the top-level Type Slot embedding304

Tetopj
with γj in accordance with the same strategy305

in Eq. (3). For each event role, we also fuse its top-306

level Type Slot embedding with its embedding t′idx307

obtained in Eq. (3). By virtue of incorporating Role308

Slot embedding and top-level Type Slot embedding,309

the newly generated prompt ρ′j can assimilate event-310

specific knowledge.311

3.3 Interaction of Arguments312

Event arguments usually interact with others. For313

instance, we can induce the Justice.Sue event from314

the sentence “he’s been <t> sued </t> by an auction315

house for non-payment, and by a concert promoter316

for allegedly backing out of two millennium per-317

formances”. After extracting the argument “house”318

that corresponds to the role Plaintiff, we can also319

capture the argument “prompter” which is con-320

nected with “house” by the conjunction “and” and321

infer it is also a Plaintiff. Argument interactions322

can provide hidden information valuable for data-323

scarce EAE learning.324

In pre-trained large generative models (e.g.,325

BART (Lewis et al., 2020)), although self-attention326

and cross-attention mechanisms are used to capture327

interaction information, earlier extractions cannot328

directly access the information of later extractions.329

To address this issue, we employ a Transformer En-330

coder (Vaswani et al., 2017) as a simple Argument331

Interaction Module after generating argument se-332

lectors, which will be formulated in Section 3.4. In333

Section 4.4: Ablation Studies and Section 4.5: Case334

Studies we will evaluate the effectiveness of our335

interaction module.336

3.4 Extraction Process337

Our extraction approach is inspired by the method338

proposed by Ma et al. (2022), which treats event339

role representations generated by PLMs as span 340

selectors and then use the generated selectors to 341

extract argument spans. 342

We encode the context ci via PLM Encoder 343

and obtain its hidden state Ĥci which serves both 344

as input and as a hidden state of PLM Decoder. 345

Then, we can obtain the context representation 346

Hci through PLM Decoder. Additionally, we in- 347

corporate the prompt embedding ρ′j mentioned in 348

Section 3.2 as input of PLM Decoder and process 349

cross-attention computation between ρ′j and Ĥci , 350

yielding the final prompt representation Hρ′j
as fol- 351

lows: 352

Ĥci = Encoder(ci) ∈ RL×h,

Hci = Decoder(Ĥci , Ĥci) ∈ RL×h,

Hρ′j
= Decoder(ρ′j , Ĥci) ∈ R|ρ′j |×h,

(4) 353

where L is the length of the context ci and h is the 354

hidden size. 355

Next, we model the argument interaction men- 356

tioned in Section 3.3 by Transformer Encoder: 357

Z = LNorm(Hρ′j
+MultiAtt(Hρ′j

)),

H ′
ρ′j

= LNorm(Z + FF (Z)) ∈ R|ρ′j |×h,
(5) 358

where LNorm(·), MultiAtt(·), and FF (·) sepa- 359

rately represent LayerNorm, MultiHead Attention, 360

and FeedForward process in Transformer Encoder. 361

The mean pooling output ϵk ∈ Rh of token em- 362

beddings which correspond to rj,k in H ′
ρ′j

, is then 363

transformed to the argument start span selector 364

εsk ∈ Rh and end span selector εek ∈ Rh. Finally, 365

the argument span is extracted as follows: 366[
εsk
εek

]
=

[
ϵk
ϵk

]
⊙
[
ws

we

]
∈ R2h,[

lsk lek
]
= Hci

[
εsk εek

]
∈ R2L,[

ŷsk ŷek
]
= Softmax(

[
lsk lek

]
) ∈ R2L,

(6) 367

where ws and we are learnable parameters, and Hci 368

is the context representation obtained in Eq. (4). 369

The loss function is defined as 370

Lk(ci) = − log ŷsk(y
s
k)− log ŷek(y

e
k),

L =
∑
ci∈C

∑
k

Lk(ci),
(7) 371

where ŷsk and ŷek are prediction vectors for the ar- 372

gument start position and end position, and ysk and 373

yek are ground truth. 374
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Model PLM
Arg-I Arg-C

1% 3% 5% 10% 20% 30% 1% 3% 5% 10% 20% 30%

ACE05-E

DEGREE BART-b 13.3 17.2 27.1 34.5 49.0 63.9 12.6 16.6 22.4 30.0 43.2 58.6
BART-Gen BART-b 29.2 31.9 35.3 41.1 48.0 51.0 23.2 28.3 32.5 37.0 41.0 45.8
BERT-QA BERT-b 30.3† 43.7† 48.9 50.8 55.5 56.8 20.1 39.0† 44.4 48.5 51.8 52.6

PAIE BART-b 21.9 41.2 49.2 56.5† 63.7 67.6† 19.2 34.4 43.5 51.6 59.3 62.8

DAMPT BART-b 31.3† 44.9 52.4† 59.5 64.5 67.9 27.4 39.1 47.4† 53.5 60.7 63.3†

w/o GPT-Gen BART-b 28.3 43.0 53.5 55.9 64.3† 66.9 26.0† 39.1 47.7 52.8† 60.1† 63.5

WIKIEVENTS

BART-gen BART-b – 14.2 15.0 31.8 35.9 51.2 – 11.4 13.5 28.5 30.9 47.5
PAIE BART-b 37.7 52.4† 53.8 62.8† 67.9† 63.7 32.4 47.7 48.4 56.7† 61.8† 59.9

DAMPT BART-b 36.3† 51.4 54.1† 61.5 68.8 67.5 31.6† 48.1† 49.6† 56.4 62.1 62.0
w/o GPT-Gen BART-b 35.7 52.5 56.0 63.5 65.0 66.5† 30.6 48.5 51.1 58.4 60.4 61.4†

Table 1: Low-resource EAE performance of the proposed DAMPT model and the baselines. w/o GPT-Gen is the
variant of DAMPT that uses human-designed templates as other models. Bold score is the best, and the symbol †
indicates the second-best.

4 Experiments375

We conduct EAE experiments on low-resource and376

few-shot scenarios to analyze the performance of377

DAMPT. The implementation details are delineated378

in Appendix A.379

4.1 Experimental Settings380

Datasets We conduct experiments on the381

sentence-level EAE dataset ACE05-E (Dodding-382

ton et al., 2004) as well as the document-level EAE383

dataset WIKIEVENTS (Li et al., 2021), follow-384

ing the pre-processing steps outlined in Ma et al.385

(2022). The statistics of each dataset are shown in386

Table 5 in Appendix A due to space limitation.387

Data Splits for Low-Resource and Few-Shot Set-388

tings For low-resource setting, we generates dif-389

ferent proportions (1%, 3%, 5%, 10%, 20%, 30%)390

of ACE05-E and WIKIEVENTS training data as391

the same as Hsu et al. (2022). In addition, we392

perform the same zero-shot split on the ACE05-E393

dataset as Huang et al. (2018), that is, the top-10394

frequent event types in the train set can be seen,395

while all of the 23 event types in the test set are un-396

seen. As to the few-shot scenario, we respectively397

take 5-shot setting and 10-shot setting, where 5 and398

10 samples of each unseen-type event are let into399

the train set. For the WIKIEVENTS dataset, we400

have 10 seen types and 40 unseen types.401

Evaluation Metrics We adopt Argument Identi-402

fication F1 score (Arg-I), Argument Classification403

Precision (P), Recall (R) and F1 score (Arg-C) as404

evaluation measures (Ma et al., 2022, Hsu et al.,405

2022). These Arg-based criteria are strict since406

they deem an argument as correctly classified only 407

when its span, event type, and role type all match 408

the corresponding ground truth. Achieving a high 409

Arg-based score indicates relatively comprehensive 410

success in EAE. 411

Baselines We compare DAMPT with the fol- 412

lowing state-of-the-art models: (1) classification- 413

based models: OneIE (Lin et al., 2020) and TSAR 414

(Xu et al., 2022), (2) generation-based model: 415

BART-gen (Li et al., 2021), DEGREE (Hsu et al., 416

2022), (3) QA-based model: BERT-QA (Du and 417

Cardie, 2020), and (4) prompt-based models: 418

PAIE (Ma et al., 2022) and BIP (Dai et al., 2022). 419

4.2 Main Results 420

In Table 1, we compare the performance of 421

our model and the baselines on ACE05-E and 422

WIKIEVENTS in low-resource settings. To pro- 423

vide a detailed illustration, we also report the per- 424

formance of DAMPT (w/o GPT-Gen), which ex- 425

cludes the impact of event templates generated 426

by GPT. It can be observed that DAMPT outper- 427

forms all of the baselines on different proportions 428

of training data of ACE05-E. Specifically, DAMPT 429

achieves a 4.2% improvement under Arg-C with 430

the use of only 1% of the ACE05-E training data, 431

which demonstrates the effectiveness of DAMPT in 432

extreme data-scarce scenarios. On WIKIEVENTS, 433

DAMPT performs well when the proportion is 434

larger than 1%, achieving a 2.7% Arg-C improve- 435

ment with 5% WIKIEVENTS training data. 436

In summary, DAMPT is superior to or compa- 437

rable with existing state-of-the-art models on the 438

ACE05-E and WIKIEVENTS datasets. 439
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Model PLM zero-shot 5-shot 10-shot
P R Arg-C P R Arg-C P R Arg-C

ACE05-E

OneIE BERT-b – – – 10.3 10.4 10.3 13.4 15.6 14.5
BART-gen BART-b 53.0 45.6 49.0 57.2 46.9 51.5 62.4 49.7 55.3
BERT-QA BERT-b 49.5 55.8 52.4 66.3 52.0 58.3 60.6 57.7 59.2
DEGREE BART-l – – 53.3 – – 61.7 – – 64.3
BIP BERT-b 54.6 60.9† 57.6 58.6 66.5 62.3 60.6 68.3 64.2
PAIE BART-b 59.2† 53.1 56.0 64.9 64.3 64.6 68.2 66.3 67.2

DAMPT BART-b 60.2 64.3 62.2 67.0† 65.8 66.9† 66.2 70.0† 68.1†

w/o GPT-Gen BART-b 60.2 57.4 58.8† 68.3 66.1† 67.2 67.8† 70.8 69.3

WIKIEVENTS

BART-gen BART-b 48.6 42.6 45.4 51.5 47.2 49.3 44.4 37.2 40.5
TSAR BERT-b 18.2 19.6 18.9 52.8 61.8 57.0 53.1 63.8 57.9†

PAIE BART-b 50.0 48.8 49.4 55.8 58.5 57.1 59.7 54.9 57.2

DAMPT BART-b 51.4† 52.7 51.0 63.6 56.8 60.0 57.2† 58.8† 58.0
w/o GPT-Gen BART-b 52.2 49.5† 50.1† 57.7† 58.8† 58.3† 56.5 57.6 57.1

Table 2: Few-shot EAE performance of the proposed DAMPT model and the baselines.

4.3 Few-Shot Performance440

Few-shot is a more challenging scenario with data441

scarcity, where only a few seen event types are442

available, and the model must handle a large num-443

ber of unseen event types. In Table 2, we com-444

pare the performance of our model and the base-445

lines on two datasets in zero-shot, 5-shot, and 10-446

shot settings. It can be observed that DAMPT per-447

forms well in different EAE learning scenarios. On448

ACE05-E, DAMPT achieves the maximal gains449

of 4.6%, 2.6%, and 2.1% in the zero-shot, 5-shot,450

and 10-shot settings, respectively. At the document451

level, DAMPT is also promising and attains gains452

across the board on the dataset WIKIEVENTS.453

K-Shot Performance Intuitively speaking, mod-454

els are supposed to be improved with more seen455

examples for unseen event types (e.g., 5-shot and456

10-shot situations). It is worth noting that the im-457

provement of our DAMPT is not as significant as458

that of other models, such as PAIE. From zero-459

shot to 10-shot, the results improve by 5.9%, while460

PAIE shows an enhancement of 11.2%. This is be-461

cause our Slot-Transfer strategy can help DAMPT462

obtain well-informed module indicator tokens and463

slots in zero-shot scenarios, which are available464

for other models merely during few-shot learning.465

Another reason may be related to the expansion of466

seen examples, the obtained tunable components467

tend to be stable, resulting in less impact on perfor-468

mance improvement. These observations indicate469

that our model can gain benefits in few-shot set-470

tings with a small value of seen examples. Further471

analysis will be conducted in Section 4.6.472

Influence of LLM It can be observed in Ta- 473

ble 2 that in the zero-shot setting, DAMPT with 474

the event templates generated by GPT-3.5 outper- 475

forms DAMPT with manually designed templates 476

by 3.4% on ACE05-E and 0.9% on WIKIEVENTS. 477

This may be attributed to the promising language 478

ability of LLM in generating event descriptions. 479

4.4 Ablation Studies 480

We conduct ablation experiments on ACE05-E to 481

demonstrate the impact of each component in our 482

model. Each component is removed separately: 483

(1) w/o TypeSlot: removing the event top-level 484

Type Slots that transfer type knowledge; (2) w/o 485

RoleSlot: removing the event Role Slots that trans- 486

fer role knowledge; (3) w/o TransEnc: removing 487

the Transformer Encoder that captures interaction 488

among arguments; and (4) w/o DMP: without Dy- 489

namic Modular Prompt, that is, a single event tem- 490

plate is provided to the model as a prompt as that 491

in most models. Moreover, we also evaluate a vari- 492

ant of a base model with the addition of DMP (w/ 493

DMP) for further evaluation. 494

As shown in Table 3, we can see that (1) each 495

component of our proposed model plays its im- 496

portant and specific role in EAE learning; (2) the 497

Transformer Encoder exhibits remarkable perfor- 498

mance in the zero-shot setting, underscoring the 499

significance of capturing interaction information 500

among arguments, even without new type events; 501

(3) TypeSlot and RoleSlot prove to be effective in 502

low-resource environments, affirming the value of 503

transferring event-specific knowledge from a mini- 504

mal dataset; (4) Dynamic Modular Prompt serves 505
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Model Event Type
Slot

Event Role
Slot

Transformer
Encoder

Dynamic Modular
Prompt

Arg-C
Zero-Shot 1% Data 3% Data

DAMPT ✓ ✓ ✓ ✓ 62.2 27.4 39.1

-w/o TypeSlot × ✓ ✓ ✓ 61.1 20.9 37.5
-w/o RoleSlot ✓ × ✓ ✓ 60.1 24.0 36.3
-w/o TransEnc ✓ ✓ × ✓ 58.9 22.4 37.7

-w/o DMP × × × × 56.0 19.2 34.4
-w/ DMP × × × ✓ 59.3 24.9 36.9

Table 3: Ablation studies on ACE05-E in the data-scarce settings.
Contexts DAMPT(ours) PAIE

Sentence1 (Personnel.Start-Position): In Paris , the French media group said
parent company chairman Jean - Rene Fourtou will <t> replace </t> Diller as
chairman and chief executive of US unit.

Person:Jean - Rene Fourtou ✓ Person: Diller ×

Sentence2 (Conflict.Demonstrate):As I said , the officers did tell me that
this is the largest pro - troops <t> demonstration </t> that has ever been in
San Francisco since the Vietnam War.

Place:San Francisco ✓ Place: ∅ ×

Sentence3 (Life.Marry): Giuliani’s first <t> marriage </t> to his second cousin,
Regina Peruggi, lasted about 14 years.

Person: Giulian ✓ Person: Giulian ✓
Person: cousin ✓ Person: ∅ ×

Table 4: Examples of how DAMPT and PAIE perform.

Figure 4: Analysis on different K-shot settings
as the foundation of our model. A certain improve-506

ment is achieved when using DMP alone in PAIE.507

This demonstrates that the additional event infor-508

mation provided by Event Type Module and the509

tunable module indicator tokens in Dynamic Mod-510

ular Prompt work with EAE learning.511

4.5 Case Studies512

In order to showcase the EAE ability of our method,513

we sample several contexts from ACE05-E dataset514

to compare the extraction results of DAMPT and515

the baselines in Table 4. In Sentence1, due to the516

role-specific knowledge of Person transferred from517

seen events (e.g., Personnel.Elect), DAMPT can518

extract the argument “Jean - Rene Fourtou” when519

there is a distracting word “Diller”. In contrast,520

PAIE extracts the wrong argument. The benefit521

of equipping Slot-Transfer is also shown in Sen-522

tence2, where the knowledge transferred for Place523

improves the understanding ability of DAMPT. In524

Sentence3, as arguments “Giuliani” and “cousin” 525

are associated with the word “to”, knowing that 526

“Giuliani” serves as Person helps to easily extract 527

“cousin” as Person when their interaction implied 528

by preposition “to” is captured. With the argument 529

interaction module, DAMPT can extract the second 530

Person argument correctly compared to PAIE. 531

4.6 A Further Analysis on K-Shot Settings 532

We further conduct experiments on ACE05 where 533

K increases from 0 to 20. We compare the Arg-C 534

results between DAMPT and several baselines in 535

Figure 4. DAMPT consistently dominates the other 536

methods with increasing K. We observe that the 537

performance gap between DAMPT and the other 538

models is largest when K is equal to 0, and there is 539

a shrinking trend when K increases, indicating that 540

DAMPT is more suitable for the few-shot scenario 541

with a small K. This also suggests our Dynamic 542

Modular Prompt with Slot-Transfer algorithm can 543

explore generalized and event-specific knowledge 544

contained by a limited number of available events. 545

5 Conclusion 546

In this paper, we have proposed a novel fully au- 547

tomated prompt construction called DAMPT for 548

data-scarce EAE. We have introduced Dynamic 549

Modular Prompt which incorporates learnable in- 550

dicator tokens to transfer generalized knowledge. 551

We have also introduced Role Slot and Type Slot 552

which enable transferring event-specific knowledge 553

from a few event annotations. Moreover, we have 554

incorporated Transformer encoder to capture argu- 555

ment interactions. Our evaluations in data-scarce 556

settings demonstrate the effectiveness of DAMPT. 557
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Limitations558

Our proposed model explores the language under-559

standing ability of pre-trained language models to560

tune the Dynamic Modular Prompt and generate561

spans selectors. As a result, the performance of562

our DAMPT is subject to the pre-training ability of563

pre-trained language models. It suggests a promis-564

ing way in the future to generalize EAE capability565

during the pre-training phases.566
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A Implementation Details 756

The architecture we use to construct DAMPT is 757

BART-base5, with 139 million parameters, con- 758

sisting of 6 Transformer layers. All experiments 759

are conducted on NVIDIA TITAN Xp GPU. We 760

reported the average F1 score over five different 761

random seeds to alleviate the negative impact of 762

random training. Table 5 shows the statistics of 763

datasets in data-scarce settings. Table 6 shows the 764

detailed training configurations in DAMPT’s train- 765

ing process. 766

B GPT-Generated Templates 767

B.1 Prompt for In-Context Learning 768

We list the in-context learning text for GPT-3.5 769

event templates generation for ACE05 in Fig- 770

ure 5. When performing in-context learning on 771

the WIKIEVENTS dataset with numerous event 772

5https://huggingface.co/facebook/bart-base
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Figure 5: Context for GPT-3.5 in-context learning

Datasets ACE05-E WIKIEVENTS
#Event Types 33 50
#Event Roles 27 80

Full #Sent
Train 17,172 5,262
Dev 923 378
Test 832 492

Low-resource(1%) #Sent
Train 171 52
Dev 923 378
Test 832 492

Zero-shot #Sent
Train 3,497 2,697
Dev 389 300
Test 1169 954

Table 5: Statistics of the datasets

types, we split all types into two parts and gen-773

erated templates separately in case of exceeding774

the context length limitation of ChatGPT. During775

the training and inference processes, we excluded776

in-context examples in the prompt and the length777

of prompts was limited within 512 tokens for the778

pre-trained language models.779

B.2 Examples of Templates780

We sample some templates generated by GPT and781

list them below:782

Conflict.Attack: Attacker attacked Target using783

Instrument at Place.784

Life.Die: Victim was killed by Agent using In-785

Hyperparameter Value

Optimizer AdamW
Adam epsilon 1e-8
Learning rate 2e-5
Weight decay 0.01

Batch size 16(ACE05)/4(WIKIEVENTS)

Training steps 600(1% training data)
10000(30% training data/few-shot)

Max encoder length 192(ACE05)/500(WIKIEVENTS)
Max decoder length 80

Table 6: Hyperparameter settings

strument at Place. 786

Personnel.Start-Position: Person started work- 787

ing at Position of Entity organization at Place. 788

Business.Start-Org: Org was started by Agent 789

at Place. 790

Contact.Meet: Entity met with Entity at Place. 791

Movement.Transport: Agent transported Arti- 792

fact in Vehicle from Origin to Destination for Price. 793

Justice.Sentence: Defendant was sentenced for 794

Crime by Adjudicator for Sentence at Place. 795

Transaction.Transfer-Money: Giver gave 796

Money to Recipient for the benefit of Beneficiary 797

at Place. 798

C EAE Performance of LLM 799

To demonstrate the performance of the LLM for 800

a more comprehensive comparison, we have con- 801

ducted experiments on a small set of ACE05-E test 802

data (60 samples) with GPT-4 as a zero-shot solu- 803
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model P R F

GPT-4 37.8 53.8 44.5

Table 7: Performance of GPT-4 for EAE

tion. The results recorded in the Table 7 demon-804

strate that Few-shot learning and zero-shot learning805

remain challenging even for powerful models.806

As demonstrated in Table 1 and Table 2, DAMPT807

shows significant F1-score improvements relative808

to the baselines in the low-resource and few-shot809

scenarios. The comparatively low F1 scores are810

attributed to the inherent data limitation in data-811

scarce scenarios.812
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