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Abstract

Event Argument Extraction (EAE) facilitates
comprehension of the text related to an event
by extracting and analyzing event arguments.
The superiority of previous studies typically
rises from the abundance of high-quality event
annotations, which is labor-intensive to pro-
duce and hard to satisfy by reality. In this pa-
per, we approach data-scarce EAE in both low-
resource and few-shot scenarios, which have
far-reaching implications for practice. Specif-
ically, we propose a model called Dynamic
Modular Prompt Tuning based on Slot-Transfer
(DAMPT)!, which dispenses with any man-
ual effort usually required in existing methods.
DAMPT turns to large-scale language models
to generate dynamic modular prompts, which
are more adaptable than the static ones manu-
ally given by experts. Furthermore, DAMPT
incorporates a prompt-tuning algorithm called
slot-transfer to facilitate event-specific knowl-
edge transfer. An extensive experimental evalu-
ation validates the effectiveness and generaliza-
tion ability of DAMPT in data-scarce scenarios.

1 Introduction

Event extraction is an essential text comprehen-
sion task aiming to extract structured event infor-
mation from unstructured text. The downstream
applications of event extraction consist of event
relation extraction and knowledge graph construc-
tion. As a crucial sub-task of event extraction,
Event Argument Extraction (EAE) seeks to deter-
mine event roles (such as participants, time, and
location of an event) when given trigger words.
As shown in Figure 1(a), given a context with the
event type Personnel.Start-Position whose trigger
word “hired” is indicated by ‘<t>’ and ‘</t>’, EAE
aims to extract the arguments of the event, that is,
“tabloid” (i.e., role Entity), “peter arnett” (i.e.,
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Figure 1: (a) An EAE example. (b) Static and dynamic
prompts for the context in (a): compared to the static
discrete prompts, the dynamic modular prompts have
tunable components and generalized and event-specific
knowledge by learning continuous vectors.

role Person), “correspondent” (i.e., role Position),
and “baghdad” (i.c., role Place).

EAE learning usually relies on supervised so-
lutions with abundant annotated event arguments
(Chen et al., 2015; Nguyen et al., 2016; Yang and
Mitchell, 2016). However, data scarcity is a preva-
lent challenge in the real world, rendering EAE a
pragmatic yet challenging approach. One feasible
solution for data-scarce EAE is transfer learning
(Lyu et al., 2021; Zhang et al., 2021), which can
transfer knowledge from other tasks such as Tex-
tual Entailment (TE), Question Answering (QA),
and Semantic Role Labeling (SRL). However, this
strain of approaches depends on the capabilities of
the models originally designed for other tasks, and
the specific challenges and properties of EAE are
not explicitly addressed.



Another solution is Pre-trained Language
Model (PLM), which has demonstrated great lan-
guage understanding ability by inducing prompts
for new events (Li et al., 2021; Hsu et al., 2022;
Ma et al., 2022). As depicted in Figure 1(b), these
prompts are typically event templates designed by
experts. While PLM-based methods have shown
great promise, they depend on manually crafted
discrete prompts®. In addition to high costs of
human labeling, static discrete prompts offer no
opportunity for tuning, making them nearly impos-
sible to transfer event knowledge from insufficient
event annotations. To alleviate these restrictions,
Liu et al. (2022) introduced dynamic prefix tuning
for EAE. This approach still relies on manually
designed event description templates and focuses
only on tuning type information.

Considering the aforementioned shortcomings
of current methodologies, two questions lead us
to propose a PLM-based EAE model: (i) How to
induce dynamic prompts that eliminate any manual
intervention while maintaining semantic informa-
tion for a newly emerging event type, and (ii) how
to utilize the capabilities of PLM to acquire both
generalized and event-specific knowledge for EAE.
As portrayed in Figure 1(b), we propose to structure
prompts with generalized knowledge (suggesting
common information) and event-specific knowl-
edge (describing specific event types and roles),
facilitating the tunability of prompts from multiple
perspectives.

The proposed model, which we call Dynamic
Modular Prompt Tuning based on Slot-Transfer
(DAMPT), generates dynamic prompts for new
events through an Event Type Module and an Event
Template Module, which separately refine the type
and role semantic information. To generate event
templates contained in Event Template Module
without any manual intervention, we utilize Large
Language Models (LLMs) through in-context learn-
ing. To model generalized knowledge, we intro-
duce continuous module indicator vectors. Addi-
tionally, we propose a Slot-Transfer algorithm to
model event-specific knowledge, where top-level
sub-types and event roles are treated as specific
slots. We allow PLMs to transfer knowledge from
only a few accessible events to new events by tun-
ing slot representations.

To sum up, our contributions are as follows:

’Discrete prompts are actual strings in text, while continu-

ous prompts are extracted from embedding spaces (Liu et al.,
2023b).

* We propose DAMPT - the first attempt to au-
tomatic prompt construction in EAE without
any additional annotations.

* We improve knowledge transfer in both gen-
eralized and event-specific prompt representa-
tions, which enables dynamic prompts incor-
porating tunable components.

» Experiments carried out in both low-resource
and few-shot settings effectively demonstrate
the efficiency and effectiveness of DAMPT in
scenarios characterized by data scarcity.

2 Related Work

2.1 PLM-Based EAE

The powerful language ability of PLM enables ex-
isting PLM-based methods to achieve high perfor-
mance. Given a few example data, PLM-based
methods can accomplish data-scarce EAE by in-
ducing appropriate prompts. These methods can
be roughly split into two types, QA-based methods
and generation-based methods.

QA-based methods formulate the EAE task as a
question-answering problem wherein prompts are
designed as questions asked against events. Du
and Cardie (2020) developed a series of steps to
generate questions for different event types and
roles. Liu et al. (2020) treated EAE as a machine
reading comprehension (MRC) problem and built
large corpora with manually designed descriptive
statements to train a question generation model.
Liu et al. (2021) leveraged MRC to generate aug-
mented training data and transferred knowledge
using a unified MRC framework.

In contrast, generation-based methods fill event
templates with the missing event arguments. Li
et al. (2021) constructed prompts by replacing
the event role in ontology event templates with
placeholders. Hsu et al. (2022) utilized additional
weakly supervised information and semantic infor-
mation of event roles for EAE. Ma et al. (2022) con-
structed prompts incorporating event templates and
treated role representations as selectors to jointly
select argument spans. Dai et al. (2022) presented
a bi-directional iterative prompt-tuning method.
Liu et al., 2022 devised a prefix-tuning strategy in
the PLM-based template-filled process. Ren et al.
(2023) designed the retrieval strategy for EAE to
augment text generation.

2.2 EAE in Data-Scarce Scenarios

Hsu et al. (2022) focuses on low-resource event
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Figure 2: Overview of DAMPT. An example context of type Life.Marry is input with its trigger word. Firstly, the
context representation is generated through PLM. Next, Dynamic Modular Prompt is automatically constructed
from event type and event template generated by LLM. In Decoder Embedding Layer, the Role slots of Person and
Place and top-level Type slot of Life are fused with prompt semantic embedding. Finally, after interacting with the
context in PLM Decoder, the prompt is fed into Transformer Encoder to capture interactions between argument
selectors, which then extract argument spans from context presentation.

extraction and formulates event extraction as a con-
ditional generation problem. Yao et al. (2023)
introduces a retrieval-augmented approach for
data-efficient knowledge graph construction, dy-
namically leveraging schema-aware Reference As
Prompt. Liu et al. (2023a) employed a chain rea-
soning paradigm to capture long-range interdepen-
dence. Hsu et al. (2023) integrated abstract mean-
ing representation into the model.

EAE in the zero/few-shot setting is a more chal-
lenging task. Huang et al. (2018) designed a
transferable neural network model that could map
event mentions and types into a shared semantic
space. Liu et al. (2020) turned to abundant MRC
datasets to generate schema-defining questions.
Lyu et al. (2021) transferred pre-trained TE/QA
models to EAE, while Zhang et al. (2022) per-
formed transfer learning from SRL to EAE. Zhang
et al. (2023) leveraged both overlapping knowledge
across datasets and dataset-specific knowledge.

2.3 Prompt-Tuning Methods

It is natural to guide PLM using discrete prompts
for appropriate text comprehension (Brown et al.,
2020; Gao et al., 2021). However, the power of
discrete prompts may be restrained during manual
construction. To settle this issue, a few studies have
proposed prompt tuning methods, which aimed to
learn continuous prompts that were integrated into
the inputs (Li and Liang, 2021; Hambardzumyan
etal., 2021; Zhong et al., 2021).

3 Methodology
An overview of DAMPT is illustrated in Figure 2.

Task Definition: Given a context ¢; € C repre-
sented as ¢; = [wm, Wi, 2y «eny <7f>, Vi, </7f>, . U}LL],
where the trigger word v; is surrounded by tokens
(t) and (/t), and its event type e; € E with specific
event roles {71,7;2, ..., 7j 1 }, the task is to extract
argument spans {a;1, a;2, ..., a;; } by inducing an
appropriate prompt p; € P. a;y is represented
as a; , = {(my, ng)|mg, nk € (0, L)}, where my,
and ny, are the begin and end positions.

3.1 Dynamic Modular Prompt

Dynamic Modular Prompt is devised to induce
p; whose top-level subtype e?)p of event type e;
and event roles {r;1,7j2,...,7;} are tunable. As
shown in Figure 3, Dynamic Modular Prompt con-
sists of two modules, Event Type Module and Event
Template Module.

3.1.1 Event Type Module

The semantics of an event argument is closely re-
lated to its event type. Additionally, the same event
role may appear in different event types with differ-
ent semantics. Based on these observations, Event
Type Module enriches event-type information for
an automatic construction of dynamic prompts.

In particular, module indicator tokens
<eventType 01> and <eventType_ 02> are
embedded for each level of e; in module’, where

3For the datasets with more levels of event type hierarchies,



<eventType 01> [Top-Level Type]
<eventType 02> Sub-Level Type
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Event Template
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Figure 3: Dynamic Modular Prompt. It consists of the Event Type Module and Event Template Module.

the top-level type represents the general category
of event and contains multiple sub-level types. For
example, in the event type Life.Die, Life is the
top-level type and Die is the sub-level type. Under
the top-level Life, there are other event types such
as Life.Injure, Life.Marry, Life.Born, etc. Thus, the
top-level types embody the coarse-grained type
information that shared among events. As a result,
we treat the top-level types as slots in Section 3.2.

3.1.2 Event Template Module

An event template is a natural language sentence
used to describe an event type containing its roles.
As indicated in Figure 3, an event template is sur-
rounded by two indicator tokens <template_start>
and <template_end>.

Existing models use event templates obtained
from the dataset ontology created by experts. On
the contrary, we use in-context learning with LLMs
(such as GPT-3.5 %) to automatically generate event
templates without any human effort.

GPT-generated template We utilize the large-
scale model GPT-3.5 for template generation due
to its strong in-context learning capability (Brown
et al., 2020). Specifically, we feed it with a few
event templates to generate new templates for all
event types. The example section in the context
given to GPT-3.5 includes event type names, event
role names, and the corresponding templates. In the
output section, we guide the generation of output
with event type and event role names.

Eventually, the dynamic modular prompt p; for
the event type e; is constructed as

p; = Concate(Mi(e;), Ma(e;, 751,752, - 7jk)), (1)

where M7 and M5 respectively denote Event Type
Module and Event Template Module, Concate(-, -)
represents concatenation of two outputs.

3.2 Prompt Tuning with Slot-Transfer

To improve the prompt p; with event-specific
knowledge, we propose a prompt tuning method,
we add more component indicator tokens and treat the levels

beyond the last level as slots.
*https://openai.com/blog/chatgpt

called Slot-Transfer. Continuous event Role Slots
and event Type Slots with Dynamic Modular
Prompt help to transfer event role and type knowl-
edge. Finally, we fuse Role Slot embedding and
Type Slot embedding with the semantic embedding
of Dj-

3.2.1 Role Slot Transfer

To incorporate event-specific knowledge beyond
the semantic information related to event roles, we
propose to transfer event role knowledge by tuning
Role Slots in the prompt. In our Dynamic Modular
Prompt, we fuse Role Slots at the position of each
role in {rj1,7j2,...,7;1}. For each specific Role
Slot, we derive a particular slot embedding, and
each event role shares its slot embedding across all
event types in which it appears.

We first embed the semantic information of p;
as follows:

pj = DecEmd(p;) = {t1,t2,...,t.}, (2

where DecE'md(-) represents the embedding layer
of PLM decoder. Then, for the event role 7 in
pj,» we fuse its specific Role Slot embedding with
its semantic embedding via a gate vector g; 5 as
follows:

idr = Index(r; ),
gjk = Sigmoid(Witiq, + WoRj 1 +b1), (3)
tige = 9jk O tide + (1 — gjx) © Ry,

where Index(-) returns the index of r; ; in p; and
W1 and Wy are learnable parameters. t;4, is the
token embedding of r; ;. in p; obtained in Eq. (2),
and Ry is the specific Role Slot embedding of
1 k> Which is randomly initialized and tuned by
PLM.

3.2.2 Top-Level Type Slot Transfer

The Role Slot embedding ¢, is befitting for a
specific event type, while an event type can form
different contexts for different roles. Additionally,
there exist semantic differences for the same event
role in different top-level event types. For example,
the role Agent means “a person whose job is to
manage the affairs of other people in business” in
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the Personnel. Nominate events; in the Life.Injure
events, it means “the person or thing that does an
action”.

Based on the above observations, we introduce
top-level Type Slot to enrich the event-specific
knowledge of prompts from the type view. In addi-
tion to treating top-level event types as Type Slots
in the Event Type Module, we also fuse top-level
Type Slots with event roles in Event Template Mod-
ule. Top-level Type Slots can transfer knowledge
across different event types, facilitating improving
prompts with event type commonality information.

For the top-level event type ez"p in the Event
Type Module, whose semantic embedding in p;
is 7;, we fuse the top-level Type Slot embedding
T top with ~y; in accordance with the same strategy

in JEq. (3). For each event role, we also fuse its top-
level Type Slot embedding with its embedding ¢,
obtained in Eq. (3). By virtue of incorporating Role
Slot embedding and top-level Type Slot embedding,
the newly generated prompt p;» can assimilate event-
specific knowledge.

3.3 Interaction of Arguments

Event arguments usually interact with others. For
instance, we can induce the Justice.Sue event from
the sentence “he’s been <t> sued </t> by an auction
house for non-payment, and by a concert promoter
for allegedly backing out of two millennium per-
formances”. After extracting the argument “‘house’
that corresponds to the role Plaintiff, we can also
capture the argument “prompter” which is con-
nected with “house” by the conjunction “and” and
infer it is also a Plaintiff. Argument interactions
can provide hidden information valuable for data-
scarce EAE learning.

In pre-trained large generative models (e.g.,
BART (Lewis et al., 2020)), although self-attention
and cross-attention mechanisms are used to capture
interaction information, earlier extractions cannot
directly access the information of later extractions.
To address this issue, we employ a Transformer En-
coder (Vaswani et al., 2017) as a simple Argument
Interaction Module after generating argument se-
lectors, which will be formulated in Section 3.4. In
Section 4.4: Ablation Studies and Section 4.5: Case
Studies we will evaluate the effectiveness of our
interaction module.

3.4 Extraction Process

Our extraction approach is inspired by the method
proposed by Ma et al. (2022), which treats event

role representations generated by PLMs as span
selectors and then use the generated selectors to
extract argument spans.

We encode the context ¢; via PLM Encoder
and obtain its hidden state fAIci which serves both
as input and as a hidden state of PLM Decoder.
Then, we can obtain the context representation
H, through PLM Decoder. Additionally, we in-
corporate the prompt embedding p;- mentioned in
Section 3.2 as input of PLM Decoder and process
cross-attention computation between p; and ﬁci,
yielding the final prompt representation H P, as fol-
lows:

ﬁci = Encoder(c¢;) € RE*",
H., = Decoder(ﬁcﬂ fAICZ) e R (@)
Hp; = Decoder(p;,ﬁ[ci) € R‘pglm,

where L is the length of the context ¢; and h is the
hidden size.

Next, we model the argument interaction men-
tioned in Section 3.3 by Transformer Encoder:

Z = LNorm(H, + MultiAtt(H, )),
J J

/ 5
H;;’, = LNorm(Z + FF(Z)) € Rlp]-|><h7 )
J

where LNorm(-), MultiAtt(-), and F'F(-) sepa-
rately represent LayerNorm, MultiHead Attention,
and FeedForward process in Transformer Encoder.

The mean pooling output €, € R" of token em-
beddings which correspond to r; , in H ; /, is then
transformed to the argument start span] selector
SIS R" and end span selector £} € R". Finally,
the argument span is extracted as follows:

[ﬂ = [ﬂ ® [w} c R,

€L €L w

(3 18] =H, [e5 5] € R*,

[Q}z @,‘i] = Softmax([lz li]) € R*,

(6)

where w® and w® are learnable parameters, and .,
is the context representation obtained in Eq. (4).
The loss function is defined as

Li(ci) = —1og §5.(yr) — log Jr.(yr),

L=Y"¥ Lie), )

ceC k

where §j; and g7 are prediction vectors for the ar-
gument start position and end position, and y;, and
yy, are ground truth.



Arg-1 Arg-C
Model PLM 1% 3% 5% 10% 20% 30% | 1% 3% 5% 10% 20% 30%
ACE05-E
DEGREE | BART-b | 133 172 271 345 490 639 | 126 166 224 300 432 586
BART-Gen | BART-b | 292 319 353 41.1 480 51.0 | 232 283 325 370 410 458
BERT-QA | BERT-b | 3031 437t 489 508 555 56.8 | 20.1 39.00 444 485 518 526
PAIE BART-b | 21.9 412 492 5657 637 6761 | 192 344 435 516 593 628
DAMPT BART-b | 31.37 449 5241 595 645 679 | 274 391 474% 535 60.7 63.3%
w/o GPT-Gen | BART-b | 283 430 535 559 6437 669 | 260" 391 477 528" 6017 635
WIKIEVENTS

BART-gen | BART:b | - 142 150 318 359 512 | - 114 135 285 309 475
PAIE BARTb | 37.7 5247 538 628" 6797 637 | 324 477 484 5677 61.87 599
DAMPT BART-b | 3637 514 54.17 615 688 67.5 | 31.60 48.1F 4967 564 621 62.0
w/o GPT-Gen | BART-b | 357 525 560 63.5 650 6657|306 485 511 584 604 6141

Table 1: Low-resource EAE performance of the proposed DAMPT model and the baselines. w/o GPT-Gen is the
variant of DAMPT that uses human-designed templates as other models. Bold score is the best, and the symbol

indicates the second-best.
4 Experiments

We conduct EAE experiments on low-resource and
few-shot scenarios to analyze the performance of
DAMPT. The implementation details are delineated
in Appendix A.

4.1 Experimental Settings

Datasets We conduct experiments on the
sentence-level EAE dataset ACEOS5-E (Dodding-
ton et al., 2004) as well as the document-level EAE
dataset WIKIEVENTS (Li et al., 2021), follow-
ing the pre-processing steps outlined in Ma et al.
(2022). The statistics of each dataset are shown in
Table 5 in Appendix A due to space limitation.

Data Splits for Low-Resource and Few-Shot Set-
tings For low-resource setting, we generates dif-
ferent proportions (1%, 3%, 5%, 10%, 20%, 30%)
of ACEO5-E and WIKIEVENTS training data as
the same as Hsu et al. (2022). In addition, we
perform the same zero-shot split on the ACEO5-E
dataset as Huang et al. (2018), that is, the top-10
frequent event types in the train set can be seen,
while all of the 23 event types in the test set are un-
seen. As to the few-shot scenario, we respectively
take 5-shot setting and 10-shot setting, where 5 and
10 samples of each unseen-type event are let into
the train set. For the WIKIEVENTS dataset, we
have 10 seen types and 40 unseen types.

Evaluation Metrics We adopt Argument Identi-
fication F1 score (Arg-1), Argument Classification
Precision (P), Recall (R) and F1 score (Arg-C) as
evaluation measures (Ma et al., 2022, Hsu et al.,
2022). These Arg-based criteria are strict since

they deem an argument as correctly classified only
when its span, event type, and role type all match
the corresponding ground truth. Achieving a high
Arg-based score indicates relatively comprehensive
success in EAE.

Baselines We compare DAMPT with the fol-
lowing state-of-the-art models: (1) classification-
based models: OnelE (Lin et al., 2020) and TSAR
(Xu et al., 2022), (2) generation-based model:
BART-gen (Li et al., 2021), DEGREE (Hsu et al.,
2022), (3) QA-based model: BERT-QA (Du and
Cardie, 2020), and (4) prompt-based models:
PAIE (Ma et al., 2022) and BIP (Dai et al., 2022).

4.2 Main Results

In Table 1, we compare the performance of
our model and the baselines on ACEO5-E and
WIKIEVENTS in low-resource settings. To pro-
vide a detailed illustration, we also report the per-
formance of DAMPT (w/o GPT-Gen), which ex-
cludes the impact of event templates generated
by GPT. It can be observed that DAMPT outper-
forms all of the baselines on different proportions
of training data of ACEOS-E. Specifically, DAMPT
achieves a 4.2% improvement under Arg-C with
the use of only 1% of the ACEOS5-E training data,
which demonstrates the effectiveness of DAMPT in
extreme data-scarce scenarios. On WIKIEVENTS,
DAMPT performs well when the proportion is
larger than 1%, achieving a 2.7% Arg-C improve-
ment with 5% WIKIEVENTS training data.

In summary, DAMPT is superior to or compa-
rable with existing state-of-the-art models on the
ACEO5-E and WIKIEVENTS datasets.



zero-shot 5-shot 10-shot
Model PIM 1 p R ArgC | P R ArgC | P R Arg-C
ACEO5-E
OnelE BERT-b | — - - 10.3 10.4 103 13.4 15.6 14.5
BART-gen BART-b | 53.0 45.6 49.0 57.2 46.9 51.5 62.4 49.7 55.3
BERT-QA BERT-b | 495 55.8 52.4 66.3 52.0 583 60.6 57.7 59.2
DEGREE BART | - - 533 - - 61.7 - - 64.3
BIP BERT-b | 54.6 6097 57.6 58.6 66.5 62.3 60.6 68.3 64.2
PAIE BART-b | 5927 531 56.0 64.9 64.3 64.6 68.2 66.3 67.2
DAMPT BART-b | 60.2 64.3 62.2 6707 658 66.9" 66.2 7007 68.1F
w/o GPT-Gen | BART-b | 60.2 57.4 5887 | 68.3 66.17  67.2 6787 708 69.3
WIKIEVENTS

BART-gen BART-b | 48.6 42.6 454 51.5 472 493 44.4 37.2 40.5
TSAR BERT-b | 18.2 19.6 18.9 52.8 61.8 57.0 53.1 63.8 57.9%
PAIE BART-b | 50.0 48.8 49.4 55.8 58.5 57.1 59.7 54.9 57.2
DAMPT BART-b | 514t 527 51.0 63.6 56.8 60.0 5727 5887 580
w/o GPT-Gen | BART-b | 52.2 4957 5017 577t 5887 583f 56.5 57.6 57.1

Table 2: Few-shot EAE performance of the proposed DAMPT model and the baselines.

4.3 Few-Shot Performance

Few-shot is a more challenging scenario with data
scarcity, where only a few seen event types are
available, and the model must handle a large num-
ber of unseen event types. In Table 2, we com-
pare the performance of our model and the base-
lines on two datasets in zero-shot, 5-shot, and 10-
shot settings. It can be observed that DAMPT per-
forms well in different EAE learning scenarios. On
ACEO5-E, DAMPT achieves the maximal gains
of 4.6%, 2.6%, and 2.1% in the zero-shot, 5-shot,
and 10-shot settings, respectively. At the document
level, DAMPT is also promising and attains gains
across the board on the dataset WIKIEVENTS.

K-Shot Performance Intuitively speaking, mod-
els are supposed to be improved with more seen
examples for unseen event types (e.g., 5-shot and
10-shot situations). It is worth noting that the im-
provement of our DAMPT is not as significant as
that of other models, such as PAIE. From zero-
shot to 10-shot, the results improve by 5.9%, while
PAIE shows an enhancement of 11.2%. This is be-
cause our Slot-Transfer strategy can help DAMPT
obtain well-informed module indicator tokens and
slots in zero-shot scenarios, which are available
for other models merely during few-shot learning.
Another reason may be related to the expansion of
seen examples, the obtained tunable components
tend to be stable, resulting in less impact on perfor-
mance improvement. These observations indicate
that our model can gain benefits in few-shot set-
tings with a small value of seen examples. Further
analysis will be conducted in Section 4.6.

Influence of LLM It can be observed in Ta-
ble 2 that in the zero-shot setting, DAMPT with
the event templates generated by GPT-3.5 outper-
forms DAMPT with manually designed templates
by 3.4% on ACEOS5-E and 0.9% on WIKIEVENTS.
This may be attributed to the promising language
ability of LLM in generating event descriptions.

4.4 Ablation Studies

We conduct ablation experiments on ACEO5-E to
demonstrate the impact of each component in our
model. Each component is removed separately:
(1) w/o TypeSlot: removing the event top-level
Type Slots that transfer type knowledge; (2) w/o
RoleSlot: removing the event Role Slots that trans-
fer role knowledge; (3) w/o TransEnc: removing
the Transformer Encoder that captures interaction
among arguments; and (4) w/o DMP: without Dy-
namic Modular Prompt, that is, a single event tem-
plate is provided to the model as a prompt as that
in most models. Moreover, we also evaluate a vari-
ant of a base model with the addition of DMP (w/
DMP) for further evaluation.

As shown in Table 3, we can see that (1) each
component of our proposed model plays its im-
portant and specific role in EAE learning; (2) the
Transformer Encoder exhibits remarkable perfor-
mance in the zero-shot setting, underscoring the
significance of capturing interaction information
among arguments, even without new type events;
(3) TypeSlot and RoleSlot prove to be effective in
low-resource environments, affirming the value of
transferring event-specific knowledge from a mini-
mal dataset; (4) Dynamic Modular Prompt serves



Model Event Type  EventRole  Transformer  Dynamic Modular Arg-C
Slot Slot Encoder Prompt Zero-Shot 1% Data 3% Data
DAMPT | v v v v | 622 27.4 39.1
-w/o TypeSlot X v v v 61.1 20.9 37.5
-w/o RoleSlot v X v v 60.1 24.0 36.3
-w/o TransEnc v v X v 58.9 22.4 37.7
-w/o DMP X X X X 56.0 19.2 34.4
-w/ DMP X X X v 59.3 24.9 36.9
Table 3: Ablation studies on ACE05-E in the data-scarce settings.
Contexts DAMPT (ours) PAIE

Sentencel (Personnel.Start-Position): In Paris , the French media group said

parent company chairman Jean - Rene Fourtou will <t> replace </t> Diller as

chairman and chief executive of US unit.

Person:Jean - Rene Fourtou v/ Person: Diller x

Sentence2 (Conflict. Demonstrate):As 1 said , the officers did tell me that

this is the largest pro - troops <t> demonstration </t> that has ever been in

San Francisco since the Vietnam War.

Place:San Francisco v/ Place: & x

Sentence3 (Life.Marry): Giuliani’s first <t> marriage </t> to his second cousin,

Regina Peruggi, lasted about 14 years.

Person: Giulian v/
Person: & x

Person: Giulian v/
Person: cousin v/

Table 4: Examples of how DAMPT and PAIE perform.

Arg-C on ACEOS in Different K-shot Settings
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Figure 4: Analysis on different K-shot settings
as the foundation of our model. A certain improve-
ment is achieved when using DMP alone in PAIE.
This demonstrates that the additional event infor-
mation provided by Event Type Module and the
tunable module indicator tokens in Dynamic Mod-
ular Prompt work with EAE learning.

4.5 Case Studies

In order to showcase the EAE ability of our method,
we sample several contexts from ACEQS-E dataset
to compare the extraction results of DAMPT and
the baselines in Table 4. In Sentencel, due to the
role-specific knowledge of Person transferred from
seen events (e.g., Personnel . Elect), DAMPT can
extract the argument “Jean - Rene Fourtou” when
there is a distracting word “Diller”. In contrast,
PAIE extracts the wrong argument. The benefit
of equipping Slot-Transfer is also shown in Sen-
tence2, where the knowledge transferred for Place
improves the understanding ability of DAMPT. In

Sentence3, as arguments “Giuliani’ and “cousin”
are associated with the word “to””, knowing that
“Giuliani” serves as Person helps to easily extract
“cousin” as Person when their interaction implied
by preposition “to” is captured. With the argument
interaction module, DAMPT can extract the second
Person argument correctly compared to PAIE.

4.6 A Further Analysis on K-Shot Settings

We further conduct experiments on ACEOS where
K increases from 0 to 20. We compare the Arg-C
results between DAMPT and several baselines in
Figure 4. DAMPT consistently dominates the other
methods with increasing K. We observe that the
performance gap between DAMPT and the other
models is largest when K is equal to 0, and there is
a shrinking trend when K increases, indicating that
DAMPT is more suitable for the few-shot scenario
with a small K. This also suggests our Dynamic
Modular Prompt with Slot-Transfer algorithm can
explore generalized and event-specific knowledge
contained by a limited number of available events.

5 Conclusion

In this paper, we have proposed a novel fully au-
tomated prompt construction called DAMPT for
data-scarce EAE. We have introduced Dynamic
Modular Prompt which incorporates learnable in-
dicator tokens to transfer generalized knowledge.
We have also introduced Role Slot and Type Slot
which enable transferring event-specific knowledge
from a few event annotations. Moreover, we have
incorporated Transformer encoder to capture argu-
ment interactions. Our evaluations in data-scarce
settings demonstrate the effectiveness of DAMPT.



Limitations

Our proposed model explores the language under-
standing ability of pre-trained language models to
tune the Dynamic Modular Prompt and generate
spans selectors. As a result, the performance of
our DAMPT is subject to the pre-training ability of
pre-trained language models. It suggests a promis-
ing way in the future to generalize EAE capability
during the pre-training phases.
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A Implementation Details

The architecture we use to construct DAMPT is
BART-base’, with 139 million parameters, con-
sisting of 6 Transformer layers. All experiments
are conducted on NVIDIA TITAN Xp GPU. We
reported the average F1 score over five different
random seeds to alleviate the negative impact of
random training. Table 5 shows the statistics of
datasets in data-scarce settings. Table 6 shows the
detailed training configurations in DAMPT’s train-
ing process.

B GPT-Generated Templates

B.1 Prompt for In-Context Learning

We list the in-context learning text for GPT-3.5
event templates generation for ACEOS5 in Fig-
ure 5. When performing in-context learning on
the WIKIEVENTS dataset with numerous event

Shttps://huggingface.co/facebook/bart-base
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Examples of Events:
event types: Conflict.Attack
event roles: Place, Target, Attacker, Instrument,

event types: Movement. Transport

Destination ) ,end

event types: Conflict. Attack

event roles: Place, Target, Attacker, Instrument,
output: {output}

event types: Movement. Transport

output: {output}

output: prompt start, Attacker ( and Attacker ) attacked Target ( and Target ) hurting victims using
Instrument ( and Instrument ) at Place ( and Place ) ,end

event roles: Vehicle, Artifact, Destination, Agent, Origin, Price,
output: prompt start, Agent ( and Agent ) transported Artifact ( and Artifact ) in Vehicle ( and
Vehicle ) cost Price from Origin place ( and Origin ) to Destination place ( and Destination ,

Describe all following Events(including Events showed in Examples) in concise terms (fill output):

event roles: Vehicle, Artifact, Destination, Agent, Origin, Price,

Figure 5: Context for GPT-3.5 in-context learning

Datasets ACEO5-E  WIKIEVENTS
#Event Types 33 50
#Event Roles 27 80

Full #Sent
Train 17,172 5,262
Dev 923 378
Test 832 492
Low-resource(1%) #Sent
Train 171 52
Dev 923 378
Test 832 492
Zero-shot #Sent
Train 3,497 2,697
Dev 389 300
Test 1169 954

Table 5: Statistics of the datasets

types, we split all types into two parts and gen-
erated templates separately in case of exceeding
the context length limitation of ChatGPT. During
the training and inference processes, we excluded
in-context examples in the prompt and the length
of prompts was limited within 512 tokens for the
pre-trained language models.

B.2 Examples of Templates

We sample some templates generated by GPT and
list them below:

Conflict.Attack: Attacker attacked Target using
Instrument at Place.

Life.Die: Victim was killed by Agent using In-
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Hyperparameter | Value
Optimizer AdamW
Adam epsilon le-8
Learning rate 2e-5
Weight decay 0.01
Batch size 16(ACE05)/4(WIKIEVENTS)
Training steps 600(1% training data)
10000(30% training data/few-shot)
Max encoder length | 192(ACE05)/500(WIKIEVENTS)
Max decoder length 80

Table 6: Hyperparameter settings

strument at Place.

Personnel.Start-Position: Person started work-
ing at Position of Entity organization at Place.

Business.Start-Org: Org was started by Agent
at Place.

Contact.Meet: Entity met with Entity at Place.

Movement.Transport: Agent transported Arti-
fact in Vehicle from Origin to Destination for Price.

Justice.Sentence: Defendant was sentenced for
Crime by Adjudicator for Sentence at Place.

Transaction. Transfer-Money: Giver gave
Money to Recipient for the benefit of Beneficiary
at Place.

C EAE Performance of LLM

To demonstrate the performance of the LLM for
a more comprehensive comparison, we have con-
ducted experiments on a small set of ACEO5-E test
data (60 samples) with GPT-4 as a zero-shot solu-



model ‘ P ‘ R ‘ F
GPT-4 | 37.8 | 53.8 | 445

Table 7: Performance of GPT-4 for EAE

tion. The results recorded in the Table 7 demon-
strate that Few-shot learning and zero-shot learning
remain challenging even for powerful models.

As demonstrated in Table 1 and Table 2, DAMPT
shows significant F1-score improvements relative
to the baselines in the low-resource and few-shot
scenarios. The comparatively low F1 scores are
attributed to the inherent data limitation in data-
scarce scenarios.
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