
Under review as submission to TMLR

A Stochastic Polynomial Expansion for Uncertainty Propaga-
tion through Networks

Anonymous authors
Paper under double-blind review

Abstract

Network-based machine learning constructs are becoming more prevalent in sensing and
decision-making systems. As these systems are implemented in safety-critical environments
such as pedestrian detection and power management, it is crucial to evaluate confidence
in their decisions. At the heart of this problem is a need to understand and characterize
how errors at the input of networks become progressively expanded or contracted as signals
move through layers, especially in light of the non-trivial nonlinearities manifest throughout
modern machine learning architectures. When sampling methods become expensive due to
network size or complexity, approximation is needed and popular methods include Jacobian
(first order Taylor) linearization and stochastic linearization. However, despite computational
tractability, the accuracy of these methods can break down in situations with moderate to
high input uncertainty. Here, we present a generalized method of propagating variational
multivariate Gaussian distributions through neural networks. We propose a modified Taylor
expansion function for nonlinear transformation of Gaussian distributions, with an additional
approximation in which the polynomial terms act on independent Gaussian random variables
(which are identically distributed). With these approximated higher order terms (HOTs),
we obtain significantly more accurate estimation of layer-wise distributions. Despite the
introduction of the HOTs, this method can propagate a full covariance matrix with a
complexity of O(n2) (and O(n) if only propagating marginal variance), comparable to
Jacobian linearization. Thus, our method finds a balance between efficiency and accuracy.
We derived the closed form solutions for this approximate Stochastic Taylor expansion for
seven commonly used nonlinearities and verified the effectiveness of our method in deep
residual neural networks. This general method can be integrated into use-cases such as
Kalman filtering, adversarial training, and variational learning.

1 Introduction

A fundamental problem in uncertainty estimation and verification is to characterize how a given input
distribution becomes transformed by the operant function (succinctly, Y = f(X)). When f takes the form
of a modern machine learning (ML) architecture, this problem quickly becomes analytically intractable,
necessitating either sampling methods or approximation. Two dominant approximation techniques are Jacobian
linearization (JL), i.e., deterministic first order Taylor expansion around the mean of input distribution, and
stochastic linearization (SL), which uses expected value of the first derivative as gain and mean of output
as bias, or Ŷ = E[∇xf(X)] ◦ (X − µx) + E[f(X)]. Stochastic linearization minimizes mean square of the
residual (Booton (1953); Kazakov (1954)), and has been used in the context of feedback control systems (see,
e.g., Ching et al. (2010) or Elishakoff and Crandall (2017)). To give a few examples in ML contexts, Gandhi
et al. (2018) Dera et al. (2021) Petersen et al. (2024) used Jacobian linearization for uncertainty propagation
through networks, and Beiu et al. (1994); Abdelaziz et al. (2015) used a piece-wise linear approximation of
sigmoid functions prior to JL. In Zhen et al. (2021), the authors used SL to provide an output covariance
that enabled the determination of a certified covariance radius.

Perhaps unsurprisingly, these methods work best in low-uncertainty regimes. In high uncertainty setting,
variance can arise not only measurement error (e.g. sensor noise in vision networks), but also the parameters

1

Under review as submission to TMLR

of the neural network itself. For example, in 2D batch normalization layers, activations are normalized by the
square root of pre-trained variance, which is typically far smaller than 1 if input images are standardized.
This normalization can easily drive variance of ‘neuron’-level representations tenfold or more (Fig. 1).

(a) (b)

Figure 1: We survey preceding layers of nonlinearity in some pretrained image-classification networks (Redmon;
Sandler et al. (2018); Zhang et al. (2017); Zoph et al. (2017); Tan and Le (2019); Chollet (2017); He et al.
(2016)), and show how high the variance can be despite the moderate image noise (see (b)). (a) Boxplot
of variance of neurons from one layer immediately followed by nonlinearity, and it is common to have high
uncertainty propagating through nonlinear layers. These values are obtained by sampling 100 noisy images.
(b) Input image injected by Gaussian noises N(0, σ2 = 100). Note that due to the normalization in the
ImageInputLayer (e.g. z-score), the equivalent (after the ImageInputLayer) pixel-wise variance ranges from
0.0015 to 0.0301. Thus, normalizing input images does not mitigate this effect. This is consistent with
previous findings that many models were not robust to even negligible noises on input (Szegedy et al. (2013);
Biggio et al. (2013); Carlini and Wagner (2017); Ilyas et al. (2018)).

Figure 2: Blue: Two Gaussian distributions, with positive (top) and negative (bottom) mean, propagated
through the ReLU function. Orange: Approximations of the output distribution suggested by three uncertainty
propagation methods.

Another approach, the method of moments, aims to obtain the first and second moments of propagated
distributions, and then use a Gaussian distribution with the same moments to approximate the output
distribution. Some early works include Frey and Hinton (1999) for ReLU, Spiegelhalter and Lauritzen (1990)
and MacKay (1992) for sigmoid and tanh function using two different approximations. Subsequently,
Hernández-Lobato and Adams (2015) Wang et al. (2016) Gast and Roth (2018) explored the usage of this
method for training probabilistic neural networks, and Wang and Manning (2013) in drop-out training. The
work Shekhovtsov and Flach (2019) also developed an analytic approximation of propagating uncertainty
through argmax and softmax under the assumption of logistic and Gumbel priors. Amidst these studies, a
critical issue surfaces: the derivation typically depends on the assumption of independent Gaussian input. As

2

Under review as submission to TMLR

we will later confirm, this assumption result in significant approximation error when correlations between
neurons are substantial, for example, in convolution neural networks with overlapping convolution kernels. In
Shridhar et al. (2019), the authors attempted to address this issue by training a hyperparameter for each
convolution kernel to compensate for missing covariance, but this method can only be optimized on averaged
rather than case-by-case, and requires extra training data perturbed by only a narrow band of noise.

Contributions To summarize, current uncertainty propagation of variational Gaussian distributions
through nonlinear layers relies on either (1) linearizing the nonlinearities or (2) direct derivation (or approx-
imation) of the first two moments of output distributions under the assumption of zero correlation. The
former allows propagating full covariance matrices, but introduce errors from ignoring higher order moments’
contribution to covariance calculation; the latter introduce errors from ignoring correlation’ contributions to
variance calculation. If deterministic first-order Taylor expansion is used, additional error is introduced from
ignoring the uncertainty of the first derivative.

To address these shortcomings, we here postulate a generalized framework of using a stochastic polynomial
expansion as a surrogate nonlinearity, and derived closed-form solutions of the mean, covariance, and cross-
covariance of propagated multi-variate distributions, for seven nonlinearities that are ubiquitous in modern
ML network constructs. This is achieved with a computational complexity of O(n2), comparable to that of
first-order Taylor expansion.

Relation to Bayesian Learning for Neural Networks In exact Bayesian inference, one needs to
solve the posterior distribution of the network parameters θ given data D, i.e. p(θ|D) = p(D|θ)p(θ)∫

p(D|θ′)p(θ′)dθ′ .

The marginal distribution is an integral of the likelihood p(D|θ′) over all possible combinations of network
parameters. Since the likelihood is intractable due to the nonlinearity, and sampling methods are not practical
in the limit of large parameter size, this integral has to be approximated. Approximating this likelihood with
variational Gaussian distributions has been previously explored Hinton and van Camp (1993); Graves (2011);
Hernández-Lobato and Adams (2015); Wu et al. (2019). Often, deterministic first-order Taylor expansion
is used for layer-wise propagation of Gaussian distributions. Thus, our method may contribute to higher
accuracy in such a Bayesian inference setting.

2 Theory

Let X := (X1, X2, · · · , Xn)⊤ be a Gaussian random vector following N (µ̃, Σ̃), and Ξ := X− E[X]. Let f̄(·)
be a smooth, univariate function. We define the vector function f(X) = (f̄(X1), f̄(X2), · · · , f̄(Xn))⊤. Here,
we have in mind that f(·) describes the activation function at the output of a feedforward layer. Now, let us
define a set of i.i.d. surrogate distributions Ξ(s) ∼ N (0, Σ̃), s = 1, 2, ..., S.

We now propose the central construct in this paper, the pseudo-Taylor polynomial expansion (PTPE)
of f(X) as:

g(X) = E [f(X)] +
S∑

s=1

E [∇s
xf(X)]
s! ◦

(
Ξ◦s

(s) − E
[
Ξ◦s

(s)

])
(1)

We postulate and later show that this expansion provides a tractable and accurate approximation of f(X)
for the purposes of propagating uncertainty through feedforward network architectures.

In the above, we use the form of a Taylor polynomial expansion to describe the behavior (in expectation)
of the function f(X) subject to the stochastic input X. The choice of the i.i.d. surrogate polynomials,
{1, Ξ(1), Ξ◦2

(2), Ξ◦3
(3), · · · }, is made to simplify the ensuing derivations. Note that if taking only the first two

terms, this expansion is equivalent to stochastic linearization, because Ξ(1)−E[Ξ(1)] is equivalent to X−E[X].
It is straightforward to observe that g(X) has the same first moment as f(X) because all terms after the first
one are designed to have zero mean. In the following, we will provide empirical evidence that the second
moment is well-captured for many common activation functions.

3

Under review as submission to TMLR

First, we derive the solution for covariance and cross-covariance using the proposed stochastic polynomial
expansion.

Lemma 1. Define

A0 = E [f(X)] A1 = E [∇xf(X)]
1! A2 =

E
[
∇2

xf(X)
]

2! · · ·

Then, the covariance matrix of g(X) is

Σg(X) =
S∑

s=1
As ◦

(
E
[
Ξ◦s

(s) Ξ◦s⊤
(s)

]
− E

[
Ξ◦s

(s)

]
E
[
Ξ◦s

(s)

]⊤
)
◦A⊤

s (2)

for an S-th order expansion. For S = 3,

Σg(X) =A1 ◦ Σ̃ ◦A⊤
1 +

A2 ◦
(
2Σ̃◦2) ◦A⊤

2 +
A3 ◦

[
6Σ̃◦3 + 9 diag(Σ̃) ◦ Σ̃ ◦ diag(Σ̃)⊤] ◦A⊤

3

Proof. The expected values can be solved using central moments of Gaussian distributions and Isserlis’
theorem. All power operations are element-wise. Note that since As are n dimensional vector, and all
the power and product operations are element-wise, the complexity of calculating covariance is O(n2). For
detailed derivation, see Appendix A.5.2.

It is useful to note that an addition (residual or recurrent) layer sums the activation of two (or more) layers, e.g.
X and g(Y). In thise case, the covariance of X + g(Y) is the sum of their covariances and cross-covariances,
i.e.

ΣX+g(Y) = ΣX + Σg(Y) + ΣXg(Y) + Σg(Y)X

It it thus helpful to postulate an additional lemma for the purpose of calculating covariance after addition.

Lemma 2. Let Y := (Y1, Y2, · · · , Yn)⊤ be another Gaussian random vector that is cross-correlated to X
with ΣYX, and Ω := Y− E[Y]. Then, the cross-covariance matrix between Y and Z := g(X) is

ΣYZ =
S∑

t=1,t is odd
A⊤

t ◦ E
[
Ω Ξ◦t⊤

(t)

]

ΣZY =
S∑

s=1,s is odd
As ◦ E

[
Ξ◦s

(s) Ω⊤
] (3)

for an S-th order expansion. For S = 3,

ΣYZ = A⊤
1 ◦ΣYX + 3A⊤

3 ◦ΣYX ◦ diag(ΣX)⊤

ΣZY = A1 ◦ΣXY + 3A3 ◦ΣXY ◦ diag(ΣX)

Proof. The expected value can be calculated using Isserlis’ theorem. Note that this term is nonzero only if t
and s are odd. For details of derivation, see Appendix A.5.3.

With these results, to find the covariance of the output of a nonlinear layer, assuming the input follows a
multi-variate normal distribution, one needs to derive the coefficients of the PTPE, i.e., A0, A1, A2, etc.,
for the nonlinearity of interest. Note that these coefficients only depend on mean µ̃ and variance σ̃2, not
correlations, rendering the computational complexity O(n). We briefly discuss some of the techniques we
adopted to solve for these polynomial coefficients and list the final results in Table 1 and Table 2. For detailed
derivation for all nonlinearities, see Appendix A.6 - A.11.

4

Under review as submission to TMLR

Ta
bl

e
1:

Fi
rs

t
fo

ur
co

effi
ci

en
ts

of
th

e
po

ly
no

m
ia

ls
fo

r
se

ve
n

co
m

m
on

ly
us

ed
no

nl
in

ea
rit

ie
s.

Fo
r

no
ta

tio
na

ls
im

pl
ic

ity
,a

ll
th

e
pr

od
uc

t,
di

vi
sio

n,
an

d
po

w
er

op
er

at
io

ns
ar

e
el

em
en

t-
w

ise
.

A
0

A
1

A
2

A
3

σ̂
2 j

=
σ̃

2
+

σ́
2 j

Ta
nh

1 p

p ∑ j
=

1
(2

C
j
−

1)
1 p

p ∑ j
=

1
2B

j
1 2
p

p ∑ j
=

1
−

2B
j

µ̃ σ̂
2 j

1 3!
p

p ∑ j
=

1
2B

j

µ̃
2
−

σ̂
2 j

σ̂
4 j

σ́
2 j

=
1 2γ

2 j

Si
gm

oi
d

1 p

p ∑ j
=

1
C

j
1 p

p ∑ j
=

1
B

j
1 2
p

p ∑ j
=

1
−

B
j

µ̃ σ̂
2 j

1 3!
p

p ∑ j
=

1
B

j

µ̃
2
−

σ̂
2 j

σ̂
4 j

σ́
2 j

=
1 2γ

2 j

So
ft

pl
us

1 p

p ∑ j
=

1
C

j
µ̃

+
B

j
σ̂

2 j

1 p

p ∑ j
=

1
C

j
1 2
p

p ∑ j
=

1
B

j
1 3!
p

p ∑ j
=

1
−

B
j

µ̃ σ̂
2 j

σ́
2 j

=
1

2γ
2 j
β

2

R
eL

U
C

µ̃
+

B
σ̂

2
C

1 2B
1 3!

(−B
µ̃ σ̂

2

)
σ́

2
=

0

Le
ak

yR
eL

U
(θ

)
θµ̃

+
(1
−

θ)
(C

µ̃
+

B
σ̂

2)
θ

+
(1
−

θ)
C

1
−

θ

2
B

1
−

θ

3!

(−B
µ̃ σ̂

2

)
σ́

2
=

0

G
EL

U
C

µ̃
+

B
σ̃

2
C

+
B

µ̃ σ̂
2

1 2B

(1
+

1 σ̂
2
−

µ̃
2

σ̂
4

)
1 3!

B

(−µ̃ σ̂
2
−

3µ̃ σ̂
4

+
µ̃

3

σ̂
6

)
σ́

2
=

1

Si
LU

1 p

p ∑ j
=

1
C

j
µ̃

+
B

j
σ̃

2
1 p

p ∑ j
=

1
C

j
+

B
j

µ̃
σ́

2 j

σ̂
2 j

1 2
p

p ∑ j
=

1
B

j

(1
+

σ́
2 j

σ̂
2 j

+
µ̃

2 σ́
2 j

σ̂
4 j

)
1 3!
p

p ∑ j
=

1
B

j

(−
µ̃ σ̂

2 j

−
3µ̃

σ́
2 j

σ̂
4 j

+
µ̃

3 σ́
2 j

σ̂
6 j

)
σ́

2 j
=

1 2γ
2 j

w
he

re
B

j
=

1 σ̂
j

φ

(µ̃ σ̂
j

)
an

d
C

j
=

1 2er
fc

 −
µ̃ √ 2σ̂

2 j

or

Φ
(µ̃ σ̂

j

)

5

Under review as submission to TMLR

Table 2: General solutions for the pseudo-Taylor coefficients using Hermite polynomial. For notational
simplicity, all the product, division, and power operations are element-wise. The definitions of Bj and σ̂2

j are
the same as those in Table 1.

Tanh As(s ≥ 1) = 1
s! p

p∑
j=1

2BjD
(s−1)
j

Sigmoid As(s ≥ 1) = 1
s! p

p∑
j=1

BjD
(s−1)
j

Softplus As(s ≥ 2) = 1
s! p

p∑
j=1

BjD
(s−2)
j

ReLU As(s ≥ 2) = 1
s!BD(s−2)

LeakyReLU(θ) As(s ≥ 2) = 1
s! (1− θ)BD(s−2)

GELU As(s ≥ 2) = 1
s!B

[
D(s−2) −D(s)

]

SiLU As(s ≥ 2) = 1
s! p

p∑
j=1

Bj

[
D

(s−2)
j −D

(s)
j

]

where D
(s)
j :=

 −1√
2σ̂2

j

s

Hs

 µ̃√
2σ̂2

j

Tanh, Sigmoid, and Softplus. Because the integral
∫
∇tanh(x)p(x)dx is not tractable analytically, so

we make a further approximation by substituting tanh with the error function which is very similar but more
tractable. Specifically, we propose

tanh(x) ≈ 1
p

p∑
j=1

erf [γjx]

where {γ1, · · · , γp} is a set of scaling factors obtained by numerical optimization (see Eq.6 in Appendix), and
the error function is defined as

erf(x) = 2√
π

∫ x

0
exp(−t2)dt

Then, the integral
∫
∇tanh(x)p(x)dx can be approximated as 1

p

∑p
j=1

∫
∇erf(γjx)p(x)dx, which is tractable

analytically. The higher order derivatives of the error function are simply derivatives of Gaussian functions
φ(x), which are related to Hermite polynomials Hs(x) through

ds

dxs

[
1
σ

φ
(x

σ

)]
=
(
−1√
2σ2

)s

Hs

(
x√
2σ2

)
1
σ

φ
(x

σ

)

6

Under review as submission to TMLR

and

H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 − 2
· · ·

and we showed the pseudo-Taylor coefficients are convolutions of Gaussian derivatives and Gaussian pdf,
which are analytically tractable A.6. We used a similar treatment for sigmoid function (see Appendix A.7).
Using error functions as a approximation was first suggested by Spiegelhalter and Lauritzen (1990), but we
use a linear combination, which is easily parallelizable and enhanced approximation accuracy. The derivation
for softplus can reuse the results of sigmoid, because the derivative of softplus is just softplus with a
scaling factor β (A.8).

ReLU and LeakyReLU. It is obvious that we cannot apply our method directly on ReLU, because
it is not continuously differentiable. Hence, we modified the results for softplus at the limit of β → ∞,
considering the relationship (A.9)

lim
β→∞

1
β

log
(
1 + eβx

)
= max{0, x}

Similarly, leaky ReLU and any piece-wise linear activation function can be described as a combination of
ReLU functions with different scaling, shifting, and/or mirroring.

GELU and SiLU. The derivatives of GELU function can be expressed using derivatives of Gaussian cdf
Φ(x)

∂s

∂xs
GELU(x) = s

∂s−1

∂xs−1 Φ(x) + x
∂s

∂xs
Φ(x)

The expected value of the GELU derivative involves integrating the product of Hermite polynomials of x and
Gaussian functions, which is analytically tractable (A.10). Using normal cumulative density functions to
approximate a sigmoid function, the derivations for a SiLU function becomes similar to that of the GELU
(A.11).

3 Results

3.1 PTPE significantly improves estimation accuracy when exposed to higher input variance

As an initial empirical test and demonstration of concept, we applied PTPE to a single, univariate nonlinearity
subject to a parameterized normally distributed input. We varied the input mean and variance and examined
how the output mean and variance compared to those predicted by PTPE. For this comparison, the true
output statistics were obtained through 107 Monte Carlo sampling across all input parameters. As expected,
PTPE far outstrips Jacobian linearization, and this effect is prominent especially when input variance is high.
With up-to third order PTPE, the estimated variance by our method is already very close to the ground
truth (Fig. 3 col 4).

3.2 PTPE accurately quantifies uncertainty in canonical network architectures

To benchmark PTPE for uncertainty quantification in neural networks, we trained 9 residual neural networks
(He et al. (2016)) with three depths (13, 33, and 65 layers) and 3 three typical nonlinearities (ReLU, GELU,
Tanh) on CIFAR10 (Krizhevsky (2009)). We corrupted each input image with additive Gaussian noise, then
compared the PTPE-predicted and true (via Monte Carlo sampling) output distributions (Fig. 4). The
layerwise application of PTPE is outline in Algorithm 1 with accompanying pseudo code.

7

Under review as submission to TMLR

Figure 3: Solid lines: mean (column 1) and variance gain (output variance divided by input variance)
(column 2-5) obtained by sampling 1e6 datapoints from Gaussian distributions with centers ranging from -3
to 3. Dashed lines: approximated mean and variance gain predicted with 1st, 2nd, and 3rd order pseudo
Taylor polynomial expansion (column 2 - 4). Colors correspond to different input variances (blue: 0.1, yellow:
1, red: 10, green: 100). Dotted lines: approximated mean and variance gain using Jacobian linearization
(first order deterministic Taylor expansion around input mean)

We measure the accuracy of the output covariance matrix in two ways. First, we evaluate the Frobenius
norm of the residuals ||Σest −Σtrue||fro. Then, we fit Gaussian models with the (estimated or true) mean
and covariance, and examine the Kullback-Leibler divergence between the two distributions, as a holistic
measurement. We summarize the results in Table 3.

Overall, the experimental results align with expectations: (1) Jacobian linearization degrades dramatically in
moderate to high variance regime. (2) Direct derivation is not suitable for this task due to the assumption of
independence, since the overlapping convolution kernels and residual layers introduce substantial correlation.
(3) Introducing up-to the third order PTPE typically outperformes stochastic and Jacobian linearization by
a large margin. In the specific case of resnet13 with ReLU nonlinearity, stochastic linearization surpasses

8

Under review as submission to TMLR

Figure 4: Schematic of experiment setup. We inject i.i.d. Gaussian noise to input image to simulate sensor
noises, then compare the estimated output distribution to the ground truth obtained by large-scale simulation
(sampling 107 noisy images).

(a) (b) (c)

Figure 5: We performed the 1D regression task by training neural networks using DVI with three different
nonlinear activations. The estimation of the posterior mean and covariance is implemented with up to
third order of PTPE. We show the fitting obtained by neural networks with (a) Tanh (b) ReLU (b) GELU,
respectively.

PTPE by a small margin. We surveyed the input variance prior to each nonlinear layer and found it well
below 0.1 in almost all cases, i.e., this turns out to be a low-noise model.

3.3 PTPE addresses the limitations of DVI by incorporating non-piecewise-linear activations.

One major contribution of our work is to address the lack of accurate deterministic moment estimation for
general nonlinearities in the field of variational inference. The method suggested by Hernández-Lobato and
Adams (2015) Wu et al. (2019) share the same goal, which is to find a deterministic method to approximate
moments in neural networks. However, closed form solutions of posterior mean and covariance were solved
only for piecewise linear activations such as ReLU and Heaviside. We know Var(f(X)) = E[f(X)2]−E[f(X)]2,
and the first term, E[f(X)2] =

∫
f(x)2pX(x)dx, becomes arduous to solve for more complex nonlinearities

f(·). Our approach circumvents this issue by taking derivatives inside the integrals, which provides tractability
for general nonlinearities.

We provide additional context and quantification, by integrating PTPE into deterministic variational inference
(DVI) Wu et al. (2019) and conduct 1D regression experiments (Figure 5). This regression task is the same to
that of Wu et al. (2019) except the data variance is higher. The strong alignment between true and predicted
intervals demonstrates PTPE’s effectiveness and reliability for variational inference applications.

9

Under review as submission to TMLR

Table 3: Estimation accuracies of uncertainty propagation methods evaluated on residual networks of three
different depth, three different nonlinearities, and four different input variance. The smaller the better. Direct
derivation of GELU is not reported because it is not found in literature.

Stochastic or Deterministic Expansion
Direct Derivation

(assume independence)

3rd order PTPE

(Ours)

2nd order PTPE

(Ours)

1st order PTPE (SL)

e.g.

Zhen et al. (2021)

Deterministic

1st order Taylor

e.g.

Petersen et al. (2024)

ReLU

Frey and Hinton (1999)

Tanh

Wang et al. (2016)

Nonlin.
Input

Var.
KLdiv Frob. Cov KLdiv Frob. Cov KLdiv Frob. Cov KLdiv Frob. Cov KLdiv Frob. Cov

ResNet13 ReLU 1 1.9830 0.0252 1.9742 0.0227 1.9555 0.0130 12956 1686.1 Inf 0.2636

10 6.8032 0.4116 6.7333 0.3716 6.6570 0.1811 18632 16861 38.230 1.8590

100 9.2222 3.3886 9.0892 2.8985 8.8476 1.5071 57634 1.6862e5 53.536 6.3657

1000 75.545 8.7788 60.770 7.3594 46.688 3.4739 -Inf 1.6863e6 145.13 6.4964

GELU 1 0.1641 0.0567 0.0734 0.0371 0.0427 0.0254 0.7556 0.0597 N/A

10 0.2606 0.4509 0.0765 0.1867 0.0524 0.1212 5.7486 1.2599

100 0.7204 1.3371 0.2109 0.6074 1.2855 2.1094 44.531 23.552

1000 3.3989 1.1458 4.1200 2.0713 9.6970 3.6949 516.30 284.47

Tanh 1 0.0398 0.0119 0.0412 0.0114 0.0538 0.0143 0.7343 0.0455 91.409 0.1259

10 0.2970 0.0698 0.3294 0.0953 0.4574 0.3265 5.2699 1.2315 13.216 1.2397

100 1.1637 0.3522 1.3214 0.6513 2.1006 1.9951 32.560 21.456 17.948 4.1842

1000 2.6870 0.8039 2.5230 1.4988 8.2010 3.6733 260.97 251.06 55.604 5.0782

ResNet33 ReLU 1 1.7206 0.0135 1.7135 0.0136 1.2553 0.0173 -Inf 3.9662e5 Inf 0.1910

10 5.9533 0.1947 5.9299 0.2051 5.0286 0.3522 -Inf 3.9662e6 Inf 1.4182

100 8.0600 2.2561 8.2479 2.4993 6.8999 3.5706 -Inf 3.9662e7 Inf 6.7729

1000 27.182 3.4422 20.965 3.5344 20.258 3.9930 -Inf 3.9662e8 187.10 5.6828

GELU 1 0.6193 0.0073 0.3450 0.0197 0.3496 0.0198 0.5941 0.0189 N/A

10 0.6316 0.0773 0.6662 0.2240 0.7479 0.2313 2.8821 0.1730

100 1.4799 1.2352 3.2127 2.3834 4.0093 2.5805 15.650 1.2557

1000 3.0118 1.4099 7.9264 2.1759 10.2863 2.5945 136.74 38.561

Tanh 1 0.1738 0.0297 0.1705 0.0296 0.2053 0.0339 0.8907 0.0287 266.79 0.0972

10 0.5381 0.3440 0.5520 0.3442 0.8110 0.5163 7.0697 0.4308 57.076 1.2637

100 1.7506 2.6232 2.0170 2.7172 3.3515 3.8600 23.278 10.729 37.783 6.2437

1000 3.3458 5.1601 3.5783 5.4889 7.4666 8.1504 111.59 157.09 58.041 11.086

ResNet65 ReLU 1 1.4917 0.0467 1.4814 0.0479 0.8827 0.0432 -Inf 1.4451e6 Inf 0.2658

10 8.4157 0.6900 8.2384 0.7003 6.6310 0.8260 -Inf 1.4451e7 Inf 2.0032

100 9.2703 4.7281 9.9622 4.8751 10.768 5.5521 -Inf 1.4451e8 Inf 9.0630

1000 24.553 6.9253 26.293 6.9553 43.585 7.1456 -Inf 1.4451e9 149.03 8.4401

GELU 1 0.5624 0.0487 0.7439 0.0587 0.8083 0.0601 23812 0.1246 N/A

10 1.3514 0.4572 1.4035 0.5509 1.6731 0.5903 2222.1 0.9907

100 2.4530 1.7822 2.6217 2.3779 3.7498 2.8196 19.722 4.8688

1000 4.5847 1.8153 7.2416 2.6670 11.949 3.2836 201.36 84.473

Tanh 1 1.2616 0.1042 1.2644 0.1041 1.3358 0.1073 1.5176 0.0872 693.30 0.1426

10 1.8372 0.6403 1.8704 0.6431 2.4041 0.7024 5.7769 0.4136 113.62 1.0517

100 3.9667 2.2011 4.2400 2.2295 5.4892 2.4843 33.5632 10.024 79.875 3.3743

1000 4.9223 3.2582 5.1105 3.3049 7.7989 3.7953 168.3758 124.67 122.56 4.7517

10

Under review as submission to TMLR

4 Discussion

Figure 6: Empirical distributions
(of the first three units) before
the final softmax layer of a resid-
ual neural net trained on CI-
FAR10. This network has 13
ReLU layers. The distributions
are obtained by Monte Carlo sam-
pling 105 images with additive
Gaussian noises. For distribu-
tions of all 10 units, see Fig. 7 in
Appendix.

One immediate potential limitation of PTPE is its reliance on the assump-
tion that inputs are Gaussian. It has been well-established that at the limit
of infinite width, a deep neural network with Gaussian input is equivalently
a Gaussian process (Neal (1994); Williams (1997); de G. Matthews et al.
(2018); Lee et al. (2018); Gao et al. (2023)), and a similar phenomenon is
also reported in Bayesian neural networks with Gaussian weights (Goulet
et al. (2021); Nguyen and Goulet (2022)). Based on this observation, we
assume a "wide enough" neural network will have approximate Gaussianity
in each layer, so that the error of using variational Gaussian distributions
to approximate layer-wise distributions becomes negligible. We verify this
assumption through simulation (see e.g., Fig. 6).

In this paper, we focus on the propagation of Gaussian distributions. This
choice is due to their prevalence in machine learning and their convenient
property of being Lévy alpha-stable, meaning a linear combination of
Gaussian random variables remains Gaussian. This makes Gaussian dis-
tributions pertinent to our objectives. Consequently, our method could
potentially be extended to other types within the Lévy alpha-stable family.
For instance, Peterson et. al. demonstrated the propagation of Cauchy
distributions through neural networksPetersen et al. (2024). A more com-
prehensive survey is provided in Wang et al. (2016), where the authors
examined the propagation of exponential family distributions (including
Beta, Rayleigh, Gamma, Poisson, and Gaussian), though this requires
more intricate derivations.

A strength of PTPE is its generality. As mentioned in the introduction,
several immediate motivating use-cases are in the training of robust net-
works including probabilistic network models. Furthermore, our proposed
method may also find application in safety-critical engineering systems
that require estimates on uncertainty. Recently, researchers combined an LSTM and Kalman filtering to
monitor the states of plasma inside a nuclear fusion device Pavone et al. (2023). The Kalman filter, by
construction, requires statistics on the output of the LSTM in order to generate control signals. Such statistics
were generated by using a probabalistic architcture within the LSTM, i.e., where parameters are specified by a
learned distribution. PTPE provides a potential alternative path for such problems, but enabling uncertainty
propagation through deterministic learned architectures.

5 Conclusion

In this article, we developed a stochastic polynomial expansion approach, PTPE, to perform uncertainty
propagation in neural networks. Our method offers significant advantages in accurately propagating the
full covariance matrix of an input distribution compared to state-of-the-art methods, without substantially
sacrificing computational efficiency. We derived analytical solutions for the first two moments of the output
distributions for seven commonly used nonlinearities, demonstrating remarkable accuracy in predicting
univariate mean and variance, particularly under high uncertainty. Additionally, we assessed its multivariate
accuracy in deep residual neural networks trained on image categorization tasks. By incorporating up
to third-order polynomial expansion, our method generally outperformed others, except in scenarios with
minimal uncertainty in which the performance of competing methods is comparable. Overall, our proposed
method provides a tractable framework for solving uncertainty propagation problems. It can potentially be
effectively applied in various domains, including adversarial training, Bayesian inference, and safety-critical
applications, offering a versatile tool for enhancing the reliability and robustness of neural networks.

11

Under review as submission to TMLR

References
A. H. Abdelaziz, S. Watanabe, J. R. Hershey, E. Vincent, and D. Kolossa. Uncertainty propagation through

deep neural networks. In Interspeech 2015, Dresden, Germany, September 2015.

V. Beiu, J. Peperstraete, J. Vandewalle, and R. Lauwereins. Vlsi complexity reduction by piece-wise
approximation of the sigmoid function. 01 1994.

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndic, P. Laskov, G. Giacinto, and F. Roli. Evasion attacks
against machine learning at test time. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 387–402. Springer, 2013.

R. C. Booton. The analysis of nonlinear control systems with random inputs. In Proceedings, symposium on
nonlinear circuit analysis, volume 2, pages 369–391, 1953. see also IEEE Transactions on Circuit Theory,
CT-1 (1954), pp 9–18.

P. Bromiley. Products and convolutions of gaussian probability density functions. Technical
report, Tina-Vision Memo, 2003. URL http://in.ruc.edu.cn/wp-content/uploads/2016/09/
The-product-and-convolution-of-guassian-distributions.pdf.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium
on Security and Privacy (SP), pages 39–57. IEEE, 2017.

S. Ching, Y. Eun, C. Gokcek, P. Kabamba, and S. Meerkov. Quasilinear control: Performance analysis
and design of feedback systems with nonlinear sensors and actuators. Quasilinear Control: Performance
Analysis and Design of Feedback Systems with Nonlinear Sensors and Actuators, 01 2010. doi: 10.1017/
CBO9780511976476.

F. Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint, pages 1610–02357,
2017.

W. J. Cody. Rational chebyshev approximations for the error function. Mathematics of Computation, 23
(107):631–637, 1969. ISSN 00255718, 10886842.

A. G. de G. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani. Gaussian process behaviour
in wide deep neural networks. ArXiv, abs/1804.11271, 2018. URL https://api.semanticscholar.org/
CorpusID:13757156.

D. Dera, N. Bouaynaya, G. Rasool, R. Shterenberg, and H. Fathallah-Shaykh. Premium-cnn: Propagating
uncertainty towards robust convolutional neural networks. IEEE Transactions on Signal Processing, PP:
1–1, 07 2021. doi: 10.1109/TSP.2021.3096804.

I. Elishakoff and S. H. Crandall. Sixty years of stochastic linearization technique. Meccanica, 52(1):299–
305, Jan 2017. ISSN 1572-9648. doi: 10.1007/s11012-016-0399-x. URL https://doi.org/10.1007/
s11012-016-0399-x.

B. J. Frey and G. E. Hinton. Variational learning in nonlinear gaussian belief networks. Neural Computation,
11(1):193–213, Jan 1999.

M. S. Gandhi, K. Lee, Y. Pan, and E. A. Theodorou. Propagating uncertainty through the tanh function with
application to reservoir computing. ArXiv, abs/1806.09431, 2018. URL https://api.semanticscholar.
org/CorpusID:49415199.

T. Gao, X. Huo, H. Liu, and H. Gao. Wide neural networks as gaussian processes: Lessons from deep
equilibrium models. arXiv preprint arXiv:2305.00001, 2023. Available at https://openreview.net/pdf?
id=B1EA-M-0Z.

J. Gast and S. Roth. Lightweight probabilistic deep networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

12

http://in.ruc.edu.cn/wp-content/uploads/2016/09/The-product-and-convolution-of-guassian-distributions.pdf
http://in.ruc.edu.cn/wp-content/uploads/2016/09/The-product-and-convolution-of-guassian-distributions.pdf
https://api.semanticscholar.org/CorpusID:13757156
https://api.semanticscholar.org/CorpusID:13757156
https://doi.org/10.1007/s11012-016-0399-x
https://doi.org/10.1007/s11012-016-0399-x
https://api.semanticscholar.org/CorpusID:49415199
https://api.semanticscholar.org/CorpusID:49415199
https://openreview.net/pdf?id=B1EA-M-0Z
https://openreview.net/pdf?id=B1EA-M-0Z

Under review as submission to TMLR

J.-A. Goulet, L.-H. Nguyen, and S. Amiri. Tractable approximate gaussian inference for bayesian neural
networks. Journal of Machine Learning Research, 2021.

I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products. Academic Press, 8th edition
edition, 2015.

A. Graves. Practical variational inference for neural networks. In Advances in Neural Information Processing
Systems (NIPS), pages 2348–2356, 2011.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

J. M. Hernández-Lobato and R. P. Adams. Probabilistic backpropagation for scalable learning of bayesian
neural networks. In Proceedings of the 32nd International Conference on Machine Learning (ICML), pages
1861–1869, 2015.

G. E. Hinton and D. van Camp. Keeping neural networks simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference on Computational learning theory (COLT), pages
5–13. ACM, 1993.

A. Ilyas, L. Engstrom, A. Athalye, and J. Lin. Black-box adversarial attacks with limited queries and
information. In International Conference on Machine Learning, pages 2137–2146. PMLR, 2018.

S. Janson. Gaussian Hilbert Spaces / Svante Janson. Cambridge Tracts in Mathematics ; no. 129. Cambridge
University Press, Cambridge, 1997. ISBN 9780511526169.

I. E. Kazakov. Approximate method of statistical investigations of nonlinear systems. In Proceedings,
Voenno-Vozdushnaya Akademia imeni N.I. Zhukuvskogo, volume 394, pages 1–52, 1954.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural networks
as gaussian processes. In International Conference on Learning Representations, 2018. Available at
https://openreview.net/pdf?id=B1EA-M-0Z.

D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):
720–736, 1992. doi: 10.1162/neco.1992.4.5.720.

J. V. Michalowicz, J. M. Nichols, F. Bucholtz, and C. C. Olson. A general isserlis theorem for mixed-gaussian
random variables. Statistics & Probability Letters, 81:1233–1240, 2011.

R. M. Neal. Priors for infinite networks. Technical Report CRG-TR-94-1, University of Toronto, 1994.

E. W. Ng and M. Geller. A table of integrals of the error functions. Journal of Research of the National Bureau
of Standards - B. Mathematical Sciences, 73B(1):1–20, January-March 1969. doi: 10.6028/jres.073B.001.
Paper 73Bl-281.

L.-H. Nguyen and J.-A. Goulet. Analytically tractable hidden-states inference in bayesian neural networks.
Journal of Machine Learning Research, 2022.

A. Pavone, A. Merlo, S. Kwak, and J. Svensson. Machine learning and bayesian inference in nuclear fusion
research: an overview. Plasma Physics and Controlled Fusion, 65(5), 2023. doi: 10.1088/1361-6587/acc60f.

F. Petersen, A. A. Mishra, H. Kuehne, C. Borgelt, O. Deussen, and M. Yurochkin. Uncertainty quantification
via stable distribution propagation. In The Twelfth International Conference on Learning Representations,
2024.

J. Redmon. Darknet: Open source neural networks in C. https://pjreddie.com/darknet.

13

https://openreview.net/pdf?id=B1EA-M-0Z
https://pjreddie.com/darknet

Under review as submission to TMLR

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. MobileNetV2: Inverted residuals and linear
bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
4510–4520. IEEE, 2018.

A. Shekhovtsov and B. Flach. Feed-forward propagation in probabilistic neural networks with categorical
and max layers. In International Conference on Learning Representations (ICLR), 2019.

K. Shridhar, F. Laumann, and M. Liwicki. A comprehensive guide to bayesian convolutional neural network
with variational inference. ArXiv, abs/1901.02731, 2019. URL https://api.semanticscholar.org/
CorpusID:57759351.

D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional probabilities on directed
graphical structures. Networks, 20(5):579–605, 1990. doi: https://doi.org/10.1002/net.3230200507. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230200507.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus. Intriguing properties
of neural networks. arXiv preprint arXiv:1312.6199, 2013.

M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

H. Wang, X. Shi, and D. Y. Yeung. Natural-parameter networks: A class of probabilistic neural networks. In
Neural Information Processing Systems, pages 118–126, 2016.

S. Wang and C. Manning. Fast dropout training. In Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pages 118–126, Atlanta,
Georgia, USA, 17–19 Jun 2013. PMLR.

C. K. Williams. Computing with infinite networks. In Advances in Neural Information Processing Systems,
pages 295–301, 1997.

A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M. Hernández-Lobato, and A. L. Gaunt. Deterministic
variational inference for robust bayesian neural networks. In International Conference on Learning
Representations, 2019.

X. Zhang, X. Zhou, M. Lin, and J. Sun. ShuffleNet: An extremely efficient convolutional neural network for
mobile devices. arXiv preprint arXiv:1707.01083v2, 2017.

X. Zhen, R. Chakraborty, and V. Singh. Simpler certified radius maximization by propagating covariances.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2021. doi: 10.1109/CVPR46437.2021.00721.

B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning transferable architectures for scalable image
recognition. arXiv preprint arXiv:1707.07012, 2(6), 2017.

14

https://api.semanticscholar.org/CorpusID:57759351
https://api.semanticscholar.org/CorpusID:57759351
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230200507

Under review as submission to TMLR

A Appendix

A.1 Emperical distributions of ResNets show Gaussianity

Figure 7: Empirical distributions of all units before the final softmax layer of the resnet13(ReLU).

A.2 Approximation accuracy on other non-linearity

15

Under review as submission to TMLR

Figure 8: The meaning of different colors and line styles is the same as Fig. 3. The higher the input variance,
the more significant is the benefit of using higher order Stochastic Taylor expansion.

16

Under review as submission to TMLR

A.3 Pseudo Code

Algorithm 1 Propagating a multi-variate Gaussian distribution through a pretrained ResNet
µ← Input mean
Σ← Input covariance
µres ← Storage for mean of the output of residual layer
Σres ← Storage for covariance of the output of residual layer
Σcross ← Storage for cross-covariance between the two input of the residual layer
for layer in neural network do

if layer is linear then
if layer is addition (residual) then

µ← µ + µres

Σ← Σ + Σres + Σcross + Σ⊤
cross

empty µres, Σres, Σcross

else
find effective weight W and bias b
µ←W ⊤µ + b
Σ←W ⊤ΣW
Σcross ←W ⊤Σcross

if residual connection starts from here then
µres ← µ
Σres, Σcross ← Σ

end if
end if

else
µ, Σ, Σcross ← PTPE(nonlinearity, µ, Σ, Σcross)
if residual connection starts from here then

µres ← µ
Σres, Σcross ← Σ

end if
end if

end for
µoutput ← µ
Σoutput ← Σ

17

Under review as submission to TMLR

A.4 Notations

Revisit the meaning of notations.

U multivariate Gaussian input ∼ Nn(µ, Σ)
W weight matrix (constant)

b bias vector (constant)
X = W ⊤U + b ∼ Nn(µ̃, Σ̃)
µ̃ = W ⊤µ + b

Σ̃ = W ⊤ΣW

Ξ = X− µ̃ ∼ Nn(0, Σ̃)
σ̃2 = diag

(
Σ̃
)

{γ1 , ... , γp} positive scaling factor set obtained through numerical optimizations

For notationaly simplicity, all product, division, and power operations are element-wise starting from A.6.

A.5 Mean, Covariance, and Cross-covariance propagated through a univariate nonlinear function

In the context of machine learning, all non-linearities are applied element-wise – they are univarite. Thus,
the off-diagonal entries of their Hessian matrices (second order partial derivatives) are zero, and it has similar
effect on higher order partial derivatives. This makes PTPE on multivariate input easier to write down.

Given a smooth nonlinear function f̄(·) of univariate random variables, define vector operation f(X) :=
(f̄(X1), f̄(X2), · · · , f̄(Xn))⊤. We define an approximation g(·), which stochastically expands f(·) under the
Taylor scheme, such that f(·) and g(·) have approximately the same first and second moment. This expansion
uses i.i.d. surrogate polynomials, {1, Ξ(1), Ξ◦2

(2), Ξ◦3
(3), · · · }, and such choice reduces computational complexity

of covariance, which is shown later.

g (X) = E [f (X)] + E [∇xf (X)]
1! ◦

(
Ξ(1) − E

[
Ξ(1)

])
+

E
[
∇2

xf (X)
]

2! ◦
(

Ξ◦2
(2) − E

[
Ξ◦2

(2)

])
+ · · ·

and denote

A0 = E [f (X)]

A1 = E [∇xf (X)]
1!

A2 =
E
[
∇2

xf (X)
]

2!

A3 =
E
[
∇3

xf (X)
]

3!
· · ·

such that

g (X) = E [f (X)] +
∞∑

s=1
As ◦

(
Ξ◦s

(s) − E
[
Ξ◦s

(s)

])
︸ ︷︷ ︸

zero mean

A.5.1 Mean

A0 is simply the mean of the output. In the later sections we show this value can either be analytically solved
or approximated using similarly behaving nonlinear functions.

18

Under review as submission to TMLR

A.5.2 Covariance

For clarity of reading, we omit the subscript of ξ, but will revisit the independence of polynomial basis. The
covariance function of f(X) with S-th order expansion is

cov (g(X)) = E

(S∑
s=1

As ◦
(

Ξ◦s
(s) − E[Ξ◦s

(s)]
))(S∑

t=1
At ◦

(
Ξ◦t

(t) − E[Ξ◦t
(t)]
))⊤

=
S∑

s=1

S∑
t=1

(
AsA⊤

t

)
◦ E
[(

Ξ◦s
(s) − E[Ξ◦s

(s)]
)(

Ξ◦t
(t) − E[Ξ◦t

(t)]
)⊤
]

=
S∑

s=1

S∑
t=1

(
AsA⊤

t

)
◦
(
E
[
Ξ◦s

(s)(Ξ◦t
(t))⊤

]
− E[Ξ◦s

(s)]E[Ξ◦t
(t)]⊤

)
which is an n× n matrix, and the {i, j}-th entry is

S∑
s=1

S∑
t=1

As,iAt,j

(
E
[
Ξs

(s),iΞt
(t),j

]
− E

[
Ξs

(s),i

]
E
[
Ξt

(t),j

])
Since Ξ(1), Ξ◦2

(2), Ξ◦3
(3), · · · are independent, the off-diagonal entries (s ̸= t) are zero, then the {i, j}-th entry

becomes
S∑

s=1
As,iAs,j

(
E
[
Ξs

(s),iΞs
(s),j

]
− E

[
Ξs

(s),i

]
E
[
Ξs

(s),j

])
Rewrite in matrix form

cov (g(X)) =
S∑

s=1
As ◦

(
E
[
Ξ◦s

(s) Ξ◦s
(s)

⊤
]
− E

[
Ξ◦s

(s)

]
E
[
Ξ◦s

(s)

]⊤
)
◦A⊤

s (4)

where As and Ξ(s) are both n dimensional vertical vectors. Using central moments of normal distributions,

E
[
Ξs

(s),i

]
=
{

0 if s is odd
σ̃s

i (s− 1)!! if s is even

With application of Isserlis’ theorem,

E
[
Ξs

(s),iΞs
(s),j

]
=
∑

p∈P 2
B

∏
{c,d}∈p

ρ̃cdσ̃cσ̃d

where c, d ∈ {i, j}, and ρ̃cd is correlation. The sum is over all the pairings of the set B = {i, i, · · · , i︸ ︷︷ ︸
s

, j, j, · · · , j︸ ︷︷ ︸
s

},

i.e. all distinct (suppose each i or j is different from other i’s or j’s) ways of partitioning B into pairs {c, d},
and the product is over the pairs contained in p Janson (1997)Michalowicz et al. (2011), so there exists
(2s− 1)!! pairs in the partition, or (2s− 1)!! terms in the sum. For example, the first four terms of Eqn. 4 are

A1 ◦ Σ̃ ◦A⊤
1

A2 ◦
(
2Σ̃◦2) ◦A⊤

2

A3 ◦
[
6Σ̃◦3 + 9 diag(Σ̃) ◦ Σ̃ ◦ diag(Σ̃)⊤] ◦A⊤

3

A4 ◦
[
24Σ̃◦4 + 72 diag(Σ̃) ◦ Σ̃◦2 ◦ diag(Σ̃)⊤] ◦A⊤

4

As and diag(Σ̃) are both n dimensional vertical vector. With this result, to find the covariance of the output
of a nonlinear layer, assuming the input follows a multi-variate normal distribution, one just needs to derive
the factors of Taylor polynomial, A0, A1, A2, etc., for the nonlinearity.

19

Under review as submission to TMLR

A.5.3 Cross-covariance

Let Y := (Y1, Y2, · · · , Yn)⊤ be a Gaussian random vector that is cross-correlated to X, and Ω = Y− E[Y].
If X undergoes a non-linear transformation via function f(·),

Z = f(X)

The cross-covariance between Y and Z can be written as

ΣYZ = E

Ω
(

S∑
t=1

At ◦
(

Ξ◦t
(t) − E

[
Ξ◦t

(t)

]))⊤
which is an n× n matrix, and the {i, j}-th entry is

S∑
t=1

At,j

(
E
[
ΩiΞt

(t),j

]
− E [Ωi]E

[
Ξt

(t),j

])
E [Ωi] is zero by our definition, so it can be simplified as

ΣYZ(i, j) =
S∑

t=1,t is odd
At,jE

[
ΩiΞt

(t),j

]

ΣZY(i, j) =
S∑

s=1,s is odd
As,iE

[
Ξs

(s),iΩj

]

Rewrite in matrix form

ΣYZ =
S∑

t=1,t is odd
A⊤

t ◦ E
[
Ω Ξ◦t

(t)
⊤
]

ΣZY =
S∑

s=1,s is odd
As ◦ E

[
Ξ◦s

(s) Ω⊤
] (5)

and the expected value can be calculated using Isserlis’ theorem mentioned above. Note that this term is
nonzero only if t and s are odd, so the first two terms are

ΣYZ ≈ A⊤
1 ◦ΣYX + 3A⊤

3 ◦ΣYX ◦ diag(ΣX)⊤

ΣZY ≈ A1 ◦ΣXY + 3A3 ◦ΣXY ◦ diag(ΣX)

An addition (e.g. residual) layer outputs the summation of activation of two (or more) layers, Y and Z. Thus
the covariance of Y + Z is the sum of their covariance and cross-covariance.

Σ(Y + Z) = ΣY + ΣYZ + ΣZY + ΣZ

A.6 Tanh layers †

We use a linear combination of independent error functions with different scaling factors to approximate
tanh function. In our experiments, we choose a set of four scaling parameters, {0.5583, 0.8596, 0.8596,
1.2612}, using fmincon in MATLAB. In practice, one can add more terms for even higher accuracy without
losing efficiency (depending on the computing resources), because the extra terms can be easily paralleled.
We define a variance term considering the relation between error function and Gaussian cdf, such that

† For notational simplicity, all the product, division, and power operations that appear in and after this section are all
element-wise.

20

Under review as submission to TMLR

tanh(X) ≈ 1
p

p∑
j=1

erf (γjX)

σ́2
j = 1

2γ2
j

(6)

Thus, the factors of the pseudo Taylor polynomials are

A0 = E

1
p

p∑
j=1

erf

 X√
2σ́2

j

A1 = E

∇x

1
p

p∑
j=1

erf

 X√
2σ́2

j

A2 = 1

2!E

∇2
x

1
p

p∑
j=1

erf

 X√
2σ́2

j

· · ·

Since all the operations in A0, A1, A2, · · · are element-wise, we only show the derivation for univariate case
for notational simplicity in the following sections

A.6.1 Find A0

E

erf

 X√
2σ́2

j

 =
∫ ∞

−∞
erf

 x√
2σ́2

j

 1
σ̃

φ

(
x− µ̃

σ̃

)
dx

This is a known integral Ng and Geller (1969)

= erf

 µ̃√
2σ̃2 + 2σ́2

j

We define

σ̂2
j = σ̃2 + σ́2

j (7)

Thus,

A0 = 1
p

p∑
j=1

erf

 z√
2σ̂2

j

 (8)

The usage of error function instead of Gaussian cdf may give A0 a very distinctive form from those of the other
factors. The reasons behind are purely out of considerations of numerical computing: calculating Gaussian
cdf is computationally demanding, while the approximation algorithm of the error function is available Cody
(1969).

A.6.2 Find A1

Notice that

∇erf

 X√
2σ́2

j

 = ∂

∂x

(∫ x/
√

2σ́2
j

0

2√
π

exp(−t2)dt

)

21

Under review as submission to TMLR

by Leibniz integral rule

= 2√
π

1√
2σ́2

j

exp
(
− x2

2σ́2
j

)

= 2
σ́j

φ

(
x

σ́j

)

where φ is the standard normal pdf. With the identity that the convolution of two Gaussians is still a
Gaussian. (Bromiley (2003))

E

∇erf

 X√
2σ́2

j

 =
∫ ∞

−∞

2
σ́j

φ

(
x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

= 2√
σ̃2 + σ́2

j

φ

 µ̃√
σ̃2 + σ́2

j

Therefore,

A1 = 1
p

p∑
j=1

2
σ̂j

φ

(
µ̃

σ̂j

)
(9)

and each term of the summation is a Gaussian function written in its standardized form.

A.6.3 Find A2 and beyond

In previous section, we show that the first derivative of the error function is a Gaussian, thus the expected
value of which is the convolution of two Gaussians. Similarly, we can obtain A2, A3, etc. by convolving the
second, third, and higher order Gaussian derivatives with another Gaussian.

Gaussian derivatives can be represented by Hermite polynomial Hs(x).

H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 − 2
H3(x) = 8x3 − 12x

· · ·

There are implemented functions for this from various scientific computing tools, such as hermiteH() from
MATLAB and scipy.special.hermite() from SciPy.

ds

dxs

[
1
σ

φ
(x

σ

)]
=
(
−1√
2σ2

)s

Hs

(
x√
2σ2

)
1
σ

φ
(x

σ

)

22

Under review as submission to TMLR

Hence,

E

∇serf

 X√
2σ́2

j

=
∫ ∞

−∞

 ∂s

∂xs
erf

 x√
2σ́2

j

 p(x)dx

=2
∫ ∞

−∞

∂s−1

∂xs−1

[
1
σ́j

φ

(
x

σ́j

)]
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

=2

 −1√
2σ́2

j

s−1 ∫ ∞

−∞
Hs−1

 x√
2σ́2

j

 1
σ́j

φ

(
x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

=2

 −1√
2σ́2

j

s−1
1
σ̂j

φ

(
µ̃

σ̂j

)∫ ∞

−∞
Hs−1

 x√
2σ́2

j

 1
σ̄j

φ

(
x− µ̄

σ̄j

)
dx

where µ̄ = µ̃
σ́2

j

σ̂2
j

σ̄2
j = σ̃2 σ́2

j

σ̂2
j

. The convolution of a Hermite polynomial and a Gaussian pdf is a known

integral Gradshteyn and Ryzhik (2015)

=2

 −1√
2σ́2

j

s−1
1
σ̂j

φ

(
µ̃

σ̂j

)(
1− 2σ̄2 1

2σ́2
j

) s−1
2

Hs−1

 µ̄/
√

2σ́2
j(

1− 2σ̄2 1
2σ́2

j

) 1
2

=2

 −1√
2σ̂2

j

s−1

Hs−1

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)

Therefore, we can write the formula of As for s ≥ 1

As(s ≥ 1) = 1
s! p

p∑
j=1

2

 −1√
2σ̂2

j

s−1

Hs−1

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)
(10)

To give a few examples,

A2 = 1
2! p

p∑
j=1
−2 µ̃

σ̂2
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A3 = 1
3! p

p∑
j=1

2
µ̃2 − σ̂2

j

σ̂4
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A4 = 1
4! p

p∑
j=1

2
(
−µ̃3 + 3µ̃σ̂2

j

σ̂6
j

)
1
σ̂j

φ

(
µ̃

σ̂j

)
· · ·

(11)

Note that we will reuse this relation in the following section∫ ∞

−∞

 −1√
2σ́2

j

s

Hs

 x√
2σ́2

j

 1
σ́j

φ

(
x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx =

 −1√
2σ̂2

j

s

Hs

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)
(12)

23

Under review as submission to TMLR

A.7 Sigmoid layers

We can apply the same framework on sigmoid layers, with modifications

sigmoid(u + b) = 1
1 + exp(−(u + b)) ≈

1
2 + 1

2p

p∑
j=1

erf [γj(u + b))]

Using fmincon in MATLAB, we find a set of γ = (0.2791, 0.4298, 0.4298, 0.6306)⊤. Then the first four factors
of the Taylor polynomials are listed below. A0 is represented in complementary error function erfc to avoid
subtractive cancellation that leads to inaccuracy in the tails. Note that except for A0, all As of sigmoid
layers are just 1/2 of those of tanh layers.

A0 = 1
p

p∑
j=1

1
2erfc

− µ̃√
2σ̂2

j

A1 = 1

p

p∑
j=1

1
σ̂j

φ

(
µ̃

σ̂j

)

A2 = 1
2! p

p∑
j=1
− µ̃

σ̂2
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A3 = 1
3! p

p∑
j=1

µ̃2 − σ̂2
j

σ̂4
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A4 = 1
4! p

p∑
j=1

(
−µ̃3 + 3µ̃σ̂2

j

σ̂6
j

)
1
σ̂j

φ

(
µ̃

σ̂j

)
· · ·

(13)

A.8 Softplus layers

The derivation of pseudo-Taylor polynomials for a softplus layer is related to that for a sigmoid layer, since
the derivative of the softplus function is the sigmoid function with scaling factor β, and the latter can
be approximated with a linear combination of Gaussian cdf (or error functions like we did in the previous
section). We have

softplus(x) = 1
β

log
(
1 + eβx

)
Then we use the approximation of sum of independent standard Gaussian cdf Φ

∂

∂x
softplus(x) = 1

1 + e−βx
≈ 1

p

p∑
j=1

Φ
(

x

σ́j

)
(14)

where we re-define
σ́2

j = 1
2γ2

j β2 (15)

Note that σ́2
j changes definition and should not be confused with that in the tanh and sigmoid sections.

A.8.1 Find A0

First we apply substitution of variables X = µ̃ + Ξ, then

softplus(x) = softplus(µ̃, ξ) = 1
β

log
(

1 + eβ(µ̃+ξ)
)

24

Under review as submission to TMLR

Notice that ∂

∂x
= ∂

∂ξ
since µ̃ is constant, then

A0 =
∫ ∞

−∞
softplus(µ̃, ξ) p(ξ) dξ

=
∫ ∞

−∞
p(ξ)dξ

∫ µ̃

−∞

∂

∂ζ
softplus(ζ, ξ) dζ

by Fubini’s theorem

=
∫ µ̃

−∞
dζ

∫ ∞

−∞

∂

∂ζ
softplus(ζ, ξ) p(ξ)dξ

≈ 1
p

p∑
j=1

∫ µ̃

−∞
dζ

∫ ∞

−∞
Φ
(

ζ + ξ

σ́j

)
1
σ̃

φ

(
ξ

σ̃

)
dξ

the convolution of Gaussian cdf and pdf, the integral of Gaussian cdf are known integrals

= 1
p

p∑
j=1

∫ µ̃

−∞
Φ
(

ζ

σ̂j

)
dζ

= 1
p

p∑
j=1

[
µ̃ Φ

(
µ̃

σ̂j

)
+ σ̂jφ

(
µ̃

σ̂j

)]

= 1
p

p∑
j=1

 µ̃

2 erfc

− µ̃√
2σ̂2

j

+ σ̂jφ

(
µ̃

σ̂j

)

Or, with simplification

A0 = A1µ̃ + 1
p

p∑
j=1

σ̂jφ

(
µ̃

σ̂j

)
(16)

A.8.2 Find A1

Since the first derivative of the softplus function is just a sigmoid function with scaling factor β, we can
immediately write A1 using previous results

A1 = 1
p

p∑
j=1

1
2erfc

− µ̃√
2σ̂2

j

 (17)

A.8.3 Find A2 and beyond

In previous section, we find that∇ softplus(x) is approximately a Gaussian cdf. Subsequently, ∇2 softplus(x)
is approximately a Gaussian. Since Gaussian function is infinitely differentiable, all As(s > 2) can be found

25

Under review as submission to TMLR

using Gaussian derivatives, which can be represented by Hermite polynomial Hs(x) introduced above.

As = 1
s!E

[
∂s

∂xs
softplus(x)

]
≈ 1

s! p

p∑
j=1

∫ ∞

−∞

∂s−2

∂xs−2

[
1
σ́j

φ

(
x

σ́j

)]
p(x) dx

= 1
s! p

p∑
j=1

 −1√
2σ́2

j

s−2 ∫ ∞

−∞
Hs−2

 x√
2σ́2

j

 1
σ́j

φ

(
x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

we solved this integral in tanh section

= 1
s! p

p∑
j=1

 −1√
2σ̂2

j

s−2

Hs−2

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)

To summarize, As(s ≥ 2) can be expressed as

As(s ≥ 2) = 1
s! p

p∑
j=1

 −1√
2σ̂2

j

s−2

Hs−2

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)
(18)

For examples,

A2 = 1
2! p

p∑
j=1

1
σ̂j

φ

(
µ̃

σ̂j

)

A3 = 1
3! p

p∑
j=1
− µ̃

σ̂2
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A4 = 1
4! p

p∑
j=1

µ̃2 − σ̂2
j

σ̂4
j

1
σ̂j

φ

(
µ̃

σ̂j

)
· · ·

(19)

A.9 ReLU, Leaky ReLU, and Piece-wise Linear layers

Since ReLU function is only first-order differentiable (x > 0), we cannot do PTPE directly. However, given
its relation to softplus function,

lim
β→∞

1
β

log
(
1 + eβx

)
= max{0, x}

we can reuse the results for softplus layers by applying the limit

lim
β→∞

σ́2
j = 0 and lim

β→∞
σ̂2

j = σ̃2

26

Under review as submission to TMLR

Therefore,

A0 = A1µ̃ + σ̃φ

(
µ̃

σ̃

)
A1 = 1

2erfc
(
− µ̃√

2σ̃2

)
A2 = 1

2!
1
σ̃

φ

(
µ̃

σ̃

)
A3 = 1

3! −
µ̃

σ̃2
1
σ̃

φ

(
µ̃

σ̃

)
A4 = 1

4!
µ̃2 − σ̃2

σ̃4
1
σ̃

φ

(
µ̃

σ̃

)
· · ·

(20)

and for s ≥ 2 we have the general form of

As(s ≥ 2) = 1
s!

 −1√
2σ̃2

j

s−2

Hs−2

 µ̃√
2σ̃2

j

 1
σ̃j

φ

(
µ̃

σ̃j

)
(21)

On the other hand, leaky ReLU can be considered as superposition of two ReLU functions - consider a leaky
ReLU with negative slope of θ

LeakyReLU(x; θ) = ReLU(x)− θ ReLU(−x) (22)

which can also be written as

lim
β→∞

softplus(x)− θ softplus(−x)

Therefore,

A0 = lim
β→∞

1
p

p∑
j=1

[
µ̃Φ

(
µ̃

σ̂j

)
+ σ̂jφ

(
µ̃

σ̂j

)]
− θ

[
−µ̃Φ

(
− µ̃

σ̂j

)
+ σ̂jφ

(
µ̃

σ̂j

)]

= θµ̃ + (1− θ)
[
µ̃Φ

(
µ̃

σ̃

)
+ σ̃φ

(
µ̃

σ̃

)]

To find the expected value of the derivative of LeakyReLU, first we find the derivative

∂

∂x
LeakyReLU(x ; θ) = lim

β→∞

∂

∂x
softplus(x)− θ

∂

∂x
softplus(−(x))

= lim
β→∞

1
1 + e−β(x) + θ

1 + eβ(x)

≈ 1
p

p∑
j=1

Φ
(

x

σ́j

)
+ θΦ

(
−x

σ́j

)

= lim
β→∞

θ + 1− θ

p

p∑
j=1

Φ
(

x

σ́j

)

27

Under review as submission to TMLR

Then we can write A1 for LeakyReLU as

A1 = lim
β→∞

∫ ∞

−∞

θ + 1− θ

p

p∑
j=1

Φ
(

x

σ́j

) 1
σ̃

φ

(
x− µ̃

σ̃

)
dx

= θ + lim
β→∞

1− θ

p

p∑
j=1

∫ ∞

−∞
Φ
(

x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

= θ + lim
β→∞

1− θ

p

p∑
j=1

Φ
(

µ̃

σ̂j

)

= θ + (1− θ)Φ
(

µ̃

σ̃

)
Rewrite in complementary error function

A1 = θ + 1− θ

2 erfc
(
− µ̃√

2σ̃2

)
(23)

Note that we can also rewrite A0 using the result of A1 to improve computational efficiency.

A0 = A1µ̃ + (1− θ)σ̃φ

(
µ̃

σ̃

)
(24)

Note that starting from the second order, the derivative of LeakyReLU is just that of ReLU scaled by
1− θ. Therefore,

A2 = 1− θ

2
1
σ̃

φ

(
µ̃

σ̃

)
A3 = −1− θ

3!
µ̃

σ̃3 φ

(
µ̃

σ̃

)
A4 = 1− θ

4!
µ̃2 − σ̃2

σ̃5 φ

(
µ̃

σ̃

)
· · ·

(25)

and for s ≥ 2, we have the general form of

As(s ≥ 2) = 1− θ

s!

(
−1√
2σ̃2

)s−2
Hs−2

(
µ̃√
2σ̃2

)
1
σ̃

φ

(
µ̃

σ̃

)
(26)

Similarly, any piece-wise linear activation function can be described as a combination of ReLU functions with
different scaling, shifting, and/or mirroring. Thus, their pseudo Taylor coefficients can be found using the
same methodology.

A.10 GELU layers

GELU (Gaussian Error Linear Unit) is defined as the product of input and a standard Gaussian cdf

GELU(x) = x Φ(x)

and we can write the derivatives (with order s ≥ 1) of GELU as

∂s

∂xs
GELU(x) = s

∂s−1

∂xs−1 Φ(x) + x
∂s

∂xs
Φ(x)

28

Under review as submission to TMLR

A.10.1 Find A0

A0 = E [GELU(x)]

=
∫ ∞

−∞
xΦ(x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

=
∫ ∞

−∞
(µ̃ + ξ)

∫ µ̃

−∞
φ (ζ + ξ) dζ

1
σ̃

φ

(
ξ

σ̃

)
dξ

= µ̃

∫ µ̃

−∞

∫ ∞

−∞
φ (ζ + ξ) 1

σ̃
φ

(
ξ

σ̃

)
dξ dζ +

∫ µ̃

−∞

∫ ∞

−∞
ξ φ (ζ + ξ) 1

σ̃
φ

(
ξ

σ̃

)
dξ dζ

= µ̃

∫ µ̃

−∞

1√
1 + σ̃2

φ

(
ζ√

1 + σ̃2

)
dζ +

∫ µ̃

−∞

1√
1 + σ̃2

φ

(
ζ√

1 + σ̃2

)
−ζσ̃2

1 + σ̃2 dζ

= µ̃Φ
(

µ̃√
1 + σ̃2

)
+ σ̃2
√

1 + σ̃2
φ

(
µ̃√

1 + σ̃2

)
We re-define σ̂2

σ̂2 = 1 + σ̃2 (27)

and re-write the result with complementary error function

A0 = µ̃

2 erfc
(
− µ̃√

2σ̂2

)
+ σ̃2

σ̂
φ

(
µ̃

σ̂

)
(28)

A.10.2 Find A1

A1 = E
[

∂

∂x
GELU(x)

]
=
∫ ∞

−∞
Φ(x) 1

σ̃
φ(x− µ̃

σ̃
)dx +

∫ ∞

−∞
xφ(x) 1

σ̃
φ(x− µ̃

σ̃
)dx

using results of previous section

= Φ
(

µ̃

σ̂

)
+ µ̃

σ̂2
1
σ̂

φ

(
µ̃

σ̂

)
Therefore,

A1 = 1
2erfc

(
− µ̃√

2σ̂2

)
+ µ̃

σ̂2
1
σ̂

φ

(
µ̃

σ̂

)
(29)

A.10.3 Find A2 and beyond

Higher order coefficients (As(s ≥ 2)) all consist of two parts: (i) a term of expected value of a Gaussian
derivative, (ii) a term of expected value of the product of x and a Gaussian derivative. We have already
found a general form of the first term in the tanh section

E
[
s

∂s−2

∂xs−2 φ(x)
]

= s

(
−1√
2σ̂2

)s−2
Hs−2

(
µ̃√
2σ̂2

)
1
σ̂

φ

(
µ̃

σ̂

)

To solve the second part, we need to use the Hermite polynomial recurrence relation:

x Hs−1(x) = 1
2Hs(x) + s Hs−2(x)

29

Under review as submission to TMLR

E
[
x

∂s−1

∂xs−1 φ(x)
]

=
(
−1√

2

)s−1 ∫ ∞

−∞
x Hs−1

(
x√
2

)
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

=
(
−1√

2

)s−1√
2
∫ ∞

−∞

x√
2

Hs−1

(
x√
2

)
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

=
(
−1√

2

)s−1√
2
∫ ∞

−∞

[
1
2Hs

(
x√
2

)
+ (s− 1)Hs−2

(
x√
2

)]
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

= −
(
−1√

2

)s ∫ ∞

−∞
Hs

(
x√
2

)
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx · · ·

− (s− 1)
(
−1√

2

)s−2 ∫ ∞

−∞
Hs−2

(
x√
2

)
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

by equation 12

= 1
σ̂

φ

(
µ̃

σ̂

)[
−
(
−1√
2σ̂2

)s

Hs

(
µ̃√
2σ̂2

)
− (s− 1)

(
−1√
2σ̂2

)s−2
Hs−2

(
µ̃√
2σ̂2

)]

Sum the two integral together, we get the general form of As(s ≥ 2)

As(s ≥ 2) = 1
s!

[(
−1√
2σ̂2

)s−2
Hs−2

(
µ̃√
2σ̂2

)
−
(
−1√
2σ̂2

)s

Hs

(
µ̃√
2σ̂2

)]
1
σ̂

φ

(
µ̃

σ̂

)
(30)

For examples,

A2 = 1
2!

[
1 + 1

σ̂2 −
µ̃2

σ̂4

]
1
σ̂

φ

(
µ̃

σ̂

)
A3 = − 1

3!

[
µ̃

σ̂2 + 3µ̃

σ̂4 −
µ̃3

σ̂6

]
1
σ̂

φ

(
µ̃

σ̂

)
A4 = 1

4!

[
− 1

σ̂2 + µ̃2 − 3
σ̂4 + 6µ̃2

σ̂6 −
µ̃4

σ̂8

]
1
σ̂

φ

(
µ̃

σ̂

)
· · ·

(31)

A.11 SiLU layers

SiLU (Sigmoid Linear Unit), equivalent to Swish when β = 1, is defined as the product of input and a
sigmoid function

SiLU(x) = x Sigmoid(x)

In the previous section, we approximate Sigmoid function with error functions so that we can reuse
derivations from the Tanh section. Here we approximate Sigmoid function with Gaussian cdf’s in order to
reuse derivations from the GELU section. With γ as a numerically optimized scalar vector, let

σ́2
j = 1

2γ2
j

, j ∈ {1, · · · , p}

30

Under review as submission to TMLR

Then, we approximate SiLU as

SiLU(x) ≈ x

p

p∑
j=1

Φ
(

x

σ́j

)

and we can write the derivatives (with order s ≥ 1) of SiLU as

∂s

∂us
SiLU(x) = s

p

p∑
j=1

∂s−1

∂us−1 Φ
(

x

σ́j

)
+ x

p

p∑
j=1

∂s

∂us
Φ
(

x

σ́j

)

The rest of the derivation is very similar to that of GELU, so we only list the final results. With

σ̂2
j = σ̃2 + σ́2

j

A0 = 1
p

p∑
j=1

µ̃

2 erfc

− µ̃√
2σ̂2

j

+ σ̃2

σ̂j
φ

(
µ̃

σ̂j

)

A1 = 1
p

p∑
j=1

1
2erfc

− µ̃√
2σ̂2

j

+ µ̃
σ́2

j

σ̂2
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A2 = 1
2! p

p∑
j=1

[
1 +

σ́2
j

σ̂2
j

+
µ̃2σ́2

j

σ̂4
j

]
1
σ̂j

φ

(
µ̃

σ̂j

)

A3 = − 1
3! p

p∑
j=1

[
µ̃

σ̂2
j

+
3µ̃σ́2

j

σ̂4
j

−
µ̃3σ́2

j

σ̂6
j

]
1
σ̂j

φ

(
µ̃

σ̂j

)

A4 = 1
4! p

p∑
j=1

[
− 1

σ̂2
j

+
µ̃2 − 3σ́2

j

σ̂4
j

+
6µ̃2σ́2

j

σ̂6
j

−
µ̃4σ́2

j

σ̂8
j

]
1
σ̂j

φ

(
µ̃

σ̂j

)
· · ·

(32)

and the general form of As(s ≥ 2) is

As(s ≥ 2) = 1
s! p

p∑
j=1

[(
−1√
2σ̂2

)s−2
Hs−2

(
µ̃√
2σ̂2

)
−
(
−1√
2σ̂2

)s

Hs

(
µ̃√
2σ̂2

)]
1
σ̂

φ

(
µ̃

σ̂

)
(33)

31

	Introduction
	Theory
	Results
	PTPE significantly improves estimation accuracy when exposed to higher input variance
	PTPE accurately quantifies uncertainty in canonical network architectures
	PTPE addresses the limitations of DVI by incorporating non-piecewise-linear activations.

	Discussion
	Conclusion
	Appendix
	Emperical distributions of ResNets show Gaussianity
	Approximation accuracy on other non-linearity
	Pseudo Code
	Notations
	Mean, Covariance, and Cross-covariance propagated through a univariate nonlinear function
	Mean
	Covariance
	Cross-covariance

	Tanh layers †
	Find A0
	Find A1
	Find A2 and beyond

	Sigmoid layers
	Softplus layers
	Find A0
	Find A1
	Find A2 and beyond

	ReLU, Leaky ReLU, and Piece-wise Linear layers
	GELU layers
	Find A0
	Find A1
	Find A2 and beyond

	SiLU layers

