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ABSTRACT

De-identification of magnetic resonance imagery (MRI) is intrinsically difficult
since, even with all metadata removed, a person’s face can easily be rendered and
matched against a database. Existing de-identification methods tackle this task by
obfuscating or removing parts of the face, but they either fail to reliably hide the
patient’s identity or they remove so much information that they adversely affect
further analyses. In this work, we describe a new class of MRI de-identification
techniques that remodel privacy-sensitive facial features as opposed to removing
them. To accomplish this, we propose a conditional, multi-scale, 3D GAN ar-
chitecture that takes a patient’s MRI scan as input and generates a 3D volume in
which the brain is not modified but the face has been de-identified. Compared
to the classical removal-based techniques, our deep learning framework preserves
privacy more reliably without adversely affecting downstream medical analyses
on the brain, including segmentation and age prediction.

1 INTRODUCTION

Magnetic Resonance Images (MRI) are an essential tool used both in diagnostic and research set-
tings, but they are a privacy risk. Detailed renderings of the head can be crafted from MRI scans
using techniques such as volumetric raycasting. Those renderings, when matched against facial im-
ages, can be used to infer patient identity in a type of attack already demonstrated for CT scans
(Mazura et al., 2012). Commonly, MRI scans are de-identified before sharing using crude removal-
based techniques, which seek to remove privacy-sensitive parts of the head without disturbing the
brain (Figure 1). However, as we demonstrate, these techniques often fail to reliably mask the pa-
tient’s identity, or they are so aggressive that they adversely affect downstream medical analyses
on the brain, e.g. segmentation and age prediction. In this work, instead of removing potentially
essential parts of the MRI scans of the head and brain, we propose to de-identify them by reshaping
the privacy-sensitive regions without altering the content of medically relevant data.

Our approach is to remodel privacy-sensitive facial structures rather than remove them, while leaving
the brain untouched. Unlike removal-based approaches, under our method the head and face exhibit
realistic appearance and structure. To accomplish this, we propose a novel multi-scale volumetric
Generative Adversarial Network (GAN), called C-DeID-GAN, that conditions on a convex hull of the
skull extracted from the scan to be de-identified. The generator learns to synthesize MRI volumes
that preserve medically-sensitive regions such as the brain, while non-invertibly remodeling privacy-
sensitive characteristics such as the face from the original scan.

It is worthwhile to point out why such an approach is necessary, when methods that extract the
brain – so-called skull-stripping methods – already exist. In short, automated measurements behave
unpredictably when data is removed. As recently shown by De Sitter et al. (2020), software designed
to perform measurements (e.g. brain segmentation or age estimation) are developed to work robustly
for original data (Smith et al., 2004; Schmidt et al., 2012). If measurements are made on data de-
identified by removal, it can result in inaccuracies or even total failure. Thus, remodeling rather than
deleting the privacy-sensitive region would be desirable because it can protect privacy and at the
same time ensure robustness of the downstream medical analyses.

The main contributions of this work are as follows:
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Figure 1: Privacy concerns in MRI scans and methods to prevent identification. (left) Detailed
3D renderings of human heads with identifiable features can be crafted from MRI scans and used
to identify patients (Mazura et al., 2012). (center) Existing de-identification approaches attempt
to remove privacy-sensitive parts of the head, but alter the structure and appearance and often fail
to reliably mask the patient’s identity. (right) We remodel privacy-sensitive facial structures while
leaving the brain untouched using a conditional multi-scale volumetric GAN.

1. We define a novel methodology to ensure privacy in medical imagery that enables the shar-
ing of data in which medically relevant regions are preserved and privacy-sensitive regions
are de-identified realistically

2. We propose C-DeID-GAN, a conditional multi-scale volumetric GAN that realizes a solution
to the aforementioned methodology

3. We show that C-DeID-GAN preserves privacy in MRI scans more reliably than removal-based
techniques without adversely affecting downstream analyses.

In addition, we make technical contributions towards the generation of the convex hull and surface
representations necessary for the privacy conditioning of the GAN.

2 RELATED WORK

A handful of de-identification techniques exist for MRI data, which are conventionally used for shar-
ing and distribution. The most common include removal-based approaches shown in Figure 1, FACE
MASK (Milchenko & Marcus, 2013) DEFACE (Bischoff-Grethe et al., 2007), QUICKSHEAR (Schimke
et al., 2011), and MRI WATERSHED (Ségonne et al., 2004) all of which we describe in the Appendix.
De Sitter et al. (2020) were the first to report that these methods should be used with caution as
they remove regions of the face expected by algorithms for brain segmentation and other tasks. As
already pointed our in the introduction, failure modes include estimations being inaccurate or, in the
worst case, it might even be impossible to perform the measurement at all. These de-identification
approaches are relatively primitive and a more modern approach is currently lacking in the litera-
ture. However, Shin et al. (2018) recently proposed a pix2pix-inspired (Isola et al., 2016) model to
generate synthetic abnormal MRI images with brain tumors. In this work, the authors argue that,
in principle, their approach can be used to generate a completely artificial corpus where none of
the scans can be attributed to actual patients. The downside is that brain data is also hallucinated
which adversely affects medical analyses. In contrast, our approach de-identifies privacy-sensitive
information of every patient, but fully preserves the medically relevant information.

More broadly, the literature on the removal of privacy-sensitive information from image data largely
focuses on de-identification of photographs of faces (Jourabloo et al., 2015; Newton et al., 2005).
Among these, Deep Privacy (Hukkelås et al., 2019) is the closest to our approach as it was the first
to use GANs to de-identify faces. It conditions on an a priori binary segmentation, guiding the
generator to inpaint privacy-sensitive regions while preserving insensitive regions.

Whereas Deep Privacy de-identifies conventional images of size 128×128, our goal is to generate
much higher dimensional 3D MRI volumes at 1283 voxels – the equivalent of a 1448×1448 image.
To identify privacy-sensitive face regions for conditional inpainting, Deep Privacy relies on a stan-
dard detector (Liu et al., 2015). Because a 3D analog does not exist, we develop an approach to
extract a convex hull enclosing the head and mask of the brain for conditioning.
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Figure 2: Overview of our approach: We apply model-agnostic preprocessing to standardize the
scans and construct a surface representation using a novel technique. We then extract a convex hull
c(x), a brain mask b(x), and the original brain intensities b(x) ◦ x, stacked to form the privacy
transform γ(x) which serves as a conditioning variable at various scales for the generator and dis-
criminator of our model C-DeID-GAN. It learns to convert the distributionPX of original MR scans to a
de-identified counterpart PY , and because γ(x) does not contain any privacy-sensitive information,
renderings from the synthesized volumes are guaranteed not to reveal a patient’s identity.

3 CONDITIONAL DE-IDENTIFICATION OF MRI VOLUMES

Given a set of MR scans (X(i))i=1,...N
i.i.d.∼ PX with values in IS×S×S over some intensity space

I ⊂ R induced by the modality1 of the scans, we are interested in finding a function of the form
Y=fΦ(γ(X))∼PY that maps an MR scan X to its de-identified counterpart Y . The task of the
function γ(X) is to filter out any sensitive information in order to make it impossible to infer a
patient’s identity from only Y ; to create a privacy preserving representation. In this work, γ(X) is a
function of the convex hull of the head c(X)∈{0, 1}S×S×S and the brain mask b(X)∈{0, 1}S×S×S .

Within this remodeling-based privacy mapping framework, we impose three requirements:

1. Establishment of Anonymity: Non-invertibility of γ(X)

2. Distribution preservation: PX and PY are stochastically indistinguishable

3. Brain preservation: ∀(i, j, k) : b(X)i,j,k = 1 =⇒ Xi,j,k = fΦ(γ(X))i,j,k

In other words, we are interested in deriving a function fΦ that maps some original scan X to some
de-identified scan Y , while retaining medically relevant information (e.g. the brain) but preventing
other information specific to X to leak into Y (e.g. the face). This makes it impossible to infer a
person’s identity from facial renderings alone. In the following, we describe the de-identification
process depicted in Figure 2, including how to construct the privacy transform γ(X), and how it is
used to build the mapping function fΦ via a conditional multi-scale volumetric GAN.

3.1 THE PRIVACY TRANSFORM γ(X)

The goal of the privacy transform is to non-invertibly change an individual MRI representation x
into a form γ(x) that removes detailed privacy-sensitive information and replaces it with a convex
hull filled with 1’s, smoothing away detailed face information (e.g. eyes, nose mouth). The transform
guides the GAN, showing which regions should be hallucinated via a convex hull c(x) and which
regions should be retained through a brain mask b(x) and the brain data b(x)◦x. Following common
practice, we first apply a series of standard model-agnostic preprocessing steps to each volume
including registration, denoising, and orientation correction, see the Appendix for details. Following
the preprocessing, we define a function c(x) that maps a scan x ∈ IS×S×S to a binary convex hull

1MRI scans can be acquired under different conditions, we consider common T1-weighted MR signals.
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volume of the same shape. As no efficient off-the-shelf algorithm exists, we propose a probabilistic
solution that first constructs a surface representation from the MRI scan, and from this we compute
the convex hull of the head. These steps are described below.

Surface Representation. To extract a surface representation Z from an MRI scan x, we compute
maps where rays cast from each direction intersect the head at random rotations. We then rotate these
measurements back to the reference coordinates and treat each as the probability of it belonging to
the surface. We begin by converting a given scan into a sequence of K binarized and rotated scans

m(i) = Rot(1[x ≥ δ];Ri) ∈ IS×S×S (1)

for sampled rotations R1, . . . , RK
i.i.d∼ U(SO(3)), where U(SO(3)) denotes the uniform distribution

over all rotations in three-dimensional space and δ ∈ I represents a suitably chosen binarization
threshold2 for the binarization operator 1[·]. Let us further introduce the concept of the ζa,d-distance
of some voxel at position (k0, k1, k2) for some axis a ∈ {0, 1, 2} and some direction d ∈ {−1,+1}:

ζa,d(k0, k1, k2)=̂

{
(S − 1)− ka if d = +1

ka otherwise.
(2)

For fixed a and d, we can use this to create an intersection map Λi
a,d for each binary image mi

S :

Λ
(i)
a,d[k0, k1, k2] = 1

[(
m

(i)
k0,k1,k2

= 1

)
∧
(
ζa,d(k0, k1, k2) = min

s∈{0,...,S−1},
m

(i)

ka−1|s|ka+1
=1

ζa,d(ka−1 | s | ka+1)

)]
(3)

where (ka−1 | s | ka+1) indicates that the a-th index is set to s and the two others to their associated
value in k0, k1, k2. We average the intersection map over all axis-direction combinations:

Λ(i) = 1/6
∑
a

∑
d

Λi
a,d (4)

This process can be thought of as casting rays from each principle direction and recording the lo-
cation of the intersection with the rotated, binarized head in m(i). Voxels on the surface of the
head will exhibit high values of Λ(i). The final step is to back-rotate Λ(1), . . . ,Λ(K) to the refer-
ence coordinate system and average among the K randomly sampled rotations to create the surface
representation:

Z = 1/K

K∑
i=1

Rot(Λ(i), R−1
i ) ∈ [0, 1]S×S×S (5)

Note that Z is a random variable induced by the sampled rotations R1, . . . , RK . We interpret in-
dividual voxel values of Z as Bernoulli parameters characterizing the probability of some voxel
belonging to the surface. This interpretation justifies binarizing Z by considering it as a three-
dimensional Bernoulli tensor and sampling from it on a voxel-wise basis in the next step.

Convex Hull. From Z, we sample a set of non-zero indices and use Chan’s Algorithm (Chan, 1996)
to compute the triangles T making up the convex hull. We initialize a uniform volume filled with
1’s, then randomly select a sufficient number of triangles (100 suffice) from T . For each triangle,
we find its corresponding hyperplane and the half-spaces within c(x) defined by it. Voxels in the
outward half-space of c(x) are set to 0 while the rest are unchanged, yielding a binary convex hull
volume.

Privacy Transform. The binary convex hull volume c(x) instructs the GAN as to which regions
should be hallucinated. A binary brain mask b(x) obtained by applying the Robex algorithm (Igle-
sias et al., 2011) indicates which regions should be preserved. Together, these volumes along with
the masked continuous values of the brain b(x) ◦ x, are concatenated to make the privacy transform
γ(x). The GAN is conditioned on γ(x) as depicted in Figure 2 in the following subsection.

3.2 CONDITIONAL DE-IDENTIFICATION GAN (C-DEID-GAN)

Our proposed GAN architecture depicted in Figure 2, C-DeID-GAN, is capable of generating volumes
at multiple scales and passing gradients between each scale during training. We start from a 2D

2The threshold δ is chosen to be larger than the noise values surrounding the skull.
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generation framework similar to MSG-GAN (Karnewar & Wang, 2019) and adapt it to our task by
means of the following: (1) we incorporate conditional information via the privacy transform, (2)
we make architectural improvements described below, (3) we use a new resampling strategy, (4)
we adopt relativistic (non-averaging) R-LSGAN loss, and (5) we operate on 3D volumes. We use
bottlenecks between scales as recently suggested by Karras et al. (2019), in which the generator
outputs single-channel maps instead of multi-channel maps. To reduce the memory footprint, we
use modified MobileNet v2 convolutions as suggested in Howard et al. (2017).

Both the generator GΦ(γ(x)) and the discriminator DΘ(γ(x), v) are conditioned on γ(x), where v
either denotes a multi-resolutional original or fake sample. Regarding scales – suppose that S and
s are powers of two that denote the maximum/minimum resolution synthesized by GΦ. Then both
GΦ and DΘ are defined to have NB = log2(S/s) + 1 blocks (indexed by k) that either double (GΦ)
or halve (DΘ) their input resolution. Here, we generate scales from 4×4×4 to 128×128×128.

Generator. The generator GΦ = G
(NB)
Φ ◦ . . . ◦ G(1)

Φ for G(k)
Φ : RrG(k−1) × RrG(k) → RrG(k)

and rG(k) = 1 × 2k−1s × 2k−1s × 2k−1s synthesizes a sequence of fake images g1, . . . , gNB
of

increasing resolutions as follows:
gk = G

(k)
Φ (gk−1, γk) for k ≥ 1 (6)

where g0 ∼ N (0, 1) and γk =�rG(k) γ(x) is γ(x) downsampled to a resolution of rG(k).

Discriminator. The discriminatorDΘ = F◦D(NB)
Θ ◦. . .◦D(1)

Θ forD(1)
Θ : RrD(1)×RrD(1) → RrD(1)

resp. D(k)
Θ : RrD(k−1) × RrD(k) × RrD(k) → RrD(k)(k > 1) and rD(k) = 1 × S/2k−1 × S/2k−1 ×

S/2k−1 assigns a scalar to a sequence of images3 of decreasing resolutions v1, . . . , vNB
as follows:

dk =

{
DΘ(v1, γ1) k = 1

DΘ(dk−1, vk, γk) k > 1
(7)

where γk =�rD(k) γ(x) is γ(x) downsampled to a resolution of rD(k) and F is a fully-connected
layer that computes a scalar summary of the output of D(NB)

Θ .

Resampling blocks. Karras et al. (2018; 2019) recently proposed to use bilinear interpolation for
downsampling, but adapting this approach is problematic as it will create undesirable interpola-
tion effects in the binary volumes. Therefore, we leverage a probabilistic interpretation of average
pooling which guarantees that the proportion of non-zero voxels is preserved (in expectation) while
maintaining voxel-wise correspondence to conventional average pooling performed on non-binary
images. To achieve this, we first perform average pooling on the binary volume followed by inter-
preting the averaged values as probability parameters to voxel-dependent Bernoulli distributions. A
final voxel-wise sampling step then yields the desired binary outcome (see Appendix for details).
Upsampling is done using nearest-neighbor interpolation.

Loss Function. We use the relativistic (non-averaging) R-LSGAN loss (Jolicoeur-Martineau, 2018):

LG = 2E(xr,xf )∼(PX ,PY )

[
(DΘ(xr)−DΘ(xf ) + 1)2

]
LD = 2E(xr,xf )∼(PX ,PY )

[
(DΘ(xf )−DΘ(xr) + 1)2

]
where PX ,PY denote the original resp. fake distribution induced by fΦ. For simplicity, we drop the
conditioning variable γ(x) from the notation. Originally formulated for an unconditional scenario,
we give some reasoning in the Appendix why the non-averaging class of relativistic losses is more
amenable to conditional scenarios than the more commonly used averaging variants. We opt for
relativistic losses as they induce a lower memory footprint than, for instance, the widely-established
WGAN-GP (Gulrajani et al., 2017) requiring an additional forward/backward pass.

Brain Preservation. One of the requirements defined above in the Problem Definition is to perfectly
preserve medically relevant information. Therefore, in a similar process to image inpainting in which
original image content is masked and retained, we use the brain mask b(x) to embed the original
brain data into the volume synthesized by the generator: fΦ(γ(x)) = b(x)◦x+(1−b(x))◦GΦ(γ(x)).

3x1, . . . , xNB in case of an original image and g1, . . . , gNB in case of a fake image

5



Under review as a conference paper at ICLR 2021

OASIS-3 ADNI

BLURRED 41.28 ±1.89 48.03 ±1.97
FACE MASK 34.44 ±1.79 42.26 ±1.88
DEFACE 38.47 ±1.91 43.09 ±1.87
QUICKSHEAR 35.25 ±1.86 34.28 ±1.86
MRI WATERSHED 18.90±1.54 22.28 ±1.56
C-DeID-GAN 23.88 ±1.68 21.56±1.63

Figure 3: Study on De-Identification Quality: (left) Amazon Mechanical Turk workers were asked
to defeat the de-identification methods: We show the original rendering and 5 renderings of different
patients, the task is to select the de-identified rendering matching the query. Here, ADNI patients de-
identified using C-DeID-GAN are shown, “5” is correct. (right) Correct identification rates (±s.d.) for
800 distinct questions per dataset, evenly distributed among the methods. Each question was given
to five workers, totalling 4,000 assignments (random guessing = 20%).

4 EXPERIMENTS

Above, we proposed a new and modern approach to de-identify medical image data. To judge
its utility, we must address the following questions: (1) Does remodeling preserve privacy better
than existing removal-based de-identification methods? (2) Does our approach adversely affect the
performance of common medical applications? In this section, we compare our approach to other
de-identification methods to answer these questions experimentally. We also show qualitatively that
changing γ(x) allows us to manipulate the synthesis of privacy-sensitive regions with C-DeID-GAN.

4.1 SETUP

Here, we present the datasets, the benchmark de-dentification methods that we compare our model
with and the training details of our model.

Datasets. In this work, we use two standard publicly available large-scale Alzheimer’s disease
imaging studies which feature T1-weighted volumetric MR scans of the head for each subject: A
selection of 2,172 MRIs from ADNI (Weiner et al., 2017; Wyman et al., 2013) and 2,168 MRIs from
OASIS-3 (LaMontagne et al., 2019). Both datasets are split (80%-20% train-test) on a patient level
to avoid memorizing the patient’s ID from previously seen scans. Scanner types and acquisition
protocols differ between and within the datasets, details can be found in the Appendix.

Benchmark De-Identification Methods. We compare our result with four publicly available and
widely-established methods for de-identification of MRI head scans, depicted in Figure 1. All meth-
ods have in common that they (1) are not deep-learning-driven, (2) require no additional training
and (3), are used on a day-to-day basis in neuroscience and clinical research. All procedures were
applied with default settings on images of resolution 128×128×128. The methods include QUICKS-
HEAR (Schimke et al., 2011), FACEMASK (Milchenko & Marcus, 2013), DEFACE (Bischoff-Grethe et al.,
2007),and MRI WATERSHED (Ségonne et al., 2004). Descriptions of the methods are provided in the
Appendix.

Training. We train C-DeID-GAN in a distributed setup on an NVIDIA DGX-1 with V100 GPUs, where
two GPUs model the generator and two control the discriminator. We use the AdamP (Heo et al.,
2020) optimizer with a learning rate of 2 · 10−3 and β = (0, 0.99) and a batch size of 2. See the
Appendix for a complete list of the hyperparameters.

4.2 RESULTS

In this section, we present results on (1) a user study comparing the identification rate of our model
with existing de-identification methods, (2) two medical imaging end tasks on brain segmentation
and age prediction and (3) our model’s ability to manipulate the appearance of the generated 3D
volumes. In addition, we provide a comparison of execution times of the various methods in the
Appendix and video results of the original and de-identified scans as Supplementary Material.

Study on De-Identification Quality. The privacy attack described in Mazura et al. (2012) used
prospectively collected data, meaning the authors had access to CT scans as well as photographs
of the patient’s faces. Testing de-identification quality by replicating that study for MRI scans is
impossible, because photographs of ADNI and OASIS-3 patients do not exist. Therefore, we conduct

6



Under review as a conference paper at ICLR 2021

(a) Brain Segmentation (b) Age Estimation

Figure 4: Effect of De-Identification on Brain Segmentation and Age Estimation: (a) We compare
how de-identification affects the reliability of segmenting various brain regions: grey matter, white
matter, VCSF, and total brain. The box plots show the Sørensen–Dice coefficient computed between
segmentations on the original scan and the de-identified scan using standard software, SIENAX.
Higher scores indicate better fidelity. (b) Box plots show how de-identification affects reliability of
brain age predictions from a deep neural network. The network predicts brain age on the original
scan (nO) and a de-identified scan (nD), and we show the distribution of nD − nO in years. All
de-identification methods show acceptable deviations, within ranges reported in other works.

a similarly-spirited study using Amazon Mechanical Turk in which workers are asked to defeat the
various de-identification methods given renderings of MRI scans, shown in Figure 3. Workers were
presented with an unaltered rendering of a query patient along with five renderings de-identified
using a single method – one of which is a de-identified rendering of the query patient. The task
was then to pick out the de-identified rendering which corresponds to the unaltered query rendering.
The workers could choose between the five de-identified renderings of different patients, or select
“uncertain”. We asked 800 distinct questions per dataset. Each question was given to five workers,
for a total of 4,000 assignments that are evenly distributed among the methods. The mean and the
standard deviation are estimated by bootstrapping over 1,000 samples.

In the table on the right of Figure 3, we report the identification rate, or how often the workers were
able to defeat each method. The identification rate accounts for the correct identifications and “un-
certain” responses, see Appendix for details. In addition to the five de-identification methods, we
added a control task BLURRED to measure the lower performance bound, in which the 2D renderings
are blurred to mildly obscure the patient identity. An upper performance bound from random guess-
ing corresponds to 20%. The results substantiate the claim that C-DeID-GAN performs extraordinarily
well at de-identifying MR imagery. Although MRI WATERSHED slightly outperforms our method on
OASIS-3, it removes everything but the brain, rendering it nearly useless at the downstream tasks as
shown in the following sections. Our model outperforms the other de-identification methods sub-
stantially with identification rate gaps of 13%–22% on ADNI and 11%–17% on OASIS-3. We note that
for both datasets, C-DeID-GAN performs near to the theoretical optimum of 20%.

Effect of De-Identification on Brain Segmentation. Beyond ensuring patient privacy, de-
identification methods should not adversely affect software tools commonly used on MRI scans.
However, it has been recently shown that certain facial de-identification methods do adversely im-
pact subsequent automated image analysis used in research and in the clinic (De Sitter et al., 2020).
In line with this study, we assess how the de facto standard brain tissue segmentation tool, SIENAX
(Smith et al., 2004), performs on de-identified MRI scans in comparison to the originals. Using
this tool, we segment four regions commonly used in neuroimaging: gray matter, white matter, ven-
tricular cerebral spinal fluid (VCSF), and total brain, which can be used to assess progression in
Alzheimer’s disease (Matsuda, 2016). We record the estimated volumes and compare how segmen-
tations obtained on the original overlaps with de-identified segmentations using the Sørensen–Dice
coefficient (Sørensen, 1948; Dice, 1945), commonly referred to as Dice score.

In Figure 4a, we report the distribution of Dice scores between the original and de-identified scans
for various brain regions. Numeric volume estimations are provided in the Appendix. We observe
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that de-identified scans using C-DeID-GAN are reliable in comparison to the original scan, although
there is a minor drop in fidelity compared to QUICKSHEAR, DEFACE and FACE MASK. In contrast, de-
identification with MRI WATERSHED substantially alters the segmentation as it removes everything
except the brain.

Effect of De-Identification on Deep Learning-based Age Prediction. Machine learning algo-
rithms can be trained to estimate brain age from MRI scans, and the difference between predicted
and chronoligcal age is shown to have links to aging and brain disease (Jónsson et al., 2019). Here,
we investigate whether de-identification adversely affects brain age estimation. We train a three-
dimensional adaptation of ResNet-18 (He et al., 2016) combined with a L2-loss function to estimate
brain age in MRI scans. Details of the training procedure can be found in the Appendix. We assess
how the network’s predicted age nD on the de-identified scans compares to the predicted age on the
originals nO by measuring the difference nD − nO between the two in years.

The results appear in Figure 4b. We find that our model performs on par with the other de-
identification models, with notably little bias in the ADNI data. FACE MASK shows the least bias and
smallest variance, but it is worth noting that an uncertainty of 3-4 years is typical, as chronological
age is a noisy label. The deviations reported by the de-identification methods are in the range of
similar age estimation studies (Huang et al., 2017; Ueda et al., 2019; Cole et al., 2017), suggest-
ing that the effect on age estimation is acceptable. The performance of C-DeID-GAN is surprisingly
good considering that the age estimation model exploits age cues in regions outside of the brain,
suggesting C-DeID-GAN may implicitly model age information from the brain it conditions on.

Controlling Synthesis via the Privacy Transform. Finally, we demonstrate that it is possible,
in principle, to control certain aspects of the synthesized MRI scan by manipulating the privacy
transform γ(x) upon which C-DeID-GAN is conditioned. As proof-of-concept, we apply a simple
resizing to the privacy transformed representation, parameterized by scale factor α ∈ R. Recall
that γ(x) contains the brain mask, brain data, and convex hull [b(x), x ◦ b(x), c(x)] as depicted in
Figure 5. We alter each of these volumes by resizing from shape S3 to bαSc3, then use a linear
spline interpolation to infer intensities at integral positions (where b·c denotes the floor function).
The resulting volume is then either center cropped or evenly padded, yielding a convex hull, brain
mask, and brain scaled by α within a volume of shape S3.

In Figure 5, we observe that manipulating the size of the synthesized volume by scaling γ(x) yields
realistic results. The top three rows show the conditioning volumes from γ(x), and the last row
shows the generated MRI scans. C-DeID-GAN manages to account for the size of the conditioning
information without any visible degradation of quality. We set scaling limits (αmin, αmax) shown
in Figure 5 to reflect the distribution of brain sizes present in the data, see Appendix for details.
As the GAN has not been exposed to γ(x) with extreme brain sizes beyond (αmin, αmax) during
training, scans generated at such extremes may be less realistic. This experiment demonstrates that
it is possible to control the appearance of the generated volume through manipulation of the privacy
transform. Future work may explore more refined means of manipulation, including some which
provide even better privacy guarantees.

5 CONCLUSION

In this work, we have defined a new paradigm for de-identification of medical imagery and realized it
for MRI scans in a novel approach, C-DeID-GAN. In contrast to traditional de-identification methods,
our approach does not aim to remove certain regions but rather aims to remodel privacy-relevant
information while keeping medically-relevant information untouched (i.e. the brain in this work).
In theory, this new model class allows us produce images that appear completely genuine but do
not actually contain any privacy-sensitive information. We have shown, through experiments, that
our method protects privacy substantially better than existing methods without strongly affecting the
performance of common tools typically found in research and clinical settings. However, we note
that certain existing de-identification methods affect these downstream tasks to a lesser extent, and
a future line of research will be to improve the fidelity of GAN-generated volumes to mitigate this
effect. We outline these limitations and avenues for future research in the Appendix. The code and
model weights necessary to reproduce our work will be made public upon publication. It is our hope
that the approaches we have outlined in this work will find use to better preserve privacy in clinical
and research settings.
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(a) OASIS-3 (b) ADNI

Figure 5: Manipulating the Appearance of the Synthesis: We demonstrate how our model can control
the appearance of the synthesized volume by manipulating the privacy transform γ(x) which C-DeID-
GAN is conditioned on (top three rows). Here, we apply a simple resizing using a scale factor α ∈
[0.85, 1.15] prior to presenting it to C-DeID-GAN. Synthesized volumes (bottom row) are appropriately
sized and appear realistic, implying that more sophisticated manipulations may be possible.

REFERENCES

Amanda Bischoff-Grethe, I. Burak Ozyurt, Evelina Busa, Brian T. Quinn, Christine Fennema-
Notestine, Camellia P. Clark, Shaunna Morris, Mark W. Bondi, Terry L. Jernigan, Anders M.
Dale, Gregory G. Brown, and Bruce Fischl. A technique for the deidentification of structural
brain MR images. Human Brain Mapping, 28(9):892–903, sep 2007. ISSN 10659471. doi:
10.1002/hbm.20312.

T. M. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. Dis-
crete and Computational Geometry, 16(4):361–368, 1996. ISSN 01795376. doi: 10.1007/
BF02712873.

James H Cole, Rudra P K Poudel, Dimosthenis Tsagkrasoulis, Matthan W A Caan, Claire Steves,
Tim D Spector, and Giovanni Montana. Predicting brain age with deep learning from raw imaging
data results in a reliable and heritable biomarker. Neuroimage, 163:115–124, December 2017.

A. De Sitter, M. Visser, I. Brouwer, K. S. Cover, R. A. van Schijndel, R. S. Eijgelaar, D. M.J.
Müller, S. Ropele, L. Kappos, Rovira, M. Filippi, C. Enzinger, J. Frederiksen, O. Ciccarelli,
C. R.G. Guttmann, M. P. Wattjes, M. G. Witte, P. C. de Witt Hamer, F. Barkhof, and H. Vrenken.
Facing privacy in neuroimaging: removing facial features degrades performance of image analysis
methods. European Radiology, 30(2):1062–1074, feb 2020. ISSN 14321084. doi: 10.1007/
s00330-019-06459-3.

Lee R. Dice. Measures of the Amount of Ecologic Association Between Species. Ecology, 26(3):
297–302, jul 1945. ISSN 00129658. doi: 10.2307/1932409. URL http://doi.wiley.
com/10.2307/1932409.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. Im-
proved training of wasserstein gans. In Advances in neural information processing systems, pp.
5767–5777, 2017.

K He, X Zhang, S Ren, and J Sun. Deep residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016.

Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongyoon Han, Sangdoo Yun, Youngjung Uh, and
Jung-Woo Ha. Slowing down the weight norm increase in momentum-based optimizers. arXiv
preprint arXiv:2006.08217, 2020.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. CoRR, abs/1704.04861, 2017. URL http://arxiv.org/abs/
1704.04861.

9

http://doi.wiley.com/10.2307/1932409
http://doi.wiley.com/10.2307/1932409
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861


Under review as a conference paper at ICLR 2021

T Huang, H Chen, R Fujimoto, K Ito, K Wu, K Sato, Y Taki, H Fukuda, and T Aoki. Age estimation
from brain MRI images using deep learning. In 2017 IEEE 14th International Symposium on
Biomedical Imaging (ISBI 2017), pp. 849–852, April 2017.
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