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Abstract

Recent advances in off-policy deep reinforcement learning (RL) have led to im-
pressive success in complex tasks from visual observations. Experience replay
improves sample-efficiency by reusing experiences from the past, and convolutional
neural networks (CNNs) process high-dimensional inputs effectively. However,
such techniques demand high memory and computational bandwidth. In this paper,
we present Stored Embeddings for Efficient Reinforcement Learning (SEER), a
simple modification of existing off-policy RL methods, to address these computa-
tional and memory requirements. To reduce the computational overhead of gradient
updates in CNNs, we freeze the lower layers of CNN encoders early in training
due to early convergence of their parameters. Additionally, we reduce memory
requirements by storing the low-dimensional latent vectors for experience replay
instead of high-dimensional images, enabling an adaptive increase in the replay
buffer capacity, a useful technique in constrained-memory settings. In our experi-
ments, we show that SEER does not degrade the performance of RL agents while
significantly saving computation and memory across a diverse set of DeepMind
Control environments and Atari games.

1 Introduction

Success stories of deep reinforcement learning (RL) from high dimensional inputs such as pixels
or large spatial layouts include achieving superhuman performance on Atari games [30, 37, 1],
grandmaster level in Starcraft II [50] and grasping a diverse set of objects with impressive success
rates and generalization with robots in the real world [21]. Modern off-policy RL algorithms [30,
15, 11, 12, 39, 22, 24] have improved the sample-efficiency of agents that process high-dimensional
pixel inputs with convolutional neural networks (CNNs; LeCun et al. 25) using past experiential data
that is typically stored as raw observations in a replay buffer [28]. However, these methods demand
high memory and computational bandwidth, which makes deep RL inaccessible in several scenarios,
such as learning with much lighter on-device computation (e.g. mobile phones or other light-weight
edge devices).

For compute- and memory-efficient deep learning, several strategies, such as network pruning [13,
8], quantization [13, 17] and freezing [53, 36] have been proposed in supervised learning and
unsupervised learning for various purposes (see Section 2 for more details). In computer vision,
Raghu et al. [36] and Brock et al. [5] showed that the computational cost of updating CNNs can be
reduced by freezing lower layers earlier in training, and Han et al. [13] introduced a deep compression,
which reduces the memory requirement of neural networks by producing a sparse network. In natural
language processing, several approaches [46, 42] have studied improving the computational efficiency
of Transformers [49]. In deep RL, however, developing compute- and memory-efficient techniques
has received relatively little attention despite their serious impact on the practicality of RL algorithms.

In this paper, we propose Stored Embeddings for Efficient Reinforcement Learning (SEER), a simple
technique to reduce computational overhead and memory requirements that is compatible with various
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off-policy RL algorithms [10, 15, 39]. Our main idea is to freeze the lower layers of CNN encoders
of RL agents early in training, which enables two key capabilities: (a) compute-efficiency: reducing
the computational overhead of gradient updates in CNNs; (b) memory-efficiency: saving memory by
storing the low-dimensional latent vectors to experience replay instead of high-dimensional images.
Additionally, we leverage the memory-efficiency of SEER to adaptively increase replay capacity,
resulting in improved sample-efficiency of off-policy RL algorithms in constrained-memory settings.
SEER achieves these improvements without sacrificing performance due to early convergence of
CNN encoders.

The main contributions of this paper are as follows:

• We present SEER, a compute- and memory-efficient technique that can be used in conjunction
with most modern off-policy RL algorithms [10, 15].

• We show that SEER significantly reduces computation while matching the original performance
of existing RL algorithms on both continuous control tasks from DeepMind Control Suite [45]
and discrete control tasks from Atari games [2].

• We show that SEER improves the sample-efficiency of RL agents in constrained-memory settings
by enabling an increased replay buffer capacity.

2 Related work

Off-policy deep reinforcement learning. The most sample-efficient RL agents often use off-policy
RL algorithms, a recipe for improving the agent’s policy from experiences that may have been
recorded with a different policy [44]. Off-policy RL algorithms are typically based on Q-Learning [51]
which estimates the optimal value functions for the task at hand, while actor-critic based off-policy
methods [27, 38, 10] are also commonly used. In this paper we will consider Deep Q-Networks
(DQN; Mnih et al. 30),which combine the function approximation capability of deep convolutional
neural networks (CNNs; LeCun et al. 25) with Q-Learning along with the usage of the experience
replay buffer [28] as well as off-policy actor-critic methods [27, 10], which have been proposed for
continuous control tasks.

Taking into account the learning ability of humans and practical limitations of wall clock time for
deploying RL algorithms in the real world, particularly those that learn from raw high dimensional
inputs such as pixels [21], the sample-inefficiency of off-policy RL algorithms has been a research
topic of wide interest and importance [23, 20]. To address this, several improvements in pixel-
based off-policy RL have been proposed recently: algorithmic improvements such as Rainbow [15]
and its data-efficient versions [48]; using ensemble approaches based on bootstrapping [34, 26];
combining RL algorithms with auxiliary predictive, reconstruction and contrastive losses [18, 16, 33,
52, 39, 40]; using world models for auxiliary losses and/or synthetic rollouts [43, 9, 20, 12]; using
data-augmentations on images [24, 22].

Compute-efficient techniques in machine learning. Most recent progress in deep learning and RL
has relied heavily on the increased access to more powerful computational resources. To address
this, Mattson et al. [29] presented MLPerf, a fair and precise ML benchmark to evaluate model
training time on standard datasets, driving scalability alongside performance, following a recent
focus on mitigating the computational cost of training ML models. Several techniques, such as
pruning and quantization [13, 8, 4, 17, 46] have been developed to address compute and memory
requirements. Raghu et al. [36] and Brock et al. [5] proposed freezing earlier layers to remove
computationally expensive backward passes in supervised learning tasks, motivated by the bottom-up
convergence of neural networks. This intuition was further extended to recurrent neural networks [31]
and continual learning [35], and Yosinski et al. [53] study the transferability of frozen and fine-tuned
CNN parameters. Fang et al. [7] store low-dimensional embeddings of input observations in scene
memory for long-horizon tasks. We focus on the feasibility of freezing neural network layers in deep
RL and show that this idea can improve the compute- and memory-efficiency of many off-policy
algorithms using standard RL benchmarks.

2



Replay buffer

Forward
Backward

Latent vector
(dim=50)

3 x 84 x 84

Actor Critic

Encoder

(a) SEER before freezing.

Replay buffer

Actor Critic

Encoder

Forward
Backward

Latent vector
(dim=50)

(b) SEER after freezing.

Figure 1: Illustration of our framework. (a) Before the encoder is frozen, all forward and backward
passes are active through the network, and we store images in the replay buffer. (b) After freezing,
we store latent vectors in the replay buffer, and remove all forward and backward passes through the
encoder. We remark that more samples can be stored in the replay buffer due to the relatively low
dimensionality of the latent vector.

3 Background

We formulate visual control task as a partially observable Markov decision process (POMDP; Sutton
& Barto 44, Kaelbling et al. 19). Formally, at each timestep t, the agent receives a high-dimensional
observation ot, which is an indirect representation of the state st, and chooses an action at based on its
policy π. The environment returns a reward rt and the agent transitions to the next observation ot+1.
The return Rt =

∑∞
k=0 γ

krt+k is the total accumulated rewards from timestep t with a discount
factor γ ∈ [0, 1). The goal of RL is to learn a policy π that maximizes the expected return over
trajectories. By following the common practice in DQN [30], we handle the partial observability of
environment using stacked input observations, which are processed through the convolutional layers
of an encoder fψ .

Soft Actor-Critic. SAC [10] is an off-policy actor-critic method based on the maximum entropy RL
framework [55], which encourages robustness to noise and exploration by maximizing a weighted
objective of the reward and the policy entropy. To update the parameters, SAC alternates between
a soft policy evaluation and a soft policy improvement. At the soft policy evaluation step, a soft
Q-function, which is modeled as a neural network with parameters θ, is updated by minimizing the
following soft Bellman residual:

LSACQ (θ, ψ) =Eτt∼B
[(
Qθ(fψ(ot), at)− rt

− γEat+1∼πφ
[
Qθ̄(fψ̄(ot+1), at+1)− α log πφ(at+1|fψ(ot+1))

])2
]
,

where τt = (ot, at, rt, ot+1) is a transition, B is a replay buffer, θ̄, ψ̄ are the delayed parameters, and
α is a temperature parameter. At the soft policy improvement step, the policy π with its parameter φ
is updated by minimizing the following objective:

LSACπ (φ) = Eot∼B,at∼πφ
[
α log πφ(at|fψ(ot))−Qθ(fψ(ot), at)

]
.

Here, the policy is modeled as a Gaussian with mean and covariance given by neural networks.

Deep Q-learning. DQN algorithm [30] learns a Q-function, which is modeled as a neural network
with parameters θ, by minimizing the following Bellman residual:

LDQN(θ, ψ) = Eτt∼B

[(
Qθ(fψ(ot), at)− rt − γmax

a
Qθ̄(fψ̄(ot+1), a)

)2
]
,

where τt = (ot, at, rt, ot+1) is a transition, B is a replay buffer, and θ̄, ψ̄ are the delayed parameters.
Rainbow DQN integrates several techniques, such as double Q-learning [47] and distributional
DQN [3]. For exposition, we refer the reader to Hessel et al. [15] for more detailed explanations of
Rainbow DQN.
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4 SEER: Stored Embeddings for Efficient Reinforcement Learning

In this section, we present SEER: Stored Embeddings for Efficient Reinforcement Learning, which
can be used in conjunction with most modern off-policy RL algorithms, such as SAC [10] and
Rainbow DQN [15]. Our main idea is to freeze lower layers during training and only update higher
layers, which eliminates the computational overhead of computing gradients and updating in lower
layers. We additionally improve the memory-efficiency of off-policy RL algorithms by storing
low-dimensional latent vectors in the replay buffer instead of high-dimensional pixel observations.
See Figure 1 and Appendix ?? for more details of our method.

4.1 Freezing encoder for saving computation and memory

We process high-dimensional image input with an encoder fψ to obtain zt = fψ(ot), which is used as
input for policy πφ and Q-functionQθ as described in Section 3. In off-policy RL, we store transitions
(ot, at, ot+1, rt) in the replay buffer B to improve sample-efficiency by reusing experience from
the past. However, processing high-dimensional image input ot is computationally expensive. To
handle this issue, after Tf updates, we freeze the parameters of encoder ψ, and only update the policy
and Q-function. We remark that this simple technique can save computation without performance
degradation because the encoder is modeled as deep convolutional neural networks, while a shallow
MLP is used for policy and Q-function. Freezing lower layers of neural networks also has been
investigated in supervised learning based on the observation that neural networks converge to their
final representations from the bottom-up, i.e., lower layers converge very early in training [36]. For
the first time, we show the feasibility and effectiveness of this idea in pixel-based reinforcement
learning (see Figure 7a for supporting experimental results) and present solutions to its RL-specific
implementation challenges.

Moreover, in order to save memory, we consider storing (compressed) latent vectors instead of
high-dimensional image inputs. Specifically, each experience in B is replaced by the latent tran-
sition (zt, at, zt+1, rt), and the replay capacity is increased to Ĉ (see Section 4.2 for more de-
tails). Thereafter, for each subsequent environment interaction, the latent vectors zt = fψ(ot) and
zt+1 = fψ(ot+1) are computed prior to storing (zt, at, zt+1, rt) in B. During agent updates, the
sampled latent vectors are directly passed into the policy πφ and Q-function Qθ, bypassing the
encoder convolutional layers. Since the agent samples and trains with latent vectors after freezing,
we only store the latent vectors and avoid the need to maintain large image observations in B.

4.2 Additional techniques and details for SEER

Data augmentations. Recently, various data augmentations [39, 24, 22] have provided large gains in
the sample-efficiency of RL from pixel observations. However, SEER precludes data augmentations
because we store the latent vector instead of the raw pixel observation. We find that the absence
of data augmentations could decrease sample-efficiency in some cases, e.g., when the capacity of
B is small. To mitigate this issue, we perform K number of different data augmentations for each
input observation ot and store K distinct latent vectors {zkt = fψ(AUGk(ot))|k = 1 · · ·K}. We find
empirically that K = 4 achieves competitive performance to standard RL algorithms in most cases.

Increasing replay capacity. By storing the latent vector in the replay buffer, we can adaptively
increase the capacity (i.e., total number of transitions), which is determined by the size difference
between the input pixel observations and the latent vectors output by the encoder, with a few additional
considerations. The new capacity of the replay buffer is

Ĉ =
⌊
C ∗

(
P

4NKL

) ⌋
,

where C is the capacity of the original replay buffer, P is the size of the raw observation, L is
the size of the latent vector, and K is the number of data augmentations. The number of encoders
N is algorithm-specific and determines the number of distinct latent vectors encountered for each
observation during training. For Q-learning algorithms N = 1, whereas for actor-critic algorithms
N = 2 if the actor and critic each compute their own latent vectors. Some algorithms employ a target
network for updating the Q-function [30, 10], but we use the same latent vectors for the online and
target networks after freezing to avoid storing target latent vectors separately and find that tying their
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Figure 2: Learning curves for CURL with and without SEER, where the x-axis shows estimated
cumulative FLOPs. The dotted gray line denotes the encoder freezing time t = Tf . The solid line
and shaded regions represent the mean and standard deviation, respectively, across five runs.
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Figure 3: Learning curves for Rainbow with and without SEER, where the x-axis shows estimated
cumulative FLOPs. The dotted gray line denotes the encoder freezing time t = Tf . The solid line
and shaded regions represent the mean and standard deviation, respectively, across five runs.

parameters does not degrade performance.1 The factor of 4 arises from the cost of saving floats for
latent vectors, while raw pixel observations are saved as integer pixel values. We assume the memory
required for actions and rewards is small and only consider only the memory used for observations.

5 Experimental results

We designed our experiments to answer the following questions:

• Can SEER reduce the computational overhead of various off-policy RL algorithms for both
continuous (see Figure 2) and discrete (see Figure 3) control tasks?

• Can SEER reduce the memory consumption and improve the sample-efficiency of off-policy
RL algorithms by adaptively increasing the buffer size (see Figure 4 and Figure 5)?

• Can SEER be useful for compute-efficient transfer learning (see Figure 7a)?
• Do CNN encoders of RL agents converge early in training (see Figure 8a and Figure 8b)?

5.1 Setups

Compute-efficiency. We first demonstrate the compute-efficiency of SEER on the DeepMind Control
Suite (DMControl; Tassa et al. 45) and Atari games [2] benchmarks. DMControl is commonly used
for benchmarking sample-efficiency for image-based continuous control methods. For DMControl
experiments, we consider a state-of-the-art model-free RL method, which applies contrastive learning
(CURL; Srinivas et al. 39) to SAC [10], using the image encoder architecture from SAC-AE [52].

1We remark that the higher layers of the target network are not tied to the online network after freezing.
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Scores at 45T FLOPs Scores at 500K environment steps (0.07GB)
Rainbow Rainbow+SEER Rainbow Rainbow+SEER

Alien 992.0± 152.7 1172.6 ±239.0 1038.4± 101.1 1134.6 ±452.9
Amidar 144.0± 27.4 250.5 ±47.4 121.0± 31.2 165.3 ±47.6
BankHeist 145.8± 61.2 276.6 ±98.1 161.6 ±57.7 151.8± 65.8
CrazyClimber 21580.0± 3514.6 28066.0 ±4108.5 10498.0± 1387.8 17620.0 ±4418.4
Krull 2799.5± 468.1 3277.5 ±440.5 2215.7± 336.9 3069.2 ±377.6
Qbert 2325.5± 1152.7 4123.5 ±1385.5 2430.5± 658.8 3231.0 ±1567.6
RoadRunner 10376.0± 2886.0 11794.0 ±1745.3 10612.0± 2059.3 13064.0 ±2489.2
Seaquest 402.8± 48.4 561.2 ±100.5 262.8± 19.1 336.8 ±45.9

Table 1: Scores on Atari games at 45T FLOPs corresponding to Figure 3 and at 500K environment
interactions in the constrained-memory setup (0.07GB) corresponding to Figure 4. The results show
the mean and standard deviation averaged five runs, and the best results are indicated in bold.
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Figure 4: Comparison of the sample-efficiency of Rainbow with and without SEER in constrained-
memory (0.07 GB) settings. The dotted gray line denotes the encoder freezing time t = Tf . The solid
line and shaded regions represent the mean and standard deviation, respectively, across five runs.

For evaluation, we compare the computational efficiency of CURL with and without SEER by
measuring floating point operations (FLOPs).2. For discrete control tasks from Atari games, we
perform similar experiments comparing the FLOPs required by Rainbow [15] with and without SEER.
For all experiments, we use the hyperparameters and architecture of data-efficient Rainbow [48].

Memory efficiency. We showcase the memory efficiency of SEER with a set of constrained-memory
experiments in DMControl. For Cartpole and Finger, the memory allocated for storing observations
is constrained to 0.03 GB, corresponding to an initial replay buffer capacity C = 1000. For Reacher
and Walker, the memory is constrained to 0.06 GB for an initial capacity of C = 2000. In this
constrained-memory setting, we compare the sample-efficiency of CURL with and without SEER.
As an upper bound, we also report the performance of CURL without memory constraints, i.e., the
replay capacity is set to the number of training steps. For Atari experiments, the baseline agent is
data-efficient Rainbow and the memory allocation is 0.07 GB, corresponding to initial replay capacity
C = 10000. The other hyperparameters are the same as those in the compute-efficiency experiments.
Before the encoder is freeze, the replay buffer still needs to store the images and if the replay buffer
slots number is equal with the baseline settings, the performance is equal to the baseline in theory.
After the freeze time, the replay buffer slots number grows more larger. So the benefit is seems like on
the condition of the assumption that a larger replay buffer would brings performance improvement?
Such assumption needs to be claimed and discussed more clearly in the paper. Further discussions
and experiments on the different limitations of the memory cost would be helpful.

2We explain our procedure for counting the number of FLOPs in Appendix ??. The gain on wall-clock time
is discussed in Appendix ??.
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Figure 5: Comparison of the sample-efficiency of CURL with and without SEER in constrained-
memory settings. The dotted gray line denotes the encoder freezing time t = Tf . The solid line and
shaded regions represent the mean and standard deviation, respectively, across five runs.

The encoder architecture used for our experiments with CURL is used in Yarats et al. [52]. It consists
of four convolutional layers with 3 x 3 kernels and 32 channels, with the ReLU activation applied
after each conv layer. The architecture used for our Rainbow experiments is from van Hasselt et al.
[48], consisting of a convolutional layer with 32 channels followed by a convolutional layer with
64 channels, both with 5 x 5 kernels and followed by a ReLU activation. For SEER, we freeze the
first fully-connected layer in CURL experiments and the last convolutional layer of the encoder in
Rainbow experiments. We present the best results across various values of the encoder freezing time
Tf . See Appendices ?? and ?? for more hyperparameters and Appendix ?? for source code.

5.2 Improving compute- and memory-efficiency

Experimental results in DMControl and Atari showcasing the computational efficiency of SEER
are provided in Figures 2 and Figure 3. CURL and Rainbow both achieve higher performance
within significantly fewer FLOPs when combined with SEER in DMControl and Atari, respectively.
Additionally, Table 1 compares the performance of Rainbow with and without SEER at 45T (4.5e13)
FLOPs. In particular, the average returns are improved from 145.8 to 276.6 compared to baseline
Rainbow in BankHeist and from 2325.5 to 4123.5 in Qbert. We remark that SEER achieves better
computational efficiency while maintaining the agent’s final performance and comparable sample-
efficiency (see Appendix ?? for corresponding figures).

Experimental results in Atari and DMControl showcasing the sample-efficiency of SEER in the
constrained-memory setup are provided in Figure 4 and Figure 5. CURL and Rainbow achieve
higher final performance and better sample-efficiency when combined with SEER in DMControl and
Atari, respectively. Additionally, Table 1 compares the performance of unbounded memory Rainbow
and constrained-memory (0.07 GB) Rainbow with and without SEER at 500K interactions. In
particular, the average returns are improved from 10498.0 to 17620.0 compared to baseline Rainbow
in CrazyClimber and from 2430.5 to 3231.0 in Qbert. Although we disentangle the computational
and memory benefits of SEER in these experiments, we also highlight the computational gain of
SEER in constrained-memory settings (effectively combining the benefits) in Appendix ??. For an
ablation on the freezing time, see Appendix ??. These experimental results show the real-world
applicability of SEER (see Appendix ?? for more details).

5.3 Freezing larger convolutional encoders

We also verify the benefits of SEER using deeper convolutional encoders, which are widely used in a
range of applications such as visual navigation tasks and favored for their superior generalization
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(a) Cartpole-swingup (b) Walker-walk

Figure 6: Learning curves using IMPALA architecture, where the x-axis shows estimated cumulative
FLOPs. The dotted gray line denotes the encoder freezing time t = Tf . The solid line and shaded
regions represent the mean and standard deviation, respectively, across three runs.

ability. Specifically, we follow the setup described in Section 5.1 and replace the SAC-AE architecture
(4 convolutional layers) with the IMPALA architecture [6] (15 convolutional layers containing residual
blocks [14]). Figure 5.2 shows the computational efficiency of SEER in Cartpole-swingup and Walker-
walk with the IMPALA architecture. CURL achieves higher performance within significantly fewer
FLOPs when combined with SEER. We remark that the gains due to SEER are more significant
because computing and updating gradients for large convolutional encoders is very computationally
expensive.

5.4 Improving compute-efficiency in transfer settings

(a) To Walker-walk (b) To Hopper-hop

Figure 7: Comparison of the computational
efficiency of agents trained from scratch with
CURL and agents trained with CURL+SEER
from Walker-stand pretraining. The solid line
and shaded regions represent the mean and stan-
dard deviation, respectively, across three runs.

We demonstrate, as another application of our
method, that SEER increases compute-efficiency
in the transfer setting: utilizing the parameters
from Task A on unseen Tasks B. Specifically, we
train a CURL agent for 60K environment interac-
tions on Walker-stand; then, we only fine-tune the
policy and Q-functions on unseen tasks using net-
work parameters from Walker-stand. To save com-
putation, during fine-tuning, we freeze the encoder
parameters. Figure 7a shows the computational
gain of SEER in task transfer (i.e., Walker-stand
to Walker-walk similar to Yarats et al. [52]), and
domain transfer (i.e., Walker-stand to Hopper-hop)
is shown in Figure 7b. Due to the generality of
CNN features, we can achieve this computational gain using a pretrained encoder. For the task transfer
setup, we provide more analysis on the number of frozen layers and freezing time hyperparameter
Tf in Appendix ??. While these transfer learning experiments are relatively independent to the
compute-efficiency experiments in Section 5.2, we believe this is an exciting additional application of
SEER and that more comprehensive investigations in this direction would be interesting future work.

5.5 Encoder analysis

In this subsection we present visualizations to verify that the neural networks employed in deep
reinforcement learning indeed converge from the bottom up, similar to those used in supervised
learning [36]. Figure 8a shows the spatial attention map for two Atari games and one DMControl
environment at various points during training. Similar to Laskin et al. [24] and Zagoruyko &
Komodakis [54], we compute the spatial attention map by mean-pooling the absolute values of
the activations along the channel dimension and follow with a 2-dimensional spatial softmax. The
attention map shows significant change in the first 20% of training, and remains relatively unchanged
thereafter, suggesting that the encoder converges to its final representations early in training. Figure
8b shows the SVCCA [36] score, a measure of neural network layer similarity, between a layer and
itself at time t and t+ 10K. The convolutional layers of the encoder achieve high similarity scores
with themselves between time t and t+ 10K, while the higher layers of the policy and Q-network
continue to change throughout training. In our DMControl environments we freeze the convolutional
layers and the first fully-connected layer of the policy and Q-network (denoted fc1). Although the
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policy fc1 continues to change, the convergence of the Q-network fc1 and the encoder layers allow us
to achieve our computational and memory savings with minimal performance degradation.

We remark that while the encoder can be frozen early in RL training, using a randomly initialized
encoder is ineffective [41]. It is important to train encoders on the task in order to learn useful features
(as is done by widely used methods such as Srinivas et al. [39] and Laskin et al. [24]), but our finding
is that these encoders converge early in task-specific training.

Alien

Amidar

Cartpole-
swingup

Observation 0% training 20% training 60% training 100% training

(a) Spatial attention map

CNN encoder Policy Q-network

0.0 0.500.25

SVCCA scale

High similarity

Ti
m

e

conv1 conv2 conv3 conv4 fc1 fc2 fc3

t=0

t=100K

t=200K

fc1 fc2 fc3

(b) SVCCA similarity scores

Figure 8: Visualizations of encoder features throughout training. (a) Spatial attention map from CNN
encoders. (b) SVCCA [36] similarity scores between each layer and itself at time t and t + 10K
throughout training for Walker-walk task.

6 Discussion and Limitations

In this paper, we proposed a technique that reduces computation requirements for visual reinforcement
learning, which we hope serves to facilitate a shift toward more compute-efficient RL. Here, we
highlight other techniques for reducing training time. For experimentation in computationally
intensive environments, Obando-Ceron & Castro [32] propose to use small- and medium-scale
experiments, which could reproduce the conclusions of the Rainbow DQN paper in Atari games.
For faster training time in a particular experiment, one can also lower the resolution of the input
images. In Figures 9a and 9b we show that reducing the resolution by a factor of 2, from 100× 100 to
50× 50 (and scaling crops appropriately) produces significant compute-efficiency gain in DeepMind
Control Suite without sacrificing performance, and emphasize that this technique can be combined
with SEER for further improved efficiency. We remark that the additional gain from SEER is larger
in more complex environments (e.g., Walker) where learning requires more steps. However, we
find that naive resolution reduction may not generally be applicable across environments and may
require domain knowledge in order to prevent excessive information loss. In Figures 9c and 9d we
show that resolution reduction by a factor of 2, from 84× 84 to 42× 42, results in noticeably worse
performance in several Atari games. In contrast, SEER successfully improves compute-efficiency
without sacrificing performance in these games (see Figure 3). Overall, SEER is highly generalizable
across visual domains, and can be easily combined with other modifications.

A limitation of our work is the introduction of a hyperparameter for the freezing time t. While domain
knowledge can be used to decide a reasonable range for t and reduce the search space, an interesting
future direction would be to adaptively determine the freezing time using a metric of convergence.
We also do not show the application of SEER to tasks which are more computationally expensive
or even infeasible. We evaluate our method in DM Control and Atari because they are common
RL benchmarks used in many recent works on RL from pixels, but the full impact of SEER may
be more easily seen in very visually complex and challenging tasks such as 3D navigation. We do
not foresee any negative societal impacts of our work, as it simply reduces training time of already
existing algorithms.
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(a) Cartpole-swingup (b) Walker-walk (c) Alien (d) Amidar

Figure 9: Evaluation of the compute-efficiency of CURL ((a) and (b)) and Rainbow ((c) and (d)) with
original and reduced (by factor of 2) resolutions. The solid line and shaded regions represent the
mean and standard deviation, respectively, across five runs.

7 Conclusion

We presented SEER, a simple but powerful modification of off-policy RL algorithms that significantly
reduces computation and memory requirements while maintaining state-of-the-art performance. We
leveraged the intuition that CNN encoders in deep RL converge to their final representations early in
training to freeze the encoder and subsequently store latent vectors to save computation and memory.
In our experimental results, we demonstrated the compute- and memory-efficiency of SEER in
various DMControl environments and Atari games, and proposed a technique for compute-efficient
transfer learning. With SEER, we highlight the potential for improvements in compute- and memory-
efficiency in deep RL that can be made without sacrificing performance, in hopes of making deep RL
more practical and accessible in the real world.

8 Acknowledgements

This research is supported in part by Open Philanthropy, ONR PECASE N000141612723, NSF NRI
#2024675, and Berkeley Deep Drive. We would like to thank Kourosh Hakhamaneshi, Fangchen Liu,
and anonymous reviewers for providing helpful feedback and suggestions. We would also like to
thank Denis Yarats for the IMPALA encoder architecture implementation and Kai Arulkumaran for
help with modifying the Rainbow DQN codebase.

References
[1] Badia, Adrià Puigdomènech, Piot, Bilal, Kapturowski, Steven, Sprechmann, Pablo, Vitvitskyi,

Alex, Guo, Daniel, and Blundell, Charles. Agent57: Outperforming the atari human benchmark.
In International Conference on Machine Learning, 2020.

[2] Bellemare, Marc G, Naddaf, Yavar, Veness, Joel, and Bowling, Michael. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[3] Bellemare, Marc G, Dabney, Will, and Munos, Rémi. A distributional perspective on reinforce-
ment learning. In International Conference on Machine Learning, 2017.

[4] Blalock, Davis, Ortiz, Jose Javier Gonzalez, Frankle, Jonathan, and Guttag, John. What is the
state of neural network pruning? arXiv preprint arXiv:2003.03033, 2020.

[5] Brock, Andrew, Lim, Theodore, Ritchie, James M, and Weston, Nick. Freezeout: Accelerate
training by progressively freezing layers. arXiv preprint arXiv:1706.04983, 2017.

[6] Espeholt, Lasse, Soyer, Hubert, Munos, Remi, Simonyan, Karen, Mnih, Volodymir, Ward, Tom,
Doron, Yotam, Firoiu, Vlad, Harley, Tim, Dunning, Iain, Legg, Shane, and Kavukcuoglu, Koray.
Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures, 2018.

[7] Fang, Kuan, Toshev, Alexander, Fei-Fei, Li, and Savarese, Silvio. Scene memory transformer
for embodied agents in long-horizon tasks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 538–547, 2019.

10



[8] Frankle, Jonathan and Carbin, Michael. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019.

[9] Ha, David and Schmidhuber, Jürgen. World models. arXiv preprint arXiv:1803.10122, 2018.

[10] Haarnoja, Tuomas, Zhou, Aurick, Abbeel, Pieter, and Levine, Sergey. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, 2018.

[11] Hafner, Danijar, Lillicrap, Timothy, Fischer, Ian, Villegas, Ruben, Ha, David, Lee, Honglak,
and Davidson, James. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, 2019.

[12] Hafner, Danijar, Lillicrap, Timothy, Ba, Jimmy, and Norouzi, Mohammad. Dream to con-
trol: Learning behaviors by latent imagination. In International Conference on Learning
Representations, 2020.

[13] Han, Song, Mao, Huizi, and Dally, William J. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[14] He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[15] Hessel, Matteo, Modayil, Joseph, Van Hasselt, Hado, Schaul, Tom, Ostrovski, Georg, Dabney,
Will, Horgan, Dan, Piot, Bilal, Azar, Mohammad, and Silver, David. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI Conference on Artificial Intelligence,
2018.

[16] Higgins, Irina, Pal, Arka, Rusu, Andrei A, Matthey, Loic, Burgess, Christopher P, Pritzel,
Alexander, Botvinick, Matthew, Blundell, Charles, and Lerchner, Alexander. Darla: Improving
zero-shot transfer in reinforcement learning. In International Conference on Machine Learning,
2017.

[17] Iandola, Forrest N, Han, Song, Moskewicz, Matthew W, Ashraf, Khalid, Dally, William J, and
Keutzer, Kurt. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016.

[18] Jaderberg, Max, Mnih, Volodymyr, Czarnecki, Wojciech Marian, Schaul, Tom, Leibo, Joel Z,
Silver, David, and Kavukcuoglu, Koray. Reinforcement learning with unsupervised auxiliary
tasks. In International Conference on Learning Representations, 2017.

[19] Kaelbling, Leslie Pack, Littman, Michael L, and Cassandra, Anthony R. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[20] Kaiser, Lukasz, Babaeizadeh, Mohammad, Milos, Piotr, Osinski, Blazej, Campbell, Roy H,
Czechowski, Konrad, Erhan, Dumitru, Finn, Chelsea, Kozakowski, Piotr, Levine, Sergey,
et al. Model-based reinforcement learning for atari. In International Conference on Learning
Representations, 2020.

[21] Kalashnikov, Dmitry, Irpan, Alex, Pastor, Peter, Ibarz, Julian, Herzog, Alexander, Jang, Eric,
Quillen, Deirdre, Holly, Ethan, Kalakrishnan, Mrinal, Vanhoucke, Vincent, et al. Qt-opt:
Scalable deep reinforcement learning for vision-based robotic manipulation. In Conference on
Robot Learning, 2018.

[22] Kostrikov, Ilya, Yarats, Denis, and Fergus, Rob. Image augmentation is all you need: Regulariz-
ing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

[23] Lake, Brenden M, Ullman, Tomer D, Tenenbaum, Joshua B, and Gershman, Samuel J. Building
machines that learn and think like people. Behavioral and brain sciences, 40, 2017.

[24] Laskin, Michael, Lee, Kimin, Stooke, Adam, Pinto, Lerrel, Abbeel, Pieter, and Srinivas, Aravind.
Reinforcement learning with augmented data. In Advances in neural information processing
systems, 2020.

11



[25] LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner, Patrick. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[26] Lee, Kimin, Laskin, Michael, Srinivas, Aravind, and Abbeel, Pieter. Sunrise: A simple
unified framework for ensemble learning in deep reinforcement learning. arXiv preprint
arXiv:2007.04938, 2020.

[27] Lillicrap, Timothy P, Hunt, Jonathan J, Pritzel, Alexander, Heess, Nicolas, Erez, Tom, Tassa,
Yuval, Silver, David, and Wierstra, Daan. Continuous control with deep reinforcement learning.
In International Conference on Learning Representations, 2016.

[28] Lin, Long-Ji. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[29] Mattson, Peter, Cheng, Christine, Coleman, Cody, Diamos, Greg, Micikevicius, Paulius, Patter-
son, David, Tang, Hanlin, Wei, Gu-Yeon, Bailis, Peter, Bittorf, Victor, et al. Mlperf training
benchmark. In Conference on Machine Learning and Systems, 2020.

[30] Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, Andrei A, Veness, Joel, Bellemare,
Marc G, Graves, Alex, Riedmiller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[31] Morcos, Ari, Raghu, Maithra, and Bengio, Samy. Insights on representational similarity in
neural networks with canonical correlation. In Advances in Neural Information Processing
Systems, 2018.

[32] Obando-Ceron, Johan S and Castro, Pablo Samuel. Revisiting rainbow: Promoting more
insightful and inclusive deep reinforcement learning research. arXiv preprint arXiv:2011.14826,
2020.

[33] Oord, Aaron van den, Li, Yazhe, and Vinyals, Oriol. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[34] Osband, Ian, Blundell, Charles, Pritzel, Alexander, and Van Roy, Benjamin. Deep exploration
via bootstrapped dqn. In Advances in neural information processing systems, 2016.

[35] Pellegrini, Lorenzo, Graffieti, Gabrile, Lomonaco, Vincenzo, and Maltoni, Davide. Latent
replay for real-time continual learning. arXiv preprint arXiv:1912.01100, 2019.

[36] Raghu, Maithra, Gilmer, Justin, Yosinski, Jason, and Sohl-Dickstein, Jascha. Svcca: Singular
vector canonical correlation analysis for deep understanding and improvement. In Advances in
neural information processing systems, 2017.

[37] Schrittwieser, Julian, Antonoglou, Ioannis, Hubert, Thomas, Simonyan, Karen, Sifre, Lau-
rent, Schmitt, Simon, Guez, Arthur, Lockhart, Edward, Hassabis, Demis, Graepel, Thore,
et al. Mastering atari, go, chess and shogi by planning with a learned model. arXiv preprint
arXiv:1911.08265, 2019.

[38] Schulman, John, Chen, Xi, and Abbeel, Pieter. Equivalence between policy gradients and soft
q-learning. arXiv preprint arXiv:1704.06440, 2017.

[39] Srinivas, Aravind, Laskin, Michael, and Abbeel, Pieter. Curl: Contrastive unsupervised
representations for reinforcement learning. In International Conference on Machine Learning,
2020.

[40] Stooke, Adam, Lee, Kimin, Abbeel, Pieter, and Laskin, Michael. Decoupling representation
learning from reinforcement learning, 2020.

[41] Stooke, Adam, Lee, Kimin, Abbeel, Pieter, and Laskin, Michael. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning, pp.
9870–9879. PMLR, 2021.

[42] Sun, Zhiqing, Yu, Hongkun, Song, Xiaodan, Liu, Renjie, Yang, Yiming, and Zhou, Denny.
Mobilebert: a compact task-agnostic bert for resource-limited devices. In Annual Meeting of
the Association for Computational Linguistics, 2020.

12



[43] Sutton, Richard S. Dyna, an integrated architecture for learning, planning, and reacting. ACM
Sigart Bulletin, 2(4):160–163, 1991.

[44] Sutton, Richard S and Barto, Andrew G. Reinforcement learning: An introduction. MIT Press,
2018.

[45] Tassa, Yuval, Doron, Yotam, Muldal, Alistair, Erez, Tom, Li, Yazhe, Casas, Diego de Las,
Budden, David, Abdolmaleki, Abbas, Merel, Josh, Lefrancq, Andrew, et al. Deepmind control
suite. arXiv preprint arXiv:1801.00690, 2018.

[46] Tay, Yi, Zhang, Aston, Tuan, Luu Anh, Rao, Jinfeng, Zhang, Shuai, Wang, Shuohang, Fu,
Jie, and Hui, Siu Cheung. Lightweight and efficient neural natural language processing with
quaternion networks. In Annual Meeting of the Association for Computational Linguistics,
2019.

[47] Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep reinforcement learning with double
q-learning. In AAAI Conference on Artificial Intelligence, 2016.

[48] van Hasselt, Hado P, Hessel, Matteo, and Aslanides, John. When to use parametric models in
reinforcement learning? In Advances in Neural Information Processing Systems, pp. 14322–
14333, 2019.

[49] Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit, Jakob, Jones, Llion, Gomez, Aidan N,
Kaiser, Łukasz, and Polosukhin, Illia. Attention is all you need. In Advances in neural
information processing systems, 2017.

[50] Vinyals, Oriol, Babuschkin, Igor, Czarnecki, Wojciech M, Mathieu, Michaël, Dudzik, Andrew,
Chung, Junyoung, Choi, David H, Powell, Richard, Ewalds, Timo, Georgiev, Petko, et al.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):
350–354, 2019.

[51] Watkins, Christopher JCH and Dayan, Peter. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[52] Yarats, Denis, Zhang, Amy, Kostrikov, Ilya, Amos, Brandon, Pineau, Joelle, and Fergus, Rob.
Improving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

[53] Yosinski, Jason, Clune, Jeff, Bengio, Yoshua, and Lipson, Hod. How transferable are features
in deep neural networks? In Advances in neural information processing systems, 2014.

[54] Zagoruyko, Sergey and Komodakis, Nikos. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In International Conference
on Learning Representations, 2017.

[55] Ziebart, Brian D. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

13


	Introduction
	Related work
	Background
	SEER: Stored Embeddings for Efficient Reinforcement Learning
	Freezing encoder for saving computation and memory
	Additional techniques and details for SEER

	Experimental results
	Setups
	Improving compute- and memory-efficiency
	Freezing larger convolutional encoders
	Improving compute-efficiency in transfer settings
	Encoder analysis

	Discussion and Limitations
	Conclusion
	Acknowledgements

