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ABSTRACT

Existing time series tokenization methods predominantly encode a constant number
of samples into individual tokens. This inflexible approach can generate exces-
sive tokens for even simple patterns like extended constant values, resulting in
substantial computational overhead. Inspired by the success of byte pair encoding,
we propose the first pattern-centric tokenization scheme for time series analysis.
Based on a discrete vocabulary of frequent motifs, our method merges samples with
underlying patterns into tokens, compressing time series adaptively. Exploiting
our finite set of motifs and the continuous properties of time series, we further
introduce conditional decoding as a lightweight yet powerful post-hoc optimiza-
tion method, which requires no gradient computation and adds no computational
overhead. On recent time series foundation models, our motif-based tokenization
improves forecasting performance by 36 % and boosts efficiency by 1990 % on
average. Conditional decoding further reduces MSE by up to 44 %. In an extensive
analysis, we demonstrate the adaptiveness of our tokenization to diverse temporal
patterns, its generalization to unseen data, and its meaningful token representations
capturing distinct time series properties, including statistical moments and trends.

We will release our code upon acceptance.

1 INTRODUCTION

Transformer architectures have gained increasing relevance in time
series processing, demonstrating impressive performance. Here,
a key prerequisite for strong performance is effective tokeniza-
tion — dividing the input into smaller units and embedding them in
a high-dimensional space.

Yet, current tokenization schemes in time series processing exhibit
considerable limitations: Early works embed each individual time
step as a token, creating a fundamentally inefficient representation,
where every token captures little temporal information. This results
in very long token sequences, imposing a substantial computational
burden in the transformer architecture (Gotz et al.l 2025). Split-
ting the time series into fixed-length subsequences, called patches,
mitigates both issues (Nie et al.l 2023). However, rigid patches
can not adapt to diverse temporal patterns in different lengths and
complexities (Ekambaram et al., [2024} |Woo et al., 2024).

Inspired by adaptive pattern-based tokenization schemes in natural
language processing (NLP) (Sennrich et al.,|2016) , we go beyond
previous work and propose the first pattern-centric tokenization for
time series as in[figure 1} Our contribution is threefold:
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Figure 1: Motif-based tokeniza-
tion transforms time series data
(gray) through a two-step process:
1) quantizing samples into dis-
crete bins, 2) merging recurring
patterns of variable length into
representative motifs.

Adaptive tokenization for time series We provide a novel tokenization strategy based on a discrete
vocabulary of frequent time series motifs. Our method merges samples with underlying patterns into
single tokens, enabling adaptive compression while maintaining a small upper-bounded discretization
error. On the recently proposed Chronos foundation model, our tokenization improves forecasting
performance by 36 % and boosts efficiency by 1990 % on average in a zero-shot setting.
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Conditional decoding We introduce conditional decoding as a post-hoc optimization method to
further improve forecasting performance by exploiting the continuous properties of time series to
effectively remove the discretization error induced by our motifs. Conditional decoding is lightweight,
requires no gradient computation, introduces no additional overhead during inference, and can be
combined with any pretrained time series model with a discrete output vocabulary. We demonstrate
its effectiveness in large foundation models, increasing forecasting performance up to 44 %.

Empirical analysis In an extensive empirical study, we demonstrate the zero-shot generalization
capability of our tokenizer and its ability to automatically adapt to diverse temporal patterns and
datasets. We link distinct time series characteristics, including statistical moments and trends to our
token representations and show that complex motifs benefit forecasting quality.

2 RELATED WORK

In recent years, transformer models have shown impressive performance in time series forecasting.
While initial work focuses on efficient attention mechanisms and domain-specific architectures (Wu
et al., [2021; [Zhou et al., |2022), universal foundation models have been proposed lately (Garza &
Mergenthaler-Cansecol [2023} |Das et al., [2023]; |/Ansari et al.| 2024; [Rasul et al., [2023} |Woo et al.|
2024; |(Goswami et al., 2024} Liu et al., 2024b; |Gao et al., 2024 |Cohen et al., 2024; [L1u et al., [2025;
2024a). These models are usually trained on billions of tokens and exhibit high zero-shot performance.
However, all these transformer architectures rely on two basic tokenization techniques: using every
sample as a token or extracting fixed-length patches from a time series.

Sample-based tokens Most early works on transformer models for time series processing extract
tokens for every time step, usually as a slice of a multivariate time series (Zhou et al.| 2021} Wu et al.}
2021;/Zhou et al.| 2022 Liu et al., 2022bda; [Cirstea et al.,2022). These tokens are linearly transformed
into a continuous embedding space. Inspired by the success of discrete token embeddings in NLP, the
recently proposed Chronos foundation model (Ansari et al.,[2024) quantizes a univariate time series
into bins and embeds them using learned vectors. This way, the authors transform forecasting from a
regression task to classifying the next time step from a discrete vocabulary (Torgo & Gamal,[1997).
Masserano et al.| (2025) use a wavelet-transformation-based approach for tokenization. Generating
tokens for every time step has two major limitations: First, the large number of tokens imposes a
substantial computational burden in transformers, especially for long sequence processing (Godahewa
et al.}[2021;|Ansari et al., [2024). Second, every token captures only little information about temporal
patterns (Chen et al., [2025).

Patch-based tokens Inspired by the success of patching in computer vision (Dosovitskiy et al.,
2021)), Nie et al.|(2023) adapt this approach to time series, where multiple samples of an univariate
time series are combined into individual tokens. Most subsequent works embed the patches into a
continuous space using learned transformations (Zhang & Yan, 2023} Nie et al.,|2023; Wang et al.|
20245 [Wu et al., 2024} Das et al., [2023; |Woo et al., [2024; |Goswami et al., [2024} [Liu et al., [2024b;
Gao et al., 2024; |Cohen et al., [2024; |Auer et al., |2025; [Liu et al., |2025; [2024a). More advanced
approaches learn a discrete codebook of patches (Talukder et al., 2024; |Chen et al.| [2024)) using
vector quantized variational autoencoder approaches (van den Oord et al.,|2017). Patches generally
compress the time series and capture local temporal information. However, due to their fixed length
and stride, rigid patches can not adapt to varying temporal patterns in a sequence. This is of special
importance for foundation models as they try to generalize to previously unseen data in zero-shot
settings. To mitigate this, [Woo et al.[(2024) utilize different patch lengths for datasets sampled in
different granularities, e.g., minutely or hourly. Their approach requires training of a new embedding
transformation for every granularity and fails to capture inter and intra series variations in temporal

patterns (see|section 35.4)).

Motif-based tokens Motif-based tokenization utilizes a discrete vocabulary of recurring patterns. In
NLP, byte pair encoding hierarchically extracts pairs of character-bytes to tokenize a sentence (Shibata
et al.,[1999; Sennrich et al., |2016). [Elsner et al.| (2024) extend this concept from 1d-sequences to
tokenizing images. Moreover, tokenization based on discrete motifs has proven to be a good inductive
bias for high-dimensional distribution learning as it reduces the combinatorial complexity (Sommer|
et al.| 2023)). Similarly, classical time series literature explored symbolization and pattern discovery
techniques (Lin et al., 2003} Berndt & Clifford, [1994). Yet, data-dependent tokenization techniques
as proposed in this work remain unexplored for machine-learning-based time series analysis.
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Figure 2: (a) Our motif-based tokenization first quantizes a time series into symbols and finds recurring motifs as
tokens, building a discrete vocabulary. (b) Based on the compressed motif sequence, a neural network forecasts
the time series through a categorical distribution over our vocabulary. (c) Finally, we propose conditional
decoding to reduce the discretization error when transforming tokens back to their continuous representation.

3 AN ADAPTIVE TOKENIZATION APPROACH FOR TIME SERIES

Despite recent advances in time series processing, current tokenization methods lack efficiency or fail
to capture distinct temporal patterns within sequences (Ekambaram et al., [2024; Woo et al., [2024)).
We propose an efficient tokenization method using a vocabulary of frequent motifs as depicted in
Our algorithm combines samples with underlying patterns of varying complexity into single
tokens. Its adaptive compression of time series enables efficient long sequence processing. We list

pseudocode in|section Al

Let D = {2}, be a family index by i = 1,..., N of N univariate real-valued time series
z=(z1,...,2n) € R of length n. We normalize each series to have zero mean and unit standard
deviation. A neural network fy : Ntin — Nfout with parameters 6 predicts ¢,y token IDs from ¢,
token IDs. Thereby, the tokens are generated by our tokenizer g : R” — N from a time series z.
Our tokenization consists of two steps:

g(z) = my o qa(z) (1)
where:
qo : R" — N™ quantizes the time series into a sequence of discrete symbols,
my : N” — N'  compresses the sequence based on a discrete vocabulary of temporal motifs,
Q, ¥ vocabulary of quantized symbols and motifs, respectively.

3.1 DISCRETIZATION OF REAL-VALUED TIME SERIES

Generalizing the approach from |Ansari et al.| (2024)), we sample M equiprobable discretization
intervals Q = {C! (ﬁ) jle, where C~1 is the inverse cumulative distribution of the probability
distribution P. In practice, we experiment with truncated uniform distributions in [wiy,, wyp ], Gaussian
distributions, and the precise data distribution P(D) for binning. Utilizing the boundaries, we encode

the time series z into a sequence of discrete symbols.

1 if Zi S w1
an(®) = {an(s) |2 2}, where ()= {] {T5U_ Lwen @
For decoding symbol IDs back to time series samples, we use O = {C—t (%) ;Vil where

w; € Q is the probabilistic center of [w;_1,w;]. The quantization error can be upper bounded
as Omax = MaXi<j<iy Max(w; — w;_1, w; — w;) within the tokenization range. For uniform
binning the probabilistic center is equal to the geometric center and the maximum error simplifies to
Smax = (wup — wip)(2M) 1. Besides the M token IDs representing quantized time series samples,
we introduce two additional tokens: A masking token MASK to account for missing samples in time
series and an EOS token we insert at the end of time series.
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3.2 VOCABULARY OF TEMPORAL MOTIFS

Originally proposed for compressing raw byte sequences (Gagel |1994)), byte pair encoding has been
widely used in NLP to compress character sequences into subwords (Sennrich et al.l 2016). Here, we
generalize the byte pair compression algorithm to extract temporal patterns from our discretized time
series. To this end, we iteratively build a vocabulary ¥ of frequent time series motifs: Given a dataset
D’ = {qq(z') | ' € D} of quantized time series, we extract the most frequent adjacent token IDs
(2, 2{, 1), assigning a new token ID 2/, which we add to our set of patterns W:

T WO U{(2], 211) = 2hew - 3)

This process hierarchically finds distinct temporal motifs as discrete tokens and is locally optimal in
every step. We build our vocabulary until the new tokens occur less frequent than py,;,, in D’. This
ensures that a minimum number of occurrences are available for a neural network to learn the motifs.
Leveraging our vocabulary, we compress a quantized time series into a sequence of motifs:

my () = {¥(z)|¢ € ¥}, mg:N" - N. )

The compression is highly flexible as motifs of different lengths and complexities are mapped to
single tokens. To this end, we define the average compression at sequence level as ¢ = n/t. Our
algorithm scales linearly with sequence length O(n), enabling long sequence processing.

3.3 CONDITIONAL DECODING

We propose our novel conditional decoding to universally improve the forecasting quality of models
with discrete output vocabularies. To decode a token sequence, such as the predictions of a model, we
invert the tokenization g. In this process when inverting qq, we previously leveraged the bin centers
w; € ) to transform a quantized sequence 2z’ back to a time series 2. We introduce conditional
decoding to reduce the overall quantization error. Specifically, we decode quantized time series
samples 2/ conditioned on the previous sample 2; = ¢~ " (z} | 2/_,). To this end, we set parameters
Q={&;r|jke{l,...,M}}, where qf_zl(zl’» =j|z_, =k)=Qj to minimize ||z; — 2;|3:

n
win DD el G A

5 Wwhere D= {(D;,D;)|ie{l,....N}} (5
(z,2")eD i=2

consists of corresponding real-valued and quantized time series. Thereby, a single parameter w; j, is
given by the mean of the underlying time series samples Z minimizing the squared error:

) 1
Wip = ——
7D

| Z Z, where Dj,k, = {Zv | (Z,Z/) € D,Z: =7, Z;_l = k?} . (6)
J.k

EGD]’JC

Intuitively, we adopt a unigram model to exploit the unique properties of our tokenization: the finite
set of discrete symbols and the underlying continuous time series samples. Conditional decoding is
lightweight and requires no gradient computation as we solve analytically for the global optimum.
Further, it adds no additional inference cost and is very small in practice with only M? parameters
Wik € Q). Conditional decoding can be combined with any pretrained time series model with a
discrete output vocabulary and considerably improves forecasting performance in our experiments.

3.4 MODEL ARCHITECTURE

As we represent continuous time series as a sequence of discrete motifs, we can rely on recent
advances in transformer architectures in natural language processing. These architectures transform
token IDs from our discrete vocabulary V = Q U ¥ U {MASK, EOS} into d-dimensional space using
learned embedding tables £ € RIVI*? We optimize the parameters §# € © of our model f; on
autoregressive next token prediction of our tokenized sequence z” = g(z). Our model thereby
predicts a categorical distribution p(z;/ ., | 2, ) over our finite vocabulary of time series motifs .
We impose a cross-entropy loss for distribution learning. To this end, we transform the regression
task to a classification (Torgo & Gama, |1997). The discrete set of possible motifs reduces the
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combinatorial complexity and has proven to be a good inductive bias for distribution learning in
the bio-medical domain (Sommer et al.| 2023)). In contrast to prior work (Ansari et al., [2024), our
tokenizer enhances the efficiency as both model input and generated tokens are compressed time series
representations. Models can utilize longer contexts while requiring fewer autoregressive iterations
for a given prediction horizon. This is especially important for large foundation models and long
sequence processing, imposing substantial computational requirements.

4 EXPERIMENTS

We systematically train different tokenizers and foundation models and evaluate them on 5 time
series datasets in zero-shot setting, demonstrating advantages of our motif-based representation over
tokenizing every sample or utilizing patches. In we provide further experimental details.

Datasets For training our models and tokenizers, we utilize the recently proposed Chronos dataset
(Ansari et al.,[2024)). It contains 11 M time series with over 11 B samples. Due to its diverse nature
and size, this dataset is well suited for training foundation models. We base our zero-shot evaluation
on 5 commonly used time series datasets: ETTh1, ETTm1, Weather, Electricity, and Traffic.

Tokenizers We leverage 3 tokenizers with different Tuple 1: Tokenizers on the Chronos dataset with
numbers of quantization bins M. Further, we utilize different quantization bins, vocabulary size, dis-
a truncated uniform distribution from wy, = —5 to cretization error, and compression.

wyp = b for binning, spanning a range of 5 standard ~ —
deviations. As a result, our tokenizers in fea- _Compression M [V|  Omax  C

ture different compression ratios, vocabulary sizes, and ~ low | 126 2445 0.040 2.08
discretization errors. We build their vocabulary ¥ on ~ medium 37 1675 0.135 3.18
high 22 1373 0.227 4.06

the same 100 000 randomly selected time series from
the Chronos dataset with a total of 100 M samples. To
allow the model to learn all tokens, we constrain the motifs to occur at least py,;, = 1000 times in

the compressed data. In[sections C.1} [5.5]and [5.6] we systematically ablate these choices.

Models In our experiments, we explore our tokenization approach in foundation models operating
in a zero-shot setting. We compare our motif-based tokenization with single-sample tokenization in
Chronos models (Ansari et al.} 2024). Additionally, we implement a patch-based version of Chronos
altering only tokenization method and MSE loss for continuous patches correspondingly. We choose
non-overlapping patches of length 4 with similar compression as our high compression tokenizer
and length 8 according to recent literature (Goswami et al2024)). Following these baseline models,
we use the T5 architecture (Raffel et al., |2020)) as backbone for our motif-based tokenization and
train all models with the same number of tokens, gradient steps, and training settings. This way,
we compare our motif-based tokenization to single-sample tokenization and patches in an isolated
setting, ensuring that tokenization method is the only difference between architectures. Following
Chronos models, we propose models with our tokenizer in 5 sizes ranging from tiny (8 M parameters)
to large (710 M parameters). We evaluate on forecasting 64 time series samples, following (Ansari
et al.,[2024). As context, we utilize 128 tokens for our and Chronos models and an equivalent input
length of 384 time series samples for patch-based models. As literature references, we further utilize
patch-based MOMENT (Goswami et al.,2024) and Moirai (Woo et al.||2024) foundation models. We
restrict our evaluation to models with available data and code to enable us to reproduce the results.
Chronos is the only foundation model in literature with sample-wise tokenization.

5 RESULTS

We first demonstrate improvements in forecasting performance and efficiency of our motif-based
tokenization over existing methods. Next, we explore the adaptiveness of our tokenizer to diverse
temporal patterns of different lengths and complexities and its generalization to unseen data. Finally,
we link distinct time series properties, including statistical moments, to our token space.

5.1 EFFICIENCY IMPROVEMENTS OF ADAPTIVE TOKENIZATION

Chronos foundation models tokenize every sample of a time series, resulting in many tokens with
little temporal information. Especially for large models, this induces substantial computational
requirements. We compare our motif-based tokenization with Chronos models in 5 sizes from tiny to
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large using 3 tokenizers (see experimental settings in [section 4). 0 o Chonds
Chronos and our models are based on the same architecture, training \ —0— Oursyqy
strategy, and dataset. They only differ in tokenization. R I ::: 832‘
In our zero-shot evaluation, our motif-based tokenization finds Pareto £ | *~_ 2
optimal points on all 5 datasets. We show infigure 3|that our tokenizer o, %, i —
outperforms Chronos models with single-sample tokenization in fore- S Y
casting quality and efficiency at the same time. We report our results 000 025 050 075
in choosing the best Chronos model as reference. Among our Inference time [s]

3 tokenizers and 5 model sizes, we illustrate two cases: 1) Selecting Figure 3: Zero-shot compari-
the best MSE, 2) Selecting the fastest model that is still better than son between our motif-based
the Chronos reference. Motif-based tokenization without conditional and sample-wise tokenization
decoding improves MSE by 36.1 % and accelerates models 19.90 x  (Chronos) on Electricity.

on average. With conditional decoding, the improvements are even

more substantial, with forecasting quality increasing by 43.2 % and model acceleration reaching
26.73 x. On the Traffic dataset, Chronos models diverge during zero-shot testing, while our tokenizer
still performs well, highlighting the generalization capability of motifs. We show full results in
and further compare our zero-shot motif-based models with state-of-the-art models that
are directly trained on the respective datasets. Remarkably, our approach generates the best forecasts
in 19 out of 25 cases without fine-tuning.

Table 2: Motif-based tokenization with conditional decoding (cd) and without improves forecasting quality and
accelerates models during zero-shot forecasting. We aim for two extremes: best MSE and fastest acceleration.
Among Chronos models, we choose the best as reference. As our tokenization improves MSE while speeding up
the model, we are able to choose small models while surpassing forecasting quality of larger ones. Best in bold.

D Chronos Ours Ours®
ataset

MSE MSEbest ACCel.faSteSt MSEbest ACCBl.faSteSt
ETThl 0.717 0.517 24.88x 0.459 55.74 X
ETTml 1.004 0.637 6.49 X 0.449 6.49 X
Weather 0.265 0.251 0.26 0.236 3.568X%
Electricity 0.222 0.150 11.20X% 0.144 11.20X%
Traffic 2.717 0.591 56.66 X 0.574 56.66 X
Solar 1.270 0.493 4.54X% tbd. tbd.

5.2 COMPARISON WITH PATCH-BASED METHODS

Patch-based Chronos Patching, which involves extracting fixed-length subsequences as tokens,
compresses the time series and captures local temporal information (Nie et al.| [2023). However,
patches are rigid and non-adaptive to diverse time series patterns. Here, we compare our adap-
tive motif-based tokenization with our patch-based Chronos baseline in an isolated setting, where
tokenization is the only difference between models. Except for ETTh1, our tokenization method
outperforms all patch-based Chronos models in our isolated comparison in Motif-based
tokenization increases forecasting quality by 21.3 % on average. Utilizing conditional decoding,
MSE improvements of 32.4 % are substantially enhanced. These results highlight the potential of
byte pair encoding for time series.

Beyond Chronos We further compare with patch-based literature foundation models MOMENT
and Moirai in zero-shot settings. Our tokenizer outperforms all MOMENT models and generates
better forecasts on 2 out of 5 datasets compared to Moirai. However, these models utilize different
transformer backbone architectures, training strategies, and datasets, making a direct comparison
of tokenization methods difficult. Nevertheless, they demonstrate the competitiveness of our ap-
proach with state-of-the-art foundation models. In we explore the compression of our
motif-based tokenization in more detail.

Table 3: Benchmarking our motif-based tokenization with conditional decoding (cd) and without against our
patch-based Chronos baseline, MOMENT, and Moirai models, based on zero-shot forecasting quality (MSE). In
line with we report the best among our tokenizers. We highlight values that are worse than our method.

len—1 len—8 irai
Dataset Ours  Oursd Chronos 7 Chronos 1 MOMENT Moirai

ting  mini small  base large tiny mini small  base large  small base  large  small base  large
ETThl 0.517  0.459 0.525 0.474 0.453 0.470 0.384 0.426 0.420 0.446 0.400 0.379 0.765 0.732 0.693 0.465 0.396 0.397

ETTml 0.637  0.449 0.879 0912 0.916 1.099 0.666 0.800 0.647 0.906 0.704 0.608 0.700 0.710 0.665 0.710 0.600 0.548
‘Weather 0251  0.236 0.425 0.319 0.356 0.601 0.374 0.273 0.305 0.264 0.278 0.284 0275 0.249 0240 0.193 0.161 0.245
Electricity  0.150 ~ 0.144 0.249 0.250 0.227 0.214 0.162 0.220 0.170 0.203 0.169 0.146 0.887 0.888 0.852 0.212 0.163 0.146
Traffic 0.591  0.574 0.766 0.808 0.762 0.756 0.624 0.731 0.645 0.685 0.680 0.625 1.458 1.534 1.386 0.645 0.406 0.427
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5.3 CONDITIONAL DECODING

Recently emerging foundation models show impressive performance but are expensive to train (Ansari
et al.,[2024). We propose conditional decoding as a lightweight yet powerful post-hoc optimization
method to enhance a model’s forecasting quality. Conditional decoding adds no computational
overhead during inference and does not require gradient computation for training. Instead, we
analytically compute the global optimum for its few parameters according tolequation (6)] For our
experiments, we utilize 3 tokenizers with different compression (see|table 1)), 5 datasets, and models
in size small. In the following, we train conditional decoding to dequantize the models’ forecasts on
the respective train set and evaluate on the test set.

Conditional decoding consistently improves forecasting quality in in all of our experiments.
On the ETTmI1 dataset and our tokenizer with high compression, conditional decoding reduces MSE
by 44.3 % with only 484 trainable parameters. In we provide additional results and
further investigate conditional decoding in a data- and model-independent setting. There, conditional
decoding mitigates on average 31.9 % and up to 96.9 % of our tokenizer’s quantization error, enabling
us to build tokenizers with even higher compression.

1.0 Normal decode 1.0 4
Conditional decode 0.4
Z 3 2
0.5 1 J
= =03 =02
00 Low Medium High 0.0 Low Medium High 0.0 Low Medium High
Tokenizer Tokenizer Tokenizer
(a) Etth1 (b) ETTm1 (c) Weather

Figure 4: Conditional decoding improves forecasting quality for 3 tokenizers in small models on 3 datasets.

5.4 ADAPTIVE COMPRESSION OF DIVERSE TIME SERIES

Here, we analyze the efficiency benefits of adaptive tokenization in detail. Table 4: Average compres-
Temporal patterns differ in length and complexity among datasets and sion of our medium tok-
within time series (Ekambaram et al.}|2024; Woo et al.|[2024)). While rigid enizer on 5 datasets.
patches are unable to capture these inter and intra series variations by
employing fixed compression rates, our motif-based tokenization natively Dataset b
exploits these diverse patterns, compressing them adaptively. Here, we

analyze our medium compression tokenizer (see [table I). ETThl 3.48
The Weather dataset contains patterns of various complexities, which we ETTml 4.59
illustrate in to[5d} Here, our tokenizer compresses motifs of ~ Wweather —23.15
different lengths into single tokens, achieving compressions from 8.13 Electricity  3.95
up to 22.26. Less complex patterns result in higher compression, while Traffic 3.30
more complex patterns are tokenized more fine-grained. In

we demonstrate this adaptive intra series compression on 4 other datasets. Among datasets, our
tokenizer reaches average compressions of 3.30 on Traffic and 23.15 on Weather in[table 4] Further,
ETThl and ETTm1 are sampled with different frequencies but from the same process. The higher
compression on ETTmI1 indicates that our tokenizer is agnostic to the sampling frequency. All these
results highlight the flexibility of our motif-based tokenization. Compared to the MOMENT model
with a patch length of 8 and 7 other patch-based models in[table T4] we achieve substantially greater
compressions. In we further investigate relations between compression of input data
and generated tokens and find linear dependencies. We also showcase even higher compressions
up to 128.Note that we report efficiency gains in inference time for our main experiments. Here,
we investigate adaptive compression of motif-based tokenization at time series level, which directly
translates to real-world speed-up by requiring fewer autoregressive generation steps. Tokenization
overhead is negligible with < 0.5 % in runtime of our fastest models.

5.5 VOCABULARY COMPLEXITY AND GENERALIZATION

Longer motifs benefit the compression and efficiency of our tokenizer. Here, we systematically
explore factors influencing the vocabulary complexity and generalization ability. We show that longer
motifs are more expressive and enhance forecasting quality. We list further insights in In
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Figure 5: Our adaptive tokenizer (a) exploits periodically recurring motifs on the Traffic dataset and (b-d)
compresses time series adaptively depending on pattern complexity on the Weather dataset.

section C.6] we investigate robustness to noise, extreme values, and generalization to non-stationary
time series.

Quantization granularity A lower number of quantization bins M reduces the complexity of
the time series, resulting in longer motifs and a smaller vocabulary (see [table ). However, fewer
quantization bins also increase the quantization error, potentially failing to capture important nuances
and compromising forecasting quality. In[table T1]and [figure 9] we utilize 3 tokenizers with different
quantization granularities without conditional decoding, on 5 model sizes, and 5 datasets to analyze
this tradeoff.

In 15 out of 25 settings, our tokenizer with high compression and the largest quantization error
leads to best MSE. This experiment indicates that longer, more expressive motifs benefit forecasting,
despite higher quantization error. Moreover, as shown in the quantization error can be
largely removed with conditional decoding.

Token occurrence There is an inherent tradeoff in tokenization: Table 5: Tokenizers on the
longer, more complex motifs (created by a high number of recursive  Chronos dataset with different
merges) naturally occur less frequently in the training data. In the limit, token occurrence, vocabulary
the whole dataset can be represented by a single motif. While setting ~size, and compression.

a lower minimum occurrence threshold py,;, allows the vocabulary

to capture more complex patterns, these rarer motifs may provide Pmin VI ¢
insufficient learning examples for the model to reliably recognize 1000 1675 3.18
them. Here, we vary py,i, from 1000 to 128 000 training 8 different 8000 373  2.50

tokenizers. These tokenizers feature different vocabulary complexity 32000 158  2.08
and compression, as in[tables 5|and[T3] but have the same quantization 128 000 78 1.66
error. We base our variations on our medium tokenizer and utilize
small models. Our results on Electricity and Traffic in indicate an optimal tradeoff. A
minimum motif occurrence of pn,;x = 4000 times among 100 M time series samples represents a
good balance. Generally, more complex motifs with higher compression result in best MSE.

Table 6: Correlation p of token-

0.185 4 o 0.800 . 0 .
o / 35§ | Po® 308 level compression and MSE.
m 0.180 4 /N 302 m 0.750 Z
2] ° ] 2] 1 259
= 01754 25 & = 0.700 g Dataset P
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Figure 6: Varying token occurrence pmin influences forecasting qual- Traffic _0297

ity for small models. More complex motifs generally improve MSE.

Token level analysis Here, we demonstrate on token level that complex motifs are a better represen-
tation for time series generation than their simpler counterparts. To this end, we correlate motif length
with token-wise MSE of time series forecasts. We utilize our medium compression tokenizer in a
small model. On all 5 datasets, we observe negative correlation coefficients p in Therefore,
the generation of longer, more expressive motifs enhances forecasting quality. These results are in
line with our previous investigations.
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5.6 TRAINING DATASET SIZE

Here, we explore how much data is required to train an efficient motif- Table 7: Influence of training
based tokenizer. In general, larger datasets better approximate the dataset size N on tokenizer vo-
true distribution of patterns, resulting in more complete vocabularies ~cabulary size, compression, and
of motifs W. To this end, we train our 3 tokenizers on Chronos forecasting quality.

dataset subsets ranging from 1000 to 1 M time series and scale ppin N V| ¢ MSE
accordingly. Increasing the dataset size improves forecasting quality, 1 2197 3.16 0.569

as our results in[table 7|demonstrate (averaged across 3 tokenizers on 10k 1853 3.10 0.560

5 evaluation datasets). As expected, motifs extracted from a larger =~ 100k 1831 3.11  0.555
sample size are less noisy and generalize better. This is also evident M 1827 311 0533

in the decreasing vocabulary size and compression, indicating a smaller, more universal set of
motifs. With 1 M time series, our tokenizer is still very sample efficient, requiring less than 10 % of
Chronos data for vocabulary generation. In[section C.7] we show full results and similar findings for
conditional decoding.

5.7 LEARNED TOKEN REPRESENTATIONS

Time series have distinct properties such as periodicity, offsets, and trends. A meaningful token
representation should model these characteristics. Our motif-based tokenization captures periodicity
by design, mapping similar patterns at different positions in a time series to the same token. This is
qualitatively shown in[figures T|and[5a] Moreover, we analyze the token embedding space E by doing
a principal component analysis in and 20} The learned embeddings successfully capture
the values of quantized symbols in {2 (a), which are separated from MASK and EOS tokens. The
embedding space further models the mean (b) and standard deviation (c) of motifs in ¥ in orthogonal
dimensions, indicating a good separation of these properties. For motifs with high standard deviation,
the model distinguishes between linear and quadratic trends. Finally, motif length is implicitly learned
and modeled in the same dimension as the standard deviation, as constant patterns with low standard
deviation are likely longer.

Our method builds time series motifs hierarchically, where each child token is formed from two
parents. Intuitively, a child should be close to its first parent in the embedding space, since the model
can predict either the child directly or its parents as a sequence. The average cosine similarity across
all tokens is 0.072, while parent—child pairs show a much higher value of 0.475. We illustrate these
relations in[figure 21| where parents and children are shifted along the motif length axis. In summary,
our results confirm that our motif vocabulary yields meaningful time series representations.
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Figure 7: Principal component analysis of token embeddings of our medium tokenizer in a small model.

6 CONCLUSION

In this work, we propose the first pattern-centric tokenization for the time series domain. Our method
leverages recurring discrete motifs as tokens and improves forecasting quality and efficiency over
existing methods. We further introduce conditional decoding as a lightweight, domain-specific
post-hoc optimization method and show its performance gains in large foundation models. We
demonstrate our tokenizer’s adaptability to patterns of different complexities and show that the learned
token embeddings capture meaningful representations of time series properties, including statistical
moments and trends. Finally, our thorough investigation reveals key tradeoffs balancing tokenizer
complexity and generalization: discretization granularity presents a dual effect on compression -
fewer bins increase discretization error but also make patterns more frequent, potentially improving
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both learnability and compression; training data size influences how well the discovered motifs
generalize, with smaller datasets being insufficient to learn robust representations of rare motifs.
However, with sufficient data, longer and more complex motifs can significantly reduce prediction
error, ultimately enhancing compression efficiency. We hope our motif-based tokenization will have a
positive effect on reducing the resource consumption and environmental impact of time series models.

Limitations In our work, we do not conduct hyperparameter search for TS models due to the high
computational cost of training large foundation models. We expect even better results with optimized
settings. Moreover, future work can utilize more recent transformer architectures.

10
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A AN ADAPTIVE TOKENIZATION APPROACH FOR TIME SERIES

We provide pseudocode for generating a vocabulary of motifs and utilizing the motifs to tokenize a time series.

Algorithm 1 Motif vocabulary generation according to

Input: Dataset of discretized time series D/, minimum motif occurrence pp,iy
Output: Motif vocabulary ¥

U« {} > Initialize empty vocabulary
2w < M +2 > Account for quantized symbols and {MASK, EOS}
while true do > Iteratively find motifs
pair, cnt < count (27, 2 ;) in D’ > Most frequent adjacent token pair and its count
if cnt > p,;, then
2w & Zhow + 1 > Allocate new token ID
Upair] ¢ 2} .. > Add new token to vocabulary (z;, 2j, 1) = Zpew
D'+ D'\ {pair} U {2} > Replace new token in dataset D’
else
return ¥ > Token occurs to infrequent
end if
end while

Algorithm 2 Tokenization of a discrtized time series according toequation (4)

Input: Discretized time series z’, motif vocabulary ¥
Output: Tokenized time series z”

for vy in ¥ do > Iterate over motifs
'(/)keya wvalue < 1/) > ¢ made of key value mappings (227 Zz/'+1) - lelew
for (2, z; ) in 2’ do > Iterate over adjacent tokens in 2’
if (2{, zj ;) matches 1)y, then > Adjcent tokens match motif
replace (z;, zj ;) With ¢ya1ue in 2 > Replace tokens with motif: shortens z’ by 1
end if
end for
end for
Z// — Z/
return 2"

14
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B EXPERIMENTS

In this section, we list additional information about our experimental settings and resources.

Datasets We train our models and tokenizers on the recently proposed Chronos dataset (Ansari et all [2024). It
contains 11 M time series with over 11 B samples. Time series are curated from 28 real-world datasets or are
generated synthetically. Due to its diverse nature and size, this dataset is well suited for training foundation
models.

We base our zero-shot evaluation on 5 commonly used time series datasets covering different forecasting
applications: ETThl and ETTm1 measure the power load and temperature of electric transformers in hourly
and quarter-hourly granularity [2021). Weather consists of meteorological quantities such as air
temperature and is recorded every 10 minutes in 2()20E| Electricity measures the energy demand of households
in hourly granularity (Godahewa et al} 2021)). Traffic consists of hourly road occupancies in the San Francisco
Bay Area (Godahewa et al.,|[2021).

Hyperparameters For training our TS models, we utilize the hypermarameters of Chronos (Ansari et al.|
2024)), which we list in We expect even better results of our tokenizer when performing hyperparameter
tuning. However, this is very expensive for large foundation models.

Table 8: Hyperparameters of our TS models in 5 sizes from tiny to large.

Hyperparameter tiny mini small base large
TS models

Token dimensiond 256 384 512 768 1024
Encoder layers 4 4 6 12 24
Decoder layers 4 4 6 12 24
Heads 4 8 8 12 16
Training

Seed 2024

Activation ReLU

Dropout rate 0.1

Learning rate 0.001

Learning rate decay linear

Gradient steps 200000

Batch size 256

Optimizer Adam (Kingma & Bal 2015)

Reproducibility of measurements In our zero-shot evaluations, we use the same data splits as[Wu et al| 2021).
We evaluate once and report results on the test set.

For our main experiments, where we compare models of different sizes, we report the inference time as it is
of high practical interest. This also includes tokenization and detokenization overhead, which is negligible in
practice with < 0.5 % in runtime of our fastest models. We use the same Nvidia A6000 GPU for profiling with
2 warm-up and 2 measurement runs per batch to achieve inference time standard deviations < 2 %.

Regarding efficiency measures, we further report the compression at time series level of our tokenizer. This is a
hardware- and model-independent measure and the metric most related to our work. Needing to process fewer
tokens or requiring fewer autoregressions directly translates to improvements in inference time of models, which,
however, is a hardware-dependent measure.

Finally, we suggest executing tokenization and detokenization as pipelined pre- and postprocessing operations
on the CPU. This way, the minimal tokenization overhead does not affect throughput at all as model execution
on the GPU is the limiting factor.

Computational effort Building the vocabulary of our tokenizer is an iterative process. Computationally, this is
rather cheap, and we execute it on a single core of an Intel Xeon w5-3435X CPU. For our medium compression
tokenizer and 100 000 time series with a total of 100 M samples, vocabulary generation only takes 3.8 hours
utilizing 1.2 GB of CPU memory.

For training the T5 models, we utilize Nvidia HI00 GPUs. In total, we train 31 foundation models of differ-
ent sizes and with different motif-based tokenizers. We estimate the computational effort to reproduce our
experiments in Please note that we reuse previously trained tokenizers and models in most of our
experiments.

'"https://www.bgc-jena.mpg.de/wetter/

15


https://www.bgc-jena.mpg.de/wetter/

Under review as a conference paper at ICLR 2026

Table 9: Computational effort to reproduce our experiments.

Experiment Device Hours
Tokenizer

low CPU 9.1
medium CPU 3.8
high CPU 2.5
TS models

Chronos baselines GPU 4350
Main experiments GPU 4800
Vocabulary complexity and generalization GPU 2240
Training dataset size GPU 2880
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C RESULTS

Here, we show additional experiments and results.

C.1 PREPROCESSING STRATEGIES

We conduct new experiments exploring different preprocessing strategies before discretizing a time series.
Each of these methods features different tradeoffs between signal preservation and noise rejection. The first
derivative of a time series z removes its offset, potentially yielding more similar motifs. However, derivatives
generally introduce noise. To counter this, we utilize Gaussian kernels to smooth the time series. We further
employ window-based norms. Besides uniform distributions for discretization, we experiment with Gaussian
distributions and the precise data distribution P(D).

We conduct an extensive search among combinations of preprocessing strategies on 500 tokenizers in [figure 8]
Uniform discretization with different number of bins M is Pareto optimal in balancing the average tokenization
error dave and compression ¢. We utilize this method throughout our paper.

5 1 Uniform discretization )
Other strategies

%)
£41
[5]
72}
g,
g3
@]

2 -—

1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Tokenization error §,y,

Figure 8: Comparison of uniform discretization with other tokenization preprocessing strategies including
derivatives, Gaussian kernels, window-based norms, and Gaussian and data distribution based discretization.
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C.2 EFFICENCY IMPROVEMENTS OF ADAPTIVE TOKENIZATION

Injtable 11]and [figure 9 we report full, non-aggregated results comparing our motif-based tokenization with
Chronos foundation models that tokenize every sample. Further, we conduct additional experiments to compare
our motif-based tokenization with non-foundation models tokenizing every sample. Finally, we isolate the effects
of discretization and temporal motif representation.

Non-foundation models Here, we compare our motif-based tokenization in TS5 foundation models with
non-foundation models that are specifically trained on the ETTh1, ETTm1, Weather, Electricity, and Traffic
datasets. We utilize common time series architectures including Autoformer [2021), FEDformer (Zhou
et al} [2022), Informer (Zhou et al| 2021)), Non-stationary [2022D)), and vanilla transformers (Vaswani

et al.,[2017). These models extract tokens as a multivariate slice for every time step. For comparison with our
motif-based tokenization, we utilize the results of for 2 layer models in[table 10} The authors
forecast 96 time series samples from 192 context tokens.

In 19 out of 25 cases, our foundation model in zero-shot setting outperforms the specifically trained models in
forecasting quality.

Table 10: Comparison of our motif-based tokenization with conditional decoding (cd) and without in zero-shot
foundation models with non-foundation models that tokenize every sample, based on forecasting quality (MSE).
We highlight values that are worse than our method.

Dataset Ours Ours®®  Autoformer FEDformer Informer Non-stationary Transformer
ETTh1 0.52  0.46 0.42 0.38 0.87 0.55 0.75
ETTml 0.64 045 0.44 0.36 0.65 0.42 0.52
Weather 025 0.24 0.28 0.27 0.35 0.19 0.25
Electricity 0.15  0.14 0.18 0.20 0.30 0.17 0.25
Traffic 0.59  0.57 0.63 0.59 0.68 0.60 0.66

Table 11: Comparison of MSE and inference time of Chronos models and our low, medium, and high compression
tokenizers with conditional decoding (cd) and without on 5 datasets and 5 model sizes. Best MSE in bold.

Chronos Ours)oy Oursmedium Ourspign
MSE time MSE MSE® time MSE MSE® time MSE MSE® time

tiny 0.744 0.031s 0.854 0.617 0.022s  0.720 0.545 0.016s 0.881 0.540 0.016s
mini  0.736 0.061s 0.803 0.599 0.044s 0.585 0.507 0.035s 0.758 0.520 0.031s
ETThl small 0.741 0.094s 0.656 0.565 0.067s 0.669 0.500 0.057s 0.686 0.512  0.051s
base 0.759 0.305s 0.602 0.525 0.204s 0.554 0.465 0.175s  0.528 0.463 0.165s
large 0.717 0.867s 0.530 0.487 0.575s 0.527 0.461 0.507s 0.517 0.459 0.4565s

tiny 1.138 0.031s 1.044 0.637 0.020s 1.063 0.619 0.016s 0.904 0.585 0.014s
mini  1.105 0.061s 1.031 0.644 0.041s 1.018 0.560 0.033s 1.017 0.589 0.030s
ETTml small  1.004 0.094s 0.934 0.609 0.064s 0.826 0.495 0.054s 0.933 0.520  0.050s
base 1.061 0.305s 0.887 0.590 0.184s 0.759 0.473 0.165s 0.660 0.460 0.152s
large 1.084 0.867s 0.764 0.569 0.540s 0.784 0.487 0.488s 0.637 0.449 0.438s

tiny 0.313 0.031s 0.525 0.331 0.015s 0.406 0.290 0.012s 0.338 0.284 0.013s
mini  0.297 0.061s 0.482 0.305 0.032s 0.324 0.257 0.026s 0.313 0.280 0.027s
Weather small  0.265 0.094s 0.463 0.298 0.050s 0.344 0.250 0.046s 0.290 0.238 0.044s
base 0.266 0.305s 0.535 0.316 0.138s 0.307 0.241 0.140s  0.273 0.258 0.132s
large 0.269 0.867s 0.492 0.316 0.418s 0.293 0.242 0.405s 0.251 0.236 0.367s

tiny 0.375 0.031s 0.246 0.228 0.021s 0.241 0.223 0.016s 0.245 0.224 0.015s
mini  0.301 0.061s 0.200 0.192  0.043s 0.198 0.186 0.033s 0.199 0.187  0.027s
Electricity small  0.261 0.094s 0.176 0.169 0.066s 0.170 0.161 0.056s 0.185 0.173  0.048s
base 0.222 0.305s 0.167 0.159 0.203s 0.165 0.157 0.163s 0.166 0.158 0.148s
large 0.233 0.867s 0.154 0.148 0.569s 0.150 0.144 0.471s 0.158 0.151  0.397s

tiny 4.682 0.031s 0.805 0.756  0.021s 0.825 0.762  0.017s  0.755 0.721 0.015s
mini  3.751 0.061s 0.716 0.684 0.042s 0.682 0.648 0.033s 0.680 0.650 0.027s
Traffic small  2.722  0.094s 0.693 0.646  0.065s 0.659 0.617 0.056s 0.646 0.627  0.047s
base 3.413 0.305s 0.686 0.631 0.201s 0.630 0.585 0.163s 0.631 0.608 0.143s
large 2.717 0.867s 0.688 0.628 0.576s 0.613 0.576 0.474s 0.591 0.574 0.386s

tiny 1.387 0.031s 1.633 tbd.  0.014s 1.348 tbd.  0.013s 1.117 tbd.  0.013s
mini  1.270 0.061s 1.442 tbd.  0.029s  0.963 tbd.  0.028s 0.767 tbd.  0.027s
Solar small  1.358 0.094s 1.316 tbd.  0.045s 0.845 tbd.  0.048s 0.677 tbd.  0.045s
base 1.311 0.305s 1.265 tbd. 0.123s 0.870 tbd. 0.131s 0.688 tbd. 0.125s
large 1.319 0.867s 1.210 tbd.  0.388s 0.751 tbd.  0.419s 0.493 tbd.  0.369s

Dataset Model size
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Figure 9: Comparison of our motif-based tokenization with and without conditional decoding with Chronos
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models tokenizing every sample during zero-shot evaluation on 5 datasets and 5 model sizes.
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Effects of discretization and temporal motifs Our motif-based tokenization consists of two steps: Quantizing
the time series into a sequence of discrete symbols and compressing this sequence using a vocabulary of temporal
motifs. To isolate the contributions of discretization and motif representation, we train models from tiny to
large with the same number of quantization bins (M = 37) as our medium compression tokenizer, but without
applying motif discovery.

Our results in[table T2|show that models relying solely on discretization perform worse than those incorporating
motif-based representations, except for the Weather dataset. However, they outperform Chronos baselines. The
improved MSE of the motif-based approach can be explained by the fact that longer motifs provide the model
with higher-level building blocks, making sequence prediction easier and more accurate (this is supported by our
results that longer motifs are associated with smaller MSE, see[section 5.5). Moreover, our motif representation
also compresses temporal patterns, resulting in efficiency gains, which is a main motivation for our work. Please
note that the Weather dataset features extraordinarily high average compressions of 23.15 inftable 4] which may
be the reason for the decreased accuracy. However, here the motif-based model is substantially more efficient.

Table 12: Forecasting quality (MSE) on 5 evaluation datasets for models from tiny to large, with M = 37
quantization bins, trained with and without motif representations. Best in bold.

Dataset Discretization Mofifs
tiny mini  small  base large
ETTh1 0.611 0.608 0.600 0.625 0.626  0.526

ETTml1 1.035 0.911 0.928 0.887 0.918 0.759
Weather 0.231 0.229 0.220 0.222 0215 0.293
Electricity  0.252 0.223 0.211 0.196 0.189  0.150
Traffic 1.099 1.135 1.195 1.122 1.184 0.613
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C.3 CONDITIONAL DECODING

In this section, we provide full results on data- and model-dependent conditional decoding trained on the models’
predictions in[figure 10] We further explore conditional decoding in a data- and model-independent setting.

s Normal decode
0.8 — . Conditional decode 1.00
0.75 =
2
©n
S 0.50
0.25 <
- - 0.00 ~ - -
Medium High Low Medium High
Tokenizer Tokenizer
(a) Etth1 (b) ETTm1
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= £ 010+
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Medium High Low Medium High
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0.2 -
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Tokenizer
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Figure 10: Conditional decoding improves forecasting quality for 3 tokenizers in small models on 5 datasets.
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Data- and model-independent conditional decoding Here, we investigate conditional decoding in a data-
and model-independent setting to universally improve the forecasting quality of foundation models. To this
end, we train conditional decoding to dequantize quantized time series 2’ = qq(2). Here, conditional decoding
is model-independent and can only mitigate the quantization error as this is the only error introduced. This is
why we report MSE improvements relative to the average quantization error davg on the respective evaluation
datasets. We utilize the Chronos dataset for training and 5 datasets for zero-shot evaluation. We demonstrate
conditional decoding on our 3 tokenizers and small models.

In 14 out of 15 settings in[table T3] conditional decoding improves forecasting quality. On ETTml1, it mitigates
up to 96.9 % of the quantization error of our tokenizer with high compression. This enables us to build tokenizers
with even higher compression and quantization error, as it can be effectively recovered.

Table 13: Conditional decoding in data- and model-independent setting recovers the quantization errors of our 3
tokenizers by varying degrees on 5 datasets.

mpression
Dataset Compressio

low medium  high

ETThl 220% 21.3% 494%
ETTml 61.1% 16.1% 96.9%
Weather 87.6% 389% 25.0%
Electricity 13.5% 23.0% 21.4%
Traffic 0.0% 0.7% 1.7%
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C.4 ADAPTIVE COMPRESSION OF DIVERSE TIME SERIES

Here, we show the full results of our investigations on adaptive compression of our motif-based tokenization
approach. In[figure T1} we explore variable compression within the same dataset and show tokenized time series
for visual inspection in|figure 13| We further investigate relations between input and generation compression.
Finally, we list compression rates of patch-based literature models as a reference.
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Figure 11: Histograms showing variable compressions of our medium tokenizer within 5 datasets.

Input and generation compression We conduct additional experiments to explore relations between input
compression and the model’s generations. The model can either predict long motifs with high compression
directly or sequences of their shorter components during autoregressive generation as we describe in[section 5.7}
Therefore, we expect a greater input compression ¢in compared to generation compression Cout. We utilize
different tokenizers in small models for this experiment. In line with our hypothesis, we find correlations between
input and generation compression on all 5 datasets in More complex input tokens generally benefit the
prediction of longer motifs.
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Figure 12: Comparison of input and generation compression of small models and multiple tokenizers on 5
datasets. Please note that efficiency gains inftable 2|and[figures 3|and|§|relate to the more conservative generation
compression.
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Compression rates of patch-based models In [table T4 we list compression rates of patch-based models in
recent literature, resulting from different patch length and stride combinations. For some works that experiment
with multiple patch lengths, we show the authors’ preferred values.

Table 14: Compression rates of patch-based literature models.

Architecture Compression ¢
SDformer (Chen et a1.|, 2024) 2,4
TOTEM (Talukder et al.}2024) 4
MOMENT (Goswami et al.; [2024) 8
PatchTST (Nie et al.|[2023) 8
16
16
16
16
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C.5 VOCABULARY COMPLEXITY AND GENERALIZATION

In[figure T4]and [table T3} we provide full results of our investigations on token occurrence. We offer additional

insights into the hierarchy of motifs and the vocabulary generation process.

® 45 0.400 -
1.050 — )
0.750 ' * 40 /' 200
308 1.000 = 3 0350 ¢ S
m 0.700 = ° ] m ° b 352 =) 15%
9 5B gooso / £ g | X 2
- o
0.650 \ g 0,900 V 3.0 g 0.300 No—o 10§
0.600 oo | 207 0.850 ® 250 \ v
—~ 0.250 5
0550 I| T ||||||I| T |||||||| I| T ||||||I| T |||||||| I] T IIIIII] T IIIIIII]
10° 10* 10° 10° 10 10° 10° 10 10°
Occurrence p, Occurrence pp, Occurrence piy
(a) ETTh1 (b) ETTml1 (c) Weather
‘ ® 0.800 -]
0.185 - ) o_ o
o\/ 35'S ' 3.0'g
i S 0.750 | S
@ 0.180 / e 107 @ Z
2 o S 2 258
0.175 - 25 & 0.700 - &
3 ° 205
0.170 o—d 2.0 0.650 — o
10° 10 10° 10° 10 10°
Occurrence pyn Occurrence pn
(d) Electricity (e) Traffic

Figure 14: Varying token occurrence pmin influences forecasting quality for small models on 5 datasets.

Table 15: Tokenizers on the Chronos dataset with different token occurrence, vocabulary size, and compression.

Pmin |V| c

1000 1675  3.18
2000 993 2.95
4000 604 2.73
8000 373 2.50
16 000 237 2.29
32000 158  2.08
64 000 108 1.86
128000 78 1.66

Hierarchy of motifs Motif-based tokenization utilizes a vocabulary of hierarchical patterns. Here, we explore
the hierarchy of motifs evolving with more complex vocabularies. To this end, we vary the minimum occurrence
threshold pmin. Naturally, a lower occurrence threshold results in larger vocabularies. These vocabularies exhibit
more complex patterns generated by a greater number of recursive merges in[figure 15] Due to its hierarchical
structure, motif length grows exponentially with vocabulary depth, enabling large compressions.
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Figure 15: Motif hierarchy for vocabularies of different complexity.
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Vocabulary generation process Here, we further highlight the influence of quantization granularity and token
occurrence on compression and vocabulary complexity. In we show the iterative process of finding
longer motifs with higher compression ¢ during vocabulary generation of W. These more complex motifs,
however, are more specialized and occur less often (pmin). A lower number of quantization bins M results in
smaller, less data-specific vocabularies with higher compression.
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Figure 16: Influence of quantization bins M and token occurrence pmin on vocabulary size |¥| and compression
¢ for tokenizers on the Chronos dataset.
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C.6 ROBUSTNESS TO NOISE, NON-STATIONARY TIME SERIES, AND TRANSIENTS

Robustness to noise is of high relevance when processing real-world time series. Further, the changing distribution
of non-stationary time series or extreme values might hinder effective motif-based tokenization. Here, we explore
our tokenizer’s generalization to noise, distribution shifts, and transients in more detail.

Robustness to noise To explore the noise rejection capability of motif-based tokenization, we injected different
levels of Gaussian noise into the raw input sequence before tokenization. We compare our high compression
tokenizer in a small model to the respective Chronos baseline.

Our results in show that our motif-based tokenization substantially outperforms Chronos models on
noisy data. Further, its noise resistance is more predictable. We argue that our method is more robust to noise
due to its coarser quantization granularity. At the same time, our more expressive motif representation mitigates
the larger discretization error. Note that adding noise with up to o = 0.3 to our normalized input data with unit
standard deviation is a severe disturbance.
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Figure 17: Resistance of Chronos models and our high compression tokenizer to Gaussian noise with standard
deviation ¢ on 5 datasets.

Generalization to non-stationary data In practice, trends on long non-stationary time series might hinder
effective motif encoding. To explore this, we introduce linear and exponential trends into our evaluation datasets.
We utilize our high compression tokenizer in a small model and the corresponding Chronos baseline for this
experiment.

In our method shows a similar robustness to non-stationary data compared to the Chronos baseline,
even for large trends. We conclude that our motif-based tokenization is well applicable to non-stationary time
series and long sequences. Note that applying trends with up to |a| = 0.5 to our normalized data is a large
disturbance.
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Figure 18: Generalization of Chronos models and our high compression tokenizer to non-stationary time series
with linear and exponential trends on the Electricity dataset.
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Robustness to transients Extreme values might occur in real-world time series. Here, we explore the robustness
of our motif-based tokenization to outliers. To this end, we augment the input time series such that every sample
has a 1 % probability to be a positive or negative transient with amplitude 3. For our normalized time series with
unit standard deviation, this is a severe disturbance. We analyze our tokenizer with medium compression and
models in size small on the Electricity dataset.

While Chronos models cannot effectively handle extreme values, our motif-based tokenization is substantially
more robust to outliers as our results in show. The MSE of our models increases by only 19.4 %,
compared to 52.5 % for Chronos models. When encountering unknown patterns that are not in our tokenizer’s
motif vocabulary, such as transients, our tokenizer falls back to single-sample tokenization, as illustrated in
This fallback ensures that motif-based tokenization cannot overlook individual samples by design.
Consequently, compression is slightly reduced by 14.4 % when outliers are introduced.

Note that within the tokenization range, the same maximum quantization error applies regardless of whether a

sample is common or an outlier, as described in|section 3.

Table 16: MSE and compression ¢ for Chronos and our medium compression tokenizer on the Electricity dataset
with and without transient augmentation.

Chronos Ours
MSE MSE c
Without transients 0.261 0.170  3.95

Augmentation

With transients 0.398 0.203 3.38
~ . > ‘r T ’v,~ .
L] L] L] L] L] L]
0 10 20 30 40 50 60 70
Time

Figure 19: Introducing a transient (yellow) in the center period leads to local changes in tokenization of time
series samples (gray) compared to the other periods on the Electricity dataset.

29



Under review as a conference paper at ICLR 2026

C.7 TRAINING DATASET SIZE

We vary the dataset size for building our vocabulary of motifs ¥ and provide full results here. To this end, we
utilize our three tokenizers with low, medium, and high compression and report vocabulary statistics in

and forecasting quality in [table 18] For conditional decoding, we observe similar behavior when estimating
conditional distributions 2 in[table 19} Here, a larger subset also leads to best representations.

Table 17: Vocabulary statistics for 3 tokenizers trained on Chronos subsets of varying sizes V.

. N =1k N =10k N =100k N=1M
Compression
V| c  Pooe P c |V ¢
low 2789 2.11 2461 2.08 2445 2.08 2441 2.09
medium 1974 3.24 1707 3.16 1675 3.18 1681 3.18
high 1618 4.14 1392 4.05 1373 4.06 1360 4.06

Table 18: Forecasting quality (MSE) on 5 evaluation datasets for 3 tokenizers trained on Chronos subsets of
varying sizes N.

Dataset Compression N =1k N=10k N =100k N=1M

low 0.712 0.712 0.656 0.659
ETThl medium 0.562 0.698 0.669 0.615
high 0.751 0.712 0.686 0.593
low 0.944 0.919 0.934 0.913
ETTml medium 0.877 0.898 0.826 0.857
high 0.985 0.819 0.933 0.821
low 0.473 0.538 0.463 0.474
Weather medium 0.342 0.310 0.344 0.333
high 0.355 0.333 0.290 0.307
low 0.178 0.183 0.176 0.175
Electricity medium 0.173 0.167 0.170 0.164
high 0.191 0.176 0.185 0.178
low 0.724 0.680 0.693 0.671
Traffic medium 0.643 0.639 0.659 0.622
high 0.625 0.621 0.646 0.620

Table 19: Influence of dataset size /N on estimating conditional decoding distributions €) for small models on the
Electricity dataset.

N MSE
Normal decoding 0.170
1k 0.168
10k 0.162
100k 0.161
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Figure 20: Principal component analysis of token embeddings of our medium tokenizer in a small model.
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Figure 21: Parent-child token relations analyzed through principal component analysis of token embeddings
from our medium tokenizer in a small model. Children and their first parents are connected.



Under review as a conference paper at ICLR 2026

C.9 LEARNED MOTIFS

Our tokenizer employs a vocabulary of frequent motifs to encode time series. To enhance interpretability, we
illustrate selected patterns learned by our tokenizer with medium compression (see table TJ), here. Note that the
vocabulary also includes shifted and scaled variants of these motifs along the y-axis.

Figure 22: Visualization of motifs our medium compression tokenizer uses to encode time series. Colors indicate
motif length.
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