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Abstract

Generalized zero-shot text classification aims
to classify textual instances from both previ-
ously seen classes and incrementally emerging
unseen classes. Most existing methods gener-
alize poorly since the learned parameters are
only optimal for seen classes rather than for
both classes, and the parameters keep station-
ary in predicting procedures. To address these
challenges, we propose a novel Learn to Adapt
(LTA) network using a variant meta-learning
framework. Specifically, LTA trains multiple
meta-learners by using both seen classes and
virtual unseen classes to simulate a generalized
zero-shot learning (GZSL) scenario in accor-
dance with the test time, and simultaneously
learns to calibrate the class prototypes and sam-
ple representations to make the learned param-
eters adaptive to incoming unseen classes. We
claim that the proposed model is capable of
representing all prototypes and samples from
both classes to a more consistent distribution
in the global space. Extensive experiments on
five text classification datasets show that our
model outperforms several competitive previ-
ous approaches by large margins. The code and
the whole datasets will be available after paper
publication.

1 Introduction

Text classification plays an important role in many
natural language processing (NLP) applications,
such as question classification, news categoriza-
tion, user intent classification and so on (Minaee
et al., 2021). Although a wide variety of meth-
ods have been proved successful in supervised text
classification, they often break down when applied
to make predictions for incrementally emerging
classes without labeled training data (Pourpanah
et al., 2020). Unlike zero-shot learning (ZSL)
that aims to classify unseen class instances at test
time (Romera-Paredes and Torr, 2015; Wang et al.,
2019), generalized zero-shot learning (GZSL), that

we focus on in this work, aims to classify text sam-
ples from both previous seen and emerging novel
classes. Since there is a strong bias towards seen
classes (Xian et al., 2017), GZSL is a more chal-
lenging yet critical problem.

Previously methods mainly focus on transduc-
tive approaches for generalized zero-shot text clas-
sification. Rios and Kavuluru (2018) use a graph
convolution network to enhance the unseen class
label embeddings. Zhang et al. (2019) and Song
et al. (2020) generate illusion feature embeddings
for unseen classes based on side information, i.e.,
class-level attributes or text description. More re-
cently, Ye et al. (2020) use reinforced self-training
methods to leverage unlabeled data during training
stage.

With the assumption that no knowledge about
unseen categories is available during the model
learning phase, researchers resort to inductive ap-
proaches to handle generalized zero-shot text clas-
sification. ReCapsNet (Liu et al., 2019) uses a
dimensional attention-based intent capsule network
and constructs zero-shot class prototypes by simi-
larity matrix transformation. SEG (Yan et al., 2020)
exploits an outlier detection approach that can be di-
rectly applied on ReCapsNet, which discriminates
the domain first, then outputs the final class label.

However, the existing methods still have two
key limitations. Firstly, while the goal of these
methods is to transfer beneficial knowledge for un-
seen classes, these models merely learn optimal
parameters by minimizing the loss of instances
from seen classes, regardless of explicitly calibrat-
ing the predictions on unseen classes. Therefore,
domain bias towards seen classes is not fairly re-
solved (Vinyals et al., 2016). Secondly, although
some of them take into account the inter-class rela-
tionship when constructing prototypes for unseen
classes (Liu et al., 2019), the models keep static
no matter what different new classes emerging in
future applications. As a result, these models show



a large quality gap between instances from seen
classes and from emerging unseen classes.

To address these problems, motivated by the
success of meta-learning in the few-shot learn-
ing task (Vinyals et al., 2016; Snell et al., 2017;
Sung et al., 2018; Finn et al., 2017), we present a
novel Learn-To-Adapt network (LTA) for general-
ized zero-shot text classification. Concretely, the
proposed LTA learns class prototypes over multiple
learning episodes that mimic GZSL setting explic-
itly during training, making the learning setting
consistent with the test environment and thereby
improving generalization. Then, the model notably
extends its ability from two views: prototype adap-
tion and sample adaption. In each episode, the
LTA adjusts the representative prototypes of both
seen classes and "fake" unseen classes, with the
assumption that unseen class will help in calibrat-
ing representation of seen ones and thereby enable
the model to learn the class sensitive representa-
tions. The updating for all prototypes is then used
to generate a set of calibration parameters to guide
the adaption of sample embeddings, which is de-
signed to compensate for the shrinking features
(Chen et al., 2018) that are ignored during train-
ing if they are not discriminating for seen classes,
but could be critical for recognizing unseen classes.
The refined sample embeddings are then classified
based on similarity scores with all class prototypes.
The same setting can be directly applied in test,
where the LTA executes class prediction and adapts
the learnt model rationally in an on-the-fly manner.

In summary, our contributions include: (i) We
propose a novel Learn to Adapt (LTA) network for
generalized zero-shot text classification which is
capable of adapting incrementally between seen
classes and emerging unseen classes at test time.
(ii) We propose a methodology for calibrating both
prototypes and samples to deduce a global rep-
resentation space, efficiently avoiding over-fitting
on seen classes. (iii) Experimental results on five
generalized zero-shot text classification datasets
show that our method outperforms previous meth-
ods with a large margin.

2 Related Work

Generalized Zero-Shot Learning The challenge
of zero-shot learning (ZSL) has been the focus of
attention in recent years, especially in the applica-
tions of image classification (Socher et al., 2013;
Xian et al., 2017; Wang et al., 2018, 2019), intent

classification (Xia et al., 2018; Liu et al., 2019;
Yan et al., 2020), and question classification (Fu
et al., 2018). Different from ZSL, generalized zero-
shot learning (GZSL) that attempts to categorize
instances from both seen and unseen classes is a
more realistic condition that matches with practical
applications. For example, a question classifier for
question answering system has to classify not only
the questions ever asked but also new questions
incrementally emerging from the users.

There are two key issues that GZSL has to ad-
dress: (1) how to incrementally learn beneficial
knowledge for unseen classes from seen ones, and
(2) how to tackle the domain bias caused by the
extremely imbalanced data of seen and unseen do-
mains.

To alleviate the first issue, some of the earli-
est works on ZSL attempt to learn a matching
model between instance embedding and class pro-
totype embeddings represented by extra informa-
tion including class-level attribute, text descrip-
tion, or their combinations (Frome et al., 2013;
Jinseok Nam, 2016; Zhu et al., 2019; Xia et al.,
2018). In a similar vein, other methods (Wang
et al., 2018; Rios and Kavuluru, 2018; Si et al.,
2020) also investigate the semantic relationship
between the side information for obtaining better
prototype representation.

The key problem of the second issue is that the
model is trained with data from the seen classes and
the parameters are actually optimized on seen do-
main, thus they are not aware of unseen classes. As-
suming the extra information about unseen classes
is available, another prominent approach attempts
to use generative models to generate virtual sam-
ples or features for unseen domains (Xian et al.,
2018; Schonfeld et al., 2019; Zhang et al., 2019;
Song et al., 2020). By using synthesized samples,
the generative approaches can convert GZSL prob-
lem to the conventional supervised learning prob-
lem where biases towards seen classes are largely
alleviated. Nevertheless, these models are trained
using data from seen classes and fails to incremen-
tally adapt to emerging new classes. Additionally,
studies also extend to exploit the unlabeled data for
unseen classes (Xian et al., 2019; Rahman et al.,
2019; Ye et al., 2020).

However, these models assume that they have
access to the extra information about the unseen
classes, which is not very realistic since often nei-
ther the test data nor their label descriptions is



available at the training phrase (as supposed in
this work). In contrast, our model can involve all
classes (seen and unseen) jointly during inference,
essentially it is trained towards continuous general-
ization for new classes, hence it is capable to adapt
to incoming new class dynamically.

Episode-Based Training in GZSL Our ap-
proach is primarily based on episodic training/meta-
learning that has been widely used in few-shot
learning (FSL) (Vinyals et al., 2016; Snell et al.,
2017; Sung et al., 2018). The primitive goal of
episodic training is to quickly learn a meta-task
from a small number of sampled classes and sup-
porting sets. A particular advantage of episodic
learning is that, by constructing meta-tasks, the set-
ting of training is consistent with that of test, which
is essential for classification problems.

Studies extend to exploit episodic training in
the "generalized" settings. Gidaris and Komodakis
(2018); Ye et al. (2019); Shi et al. (2019) utilize
weight generators or relationships to update repre-
sentative prototypes in generalized FSL (GFSL).
Yu et al. (2020) use a generative network to gen-
erate unseen prototypes in GZSL. These methods
only consider the prototype adaptation while the
sample embeddings are still static whatever the un-
seen classes are. On the contrary, Bao et al. (2020)
uses distributional signatures to update sample em-
beddings in GFSL. Considering that distributional
signatures can be equal for two different tasks, our
method uses a novel semantic update extractor to
update samples following the prototype adaptation
rather than statistical information.

A compelling property of our method is that it
tackles knowledge transferring and domain bias
simultaneously in an adaptive episodic training
framework by adapting both prototypes and sam-
ple embeddings, and draws a fast adaption to the
novel classes without the cost of dramatic damage
in discriminating the seen classes.

3 Methodology

3.1 Problem Definition

Formally, let ° = {y{,...,y&:} and V" =
{yt, ..., ytu} denote C* seen classes and C* un-
seen classes respectively, and Y = Y° U YV* de-
note the global label space with V¥ N Y% = 0.
Suppose we have a collection of training samples
D* = {(xf,y5,a)}]M,, that consists of M sam-
ples from C* seen classes, where x§ € X' repre-

sents i-th text utterance, y; is and a; are its one-hot
class label and class-level textual description, re-
spectively. At the test time, provided with a class
description set A" = {a}‘}]c:“1 for unseen classes,
the GZSL task is to classify the test instance into

either a seen or an unseen class.

3.2 Overview

Encoder An textual input x with 7" words is en-
coded by a BERT (Devlin et al., 2018) into a se-
quence of hidden vectors H = [hy, ho, ....,hy] €
RT*dn  where dj, is the hidden dimension. The
text embedding f(x) € R is then obtained by
averaging over the T hidden vectors.

Training In the training stage, we introduce an
episodic learning paradigm, which trains the model
by simulating multiple generalized zero-shot text
classification tasks on seen classes. Following the
principle that train and test conditions must match
(Vinyals et al., 2016) and recent studies on "gener-
alized" setting (Gidaris and Komodakis, 2018; Shi
etal., 2019; Ye et al., 2019; Bao et al., 2020; Verma
et al., 2020; Yu et al., 2020), each episode involves
an N*®-way K-shot learning task for seen classes,
denoted as D; = {(x5, 95, a3)} ;X with K la-
belled instances for each of N* classes randomly
sampled from the seen data D? in the i-th episode,
and a N“-way K -shot learning task for "fake" un-
seen classes, denoted as D} = {(z}, y}, al) vty
which is also from D*, with N5 + N* < (C%,
More precisely, let ) and ;" denote the sampled
seen class space and sampled "fake" unseen class
space respectively, with Y7 C V*, V' C V", and
Vi N Y = (. For a new query instance x, the
generalized zero-shot learning model performs

:lj = argmaxye{yisuyg}p(mx,DfaD?) (1)

The model is designed to maintain a globally
joint class prototype space as well as dynamic adap-
tion to unseen classes with zero labeled instances,
whose detailed implement is described as follows.

3.3 Prototype Adaptation

The proposed LTA network first introduces a learn-
able look-up table S € R > from which to ex-
tract the seen prototypes S; € R™V" <% on demand.
The S is initialized using the supervised classi-
fier by reducing the error on the training samples
from the random initialization. The virtual unseen
prototypes U ; is produced by the BERT encoder
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Figure 1: Illustration of the proposed LTA framework. The right part demonstrates the prototype adaption and
sample adaption, in which mand a respectively denote prototypes and samples, solid border and dotted border

represent before and after adaption, respectively.

f(+) using their corresponding class descriptions:
U; = [f(ay)lyeyr € RN dn,

Then the joint prototype matrix R is obtained by
concatenating S; and U;, R = [S;, U] € R¢" >
with r; as the j-th prototype. Then R is fed into
an inter-class Transformer encoder (Vaswani et al.,
2017) to explicitly model the updates for the repre-
sentations of both seen prototypes and novel proto-

types:

Z = TransformerEncoder(R) ()
R=R+2Z 3)

where Z € R %9 highlights the adjustment af-
ter mutual reflections, and the updated prototypes
R € RY %dn jg regarded as the calibrated repre-
sentative prototypes of both seen and unseen cate-
gories, with ; as the adjusted j-th prototype. The
self-attentions used in Transformer is agile to cap-
ture the inter-class relationship of seen and unseen
classes and thereby it is beneficial to derive glob-
ally discriminative prototypes. The prototypes si-
multaneously update both seen and unseen classes,
which enables the model to represent and discrimi-
nate the newly incoming categories in an on-the-fly
manner.

3.4 Sample Adaptation

As been discussed in (Chen et al., 2018), the zero-
shot learning tasks are prone to produce semantics
loss, where some features would be discarded dur-
ing training if they are not discriminating for seen
classes, but critical for recognizing unseen classes.
We observe that the similar problem is exacerbated
in GZSL task due to the extreme unbalance be-
tween seen and unseen classes. We tackle this
problem by introducing sample adaption following
the trajectories of prototypes adaption. In concrete,
we apply a semantic update extractor via attention
mechanism to capture synchronous updating of the
prototypes:

F=7ZW, (4)
A = Softmax(W3ReLU(W,FT))  (5)
C = AF (©6)

where W; € Rdthh,Wg € Rd“th,Wg S
R? *xda are trainable parameters, A denotes the
attention weight matrix and C € R% ¥ extracts
different semantic components with c; is the j-th
semantic components. To offset the semantic loss
mentioned above, we compare the attention score
for each hy to get most related semantic adjustment
and reconstruct the contribution of each feature:

) D

htC'
e; = Softmax (8 max(—— 2+
7 helllle |



T
g(z) = ehy ®)
t=1

where the self-attention weight e; € RT is used to
re-weight the ¢-th word of sample x to be classified,
and [ is a scalar to control the differentiation of
attention scores. In this way, In this way, the differ-
ent attention weight discriminate the importance of
words rather than averaging them.

One notable reason of choosing of the above
feature-level calibration is that, in classification
task, the encoder is trained to produce feature em-
beddings that collapses to its ground-truth proto-
type, therefore the adjustment of feature embed-
ding should cater to the adjustment of a reliable
global prototype space. In addition, since this cal-
ibration is applied after the encoding, it reduces
the complicated parameter tuning for a massive
encoder (e.g., BERT), which elegantly helps the
GZSL task to fast adapt to the incoming test in-
stances.

3.5 Loss function

With the adapted prototypes R and the adapted
sample g(x), a Softmax classifier is used with co-
sine similarity:

exp(s(g(x), ty))
>y exp(s(g(z), )

pi=ylz) = ©

where s(a,b) = % is cosine similarity with

temperature 7. Finally the model is trained the
minimize the losses across all episodes:

1
[':_N;Ei (10)
where £; is the loss of the i-th episode:
L=+ Y legpl=yle) aD
i = ogply=y |

(2,9,0)€D;UDY

The training process of LTA is summarized in Al-
gorithm 1.

4 [Experiments

4.1 Datasets

Intent Classification Datasets. We collect four
intent classification datasets. (1) SNIPS-SLU
(Coucke et al., 2018), a widely used benchmark for
English GZSL intent detection with 5 seen intents

Algorithm 1: LTA training algorithm.

Input: distribution over tasks p(7 ), class
set V*
Output: learned model parameters
1 while not done do
2 Randomly sample a meta GZSL task
T; ~ p(T) with seen meta-test D} and
unseen meta-test D}'.

Get adapted prototypes R by Eq 2~3.

3

4 Get semantic components C by Eq 4~6.

5 for all D} U D} do

6 Get adapted sample embeddings by
Eq 7~8.

7 end

8 Update model by Eq 9 and Eq 11.
9 end

and 2 unseen intents. (2) SMP-18 (Zhang et al.,
2017), a Chinese dialogue corpus for user intent
detection with 24 seen intents and 6 unseen intents.
(3) ATIS (Hemphill et al., 1990), an English airline
travel domain dataset, from which we extract 17
intents with at least 5 samples, and split them into
12 seen intents and 5 unseen intents. (4) CLINC
(Larson et al., 2019) is a recently published intent
detection dataset includes 22,500 in-scope queries
covering 150 intent classes from 10 domains. We
randomly split the 150 intents into 120 seen intents
and 30 unseen intents.

Question Classification Dataset. In order to
draw a comprehensive analysis of the proposed
method, we construct a question classification task
from the Quora Question Pairs dataset !, which is
aimed to identify duplicate questions. We collect
questions with at least 5 duplicate samples into
classes. In each class, we choose the question with
minimum words as the label description, which is
widely used in real-world question-answering sys-
tems (Sakata et al., 2019). Table 1 summarizes all
datasets statistics. It is worth to note that intents
in ATIS are highly unbalanced with flight accounts
for about 87% of training data.

Dataset Settings. Following (Siddique et al.,
2021), we use random seen/unseen classes for 10
runs instead of manual selection used in (Yan et al.,
2020), which leads to more fair results because ev-
ery class could be unseen class. We randomly take

Lwww.kaggle.com/c/quora-question-pairs
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Table 1: Dataset statistics. “FS” indicates “few-shot”,
“BAL” indicates “balance”, “IBAL” indicates “imbal-
ance”. The “avg #samples” indicates the average num-
ber of samples per class.

#classes #samples sent
Dataset seen unseen | total avg len type
SNIPS 5 2 13802 1384 | 9.10 | BAL

SMP 24 6 2460 60 4.83 FS

ATIS 12 5 4972 245 11.44 | IBAL
Clinc 120 30 22500 105 8.23 BAL
Quora 1360 340 17394 7 10.46 FS

70% samples of each seen class as the training set,
and the remaining 30% samples of each seen class
as the seen test and take all the samples of unseen
classes as the unseen test. All the textual labels of
the same class are regarded as the description for
this class.

4.2 Baseline Methods

To validate the benefits of the proposed LTA, we
compare against with other approaches in three
aspects:

Supervised Learning Methods. To show the per-
formances on seen classes with supervised learning
instead of ZSL/GZSL setting, we use (1) BILSTM
(Schuster and Paliwal, 1997) and (2) BERT (De-
vlin et al., 2018) as the encoder with a linear soft-
max classifier

Metric Learning Methods. Metric-based em-
bedding methods are commonly used as baselines
for ZSL/GZSL. Thus we introduce three different
metric learning methods: (1) EucSoftmax: We
adapt (Snell et al., 2017) that uses squared Eu-
clidean distance as the metric and softmax clas-
sifies; (2) Zero-shot DNN: We adapt (Kumar
et al., 2017) that uses squared Euclidean distance
and triplet loss to maintain a margin for different
classes. We choose the label embedding(prototype)
as the anchor and the closest sample as negative
sample in each triplet tuple; (3) CosT (Gidaris and
Komodakis, 2018) refers to Cosine Distance with
temperature scalar s(a,b) = 7cos(a,b) where T
is a learnable temperature scalar to dynamically
control the peakiness of the probability distribution
generated by the Softmax.

SOTA Methods. We also compare our model
with two recent state-of-the-art (SOTA) methods:
(1) ReCapsNet (Liu et al., 2019) uses a dimen-
sional attention-based intent capsule network and a
matrix transformation method for ZSL/GZSL. (2)

SEG (Yan et al., 2020) is an outlier detection ap-
proach that can be directly applied on ReCapsNet.
SEG acts as a domain discriminator which first
determines whether a test sample belongs to seen
classes or unseen classes and then classifies in their
own domain. RIDE (Siddique et al., 2021) is not
considered because they use outer knowledge not
available in our settings and the data they used is
limited within the intent detection task due that the
labels in their method need to be a combination of
"action" and "object".

4.3 Experimental Setup

Evaluation Metrics. We basically use accuracy
(Acc) to estimate the performances on seen and
unseen test sets. Besides, we adopt Macro-F1 (F1)
rather than Micro-F1 to better evaluate the perfor-
mances on imbalanced and few-shot datasets, be-
cause Macro-F1 gives the same weight of F1 scores
for each class. For overall assessments, we adopt
the widely used Harmonic Mean (HM) of Acc and
F1 on Seen and Unseen, because the overall Acc
and F1 scores are influenced by the ratio of seen
and unseen test set sizes.

Implementation Details. We use pretrained
BERT-base encoder with dp, = 768 on intent
classification datasets and BiLSTM with 128 hid-
den size each direction on Quora dataset as ba-
sic encoder. The scalars of our model is set to
be 7 = 10.0,4 = 10.0,d, = dj, which is
trained via Adam (Kingma and Ba, 2015) opti-
mizer, with learning rates 10~° for BERT, 10~
for BILSTM and 102 for the others. During train-
ing, we set K = 5 and C" = [2,2,2,10,20],
d, = [4,16,32,64,64] for SNIPS, SMP, ATIS,
CLINC and Quora datasets, respectively. The learn-
able R is initialized from the prototypes trained
from metric learning methods, and is used as our
basic baseline. We also conduct an ablation study
to investigate the effectiveness of each proposed
component. As depicted in Table 2 and Table 3,
"w / o Init" refers to the model that randomly ini-
tialize R. "w /o SA" refers to the model that only
uses prototype adaptation without "Sample Adap-
tation". "w / 0" means none of the adaptation steps
is applied.

4.4 Results

The results on four intent datasets and Quora
dataset are given in Table 2 and Table 3. Our



Table 2: Results (in %) on four intent benchmarks. The Top1 results of GZSL methods are highlighted in bold and

underline for Top?2 results, the same below.

SNIPS-NLU SMP-18
Model Seen Unseen HM Seen Unseen HM
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Bi-LSTM 98.23 98.23 | 0.00 0.00 0.00 0.00 | 93.65 9343 | 0.00 0.00 0.00 0.00
BERT 98.91 98.91 0.00 0.00 0.00 0.00 | 9528 94.87 | 0.00 0.00 0.00 0.00
EucSoftmax 81.09 6550 | 4589 5821 | 58.61 61.64 | 89.84 87.85 | 76.65 77.51 | 82.72 82.36
Zero-shot DNN | 81.09 65.28 | 4591 58.53 | 58.63 61.72 | 9097 87.67 | 7538 77.32 | 82.44 82.17
CosT 91.68 75.76 | 47.73 62.84 | 6277 68.70 | 90.65 88.41 | 72.59 73.89 | 80.62 80.50
ReCapsNet 96.26 67.70 | 11.57 18.45 | 20.66 29.00 | 76.32 7492 | 20.56 15.09 | 32.39 25.10

+ SEG 92.11 73.08 | 50.29 62.33 | 65.06 67.28 | 67.10 67.39 | 36.65 32.84 | 47.70 44.16
LTA (Ours) 74.05 74.11 | 90.09 84.22 | 81.28 78.84 | 89.84 90.79 | 79.19 7520 | 84.18 82.26

w / o Init 82.57 7522 | 6436 71.63 | 72.34 73.87 | 89.03 87.23 | 80.71 81.74 | 84.67 84.40

w/oSA 67.31 70.56 | 84.70 77.51 | 75.01 73.87 | 84.52 8140 | 75.89 74.40 | 79.97 71.75

w/oA 7526 71.82 | 83.85 80.77 | 79.33 76.03 | 84.35 8693 | 76.90 73.54 | 80.72 80.50

ATIS CLINC
Model Seen Unseen HM Seen Unseen HM
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Bi-LSTM 9324 79.51 0.00 0.00 0.00 0.00 | 92.07 92.06 | 0.00 0.00 0.00 0.00
BERT 97.18 93.71 0.00 0.00 0.00 0.00 | 97.37 97.37 | 0.00 0.00 0.00 0.00
EucSoftmax 67.67 16.11 7.78 5.50 1396 820 | 96.02 87.07 | 58.02 66.00 | 72.33 75.08
Zero-shot DNN | 63.56 23.12 | 8.05 12.02 | 1429 15.82 | 9531 86.65 | 58.49 6589 | 7249 74.68
CosT 98.02 59.55 | 46.04 4521 | 62.66 5140 | 9631 8733 | 62.73 70.28 | 75.98 77.89
ReCapsNet 86.19 2388 | 12.80 4.89 | 2232 8.12 | 88.53 69.83 | 4.24 3.33 8.10 6.36

+ SEG 93.75 4090 | 1478 6.36 | 2553 11.01 | 81.04 78.89 | 9.07 5.44 16.31 10.18
LTA (Ours) 96.28 63.13 | 66.09 55.02 | 78.38 58.80 | 92.22 87.57 | 73.18 75.74 | 81.60 81.23

w / o Init 8996 4748 | 69.79 52.14 | 78.60 49.70 | 93.07 88.19 | 73.80 77.54 | 82.32 82.52

w/oSA 90.20 51.74 | 66.23 47.24 | 76.38 49.38 | 9246 87.30 | 69.27 73.26 | 79.20 79.67

w/oA 9494 63.25 | 57.52 49.19 | 71.64 55.34 | 93.81 88.12 | 70.11 74.58 | 80.25 80.79

Table 3: Results (in %) on Quora question classification
dataset.

Seen Unseen HM

Model Acc FI Acc FI Acc I
BILSTM 7170 69.04 | 000 000 | 000 _ 0.0
BucSoftmax 7988 7442 | 5685 6239 | 6643 6788
Zero-shot DNN | 72.52 6742 | 48.68 5327 | 5826  59.52
CosT 88.50 8139 | 6221 7355 | 73.06 77.27
LTA (Ours) 8460 8356 | 7483 7693 | 79.45 80.11

w /o Init 82.11 81.99 | 7549 7653 | 78.66 79.17

w/0SA 8495 8279 | 7356 76.67 | 78.84  79.62

w/oA 8421 8240 | 7250 7523 | 77.92  78.65

proposed methods achieve the overall best perfor-
mances compared to baselines.

Detailed and interesting observations can also
be derived from the results: (1) Supervised Metric-
Learning methods as the basic baselines, achieve
comparable results on Seen Test for all datasets.
However, it suffers from the domain bias problem
and the performance drops with a large margin on
Unseen Test, where the task is complex due to the
imbalanced and few-shot scenarios. (2) The per-
formances on SNIPS-NLU and SMP-18 of ReCap-
sNet and SEG are worse than those in their original
paper although we use the open-source code, this
is because we random split the test unseen classes
which makes it more challenging. Besides, these
methods fail to recognize unseen samples well on

datasets with large scale of categories, yielding
worse 0% Acc and F1 on Quora. The most likely
reason is that ReCapsNet uses label embedding
similarities to construct unseen prototypes in cap-
sule network, which imposes a non-trivial com-
putational and memory burden. (3) Our method
shows its privilege for all datasets. In particular,
with the help of continuous adapting ability, it ob-
serves smaller gap between seen and unseen do-
main, which proves the adaptation on testing phase
effectively works. Although the performance on
seen domain drops sightly, the proposed LTA out-
performs the competitive metric-learning baselines
by 9.54% HM Acc and 12.90% HM F1 average on
the whole datasets, indicating that our model fairly
balances the seen and unseen classes.

Ablation Study. To better understand the con-
tribution of each component of our method, we
explore three variants of LTA. We can observe that
LTA with both prototype adaptation and sample
adaptation outperforms those without adaptations
in all cases. Generally “LTA w / o SA” with only
prototype adaptation achieves better performance
compared to “LTA w /o A”. The “LTA w / o Init”
has relatively stable performances.
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Figure 3: The performance with different numbers of
unseen classes on CLINC dataset.

4.5 Results on Emerging Unseen Classes

As the partition of seen / unseen classes is fixed in
previous experiments, in order to study the robust-
ness of the proposed adaption method, we conduct
the experiment across unseen class sets of different
scales. Specifically, we select 70 classes as seen
classes and 10 classes as validating unseen classes.
The testing unseen classes are randomly sampled
from the remaining 70 classes and each experiment
is repeated 50 times with different sampling sets
for a more stable result. Figure 3 (a) shows the HM
accuracy on all classes as the number of the unseen
classes grows. We can see that our LTA model out-
performs the metric baseline and ablation models
in all cases, where the well performance is mainly
attributed to the improvements on unseen classes
as shown in Figure 3 (b). These results suggest that
our adaptation method is robust and effective for
adapting to new classes as well as improving the
overall performance on all classes.

4.6 Visualization

To demonstrate how our adaptation method works,
we further visualize the encoded representation
via PCA in Figure 2. When there is no unseen
class, seen classes (yellow and red) is discrimina-

tive enough. But when the new class "tire change"
(purple) comes, it is ambiguous with class "oil
change when" (red). We observe that the seen
and unseen class prototypes are updated to be far
away from each other after prototype adaptation as
shown in (a), which eases the domain bias problem.
However, the performance is unsatisfactory since
the sample representations are still not discrimi-
native no matter how prototype updates. As we
can see, with the sample adaptation as shown in
(b), the sample representations are independently
clustered by the adapted prototype and easy to to
be distinguished.

To further study how the sample adaptation
works, we select an representative case "when is
it time for a tire chance" and show its attention
weights used as calibration parameters in (c). The
case is still misclassified after the prototype adapta-
tion due to the common word "time" and "change"
also appear in seen classes. After the sample adap-
tation, however, it can be seen that the word "tire"
which is a key word for classifying, get the most
attention while the other confusing words are not.
This result suggests that calibrating the attention
weights is useful for acquiring a prototype aware
representation which helps the sample adaptation.

5 Conclusion

This paper proposed a novel adaptive meta-learning
network for generalized zero-shot text classifica-
tion. The model was trained under a consistent
setting with testing. In particular, it efficiently al-
leviated the bias towards seen classes by utilizing
both prototype adaptation and sample adaptation.
Experiments on five text classification datasets val-
idated that our model achieved compelling results
on both seen classes and unseen classes, meanwhile



was capable of fast adapting to new classes.
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