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Abstract

Generalized zero-shot text classification aims001
to classify textual instances from both previ-002
ously seen classes and incrementally emerging003
unseen classes. Most existing methods gener-004
alize poorly since the learned parameters are005
only optimal for seen classes rather than for006
both classes, and the parameters keep station-007
ary in predicting procedures. To address these008
challenges, we propose a novel Learn to Adapt009
(LTA) network using a variant meta-learning010
framework. Specifically, LTA trains multiple011
meta-learners by using both seen classes and012
virtual unseen classes to simulate a generalized013
zero-shot learning (GZSL) scenario in accor-014
dance with the test time, and simultaneously015
learns to calibrate the class prototypes and sam-016
ple representations to make the learned param-017
eters adaptive to incoming unseen classes. We018
claim that the proposed model is capable of019
representing all prototypes and samples from020
both classes to a more consistent distribution021
in the global space. Extensive experiments on022
five text classification datasets show that our023
model outperforms several competitive previ-024
ous approaches by large margins. The code and025
the whole datasets will be available after paper026
publication.027

1 Introduction028

Text classification plays an important role in many029

natural language processing (NLP) applications,030

such as question classification, news categoriza-031

tion, user intent classification and so on (Minaee032

et al., 2021). Although a wide variety of meth-033

ods have been proved successful in supervised text034

classification, they often break down when applied035

to make predictions for incrementally emerging036

classes without labeled training data (Pourpanah037

et al., 2020). Unlike zero-shot learning (ZSL)038

that aims to classify unseen class instances at test039

time (Romera-Paredes and Torr, 2015; Wang et al.,040

2019), generalized zero-shot learning (GZSL), that041

we focus on in this work, aims to classify text sam- 042

ples from both previous seen and emerging novel 043

classes. Since there is a strong bias towards seen 044

classes (Xian et al., 2017), GZSL is a more chal- 045

lenging yet critical problem. 046

Previously methods mainly focus on transduc- 047

tive approaches for generalized zero-shot text clas- 048

sification. Rios and Kavuluru (2018) use a graph 049

convolution network to enhance the unseen class 050

label embeddings. Zhang et al. (2019) and Song 051

et al. (2020) generate illusion feature embeddings 052

for unseen classes based on side information, i.e., 053

class-level attributes or text description. More re- 054

cently, Ye et al. (2020) use reinforced self-training 055

methods to leverage unlabeled data during training 056

stage. 057

With the assumption that no knowledge about 058

unseen categories is available during the model 059

learning phase, researchers resort to inductive ap- 060

proaches to handle generalized zero-shot text clas- 061

sification. ReCapsNet (Liu et al., 2019) uses a 062

dimensional attention-based intent capsule network 063

and constructs zero-shot class prototypes by simi- 064

larity matrix transformation. SEG (Yan et al., 2020) 065

exploits an outlier detection approach that can be di- 066

rectly applied on ReCapsNet, which discriminates 067

the domain first, then outputs the final class label. 068

However, the existing methods still have two 069

key limitations. Firstly, while the goal of these 070

methods is to transfer beneficial knowledge for un- 071

seen classes, these models merely learn optimal 072

parameters by minimizing the loss of instances 073

from seen classes, regardless of explicitly calibrat- 074

ing the predictions on unseen classes. Therefore, 075

domain bias towards seen classes is not fairly re- 076

solved (Vinyals et al., 2016). Secondly, although 077

some of them take into account the inter-class rela- 078

tionship when constructing prototypes for unseen 079

classes (Liu et al., 2019), the models keep static 080

no matter what different new classes emerging in 081

future applications. As a result, these models show 082
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a large quality gap between instances from seen083

classes and from emerging unseen classes.084

To address these problems, motivated by the085

success of meta-learning in the few-shot learn-086

ing task (Vinyals et al., 2016; Snell et al., 2017;087

Sung et al., 2018; Finn et al., 2017), we present a088

novel Learn-To-Adapt network (LTA) for general-089

ized zero-shot text classification. Concretely, the090

proposed LTA learns class prototypes over multiple091

learning episodes that mimic GZSL setting explic-092

itly during training, making the learning setting093

consistent with the test environment and thereby094

improving generalization. Then, the model notably095

extends its ability from two views: prototype adap-096

tion and sample adaption. In each episode, the097

LTA adjusts the representative prototypes of both098

seen classes and "fake" unseen classes, with the099

assumption that unseen class will help in calibrat-100

ing representation of seen ones and thereby enable101

the model to learn the class sensitive representa-102

tions. The updating for all prototypes is then used103

to generate a set of calibration parameters to guide104

the adaption of sample embeddings, which is de-105

signed to compensate for the shrinking features106

(Chen et al., 2018) that are ignored during train-107

ing if they are not discriminating for seen classes,108

but could be critical for recognizing unseen classes.109

The refined sample embeddings are then classified110

based on similarity scores with all class prototypes.111

The same setting can be directly applied in test,112

where the LTA executes class prediction and adapts113

the learnt model rationally in an on-the-fly manner.114

In summary, our contributions include: (i) We115

propose a novel Learn to Adapt (LTA) network for116

generalized zero-shot text classification which is117

capable of adapting incrementally between seen118

classes and emerging unseen classes at test time.119

(ii) We propose a methodology for calibrating both120

prototypes and samples to deduce a global rep-121

resentation space, efficiently avoiding over-fitting122

on seen classes. (iii) Experimental results on five123

generalized zero-shot text classification datasets124

show that our method outperforms previous meth-125

ods with a large margin.126

2 Related Work127

Generalized Zero-Shot Learning The challenge128

of zero-shot learning (ZSL) has been the focus of129

attention in recent years, especially in the applica-130

tions of image classification (Socher et al., 2013;131

Xian et al., 2017; Wang et al., 2018, 2019), intent132

classification (Xia et al., 2018; Liu et al., 2019; 133

Yan et al., 2020), and question classification (Fu 134

et al., 2018). Different from ZSL, generalized zero- 135

shot learning (GZSL) that attempts to categorize 136

instances from both seen and unseen classes is a 137

more realistic condition that matches with practical 138

applications. For example, a question classifier for 139

question answering system has to classify not only 140

the questions ever asked but also new questions 141

incrementally emerging from the users. 142

There are two key issues that GZSL has to ad- 143

dress: (1) how to incrementally learn beneficial 144

knowledge for unseen classes from seen ones, and 145

(2) how to tackle the domain bias caused by the 146

extremely imbalanced data of seen and unseen do- 147

mains. 148

To alleviate the first issue, some of the earli- 149

est works on ZSL attempt to learn a matching 150

model between instance embedding and class pro- 151

totype embeddings represented by extra informa- 152

tion including class-level attribute, text descrip- 153

tion, or their combinations (Frome et al., 2013; 154

Jinseok Nam, 2016; Zhu et al., 2019; Xia et al., 155

2018). In a similar vein, other methods (Wang 156

et al., 2018; Rios and Kavuluru, 2018; Si et al., 157

2020) also investigate the semantic relationship 158

between the side information for obtaining better 159

prototype representation. 160

The key problem of the second issue is that the 161

model is trained with data from the seen classes and 162

the parameters are actually optimized on seen do- 163

main, thus they are not aware of unseen classes. As- 164

suming the extra information about unseen classes 165

is available, another prominent approach attempts 166

to use generative models to generate virtual sam- 167

ples or features for unseen domains (Xian et al., 168

2018; Schönfeld et al., 2019; Zhang et al., 2019; 169

Song et al., 2020). By using synthesized samples, 170

the generative approaches can convert GZSL prob- 171

lem to the conventional supervised learning prob- 172

lem where biases towards seen classes are largely 173

alleviated. Nevertheless, these models are trained 174

using data from seen classes and fails to incremen- 175

tally adapt to emerging new classes. Additionally, 176

studies also extend to exploit the unlabeled data for 177

unseen classes (Xian et al., 2019; Rahman et al., 178

2019; Ye et al., 2020). 179

However, these models assume that they have 180

access to the extra information about the unseen 181

classes, which is not very realistic since often nei- 182

ther the test data nor their label descriptions is 183
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available at the training phrase (as supposed in184

this work). In contrast, our model can involve all185

classes (seen and unseen) jointly during inference,186

essentially it is trained towards continuous general-187

ization for new classes, hence it is capable to adapt188

to incoming new class dynamically.189

Episode-Based Training in GZSL Our ap-190

proach is primarily based on episodic training/meta-191

learning that has been widely used in few-shot192

learning (FSL) (Vinyals et al., 2016; Snell et al.,193

2017; Sung et al., 2018). The primitive goal of194

episodic training is to quickly learn a meta-task195

from a small number of sampled classes and sup-196

porting sets. A particular advantage of episodic197

learning is that, by constructing meta-tasks, the set-198

ting of training is consistent with that of test, which199

is essential for classification problems.200

Studies extend to exploit episodic training in201

the "generalized" settings. Gidaris and Komodakis202

(2018); Ye et al. (2019); Shi et al. (2019) utilize203

weight generators or relationships to update repre-204

sentative prototypes in generalized FSL (GFSL).205

Yu et al. (2020) use a generative network to gen-206

erate unseen prototypes in GZSL. These methods207

only consider the prototype adaptation while the208

sample embeddings are still static whatever the un-209

seen classes are. On the contrary, Bao et al. (2020)210

uses distributional signatures to update sample em-211

beddings in GFSL. Considering that distributional212

signatures can be equal for two different tasks, our213

method uses a novel semantic update extractor to214

update samples following the prototype adaptation215

rather than statistical information.216

A compelling property of our method is that it217

tackles knowledge transferring and domain bias218

simultaneously in an adaptive episodic training219

framework by adapting both prototypes and sam-220

ple embeddings, and draws a fast adaption to the221

novel classes without the cost of dramatic damage222

in discriminating the seen classes.223

3 Methodology224

3.1 Problem Definition225

Formally, let Ys = {ys1, ..., ysCs} and Yu =226

{yu1 , ..., yuCu} denote Cs seen classes and Cu un-227

seen classes respectively, and Y = Ys ∪ Yu de-228

note the global label space with Ys ∩ Yu = ∅.229

Suppose we have a collection of training samples230

Ds = {(xsi , ysi , asi )}Mi=1, that consists of M sam-231

ples from Cs seen classes, where xsi ∈ X s repre-232

sents i-th text utterance, ysi is and asi are its one-hot 233

class label and class-level textual description, re- 234

spectively. At the test time, provided with a class 235

description set Au = {auj }C
u

j=1 for unseen classes, 236

the GZSL task is to classify the test instance into 237

either a seen or an unseen class. 238

3.2 Overview 239

Encoder An textual input x with T words is en- 240

coded by a BERT (Devlin et al., 2018) into a se- 241

quence of hidden vectors H = [h1,h2, ...,hT ] ∈ 242

RT×dh , where dh is the hidden dimension. The 243

text embedding f(x) ∈ Rdh is then obtained by 244

averaging over the T hidden vectors. 245

Training In the training stage, we introduce an 246

episodic learning paradigm, which trains the model 247

by simulating multiple generalized zero-shot text 248

classification tasks on seen classes. Following the 249

principle that train and test conditions must match 250

(Vinyals et al., 2016) and recent studies on "gener- 251

alized" setting (Gidaris and Komodakis, 2018; Shi 252

et al., 2019; Ye et al., 2019; Bao et al., 2020; Verma 253

et al., 2020; Yu et al., 2020), each episode involves 254

an N s-way K-shot learning task for seen classes, 255

denoted as Ds
i = {(xsj , ysj , asj)}N

s×K
j=1 with K la- 256

belled instances for each of N s classes randomly 257

sampled from the seen data Ds in the i-th episode, 258

and a Nu-way K-shot learning task for "fake" un- 259

seen classes, denoted as Du
i = {(xuj , yuj , auk)}N

u

k=1 260

which is also from Ds, with N s + Nu ≤ Cs. 261

More precisely, let Ys
i and Yu

i denote the sampled 262

seen class space and sampled "fake" unseen class 263

space respectively, with Ys
i ⊂ Ys, Yu

i ⊂ Yu, and 264

Ys
i ∩ Yu

i = ∅. For a new query instance x, the 265

generalized zero-shot learning model performs 266

ŷ = argmaxy∈{Ys
i ∪Yu

i }p(y|x,D
s
i ,Du

i ) (1) 267

The model is designed to maintain a globally 268

joint class prototype space as well as dynamic adap- 269

tion to unseen classes with zero labeled instances, 270

whose detailed implement is described as follows. 271

3.3 Prototype Adaptation 272

The proposed LTA network first introduces a learn- 273

able look-up table S ∈ RCs×dh from which to ex- 274

tract the seen prototypes Si ∈ RNs×dh on demand. 275

The S is initialized using the supervised classi- 276

fier by reducing the error on the training samples 277

from the random initialization. The virtual unseen 278

prototypes U i is produced by the BERT encoder 279
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Figure 1: Illustration of the proposed LTA framework. The right part demonstrates the prototype adaption and
sample adaption, in which and respectively denote prototypes and samples, solid border and dotted border
represent before and after adaption, respectively.

f(·) using their corresponding class descriptions:280

Ui = [f(ay)]y∈Yu
i
∈ RNu×dh .281

Then the joint prototype matrix R is obtained by282

concatenating Si and U i, R = [Si,Ui] ∈ RCs×dh283

with rj as the j-th prototype. Then R is fed into284

an inter-class Transformer encoder (Vaswani et al.,285

2017) to explicitly model the updates for the repre-286

sentations of both seen prototypes and novel proto-287

types:288

Z = TransformerEncoder(R) (2)289

R̂ = R+ Z (3)290

where Z ∈ RCs×dh highlights the adjustment af-291

ter mutual reflections, and the updated prototypes292

R̂ ∈ RCs×dh is regarded as the calibrated repre-293

sentative prototypes of both seen and unseen cate-294

gories, with r̂j as the adjusted j-th prototype. The295

self-attentions used in Transformer is agile to cap-296

ture the inter-class relationship of seen and unseen297

classes and thereby it is beneficial to derive glob-298

ally discriminative prototypes. The prototypes si-299

multaneously update both seen and unseen classes,300

which enables the model to represent and discrimi-301

nate the newly incoming categories in an on-the-fly302

manner.303

3.4 Sample Adaptation 304

As been discussed in (Chen et al., 2018), the zero- 305

shot learning tasks are prone to produce semantics 306

loss, where some features would be discarded dur- 307

ing training if they are not discriminating for seen 308

classes, but critical for recognizing unseen classes. 309

We observe that the similar problem is exacerbated 310

in GZSL task due to the extreme unbalance be- 311

tween seen and unseen classes. We tackle this 312

problem by introducing sample adaption following 313

the trajectories of prototypes adaption. In concrete, 314

we apply a semantic update extractor via attention 315

mechanism to capture synchronous updating of the 316

prototypes: 317

F = ZW1 (4) 318

A = Softmax(W3ReLU(W2F
T )) (5) 319

C = AF (6) 320

where W1 ∈ Rdh×dh ,W2 ∈ Rda×dh ,W3 ∈ 321

Rdr×da are trainable parameters, A denotes the 322

attention weight matrix and C ∈ Rdr×dh extracts 323

different semantic components with cj is the j-th 324

semantic components. To offset the semantic loss 325

mentioned above, we compare the attention score 326

for each ht to get most related semantic adjustment 327

and reconstruct the contribution of each feature: 328

et = Softmax(βmax
j

(
htcj

∥ht∥∥cj∥
)) (7) 329
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330

g(x) =
T∑
t=1

etht (8)331

where the self-attention weight et ∈ RT is used to332

re-weight the t-th word of sample x to be classified,333

and β is a scalar to control the differentiation of334

attention scores. In this way, In this way, the differ-335

ent attention weight discriminate the importance of336

words rather than averaging them.337

One notable reason of choosing of the above338

feature-level calibration is that, in classification339

task, the encoder is trained to produce feature em-340

beddings that collapses to its ground-truth proto-341

type, therefore the adjustment of feature embed-342

ding should cater to the adjustment of a reliable343

global prototype space. In addition, since this cal-344

ibration is applied after the encoding, it reduces345

the complicated parameter tuning for a massive346

encoder (e.g., BERT), which elegantly helps the347

GZSL task to fast adapt to the incoming test in-348

stances.349

3.5 Loss function350

With the adapted prototypes R̂ and the adapted351

sample g(x), a Softmax classifier is used with co-352

sine similarity:353

p (ŷ = y | x) = exp(s(g(x), r̂y))∑
ŷ exp(s(g(x), r̂ŷ))

(9)354

where s(a, b) = τ ·ab
∥a∥∥b∥ is cosine similarity with355

temperature τ . Finally the model is trained the356

minimize the losses across all episodes:357

L = − 1

N

∑
i

Li (10)358

where Li is the loss of the i-th episode:359

Li =
1

M

∑
(x,y,a)∈Ds

i∪Du
i

log p (ŷ = y | x) (11)360

The training process of LTA is summarized in Al-361

gorithm 1.362

4 Experiments363

4.1 Datasets364

Intent Classification Datasets. We collect four365

intent classification datasets. (1) SNIPS-SLU366

(Coucke et al., 2018), a widely used benchmark for367

English GZSL intent detection with 5 seen intents368

Algorithm 1: LTA training algorithm.
Input: distribution over tasks p(T ), class

set Ys

Output: learned model parameters
1 while not done do
2 Randomly sample a meta GZSL task

Ti ∼ p(T ) with seen meta-test Ds
i and

unseen meta-test Du
i .

3 Get adapted prototypes R̂ by Eq 2~3.
4 Get semantic components C by Eq 4~6.
5 for all Ds

i ∪ Du
i do

6 Get adapted sample embeddings by
Eq 7~8.

7 end
8 Update model by Eq 9 and Eq 11.
9 end

and 2 unseen intents. (2) SMP-18 (Zhang et al., 369

2017), a Chinese dialogue corpus for user intent 370

detection with 24 seen intents and 6 unseen intents. 371

(3) ATIS (Hemphill et al., 1990), an English airline 372

travel domain dataset, from which we extract 17 373

intents with at least 5 samples, and split them into 374

12 seen intents and 5 unseen intents. (4) CLINC 375

(Larson et al., 2019) is a recently published intent 376

detection dataset includes 22,500 in-scope queries 377

covering 150 intent classes from 10 domains. We 378

randomly split the 150 intents into 120 seen intents 379

and 30 unseen intents. 380

Question Classification Dataset. In order to 381

draw a comprehensive analysis of the proposed 382

method, we construct a question classification task 383

from the Quora Question Pairs dataset 1, which is 384

aimed to identify duplicate questions. We collect 385

questions with at least 5 duplicate samples into 386

classes. In each class, we choose the question with 387

minimum words as the label description, which is 388

widely used in real-world question-answering sys- 389

tems (Sakata et al., 2019). Table 1 summarizes all 390

datasets statistics. It is worth to note that intents 391

in ATIS are highly unbalanced with flight accounts 392

for about 87% of training data. 393

Dataset Settings. Following (Siddique et al., 394

2021), we use random seen/unseen classes for 10 395

runs instead of manual selection used in (Yan et al., 396

2020), which leads to more fair results because ev- 397

ery class could be unseen class. We randomly take 398

1www.kaggle.com/c/quora-question-pairs
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Table 1: Dataset statistics. “FS” indicates “few-shot”,
“BAL” indicates “balance”, “IBAL” indicates “imbal-
ance”. The “avg #samples” indicates the average num-
ber of samples per class.

Dataset #classes #samples sent
len typeseen unseen total avg

SNIPS 5 2 13802 1384 9.10 BAL
SMP 24 6 2460 60 4.83 FS
ATIS 12 5 4972 245 11.44 IBAL
Clinc 120 30 22500 105 8.23 BAL
Quora 1360 340 17394 7 10.46 FS

70% samples of each seen class as the training set,399

and the remaining 30% samples of each seen class400

as the seen test and take all the samples of unseen401

classes as the unseen test. All the textual labels of402

the same class are regarded as the description for403

this class.404

4.2 Baseline Methods405

To validate the benefits of the proposed LTA, we406

compare against with other approaches in three407

aspects:408

Supervised Learning Methods. To show the per-409

formances on seen classes with supervised learning410

instead of ZSL/GZSL setting, we use (1) BiLSTM411

(Schuster and Paliwal, 1997) and (2) BERT (De-412

vlin et al., 2018) as the encoder with a linear soft-413

max classifier414

Metric Learning Methods. Metric-based em-415

bedding methods are commonly used as baselines416

for ZSL/GZSL. Thus we introduce three different417

metric learning methods: (1) EucSoftmax: We418

adapt (Snell et al., 2017) that uses squared Eu-419

clidean distance as the metric and softmax clas-420

sifies; (2) Zero-shot DNN: We adapt (Kumar421

et al., 2017) that uses squared Euclidean distance422

and triplet loss to maintain a margin for different423

classes. We choose the label embedding(prototype)424

as the anchor and the closest sample as negative425

sample in each triplet tuple; (3) CosT (Gidaris and426

Komodakis, 2018) refers to Cosine Distance with427

temperature scalar s(a, b) = τcos(a, b) where τ428

is a learnable temperature scalar to dynamically429

control the peakiness of the probability distribution430

generated by the Softmax.431

SOTA Methods. We also compare our model432

with two recent state-of-the-art (SOTA) methods:433

(1) ReCapsNet (Liu et al., 2019) uses a dimen-434

sional attention-based intent capsule network and a435

matrix transformation method for ZSL/GZSL. (2)436

SEG (Yan et al., 2020) is an outlier detection ap- 437

proach that can be directly applied on ReCapsNet. 438

SEG acts as a domain discriminator which first 439

determines whether a test sample belongs to seen 440

classes or unseen classes and then classifies in their 441

own domain. RIDE (Siddique et al., 2021) is not 442

considered because they use outer knowledge not 443

available in our settings and the data they used is 444

limited within the intent detection task due that the 445

labels in their method need to be a combination of 446

"action" and "object". 447

4.3 Experimental Setup 448

Evaluation Metrics. We basically use accuracy 449

(Acc) to estimate the performances on seen and 450

unseen test sets. Besides, we adopt Macro-F1 (F1) 451

rather than Micro-F1 to better evaluate the perfor- 452

mances on imbalanced and few-shot datasets, be- 453

cause Macro-F1 gives the same weight of F1 scores 454

for each class. For overall assessments, we adopt 455

the widely used Harmonic Mean (HM) of Acc and 456

F1 on Seen and Unseen, because the overall Acc 457

and F1 scores are influenced by the ratio of seen 458

and unseen test set sizes. 459

Implementation Details. We use pretrained 460

BERT-base encoder with dh = 768 on intent 461

classification datasets and BiLSTM with 128 hid- 462

den size each direction on Quora dataset as ba- 463

sic encoder. The scalars of our model is set to 464

be τ = 10.0, β = 10.0, da = dh, which is 465

trained via Adam (Kingma and Ba, 2015) opti- 466

mizer, with learning rates 10−5 for BERT, 10−4 467

for BiLSTM and 10−3 for the others. During train- 468

ing, we set K = 5 and Cui = [2, 2, 2, 10, 20], 469

dr = [4, 16, 32, 64, 64] for SNIPS, SMP, ATIS, 470

CLINC and Quora datasets, respectively. The learn- 471

able R is initialized from the prototypes trained 472

from metric learning methods, and is used as our 473

basic baseline. We also conduct an ablation study 474

to investigate the effectiveness of each proposed 475

component. As depicted in Table 2 and Table 3, 476

"w / o Init" refers to the model that randomly ini- 477

tialize R. "w / o SA" refers to the model that only 478

uses prototype adaptation without "Sample Adap- 479

tation". "w / o" means none of the adaptation steps 480

is applied. 481

4.4 Results 482

The results on four intent datasets and Quora 483

dataset are given in Table 2 and Table 3. Our 484
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Table 2: Results (in %) on four intent benchmarks. The Top1 results of GZSL methods are highlighted in bold and
underline for Top2 results, the same below.

Model
SNIPS-NLU SMP-18

Seen Unseen HM Seen Unseen HM
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Bi-LSTM 98.23 98.23 0.00 0.00 0.00 0.00 93.65 93.43 0.00 0.00 0.00 0.00
BERT 98.91 98.91 0.00 0.00 0.00 0.00 95.28 94.87 0.00 0.00 0.00 0.00
EucSoftmax 81.09 65.50 45.89 58.21 58.61 61.64 89.84 87.85 76.65 77.51 82.72 82.36
Zero-shot DNN 81.09 65.28 45.91 58.53 58.63 61.72 90.97 87.67 75.38 77.32 82.44 82.17
CosT 91.68 75.76 47.73 62.84 62.77 68.70 90.65 88.41 72.59 73.89 80.62 80.50
ReCapsNet 96.26 67.70 11.57 18.45 20.66 29.00 76.32 74.92 20.56 15.09 32.39 25.10

+ SEG 92.11 73.08 50.29 62.33 65.06 67.28 67.10 67.39 36.65 32.84 47.70 44.16
LTA (Ours) 74.05 74.11 90.09 84.22 81.28 78.84 89.84 90.79 79.19 75.20 84.18 82.26

w / o Init 82.57 75.22 64.36 71.63 72.34 73.87 89.03 87.23 80.71 81.74 84.67 84.40
w / o SA 67.31 70.56 84.70 77.51 75.01 73.87 84.52 81.40 75.89 74.40 79.97 77.75
w / o A 75.26 71.82 83.85 80.77 79.33 76.03 84.35 86.93 76.90 73.54 80.72 80.50

Model
ATIS CLINC

Seen Unseen HM Seen Unseen HM
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Bi-LSTM 93.24 79.51 0.00 0.00 0.00 0.00 92.07 92.06 0.00 0.00 0.00 0.00
BERT 97.18 93.71 0.00 0.00 0.00 0.00 97.37 97.37 0.00 0.00 0.00 0.00
EucSoftmax 67.67 16.11 7.78 5.50 13.96 8.20 96.02 87.07 58.02 66.00 72.33 75.08
Zero-shot DNN 63.56 23.12 8.05 12.02 14.29 15.82 95.31 86.65 58.49 65.89 72.49 74.68
CosT 98.02 59.55 46.04 45.21 62.66 51.40 96.31 87.33 62.73 70.28 75.98 77.89
ReCapsNet 86.19 23.88 12.80 4.89 22.32 8.12 88.53 69.83 4.24 3.33 8.10 6.36

+ SEG 93.75 40.90 14.78 6.36 25.53 11.01 81.04 78.89 9.07 5.44 16.31 10.18
LTA (Ours) 96.28 63.13 66.09 55.02 78.38 58.80 92.22 87.57 73.18 75.74 81.60 81.23

w / o Init 89.96 47.48 69.79 52.14 78.60 49.70 93.07 88.19 73.80 77.54 82.32 82.52
w / o SA 90.20 51.74 66.23 47.24 76.38 49.38 92.46 87.30 69.27 73.26 79.20 79.67
w / o A 94.94 63.25 57.52 49.19 71.64 55.34 93.81 88.12 70.11 74.58 80.25 80.79

Table 3: Results (in %) on Quora question classification
dataset.

Model Seen Unseen HM
Acc F1 Acc F1 Acc F1

BiLSTM 71.70 69.04 0.00 0.00 0.00 0.00
EucSoftmax 79.88 74.42 56.85 62.39 66.43 67.88
Zero-shot DNN 72.52 67.42 48.68 53.27 58.26 59.52
CosT 88.50 81.39 62.21 73.55 73.06 77.27
LTA (Ours) 84.69 83.56 74.83 76.93 79.45 80.11

w / o Init 82.11 81.99 75.49 76.53 78.66 79.17
w / o SA 84.95 82.79 73.56 76.67 78.84 79.62
w / o A 84.21 82.40 72.50 75.23 77.92 78.65

proposed methods achieve the overall best perfor-485

mances compared to baselines.486

Detailed and interesting observations can also487

be derived from the results: (1) Supervised Metric-488

Learning methods as the basic baselines, achieve489

comparable results on Seen Test for all datasets.490

However, it suffers from the domain bias problem491

and the performance drops with a large margin on492

Unseen Test, where the task is complex due to the493

imbalanced and few-shot scenarios. (2) The per-494

formances on SNIPS-NLU and SMP-18 of ReCap-495

sNet and SEG are worse than those in their original496

paper although we use the open-source code, this497

is because we random split the test unseen classes498

which makes it more challenging. Besides, these499

methods fail to recognize unseen samples well on500

datasets with large scale of categories, yielding 501

worse 0% Acc and F1 on Quora. The most likely 502

reason is that ReCapsNet uses label embedding 503

similarities to construct unseen prototypes in cap- 504

sule network, which imposes a non-trivial com- 505

putational and memory burden. (3) Our method 506

shows its privilege for all datasets. In particular, 507

with the help of continuous adapting ability, it ob- 508

serves smaller gap between seen and unseen do- 509

main, which proves the adaptation on testing phase 510

effectively works. Although the performance on 511

seen domain drops sightly, the proposed LTA out- 512

performs the competitive metric-learning baselines 513

by 9.54% HM Acc and 12.90% HM F1 average on 514

the whole datasets, indicating that our model fairly 515

balances the seen and unseen classes. 516

Ablation Study. To better understand the con- 517

tribution of each component of our method, we 518

explore three variants of LTA. We can observe that 519

LTA with both prototype adaptation and sample 520

adaptation outperforms those without adaptations 521

in all cases. Generally “LTA w / o SA” with only 522

prototype adaptation achieves better performance 523

compared to “LTA w / o A”. The “LTA w / o Init” 524

has relatively stable performances. 525
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w/o sample adaption model and (b) full LTA model with sample adaptation (c) is an unseen example with sample-
level raw attention and adapted attention. denotes the raw prototype before adaptation. ◦ and • respectively
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Figure 3: The performance with different numbers of
unseen classes on CLINC dataset.

4.5 Results on Emerging Unseen Classes526

As the partition of seen / unseen classes is fixed in527

previous experiments, in order to study the robust-528

ness of the proposed adaption method, we conduct529

the experiment across unseen class sets of different530

scales. Specifically, we select 70 classes as seen531

classes and 10 classes as validating unseen classes.532

The testing unseen classes are randomly sampled533

from the remaining 70 classes and each experiment534

is repeated 50 times with different sampling sets535

for a more stable result. Figure 3 (a) shows the HM536

accuracy on all classes as the number of the unseen537

classes grows. We can see that our LTA model out-538

performs the metric baseline and ablation models539

in all cases, where the well performance is mainly540

attributed to the improvements on unseen classes541

as shown in Figure 3 (b). These results suggest that542

our adaptation method is robust and effective for543

adapting to new classes as well as improving the544

overall performance on all classes.545

4.6 Visualization546

To demonstrate how our adaptation method works,547

we further visualize the encoded representation548

via PCA in Figure 2. When there is no unseen549

class, seen classes (yellow and red) is discrimina-550

tive enough. But when the new class "tire change" 551

(purple) comes, it is ambiguous with class "oil 552

change when" (red). We observe that the seen 553

and unseen class prototypes are updated to be far 554

away from each other after prototype adaptation as 555

shown in (a), which eases the domain bias problem. 556

However, the performance is unsatisfactory since 557

the sample representations are still not discrimi- 558

native no matter how prototype updates. As we 559

can see, with the sample adaptation as shown in 560

(b), the sample representations are independently 561

clustered by the adapted prototype and easy to to 562

be distinguished. 563

To further study how the sample adaptation 564

works, we select an representative case "when is 565

it time for a tire chance" and show its attention 566

weights used as calibration parameters in (c). The 567

case is still misclassified after the prototype adapta- 568

tion due to the common word "time" and "change" 569

also appear in seen classes. After the sample adap- 570

tation, however, it can be seen that the word "tire" 571

which is a key word for classifying, get the most 572

attention while the other confusing words are not. 573

This result suggests that calibrating the attention 574

weights is useful for acquiring a prototype aware 575

representation which helps the sample adaptation. 576

5 Conclusion 577

This paper proposed a novel adaptive meta-learning 578

network for generalized zero-shot text classifica- 579

tion. The model was trained under a consistent 580

setting with testing. In particular, it efficiently al- 581

leviated the bias towards seen classes by utilizing 582

both prototype adaptation and sample adaptation. 583

Experiments on five text classification datasets val- 584

idated that our model achieved compelling results 585

on both seen classes and unseen classes, meanwhile 586
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was capable of fast adapting to new classes.587
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