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Abstract
We study sequential mean estimation in Rd. In particular, we derive time-uniform confidence
spheres—confidence sphere sequences (CSSs)—which contain the mean of random vectors
with high probability simultaneously across all sample sizes. Our results include a dimension-
free CSS for log-concave random vectors, a dimension-free CSS for sub-Gaussian random
vectors, and CSSs for sub-ψ random vectors (which includes sub-gamma, sub-Poisson, and
sub-exponential distributions). Many of our results are optimal. For sub-Gaussian distribu-
tions we also provide a CSS which tracks a time-varying mean, generalizing Robbins’ mixture
approach to the multivariate setting. Finally, we provide several CSSs for heavy-tailed ran-
dom vectors (two moments only). Our bounds hold under a martingale assumption on the
mean and do not require that the observations be iid. Our work is based on PAC-Bayesian
theory and inspired by an approach of Catoni and Giulini.

1 Introduction
We consider the classical problem of estimating the mean of random vectors in nonparametric settings.
Perhaps unlike traditional approaches however, we would like to perform this task sequentially. That is, we
are interested providing estimates of the mean which hold uniformly across time as more data arrives. To
formalize, let (Xt)t⩾1 be a stream of iid random vectors in X ⊂ Rd with mean µ drawn from some unknown
distribution P . Our goal is to construct a non-trivial sequence of sets, (Ct)t⩾1, Ct ⊂ Rd, such that

P (∀t ⩾ 1 : µ ∈ Ct) ⩾ 1 − α, (1)

for some predetermined α ∈ (0, 1). In R1, such a sequence is often called a confidence sequence (CS).
We will use the more general term confidence sphere sequence (CSS) to highlight that we are working in
higher dimensions, and because our sets Ct are spherical as opposed to, say, ellipsoidal. CSs and CSSs
are in contradistinction to confidence intervals (CIs)—the latter hold only at fixed times t = n determined
prior to receiving any samples, while the former hold simultaneously at all stopping times. Consequently,
they are often described as time-uniform or as anytime-valid. Importantly, CSs and CSSs obviate the need
to deploy union bounds to gain uniformity over the sample size. This is attractive for tasks in which
data are continuously monitored during collection and which may call for data-dependent stopping times,
two properties disallowed by fixed-time constructions such as confidence intervals (where it is known as
p-hacking).

The study of CSs was pioneered by Darling, Robbins, Siegmund, and Lai in the decade from 1967-76 (Darling
and Robbins, 1967; Lai, 1976). While further inquiry laid somewhat dormant for several decades afterwards,
they have recently regained interest due to novel mathematical techniques and applicability to sequential
decision-making. Indeed, CSs are used by several companies for A/B testing and adaptive experimentation.1
We refer the reader to Howard et al. (2021); Waudby-Smith and Ramdas (2023) for more history and modern
work on this topic.

1E.g., see Adobe (2023), Evidently (2023), and Netflix (Lindon et al., 2022).

1

https://openreview.net/forum?id=2NSb3cJE03


Published in Transactions on Machine Learning Research (05/2025)

Thus far, most work on CSs for the mean of random observations has been in the scalar setting (with some
exceptions discussed below). However, estimating higher-dimensional means arises naturally in a wide variety
of tasks in statistics and machine learning, including multi-armed bandits (Dani et al., 2008; Abbasi-Yadkori
et al., 2011), regression (Lai and Wei, 1982; Vidaurre et al., 2013), covariance estimation (Kuchibhotla and
Chakrabortty, 2022), stochastic optimization (Feldman et al., 2017), and anomaly detection (Rousseeuw
and Hubert, 2018), to name a few. Advances in time-uniform confidence regions for estimators can therefore
translate to sequentially-valid versions of such tasks.

In this work we construct CSSs by means of PAC-Bayesian analysis (introduced below), inspired by the
original work of Catoni and Giulini (2017; 2018) which is in the fixed-time setting. We combine their
insights with recent work which provides a general framework for understanding how and when PAC-Bayesian
bounds can be made time-uniform (Chugg et al., 2023). The resulting synthesis yields a general method for
constructing CSSs under a variety of distributional assumptions.

A concise summary of our results is given in Table 1 and their relationship to the existing literature is
explored in Table 2. All bounds are closed-form and easily computable. In more detail, our contributions
are:

1. Sub-Gaussian bounds. Theorem 2.2 provides a CSS for conditionally sub-Gaussian distributions.
The width of the CSS depends on the trace and norm of the covariance matrices instead of the
dimension of the ambient space (d). Such “dimension-free” bounds are desirable when the data are
expected to lie on some low-dimensional manifold, i.e., when the effective dimension is less than d.
Theorem 2.3 leverages Theorem 2.2 to provide a CSS whose width shrinks at the optimal iterated-
logarithm rate. Theorem 2.16 provides a CSS when the mean changes with time, generalizing a
result of Robbins (1970) to the multivariate setting. For technical reasons to be discussed later, this
final result is not dimension-free.

2. Log-concave bounds. Theorem 2.8 provides a dimension-free CSS for distributions with log-
concave densities (and more generally for distributions with bounded 1-Orlicz norm) which include
Laplace, logistic, Dirichlet, gamma, and beta distributions. This extends a recent result of Zhiv-
otovskiy (2024). Theorem 2.9 then extends Theorem 2.8 to provide a bound which shrinks at an
iterated-logarithm rate.

3. Sub-ψ bounds. While sub-Gaussianity and log-concavity are particularly popular distributional
classes, there are many other light-tailed conditions one can consider. Theorem 2.12 provides a
CSS for conditionally sub-ψ random vectors for super-Gaussian ψ-functions (which includes sub-
Poisson, sub-exponential, and sub-gamma distributions). A bound for general ψ-functions is given
by Theorem A.3. The downside of considering such a general class is that these CSSs are not
dimension-free. Theorems 2.14 and 2.15 deploy Theorem 2.12 to obtain iterated-logarithm rates for
sub-gamma and sub-exponential distributions.

4. Heavy-tailed bounds. We provide several results for heavy-tailed distributions under only a
second moment assumption. Theorems 3.2 and 3.5 provide two semi-empirical CSSs (in the sense of
being adaptive to the observed values). Theorem 3.5 is tighter but holds only under a conditional
symmetry assumption. Theorem 3.7 provides a time-uniform extension of the dimension-free Catoni-
Giulini estimator (Catoni and Giulini, 2018) and Theorem 3.8 provides an iterated-logarithm version
of Theorem 3.7. All bounds stated in this section are dimension-free.

1.1 Related work
Given its centrality to many statistical procedures, estimating the mean of random vectors is a well studied
topic. For sub-Gaussian random vectors in the fixed-time setting, state-of-the-art concentration comes
from Hsu et al. (2012). Our result has the same asymptotics (it is off by Hsu et al.’s result by an non-
leading additive factor), but is time-uniform and handles martingale-dependence. We also improve on more
classical bounds for isotropic sub-Gaussian random vectors obtained via covering arguments (e.g., Rigollet
and Hütter, 2023, Theorem 1.19). Meanwhile, for heavy-tailed distributions, it is known that the sample
mean (and weighted variants) have suboptimal performance (Catoni, 2012). This led to the development
of alternatives such as median-of-means (Lugosi and Mendelson, 2019b; Minsker, 2015) and threshold-based
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Result Dim Condition Dim-free? Martingale? CF? LIL? n opt?
Thm. E.2 d ⩾ 1 ∥Xt∥ bounded ✓ ✓

Thm. 2.2 d ⩾ 1 Σt-sub-Gaussian ✓ ✓ ✓

Cor. 2.5 d ⩾ 1 Σ-sub-Gaussian ✓ ✓ ✓ ✓

Thm. 2.3 d ⩾ 1 Σ-sub-Gaussian ✓ ✓ ✓

Thm. 2.16 d ⩾ 1 σt-sub-Gaussian ✓ ✓

Thm. 2.8 d ⩾ 1 Log-concave/finite Φ1-norm ✓ ✓ ✓

Thm. 2.9 d ⩾ 1 Log-concave/finite Φ1-norm ✓ ✓ ✓ ✓

Cor. A.1 d ⩾ 1 Log-concave/finite Φ1-norm ✓ ✓ ✓ ✓

Thm. 2.12, A.3 d ⩾ 1 Σt-sub-ψ ✓ ✓

Thm. 2.14 d ⩾ 1 Σ-sub-gamma ✓ ✓ ✓

Thm. 2.15 d ⩾ 1 Σ-sub-exponential ✓ ✓ ✓

Cor. 2.5 d ⩾ 1 Σ-sub-exponential ✓ ✓ ✓

Thm. 3.2 d ⩾ 1 E[∥Xt∥|Ft−1] ⩽ v2 ✓ ✓ ✓

Cor. 3.3, 3.4 d = 1 E[Xt|Ft−1] ⩽ v2 ✓ ✓

Thm. 3.5 d ⩾ 1 E[∥Xt∥2|Ft−1] ⩽ v2, sym. ✓ ✓ ✓

Thm. 3.7 d ⩾ 1 E[∥Xt∥2|Ft−1] ⩽ v2 ✓ ✓ ✓

Thm. 3.8 d ⩾ 1 E[∥Xt∥2|Ft−1] ⩽ v2 ✓ ✓ ✓ ✓

Table 1: A roadmap of the results in this work. Φ1 refers to the 1-Orlicz norm; see Section 2.2. “sym.” stands
for conditionally symmetric, meaning that the observations obey Xt−µ|Ft−1 ∼ −(Xt−µ)|Ft−1. “Dim-free”
stands for dimension-free and “martingale” for martingale-dependence (i.e., Assumption 2). “CF” stands
for closed-form, meaning the bound does not require numerical methods to solve. “LIL” refers to sequential
bound with iterated logarithm rates and “n opt” refers to bound that are optimized for a particular sample
size n.

estimators (Catoni and Giulini, 2018), the latter of which we will make time-uniform in Theorem 3.7. We
refer to Lugosi and Mendelson (2019a) for a survey on fixed-time mean estimation under heavy tails.

In the sequential setting, the theory of “self-normalized processes” (de la Peña et al., 2004; 2009) has
been leveraged to give anytime-valid confidence ellipsoids under sub-Gaussian assumptions (Abbasi-Yadkori
et al., 2011; Faury et al., 2020). This line of work is focused on bounding the self-normalized quantity
∥V −1/2

t St∥ for St =
∑t
i=1 ϵiXi where ϵi is the scalar noise of an online regression model, Xi are multivariate

observations, and Vt is a variance process. This setting is quite distinct from our own, which seeks non-self-
normalized bounds and does not have both observations and noise components. Section 2.5 provides a brief
discussion of how some of our bounds can be adapted to anisotropic distributions. This yields bounds in
the Mahalanobis norm with respect to the variance but these results remain distinct from self-normalized
bounds. Whitehouse et al. (2023) give a general treatment of time-uniform self-normalized bounds which
extends beyond regression but it remains incomparable to our own work. Moreover, the results of Abbasi-
Yadkori et al. (2011); Whitehouse et al. (2023) only apply to sufficiently light-tailed distributions, and not
to the more general heavy-tailed settings we consider in Section 3.

Meanwhile, Manole and Ramdas (2023) provide anytime bounds on the mean of random vectors using reverse
submartingales. Their bounds achieve the optimal iterated-logarithm rate of

√
log log(t)/t (Darling and

Robbins, 1967). Their results are most comparable to our results for isotropic sub-exponential distributions,
as they do not hold under heavy tails and are not dimension-independent. We are also able to handle
slightly more general distributional assumptions, as Manole and Ramdas (2023) work only with iid data. We
will further discuss the relation to their work in Section 2, but suffice it to say here that we can employ a
geometric “stitching method” (a common tool in sequential analysis), yielding a bound which matches this
optimal rate and has smaller constants. As for anytime bounds under heavy-tails, Wang and Ramdas (2023)
provide CSs for scalar random variables which hold under a finite k-th moment assumption for k ∈ (1, 2].

Much closer to the spirit of our work are the papers of Zhivotovskiy (2024), Nakakita et al. (2024), and
Giulini (2018). All three use the same variational principle that is at the heart of our method to study the
concentration of singular values of light-tailed random matrices (Zhivotovskiy, 2024), the means of heavy-
tailed random matrices (Nakakita et al., 2024), and to estimate the Gram operator in Hilbert spaces (Giulini,
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Condition Our result Comparison [A] [C] [D] Notes
sub-Gaussian Cor. 2.5 Hsu et al. (2012), Thm. 1 ✓ ✓ Off by a factor of ⩽ 2
sub-Gaussian Cor. 2.5 Rigollet and Hütter (2023), Thm. 1.19 ✓ ✓ ✓

sub-Gaussian Thm. 2.16 Waudby-Smith et al. (2024), Thm. 2.2 Non-asymp., holds in Rd

log-concave Cor. A.1 Zhivotovskiy (2024), Prop. 3 ✓ ✓

sub-ψ Thm. 2.12 Manole and Ramdas (2023), Cor. 23 Handles anisotropy
sub-exponential Cor. A.1 Maurer and Pontil (2021), Prop. 7 ✓ ✓

sub-exponential Thm. 2.15 Manole and Ramdas (2023), Sec. 4.7 ✓ ✓

finite 2nd moment Thm. 3.7 Catoni and Giulini (2018), Prop. 2.1 ✓ ✓

finite 2nd moment Thm. 3.7 Lugosi and Mendelson (2019b), Thm. 1 ✓ ✓ Not sub-Gaussian, (*)
finite 2nd moment Thm. 3.7 Minsker (2015), Thm. 3.1 ✓ ✓ (*)

Table 2: Comparison of our results with relevant bounds in the literature. More commentary on the rela-
tionship is provided in the text. Boxed letters indicated that our result improves over the existing result by
adding [A]nytime-validity, improving the [C]onstants, or weakening the [D]ependence assumptions among
the observations. (*) indicates that the estimators are built under different assumptions: we assume a bound
on the raw second moment while they assume a bound on the centered second moment.

2018). While the underlying perspective is similar to our own, our goals are distinct. Moreover, these authors
work in the fixed-time setting and none handle martingale dependence. Despite these differences, however,
we believe that these three papers along with our own suggest that the variational approach to concentration
is a promising research avenue.

Finally, recent work by Duchi and Haque (2024) shows that any fixed-time estimator can be converted into a
sequential estimator with a loss of an iterated logarithm factor (i.e., O(log log t)) via a “doubling trick.” Their
construction employs a union bound over fixed-time estimators applied at times t = 2k, k ⩾ 1. At times
j ∈ (2k, 2k+1) one continues to use the estimator for time 2k. This is an insightful theoretical construction
for obtaining optimal rates, and we compare our results with their bound in Sections 2.1 and 3.3. However,
we note that it does have drawbacks. First, it is stated only for iid data. Second, it is not sequential in
the practical sense that a data analyst would like. Indeed, if data collection stops at time t = 2k − 1, then
we must discard 2k − 2k−1 − 1 observations. The estimators proposed here can be updated after every time
step, thus using all available data. This results in bounds that are often tighter than fixed-time bounds
augmented with the doubling trick (see Figures 1 and 2).

1.2 Background and approach
Let us introduce some technical tools. A (forward) filtration F ≡ (Ft)t⩾0 is a sequence of σ-fields such that
Ft ⊂ Ft+1, t ⩾ 1. In this work we always take Ft = σ(X1, . . . , Xt), the σ-field generated by the first t
observations. A stochastic process S = (St)t⩾1 is adapted to (Ft) if St is Ft measurable for all t (meaning
that St depends on X1, . . . , Xt), and predictable if St is Ft−1 measurable for all t (meaning that St depends
only on X1, . . . , Xt−1). A P -martingale is an integrable stochastic process M ≡ (Mt)t⩾1 that is adapted to
F , such that EP [Mt+1|Ft] = Mt for all t. If ‘=’ is replaced with ‘⩽’, then M is a P -supermartingale.

Our results rely on PAC-Bayesian theory which has emerged as successful method to bound the generaliza-
tion gap of randomized predictors in statistical learning (Shawe-Taylor and Williamson, 1997; McAllester,
1998). As the name suggests, PAC-Bayesian bounds employ the “probably approximately correct” (PAC)
learning framework of Valiant (1984) but addressed from a Bayesian perspective. Roughly speaking, rather
than bounding the worst case risk, PAC-Bayesian bounds place with a prior over the parameter space Θ, and
provide uniform guarantees over all “posterior” distributions. Instead of containing a measure of the com-
plexity of Θ, the bounds involve a divergence term between the prior and posterior. We refer the unfamiliar
reader to Guedj (2019) and Alquier (2024) for an introduction to such bounds and their applications.

For our purposes, the important feature of PAC-Bayesian bounds is the uniformity over posterior distribu-
tions. The insight of Catoni and Giulini (2018) is to translate this uniformity of distributions into a bound
on ⟨ϑ, ϵ⟩ across all ϑ ∈ Sd−1, where ϵ is the error of the estimator. Such a bound translates immediately
into a confidence sphere. Recently, uniformity over posteriors was extended to uniformity over posteriors
and time by Chugg et al. (2023).
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Proposition 1.1 (Corollary of Theorem 4, Chugg et al., 2023). For each θ ∈ Θ, assume that Q(θ) ≡
(Qt(θ))t⩾1 is a nonnegative supermartingale with initial value 1. Consider a prior distribution ν over Θ
(chosen before seeing the data). Then, with probability at least 1 − α, we have that simultaneously for all
times t ⩾ 1 and posteriors ρ ∈ M (Θ),∫

Θ
logQt(θ)ρ(dθ) ⩽ DKL(ρ∥ν) + log(1/α). (2)

Here, M (Θ) is the set of distributions over Θ and DKL(·∥·) is the KL divergence, which we recall is defined
as DKL(ρ∥ν) =

∫
Θ log

(
dρ
dν

)
dρ if ρ ≪ ν and ∞ otherwise. The uniformity over time and posteriors refers

to the form P(∀t, ∀ρ,
∫

Θ logQt(θ)ρ(dθ) ⩽ DKL(ρ∥ν) + log(1/α)) ⩾ 1 − α of the above bound, where the
quantifiers are inside the probability.

At its core, our approach involves a judicious selection of Θ, Q, family of posteriors {ρ} and then applying
Proposition 1.1. We will consider either uniform, truncated Gaussian, or Gaussian distributions over the
parameter space Θ, which we will take to be either a subset of Sd−1 := {x ∈ Rd : ∥x∥ = 1}, Bd := {x ∈ Rd :
∥x∥ ⩽ 1}, or Rd. The choice of Θ is driven by the availability of appropriate supermartingales over Θ. We
will typically choose supermartingales Qt(θ) to be functions of

∑
i⩽t⟨θ, fi(Xi) − µ⟩ for some functions fi,

with the aim of obtaining bounds on supϑ∈Sd−1⟨ϑ,
∑
i(fi(Xi)−µ)⟩) = ∥

∑
i(fi(Xi) − µ)∥2, which will furnish

a CSS.

For example, for iid X1, X2, . . . which are Σ-sub-Gaussian, the process defined by Mt(θ) =∏
i⩽t exp{λ⟨θ,Xi − µ⟩ − λ2

2 ⟨θ,Σθ⟩} for any λ ⩾ 0 is a nonnegative supermartingale for all θ ∈ Rd. Let
ρθ be a Gaussian with mean θ and covariance β−1Id for some scalar β > 0. Applying Proposition 1.1 to
(Mt(θ)) with Θ = Rd, prior ν = ρ0 and posteriors ρϑ for all ϑ ∈ Sd−1, we obtain that P(∀t ⩾ 1,∀ϑ ∈ Sd−1 :∑
i⩽t λ⟨ϑ,Xi−µ⟩ ⩽ tλ

2

2 Eρϑ
⟨θ,Σθ⟩+β/2+log(1/α)) ⩾ 1−α, where we’ve calculated DKL(ρϑ∥ν) = β/2. Us-

ing that supϑ∈Sd−1⟨ϑ,Xi −µ⟩ = ∥Xi −µ∥ and noting that Eρϑ
⟨θ,Σθ⟩ = ⟨ϑ,Σϑ⟩ + Tr(Σ)/β ⩽ ∥Σ∥+ Tr(Σ)/β,

we find that with probability 1 − α, for all t ⩾ 1,∥∥∥∥1
t

∑
i⩽t

Xi − µ

∥∥∥∥ ⩽
λ

2

(
∥Σ∥+Tr(Σ)

β

)
+ β/2 + log(1/α)

tλ
. (3)

The parameters β, λ > 0 may then be chosen to optimize the width of the bound. Subsequent sections will
expand on this example, relaxing both the distributional and dependence assumptions among the observa-
tions, and introducing various methods to ensure the width of the bound shrinks to zero over time (either
via stitching or predictable plug-ins). Throughout, the norm ∥·∥ should be taken to be the ℓ2-norm ∥·∥2
when applied to vectors, and the operator norm when applied to matrices.

1.3 Assumptions
The most common assumption in the literature is that the data are independently and identically distributed
(iid). This is the case in most prior work on estimating means (cf. Catoni and Giulini, 2017; Lugosi and
Mendelson, 2019b; Devroye et al., 2016; Joly et al., 2017).

Assumption 1. X1, X2, . . . are iid with mean µ.

In this work, we are able to weaken this condition. We enforce only that the data stream has a constant
conditional mean µ. This allows for more “adversarial” distributions, and is particularly relevant in several
bandit and online learning settings in which the iid assumption does not hold.

Assumption 2. X1, X2, . . . have constant conditional mean E[Xt|Ft−1] = µ.

Of course, Assumption 1 implies Assumption 2. Assumption 2 is common in work on CSs, typically because
they rely on (super)martingales which naturally enable such flexibility. We will often refer to Assumption 2
as martingale-dependence. While Abbasi-Yadkori et al. (2011) and Whitehouse et al. (2023) also work under
more general conditions than iid data, we are—as far as we are aware—the first to do so in multivariate,
heavy-tailed settings.
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2 Light-tailed random vectors
2.1 Sub-Gaussian bounds
We say that Xt is Σt-sub-Gaussian for some Ft-measurable PSD matrix Σt if

EP [exp{λ⟨θ,Xt − µ⟩ − ψN (λ)⟨θ,Σtθ⟩}|Ft−1] ⩽ 1, for all θ ∈ Rd and λ ∈ R, (4)

where ψN (λ) = λ2/2 and Σt is PSD. The subscript “N” refers to the tail condition of a normal distribution
and can be contrasted with other tail conditions investigated in Section 2.3. Unlike typical notions of sub-
Gaussianity, (4) allows (Σt) to be an (Ft)-adapted sequence, not simply a predictable sequence. This allows
Σt to depend, for instance, on Xt. E.g., if E[∥Xt − µ∥2|Ft−1] < ∞, then we may take Σt = 1

3 (
∑
i⩽t∥Xi −

µ∥2+
∑
i⩽t E[∥Xi−µ∥2|Fi−1] (see Lemma 3 part (f) in Howard et al. 2020). This example cannot be handled

if Σt must be Ft−1-measurable.

We note that many authors impose isotropic conditions on the distribution when defining sub-Gaussianity,
meaning that they take Σt = σ2

t Id. However, allowing for anisotropy will enable us to give several dimension-
free bounds that will depend on Σt instead of d. As discussed in the introduction, such results are desirable
when the data have low intrinsic dimension compared to the dimension of the ambient space. In Appendix A.1
we give the resulting bound when the distribution is isotropic (i.e., Σt = σ2

t Id).

Remark 2.1. The inequality in (4) is often written as holding for all θ ∈ Sd−1 instead of θ ∈ Rd. The
statements are, of course, equivalent (though they cease to be for different ψ-functions; see Section 2.3) but we
wrote (4) as we did to highlight that we can take our parameter space as Θ = Rd. To elaborate, (4) naturally
defines a supermartingale for each θ ∈ Rd. When applying Proposition 1.1, we can thus use Gaussians as the
prior and posterior distributions as opposed to restricting ourselves to uniform distributions or truncated
Gaussians as in Sections 2.2 and 2.3.

Let ρϑ be a Gaussian with mean ϑ and covariance β−1Id for some real β > 0. The process defined by
Mt(θ) =

∏t
i=1 exp{λi⟨θ,Xi −µ⟩ −ψN (λi)⟨θ,Σiθ⟩} is a nonnegative P -supermartingale for all θ ∈ Rd by (4).

Applying Proposition 1.1 to this family of processes with prior ρ0 and posteriors ρϑ for ϑ ∈ Sd−1, one obtains
the following result. The details may be found in Appendix C.1.

Theorem 2.2. Let (Xt)t⩾1 be conditionally (Σt)-sub-Gaussian and satisfy Assumption 2. Let (λt) be a
predictable sequence in (0,∞) and fix β > 0. Then, with probability 1 − α, simultaneously for all t ⩾ 1,∥∥∥∥∥

∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽

∑
i⩽t ψN (λi)(∥Σi∥ + β−1 Tr(Σi)) + β/2 + log(1/α)∑

i⩽t λi
.

Let us turn straightaway to the question of how to choose β and λt above. If supt ∥Σt∥ ⩽ ∥Σ∥ < ∞ and
supt Tr(Σt) ⩽ Tr(Σ) < ∞, then consider taking

β =

√
2 Tr(Σ) log(1/α)

∥Σ∥
and λt =

√
β + 2 log(1/α)
fβ(Σ)t log(t+ 1) (5)

where fβ(Σ) = ∥Σ∥ + Tr(Σ)/β. Using that
∑
i⩽t(i log(i+ 1))−1/2 ≍

√
t/log(t) and

∑
i⩽t(i log(i+ 1))−1 ≍

log log(t), we see that the width of the CSS in Theorem 2.2 is

Õ

(√
Tr(Σ) + ∥Σ∥ log(1/α)

√
log t
t

)
. (6)

where Õ hides iterated logarithm factors. If supt ∥Σt∥ or supt Tr(Σt) are unbounded, then we cannot guaran-
tee that the width will shrink to zero. We can obtain iterated logarithm rates (i.e., log log t instead of log t)
in (6) with a technique known as stitching (Howard et al., 2021). This is similar to the doubling technique
of Duchi and Haque (2024), but relies on applying Theorem 2.2 in each epoch, thus resulting an estimator
which is updated at every timestep, and not just at times 2k. Details may be found in Appendix B. Note
that Theorem 2.3 posits that Σt = Σ for all t, thus assuming that Σ is non-random.
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Figure 1: Left: Comparison of Theorem 2.2 and its stitched version, Theorem 2.3, against the results of
Hsu et al. (2012). The latter is made time-uniform in two ways: by a union bound (dotted orange line) and
by the doubling technique of Duchi and Haque (2024) (dotted purple). We begin the plotting the width at
t = 150 for scale purposes. We fix ∥Σ∥= 1 and take Tr(Σ) = 5. Right: A comparison of estimators with
iterated logarithm rates. We plot Theorem 2.3 against the bound of Hsu et al.—given iterated logarithm
rates via Duchi and Haque (2024)—for various ratios of Tr

(
Σ2) to Tr(Σ). As Tr

(
Σ2) shrinks Theorem 2.3

starts to be dominated by the bound of Hsu et al.. Simulation details can be found in Appendix D.

Theorem 2.3. Let (Xt)t⩾1 be conditionally Σ-sub-Gaussian and satisfy Assumption 2. Then, with proba-
bility 1 − α, simultaneously for all t ⩾ 1,∥∥∥∥∥∥1

t

∑
i⩽t

Xi − µ

∥∥∥∥∥∥ ⩽ 1.21
√

Tr(Σ)
t

+ 1.682
√

∥Σ∥(log(1.65/α) + 2 log(log2(t) + 1))
t

. (7)

Figure 1 plots the width of the CSSs in Theorems 2.2 and 2.3. We compare our results to the state-of-the-art
fixed-time result of Hsu et al. (2012) (described below; see (9)), which we make time-uniform in two ways: via
a naive union bound, and by the doubling technique of Duchi and Haque (2024). As expected, a naive union
bound is outperformed by all other bounds. Theorem 2.3 uniformly dominates Theorem 2.2 at all time steps.
Neither Hsu et al. with doubling nor Theorem 2.3 uniformly dominate the other, except for small values
Tr
(
Σ2)/Tr(Σ), in which case the former begins to dominate. Note however that Tr

(
Σ2) ⩾ 2

1+
√
d

Tr(Σ)∥Σ∥
(see Lemma C.1 in Appendix C.1), so that values of Tr

(
Σ2)/Tr(Σ) close to zero require large dimension.

Remark 2.4. A dissatisfying aspect of Theorem 2.2 result is that β is fixed while Σt can vary. Ideally,
one could allow β = βt to be a function of t and take βt ≍

√
Tr(Σt). In fact, such a choice is possible if

Σt is predictable—the general version of Proposition 1.1 stated in Chugg et al. (2023) allows us to choose
predictable posteriors. However, since the covariance of the prior is fixed, this strategy results in a factor of
d in the KL-divergence. Our bounds are therefore most useful when upper bounds on both Tr(Σt) and ∥Σt∥
across all t are known, in which case β and λt can be optimized as above.

Fixed-time optimization. Next, let us instantiate Theorem 2.2 optimized for a specific time t = n with
Σt = Σ for all t. Some elementary calculus suggests that setting

λi = λ :=

√
β + 2 log(1/α)

n(Tr(Σ)β−1 + ∥Σ∥) , β :=

√
2 Tr(Σ) log(1/α)

∥Σ∥
.

results in the optimal width of the boundary. This gives:

Corollary 2.5. Let (Xt)t⩾1 be Σ-sub-Gaussian and satisfy Assumption 2. Fix some n ∈ N. Then, with
probability 1 − α, simultaneously for all t ⩾ 1,∥∥∥∥∥1

t

t∑
i=1

Xi − µ

∥∥∥∥∥ ⩽

(
1

2
√
n

+
√
n

2t

)(√
Tr(Σ) +

√
2∥Σ∥ log(1/α)

)
. (8)
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Corollary 2.5 may strike the reader as somewhat odd at first glance. The bound is optimized for a particular
sample size n but remains valid at all times due to the time-uniformity of Theorem 2.2. However, the bound
is tightest at t = n and the width does not to go zero as t → ∞. Thus while it is a time-uniform bound,
it is most useful at sample sizes that are close to n. It might be compared to Freedman-style inequalities
(Freedman, 1975) (which hold for all t ⩽ n), or de la Pẽna style inequalities (de la Peña, 1999) (which hold
for all t ⩾ n but also do not shrink to zero).

Hsu et al. (2012) prove that for iid Σ-sub-Gaussian random vectors X1, . . . , Xn, with probability 1 − α,

∥∥∥∥ 1
n

∑
i⩽n

Xi − µ

∥∥∥∥ ⩽

√
Tr(Σ) + 2∥Σ∥ log(1/α) + 2

√
Tr(Σ2) log(1/α)

n
. (9)

Instantiating Corollary 2.5 at t = n, we see that the width of (8) differs from (9) by replacing√
2 Tr(Σ)∥Σ∥ log(1/α) with 2

√
Tr(Σ2) log(1/α) (this is clear after writing

√
Tr(Σ) +

√
2∥Σ∥log(1/α) =√

Tr(Σ) + 2∥Σ∥ log(1/α) + 2
√

2 Tr(Σ)∥Σ∥ log(1/α)). The bound in (8) is therefore somewhat slightly looser
than (9) at t = n, but the bounds differ by at most a factor of two as demonstrated by the following lemma.
Despite this looseness, we emphasize that our bound holds under martingale dependence, is sequential, and
performs better than a sequentialized version of (9) in many regimes (see Figure 1).

Lemma 2.6. Let Wn be the right hand side of (8) at t = n and let Hn be the right hand side of (9). Then
Wn/Hn ⩽ 2.

Proof. We have
√
nWn =

√
Tr(Σ) +

√
2∥Σ∥log(1/α) ⩽ 2 max{

√
Tr(Σ),

√
2∥Σ∥log(1/α)}. Further, note

that
√
nHn =

√
Tr(Σ) + 2∥Σ∥ log(1/α) + 2

√
Tr(Σ2) log(1/α) ⩾

√
Tr(Σ) + 2∥Σ∥ log(1/α). Using that

max{
√
a,

√
b} ⩽

√
a+ b completes the argument.

When Σ = σ2I, Corollary 2.5 improves the constants in a classical concentration result for sub-Gaussian
random vectors, which states that, with probability 1 − α,

∥∥ 1
n

∑
iXi − µ

∥∥ ⩽ 4σ
√
d/

√
n+ 2σ

√
log(1/α)/

√
n

(Rigollet and Hütter, 2023, Theorem 1.19). We also remark that Jin et al. (2019) study concentration
under the weaker assumption of so-called norm-sub-Gaussianity. When their result is translated into our
setting, one obtains that with probability 1 −α,

∥∥ 1
n

∑
iXi − µ

∥∥ = O(σ
√
d log(2d/α)/n). This is worse than

Corollary 2.5, though in general the two bounds are incomparable, holding for different assumptions.

2.2 Log-concave distributions and finite Orlicz norm
If P is a distribution whose density f(x) can be written as f(x) = exp(ϕ(x)) for some concave function ϕ
then we say that P is a log-concave distribution. Many popular distributions are log-concave: the Gaussian,
Laplace, logistic, uniform, Dirichlet, gamma, and beta distributions being several examples. Here we extend
a recent observation of Zhivotovskiy (2024) and demonstrate that all log-concave distributions admit a
dimension-free CSS.

In fact, we deal with distributions slightly more general than log-concave distributions. We consider sequences
of observations (Xt)t⩾1 with a finite conditional Φ1-Orlicz norm:

∥⟨θ,Xt − EP [Xt|Ft−1]⟩∥Φ1
⩽ C

√
⟨θ,Σθ⟩, for all θ ∈ Rd, (10)

where we recall that for a scalar-valued random variable Y ,

∥Y ∥Φ1
= inf

{
ϵ > 0 : EP exp

(
|Y |
ϵ

)
⩽ 2
}
.

In (10), Σ is assumed to be PSD and deterministic (unlike the sub-Gaussian case). If P is log-concave, then
Adamczak et al. (2010, Lemma 2.3) demonstrates that it obeys (10).2 For Gaussians, the constant is C = 2
(in fact, C = 2 for all symmetric distributions, see Adamczak et al. 2010). Sub-exponential distributions

2They state the result for all θ ∈ Sd−1, but this is easily seen to be equivalent to (10).
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also satisfy (10). Indeed, (10) is another way to define sub-exponential distributions, and the results in
this section thus provide dimension-free CSSs for such distributions. However, for isotropic sub-exponential
distributions, the results are sub-optimal compared to those in the next section (Theorem 2.15 in particular).
We will comment more on the relationship in Section 2.3.

Unlike sub-Gaussian distributions, the log-concave condition does not immediately imply a supermartingale
which we can deploy in Proposition 1.1. Instead we consider a process which has the form

∏
i⩽t exp{gi(θ) −

logE exp gi(θ)} which is a martingale whenever logE[exp(gi(θ))] is finite. In order to bound this log-mgf
term, we appeal to the following lemma, which is standard but proved explicitly by Zhivotovskiy (2024,
Lemma 2) (see also Howard et al. 2020, Proposition 1).

Lemma 2.7. For a scalar random variable Y such that ∥Y − EY ∥Φ1
< ∞, we have

E exp(λ(Y − EY )) ⩽ exp
(

4λ2∥Y − EY ∥2
Φ1

)
, for all |λ|⩽ 1

2∥Y − EY ∥Φ1

.

We deploy Lemma 2.7 with Y = gi(θ). It’s tempting to consider gi(θ) = λi⟨θ,Xi − µ⟩ and to mimic the
approach used in the sub-Gaussian case. Unfortunately, this strategy breaks down because ∥⟨θ,Xt − µ⟩∥Φ1
may be arbitrarily large for certain choices of θ, thus rendering Lemma 2.7 inapplicable for any λ. Therefore,
we cannot use Gaussian distributions in Proposition 1.1 as was done in the sub-Gaussian case. Instead,
following an approach used by Zhivotovskiy (2024) in the case of random matrices, we use a truncated
Gaussian with a well-chosen radius. This, combined with a clever choice of gi(θ) allows us to provide the
following dimension-free bound. The details may be found in Appendix C.1. Let us define the function
hΣ(u) :=

√
Tr(Σ)u+ u

√
∥Σ∥ for u > 0.

Theorem 2.8. Let (Xt)t⩾1 satisfy (10) and Assumption 2. Let (λt) be a predictable sequence taking values
in (0, 1). Then with probability 1 − α, simultaneously for all t ⩾ 1,∥∥∥∥∥

∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽
2ChΣ(1)

∑
i⩽t λ

2
i + 4ChΣ(log(2/α))∑
i⩽t λi

. (11)

Note that while log-concavity implies that some such C exists, the bounds are unusable without knowledge
of C. This is similar to needing to know the sub-Gaussian constant or variance bound in order to be able to
construct finite-sample-valid confidence intervals.

Noting that hΣ(·) is monotone, our bound recovers the one by Zhivotovskiy (2024) at t = 1 with λ1 = 1:
2ChΣ(1) + 4ChΣ(log(2/α)) ⩽ 6ChΣ(log(2/α)) assuming α ⩽ 2e−1. Further, following arguments in that
work, this can be seen to be optimal in terms of dependence on log(1/α),Tr(Σ), and ∥Σ∥. Theorem 2.8
is also related to Maurer and Pontil (2021, Proposition 7.1), which uses entropy methods to prove that
∥ 1
n

∑
iXi − µ∥⩽ 8e∥∥X∥2∥Φ1

√
log(2/δ)/n for iid X1, . . . , Xn. One can show that ∥∥X∥2∥Φ1≲

√
Tr(Σ), so

this bound is of the same order as ours, the width of which we now analyze.

Consider

λt ≍

√
hΣ(uα)

hΣ(1)t log(t+ 1) ,

where uα := log(2/α). If α ⩽ 2e−1, then

hΣ(uα)hΣ(1) = (
√

Tr(Σ)uα + uα
√

∥Σ∥)(
√

Tr(Σ) +
√

∥Σ∥)

= Tr(Σ)
√
uα + (uα +

√
uα)
√

Tr(Σ)∥Σ∥ + uα∥Σ∥

⩽ Tr(Σ)
√
uα + 3uα

√
Tr(Σ)∥Σ∥,

where the inequality follows from uα ⩾ 1 and Tr(Σ) ⩾ ∥Σ∥. With these choices, the CSS in Theorem 2.8
has width

Õ

(
C

√
(Tr(Σ)

√
uα + uα

√
Tr(Σ)∥Σ∥)

√
log t
t

)
, (12)
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where C is the log-concave constant. Here we’ve once again used the fact that
∑
i⩽t(i log(i+ 1))−1 ≍ log log t

and
∑
i⩽t(

√
i log(i+ 1))−1/2 ≍

√
t log t. As in the sub-Gaussian case, we can also use stitching to provide a

bound which shrinks at the optimal iterated logarithm rate. The details may be found in Appendix B.

Theorem 2.9. Let (Xt)t⩾1 satisfy (10) and Assumption 2. For any α ∈ (0, 1) and t ⩾ 1, set rα(t) :=
2 log(log2(t) + 1)+log(3.3/α). Then, with probability 1−α, simultaneously for all t such that t ⩾ 2

√
hΣ(rα(t))
hΣ(1) ,

∥∥∥∥∥
∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽ 6.73C
√
hΣ(1)hΣ(rα(t))

t
⩽ 6.73C

√
Tr(Σ)

√
rα(t) + 3rα(t)

√
Tr(Σ)∥Σ∥

t
. (13)

2.3 Sub-ψ distributions
Other light-tailed conditions on random vectors can be captured by assuming the log-MGF is bounded by
some CGF-like function. More precisely, we assume that there exists a function ψ : [0, λmax) → R for some
λmax ∈ (0,∞] such that

EP [exp{λ⟨v,Xt − µ⟩} − ψ(λ)⟨v,Σtv⟩|Ft−1] ⩽ 1 for all v ∈ Sd−1, (14)

and all λ ∈ [0, λmax). Condition (14) is called a sub-ψ process by Howard et al. (2020) and Whitehouse et al.
(2023). As in the sub-Gaussian case, we assume that Σt is PSD and Ft-measurable (i.e., (Σt) is (Ft)-adapted
not only predictable). Different choices of ψ recover common distributions (terminology is borrowed from
Howard et al. (2020); we take 1/0 = ∞):

1. ψN (λ) := λ2/2 for λ ∈ [0, λmax) results in a sub-exponential distribution (sub-Gaussian if λmax =
∞). In this case we say that (Xt) is (Σt, λmax)-sub-exponential.

2. ψG,c(λ) = λ2

2(1−cλ) for c ∈ R and λmax = 1/max{c, 0} results in a sub-gamma distribution (in the
sense that ψG,c is an upper bound on the CGF of a gamma random variable). In this case we say
that (Xt) is (Σt, c)-sub-gamma.

3. ψP,c(λ) = (ecλ − cλ − 1)/c2 for c ∈ R and λmax = ∞ results in a sub-Poisson distribution (in the
sense that ψP,c is the CGF of a centered unit-rate Poisson random variable). In this case we say
that (Xt) is (Σt, c)-sub-Poisson.

4. ψE,c(λ) = (− log(1 − cλ) − cλ)/c2 for c ∈ R where λmax = 1/max{c, 0} results in a sub-neg-
exponential distribution (ψE,c is the CGF of a centered unit-rate negative-exponential random
variable).3 In this case we say that (Xt) is (Σt, c)-sub-neg-exponential.

In general, to indicate that (Xt) satisfies (14) for some ψ-function, we will say it is (Σt)-sub-ψ. The five
ψ-functions are all (upper bounds on) the CGF of various random variables. Further, all are (a) twice differ-
entiable and (b) obey ψ(0) = limx→0+ ψ′(x) = 0. We will thus call any function which satisfies (a) and (b)
CGF-like. In what follows we will mainly focus on CGF-like functions that are super-Gaussian (Whitehouse
et al., 2023). Formally, we say ψ is super-Gaussian if λ 7→ ψ(λ)/λ2 is nondecreasing. Informally, this implies
that ψ grows at least as quickly as the CGF of a standard normal random variable. All of the ψ-functions
enumerated above are super-Gaussian.

When restricting our attention to super-Gaussian CGF-like functions, (14) holds for all v in the unit ball
Bd, as opposed to only the unit sphere Sd−1—see Lemma 2.10. This allows us to use uniform distributions
over the ball in Proposition 1.1. For ψ functions that are not super-Gaussian, we can instead use the von
Mises-Fisher distribution (Mardia et al., 2000) over the sphere. This, however, results in bounds with slightly
worse dimension dependence and worse constants. Since most ψ functions of interest are super-Gaussian,
the result for non-super-Gaussian ψ is given in the Appendix; see Theorem A.3.

Lemma 2.10. Let (Xt) be (Σt)-sub-ψ where ψ is super-Gaussian. Then (14) holds for all v ∈ Bd.
3Many authors call ψE,c the CGF of an exponential distribution (Howard et al., 2020; 2021; Whitehouse et al., 2023), but

we want to reserve the term sub-exponential for ψN with finite λmax. Hence we use the term negative-exponential instead.

10



Published in Transactions on Machine Learning Research (05/2025)

Proof. Let ψ be super-Gaussian. Observe that for any θ ∈ Bd,

ψ(λ∥θ∥)
λ2∥θ∥2 ⩽

ψ(λ)
λ2 ,

therefore ψ(λ∥θ∥) ⩽ ∥θ∥2ψ(λ). Consequently, letting ϑ = θ/∥θ∥∈ Sd−1,

exp{λi⟨θ,Xi − µ⟩ − ψ(λi)⟨θ,Σiθ⟩}
= exp{λi∥θ∥⟨ϑ,Xi − µ⟩ − ψ(λi)∥θ∥2⟨ϑ,Σiϑ⟩}
⩽ exp{λi∥θ∥⟨ϑ,Xi − µ⟩ − ψ(λi∥θ∥)⟨ϑ,Σiϑ⟩}.

Since λi∥θ∥⩽ λi ⩽ λmax, it follows that Mt(θ) is upper bounded by

M t(ϑ) =
∏
i⩽t

exp{λi∥θ∥⟨ϑ,Xi − µ⟩ − ψ(λi∥θ∥)⟨ϑ,Σiϑ⟩},

which defines a nonnegative supermartingale by (14), proving the claim.

Remark 2.11. While (14) superficially resembles the sub-Gaussian condition (4) for ψ = ψN , (14) holds only
for all vectors in the unit sphere. The natural isotropic condition for general ψ is supv∈Sd−1 EP [exp{λ⟨v,Xt−
µ⟩|Ft−1] ⩽ exp{ψ(λ)}. When λmax = ∞ then such a definition naturally extends to all vectors in Rd and is
equivalent to (the isotropic version of) (4). For finite λmax, however, such an extension does not hold, so we
work with (14) instead. This necessitates using different distributions in Proposition 1.1.

Suppose ψ is super-Gaussian. Let ρϑ be the uniform distribution over the ball centered at ϑ ∈ (1 − ϵ)Sd−1

with radius ϵ. Let ν be the uniform distribution over the ball centered at 0 with radius 1. Observe that
ρϑ ≪ ν. The KL-divergence between ρϑ and ν is

DKL(ρϑ∥ν) =
∫
ϵBd+ϑ

log
(

dρϑ
dν (θ)

)
ρϑ(dθ)

=
∫
ϵBd+ϑ

log
(

vol(Bd)
vol(ϵBd)

)
ρϑ(dθ) = d log

(
1
ϵ

)
, (15)

where vol(A) is the volume of a set A ⊂ Rd, whence vol(Bd) = πd/2/Γ(d/2+1) and vol(ϵBd) = πd/2ϵd/Γ(d/2+
1). We note that using uniform distributions in conjunction with PAC-Bayes arguments was also used by
Lee et al. (2024) when developing confidence sequences for GLMs. Applying Proposition 1.1 to the family
of processes (Mt(θ))t⩾1 defined by

Mt(θ) =
t∏
i=1

exp {λi⟨θ,Xi − µ⟩ − ψ(λi)⟨θ,Σiθ⟩}, (16)

each of which is a nonnegative P -supermartingale by (14), gives the following result. The proof may be
found in Appendix C.1. The closest result to the following bound is Manole and Ramdas (2023, Corollary
23), which gives a bound for isotropic sub-ψ processes. Their result is stated in terms of the inverse of the
convex conjugate of ψ, (ψ∗)−1, which makes a direct comparison of the bounds challenging. However, for
common ψ functions, (ψ∗)−1(x) behaves as

√
x for small x, making their result consistent with Theorem 2.14

below.

Theorem 2.12. Let (Xt)t⩾1 be Σt-sub-ψ and satisfy Assumption 2. Suppose ψ is super-Gaussian. Let (λt)
be a predictable sequence in (0, λmax)N. Fix 0 < ϵ < 1. Then, with probability 1 − α, for all t ⩾ 1,∥∥∥∥∥

∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽

∑
i⩽t ψ(λi)∥Σi∥+d log(1/ϵ) + log(1/α)

(1 − ϵ)
∑
i λi

. (17)
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A reasonable default value for ϵ is 1/2, but it may be further optimized depending on the relative size of d,
α, and supt∥Σt∥. The explicit dependence of (17) on d means that, unlike Theorem 2.2, Theorem 2.12 is not
dimension-free. We are unaware of dimension-free concentration results for general sub-ψ processes, or even
for sub-gamma processes. The dependence on d instead of

√
d in the above CSS may seem worrying at first

glance, but can be rectified by an appropriate choice of λt. Suppose that supt∥Σt∥⩽ ∥Σ∥. For CGF-like ψ,
choosing

λt ≍

√
d log(1/ϵ) + log(1/α)

∥Σ∥t log(t+ 1) , (18)

gives a bound that shrinks as Õ(
√

∥Σ∥(d+ log(1/α)) log(t)/t) as shown by the following lemma. The proof
is provided in Appendix C.1.

Lemma 2.13. Let (Xt)t⩾1 be Σt-sub-ψ for any CGF-like ψ. Let Wt denote the right hand side of (17) and
suppose that supt∥Σt∥⩽ ∥Σ∥. Then, choosing λt as in (18) gives Wt = Õ(

√
∥Σ∥(d+ log(1/α) log(t)/t).

As in Sections 2.1 and 2.2, we may use Theorem 2.12 to obtain a bound which achieves optimal iterated-
logarithm rates. The details may be found in Appendix B. We focus on sub-gamma random vectors (i.e.,
ψ = ψG,c). This is mostly without loss of generality, as Howard et al. (2020) demonstrate that any CGF-like
ψ obeys ψ ⩽ aψG,c for some a, c > 0; see Howard et al. (2020, Proposition 1).

Theorem 2.14. Let (Xt)t⩾1 be (∥Σ∥, c)-sub-gamma for some c ∈ R and satisfy Assumption 2. Then, for
all α ∈ (0, 1), with probability at least 1 − α, simultaneously for all t ⩾ 1,∥∥∥∥1

t

∑
i⩽t

Xi − µ

∥∥∥∥ ≲

√
∥Σ∥(log(1/α) + log log(t) + d)

t
. (19)

Further, for sub-exponential random vectors (i.e., ψ = ψN and λmax < ∞) we can obtain the following
bound with explicit constants. For ϵ = 1/5, this result is directly comparably to (and tighter than) that of
Manole and Ramdas (2023) which, to our knowledge, was previously the tightest known result for sequential
concentration of sub-exponential random vectors. Moreover, our result holds under martingale dependence
and allows for anisotropy, which theirs does not. The details are again in Appendix B.

Theorem 2.15. Let (Xt)t⩾1 be (∥Σ∥, b)-sub-exponential and satisfy Assumption 2. Fix 0 < ϵ <
1. Then, for all α ∈ (0, 1), with probability at least 1 − α, simultaneously for all t ⩾
2b∥Σ∥−1/2

√
d log(1/ϵ) + log(1.65/α) + log(log2(t) + 1),∥∥∥∥1

t

∑
i⩽t

Xi − µ

∥∥∥∥ ⩽
1.71
1 − ϵ

√
∥Σ∥(log(1.65/α) + log(log2(t) + 1) + d log(1/ϵ))

t
. (20)

Let us compare Theorem 2.15 to Theorem 2.9 for isotropic sub-exponential random vectors, i.e., Σ = σ2Id.
Let rα(t) = log(1/α) + log(log(t)). The numerator of the CSS in Theorem 2.15 scales as σ

√
rα(t) + d and

that in Theorem 2.9 scales as σ
√
d
√
rα(t) + rα(t)

√
d, a worse rate. Of course, Theorem 2.9 holds for more

general distributions. Fixed-time optimization of Theorem 2.15 can be found in Appendix A.3.

2.4 Time-varying means under sub-Gaussianity
Here we drop Assumption 2 and instead allow µt ≡ E[Xt|Ft−1] to change with time. We are interested in
understanding the behavior of

∥∥∥∑i⩽t(Xi − µi)
∥∥∥. Our bounds thus far have resulted from applying Proposi-

tion 1.1 to families of supermartingales involving predictable free parameters λt that we may optimize as a
function of t. This approach does not work when the means are changing, roughly because it doesn’t allow
us to isolate

∑
i⩽t(Xi−µi). Instead, we use an approach known as the “method of mixtures,” which involves

defining a supermartingale (Mt(θ, λ)t for each λ in some set Λ ⊂ R, and then integrating over a well-chosen
distribution π: Mt(θ) :=

∫
λ∈Λ Mt(θ, λ)π(dλ). Fubini’s theorem implies that the resulting process (Mt(θ))t

is again a nonnegative supermartingale.
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The method of mixtures is one of the best known techniques for producing time-uniform bounds, dating back
at least to Darling and Robbins (1968). In particular, using a two-sided Gaussian mixture, which we do here,
was pioneered by Robbins (1970). It has also been used in modern work (cf. Kaufmann and Koolen, 2021;
Howard et al., 2021; Waudby-Smith et al., 2024). Of course, not all mixtures will result in a tractable process
(Mt(θ))t (analytically or computationally). This is doubly true in our case, because our arguments rely on
isolating the term ⟨ϑ,Xi−µ⟩. Therefore, even implicit bounds that might be approximated computationally
in the scalar setting do not serve us well. (See for instance Howard et al. (2021) who study using one- and
two-sided Gaussian mixtures, Gamma mixtures, one and two-sided beta binomial mixtures, and others.)

When (Xt) are conditionally sub-Gaussian, we can obtain a closed-form bound on
∥∥∥∑i⩽t(Xi − µi)

∥∥∥ using
a two-sided Gaussian mixture distribution as π. For technical reasons elucidated in the proof, we can only
consider random vectors that are σt-sub-Gaussian (meaning that (4) holds with Σt = σ2

t Id). This leads to a
bound with width depending on

√
d instead of Σt.

Theorem 2.16. Let (Xt)t⩾1 be conditionally σt-sub-Gaussian where Xt has conditional mean µt. Set
Ht =

∑
i⩽t σ

2
i . Then, for any a > 0, ϵ ∈ (0, 1), and α ∈ (0, 1), we have that with probability 1 − α,

simultaneously for all t ⩾ 1,∥∥∥∥1
t

∑
i⩽t

(Xi − µi)
∥∥∥∥ ⩽

1
1 − ϵ

√
2(1 + a2Ht)

a2t2

(
d log(1/ϵ) + log

(√
1 + a2Ht/α

))
. (21)

The proof is provided in Appendix C.1. Like Theorem 2.12, we must rely on uniform distributions in
the PAC-Bayes argument (note the prior and posterior used in Proposition 1.1 is distinct from the mixing
distribution used in the method of mixtures), which accounts the dimension-dependence of the bound. One
should compare our bound to Robbins’ original mixture (see Robbins, 1970, Equation (17), or Waudby-Smith
et al., 2024, Equation (8) for a version closer in spirit and notation to our work here).

2.5 Obtaining confidence ellipsoids
Let us end this section by briefly discussing how the techniques developed thus far can be used to obtain
bounds in the Mahalanobis norm instead of the ℓ2 norm. We use sub-Gaussian random vectors as our
primary example. If (Xt)t⩾1 are Σ-sub-Gaussian, then the random vectors Σ−1/2Xt are 1-sub-Gaussian.
That is, E[exp{λ⟨θ,Σ−1/2(Xt − µ)⟩ − ψN (λ)⟨θ, θ⟩|Ft−1] ⩽ 1 for all λ ∈ R. Theorem 2.3 thus implies the
following CSS: with probability 1 − α, simultaneously for all t ⩾ 1,∥∥∥∥∥∥1

t

∑
i⩽t

Xi − µ

∥∥∥∥∥∥
Σ−1

=

∥∥∥∥∥∥1
t

∑
i⩽t

Σ−1/2Xi − Σ−1/2µ

∥∥∥∥∥∥
⩽ 1.21

√
d

t
+ 1.682

√
log(1.65/α) + 2 log(log2(t) + 1)

t
. (22)

Confidence ellipsoids can be desirable because their shape reflects the variance of the distribution. However,
the drawback is that in order to be explicitly computed, the variance Σ must be both known and fixed. We
note that the bound above is distinct in flavor from the self-normalized bounds studied by Abbasi-Yadkori
et al. (2011), de la Peña (1999), and Whitehouse et al. (2023). Such bounds aim to achieve self-normalization
with respect to an accumulated and possibly random variance process as opposed to a fixed covariance matrix.
Bounds similar to (22) can be obtained for other Σ-sub-ψ conditions, following the techniques in Section 2.3.

3 Heavy-tailed random vectors
In this section we suppose the random vectors (Xt) are less well-behaved. We assume only that there exists
a finite second moment:

EP [∥X∥2|Ft−1] ⩽ v2 < ∞, ∀t ⩾ 1. (23)

Note that this condition implies that the norm of the mean µ is bounded by v: ∥E[X|Ft−1]∥ ⩽ E[∥X∥|Ft−1] ⩽
E[∥X∥2|Ft−1]1/2 ⩽ v. Ideally, one would prefer that (23) gets replaced by a bound on the centered moment
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EP [∥X − µ∥2|Ft−1]. Unfortunately, our techniques in this section do not allow for such a constraint so, like
Catoni and Giulini (2018) we satisfy ourselves with (23).

In this section we present three main results: two semi-empirical CSSs (Theorems 3.2 and 3.5) and a
sequential version of the Catoni-Giulini estimator (Theorem 3.7). All of these CSSs are dimension-free.
Throughout this section, we let ρϑ be a Gaussian with mean ϑ and variance β−1Id. Set Σt = Cov(Xt|Ft−1).

3.1 A first semi-empirical CSS
Our first result is based on the following supermartingale derived using an inequality furnished by Delyon
(2009, Proposition 12); see also Howard et al. (2020, Lemma 3). Variants of the resulting process have been
studied by Wang and Ramdas (2023, Lemma 5) in the context of CSs, and both Haddouche and Guedj
(2023, Lemma 1.3) and Chugg et al. (2023, Corollary 17) in the context of PAC-Bayesian bounds.

Lemma 3.1. Suppose (Xt)t⩾1 ∼ P where P is any distribution obeying (23) and Assumption 2. Let
Xi(θ) = ⟨θ,Xi−µ⟩. For each fixed θ ∈ Rd, the process S(θ) = (St(θ))t⩾1 is a nonnegative P -supermartingale,
where St(θ) =

∏
i⩽t exp {λiXi(θ) − λ2

i

6 [X2
i (θ) + 2⟨θ,Σiθ⟩}.

Mixing over Θ = Rd with prior ρ0 and posteriors ρϑ, ϑ ∈ Sd−1, we obtain the following theorem, which is
proved in Appendix C.2 (along with Lemma 3.1).

Theorem 3.2. Let (Xt)t⩾1 ∼ P for any P obeying (23) and Assumption 2. Let (λt) be a predictable sequence
in (0,∞). For any β > 0, vector x, and matrix A, set

sβ(x) =
(

1 + 1
β

)
(∥x∥ + v)2, and wβ(A) = ∥A∥ + Tr(A)

β
.

sβ(x) = (1 + 1
β )(∥x∥ + v)2 and wβ(A) = ∥A∥ + Tr(A)/β. Then, for any α ∈ (0, 1), with probability 1 − α, for

all t ⩾ 1, ∥∥∥∥∥
∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽

∑
i⩽t λ

2
i {sβ(Xi) + 2wβ(Σi)}

6
∑
i⩽t λi

+ β/2 + log(1/α)∑
i⩽t λi

.

Theorem 3.2 is semi-empirical in the sense that it depends both on the values ∥Xt∥ but also on ∥Σt∥ and
Tr(Σt). To explicitly compute the bound, therefore, would require knowledge of these values. Still, a known
bound on the variance is required for nonasymptotic concentration of unbounded random variables (even in
the scalar case), so fully empirical bounds are impossible.

We suggest setting β =
√

supt Tr(Σt) (which is finite because v is finite) and λt =
√

log(1/α)
v2t log t so that

the expected width of the CSS in Theorem 3.2 scales as Õ(v
√

log(t) log(1/α)/t). (Here we’ve used that
wβ(Σt) = O(E[sβ(Xt)|Ft−1]) = O(v2)). Note that this bound on the width only holds in expectation and
this appears to be unavoidable: in general, with exactly two moments and no more, the empirical variance
term may not concentrate.

Scalar setting. It is perhaps worth noting that in the univariate setting, Theorem 3.2 complements
Lemma 6 in Wang and Ramdas (2023). They develop a confidence sequence for scalar-valued, heavy-tailed
random variables by using a process similar to that described in Lemma 3.1. Instead of upper bounding µ
by the raw second moment, however, they solve a quadratic equation to obtain an anti-confidence sequence
for µ, and their final CS results from taking the complement. Theorem 3.2, meanwhile, results in a slightly
looser but more digestible CS.

Corollary 3.3. Let X1, X2, . . . be scalar random variables with second moment v2 and conditional mean
µ = E[Xt|Ft−1]. Let (λt) be a predictable sequence in (0,∞). Then, for any α ∈ (0, 1), with probability
1 − α, for all t ⩾ 1, ∣∣∣∣∣

∑
i⩽t λiXi∑
i⩽t λi

− µ

∣∣∣∣∣ ⩽
∑
i⩽t λ

2
i [(∥Xi∥ + v)2 + 2v2]

3
∑
i⩽t λi

+ 1/2 + log(1/α)∑
i⩽t λi

.
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We note that despite Corollary 3.3 being closed-form, it may perform worse than the bound of Wang and
Ramdas (2023) in practice. First, as noted, to achieve a closed-form bound we deploy some inequalities
which loosens the bound. Second, the right hand side may not concentrate. Indeed, we should not expect
the sample mean to have sub-Gaussian tail behavior around the true mean.

Considering the fixed-time setting with n observations and setting λi = λ :=
√

3(log(1/α)+1/2)
2nv2 , Corollary 3.3

gives the following CI for heavy-tailed random variables.

Corollary 3.4. Let X1, . . . , Xn be scalar random variables with second moment v2 and conditional mean
µ = E[Xt|Ft−1]. Then, for any α ∈ (0, 1), with probability 1 − α,∣∣∣∣∣∣ 1n

∑
i⩽n

Xi − µ

∣∣∣∣∣∣ ≲
√

log(1/α)
n

(∑
i⩽n(∥Xi∥ + v)2

nv

)
.

3.2 A semi-empirical CSS under symmetry
Let us present a second semi-empirical bound for heavy-tailed random vectors. We assume that the vectors
(Xt)t⩾1 are conditionally symmetric around the conditional mean µ, i.e., Xt−µ ∼ −(Xt−µ)|Ft−1, and also
have two moments. Using a supermartingale identified in de la Peña (1999, Lemma 6.1), we may obtain a
result reminiscent of Theorem 3.2 but without the term wβ(Σt) and with tighter constants. Theorem 3.5 is
proved in Appendix C.2.

Theorem 3.5. Let (Xt)t⩾1 ∼ P for any P obeying the moment bound (23) and Assumption 2. Suppose the
vectors are also conditionally symmetric: Xt−µ ∼ −(Xt−µ)|Ft−1 for all t ⩾ 1. For any positive predictable
sequence (λt) and any α ∈ (0, 1), with probability 1 − α, for all t ⩾ 1,∥∥∥∥∥

∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽

∑
i⩽t λ

2
i (∥Xi∥ + v)2 + 1/2 + log(1/α)∑

i⩽t λi
.

Of course, one may obtain results analogous to Corollaries 3.3 and 3.4 for Theorem 3.5. We omit these for
brevity. A similar discussion as above on how set λt applies here.

3.3 A sequential Catoni-Giulini estimator
Now we proceed to a sequentially-valid version of the estimator originally proposed by Catoni and Giulini
(2018). To motivate it, observe that the theorems given thus far rely on the estimators µ̂t =

∑
i λiXi/

∑
i λi.

However, it is known that such simple linear combinations of samples such as the (possibly weighted) empir-
ical average have sub-optimal finite-sample performance under heavy tails (Catoni, 2012). Other estimators
are therefore required. To begin, for a sequence of positive scalars (λt), define the threshold function

tht(x) := (λt∥x∥) ∧ 1
λt∥x∥

x. (24)

Our estimator will be
µ̂t =

∑
i⩽t λithi(Xi)∑

i⩽t λi
. (25)

The analysis proceeds by separating the quantity ⟨ϑ, tht(Xt) − µ⟩ into two terms:

⟨ϑ, tht(Xt) − µ⟩ = ⟨ϑ, tht(Xt) − µth
t ⟩︸ ︷︷ ︸

(i)

+ ⟨ϑ, µth
t − µ⟩︸ ︷︷ ︸
(ii)

, (26)

where µth
t = E[tht(X)|Ft−1]. The second term is dealt with by the following technical lemma, which is

proved in Appendix C.2. Intuitively, the result follows from the fact that tht(x) shrinks x towards the origin
by an amount proportional to λt.

Lemma 3.6. Term (ii) of (26) obeys: supϑ∈Sd−1⟨ϑ, µth
t − µ⟩ =

∥∥µth
t − µ

∥∥ ⩽ λtv
2.
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Figure 2: Left: Comparison between our sequential Catoni-Giulini estimator (Theorem 3.7), geometric
median-of-means (GMoM) (Minsker, 2015), and tournament median-of-means (TMoM) (Lugosi and Mendel-
son, 2019a). We make the MoM estimators time-uniform in two ways: with a naive union bound (solid lines),
and via the doubling method of Duchi and Haque (2024) (DH Doubling). Even though it has optimal (fixed-
time) rates, the TMoM estimator suffers because of large constants. Right: A closer look at the performance
of GMoM estimator compared to Theorem 3.7. We assume that a practitioner knows either Tr(Σ) or v2

(knowing both would imply knowledge of ∥µ∥), hence we set Tr(Σ) = v2 in the figures in order to compare
their multipliers in the bound. Again, we make the GMoM time-uniform via (i) a union bound, and (ii)
Duchi-Haque doubling. Simulation details can be found in Appendix D.

To handle term (i) of (26), we appeal to PAC-Bayesian techniques. Notice that the process (U(θ))t⩾1
defined by Ut(θ) =

∏
i⩽t exp{λifi(θ) − logE exp(λifi(θ))} where fi(θ) = ⟨θ, thi(Xi) − µth

i ⟩ is a nonnegative
P -martingale for any θ ∈ Rd. Applying Proposition 1.1 with the prior ρ0 and posteriors ρϑ, ϑ ∈ Sd−1

provides a bound on supϑ∈Sd−1
∑
i⩽t λi⟨ϑ, thi(Xi)−µth

i ⟩, which in turn furnishes the following theorem. The
details are in Appendix C.2.

Theorem 3.7. Let (Xt)t⩾1 obey E[∥Xt∥2|Ft−1] ⩽ v2 and satisfy Assumption 2. Fix β > 0. Then, for any
α ∈ (0, 1), with probability at least 1 − α, for all t ⩾ 1,∥∥∥∥∥

∑
i⩽t λithi(Xi)∑t

i⩽t λi
− µ

∥∥∥∥∥ ⩽
v2
(

2e
2
β +2 + 1

)∑
i⩽t λ

2
i + β/2 + log(1/α)∑

i⩽t λi
. (27)

We find β = 4 to be a reasonable choice in practice. Consider setting λt ≍
√

log(1/α)/v2t log t. As dis-
cussed in Section 2,

∑
i⩽t

1/i log i ≍ log log(t) and
∑
i⩽t

1/
√
i log i ≍

√
t/log(t), so the width of (27) scales as

Õ(
√
v2 log(1/α) log t/t). In the fixed time setting, ideal estimators are sub-Gaussian (Lugosi and Mendelson,

2019a, Equation (3.1)), in the sense that they have rate O(
√

∥Σ∥ log(1/α)/n +
√

Tr(Σ)/n) (where we assume
that Σ is constant over time). For us, setting λ = λi ∝

√
log(1/α)/v2n for all i yields a slightly larger

rate of O(
√
v2 log(1/α)/n). This is no surprise: it is well-known that the Catoni-Giulini estimator is not

sub-Gaussian, hence the development of the tournament median-of-means (TMoM) estimator (Lugosi and
Mendelson, 2019b).

We also provide a stitched version of Theorem 3.7 which achieves iterated logarithm rates. The details are
in Appendix B.5.

Theorem 3.8. Let (Xt)t⩾1 obey E[∥Xt∥2|Ft−1] ⩽ v2 and satisfy Assumption 2. Let (βm)m⩾1 be a sequence
of positive scalars such that βm is F⌊log2(m)⌋-predictable. Then, with probability 1 −α, simultaneously for all
t ⩾ 1, ∥∥∥∥∥

∑
i⩽t λithi(Xi)∑t

i⩽t λi
− µ

∥∥∥∥∥ ⩽ 1.69v
√
A⌊log2(t)⌋(β⌊log2(t)⌋/2 + log(1.65/α) + log(log2(t) + 1))

t
, (28)

where Am = 2 exp(2/βm + 2) + 1.
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Here, (βm) is a sequence of optimizable constants, though only at geometrically spaced time steps, not every
time step. Root-finding may be used to find the optimal value of βm at some value of t, though we find that
in practice this does not improve the bound much over setting βm = 4 for all m.

We compare various estimators in Figure 2. The TMoM estimator suffers as a result of large constants, wash-
ing out its asymptotic benefits for reasonable sample sizes. Similarly to the experiments in Section 2.1, the
TMoM estimator was made time-uniform in two ways: via a naive union bound, and using the doubling tech-
nique of Duchi and Haque (2024). Theorem 3.7 outperforms both. We also compare Theorem 3.7 to the geo-
metric median-of-means (GMoM) estimator (Minsker, 2015) which achieves a rate of O(

√
Tr(Σ) log(1/α)n)

in the fixed-time setting. We make it time-uniform in the same two ways as TMoM. GMoM has signifi-
cantly smaller constants than the TMoM estimator, making it much closer to Theorem 3.7 in practice, and
sometimes beating it. The stitched Catoni-Giulini estimator, Theorem 3.8, dominates other estimators.

4 Summary
We have provided a general framework to derive nonparametric, time-uniform confidence sequences for the
mean of a multivariate distribution under martingale dependence using PAC-Bayesian techniques. Our re-
sults in light-tailed regimes include dimension-free bounds for sub-Gaussian and log-concave random vectors,
bounds for general sub-ψ distributions, and a bound for tracking the time-varying mean of sub-Gaussian
distributions. Our results in the heavy-tailed regime include two semi-empirical bounds and a sequentially-
valid version of the Catoni-Giulini estimator. We give bounds that achieve optimal iterated-logarithm rates,
and also bounds that are optimized for particular sample sizes.
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A Additional results
A.1 Sub-Gaussian distributions
Isotropic case. Let us instantiate Theorem 2.2 in the isotropic case, meaning that Σt = σ2

t Id for some
scalar σt. Then ∥Σt∥ = σ2

t and Tr(Σt) = σ2
t d. Taking β and λt as in (5), i.e.,

β =
√

2d log(1/α) and λt =

√
β + 2 log(1/α)

σ2(1 + d/β)t log(t+ 1) ,

where σ2 ⩾ supt σ2
t gives a width of

Õ

(√
σ2(d+ log(1/α)

√
log t
t

)
. (29)

We note that the factor of
√
d is very natural in the isotropic case as, intuitively, the variance is spread

evenly in all directions and thus scales with the dimension. See, e.g., Vershynin (2018, Theorem 3.1.1) or
Rigollet and Hütter (2023, Theorem 1.19) for the same

√
d dependence.

A.2 Log-concave distributions
Fixed-time optimization. Following the approach in Section 2.1, let us consider optimizing our log-
concave bound for a fixed time t = n. Consider taking

λ1 = · · · = λn =

√
2hΣ(log(2/α))

nhΣ(1) ,

if n is large enough such that λ1 is upper bounded by 1. Applying Theorem 2.8 and using the upper bound
on hΣ(r)hΣ(1) gives the following result. Again, the bound is tightest at time t = n but remains valid at
all other times. We are unaware of previous fixed-time concentration results for log-concave distributions
against which we can compare Corollary A.1.

Corollary A.1. Let (Xt)t⩾1 satisfy (10) and Assumption 2. Fix any n and α ∈ (0, 1) such that n ⩾√
2hΣ(rα)/hΣ(1) where rα = log(2/α). Then, with probability 1 − α, simultaneously for all t ⩾ 1,∥∥∥∥∥

∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽ 2C
(√

2
n

+
√

2n
t

)√
Tr(Σ)

√
rα + 3rα

√
Tr(Σ)∥Σ∥. (30)

A.3 Sub-ψ distributions
Fixed-time optimization. Again, following the approach in Section 2.1, let us consider (Σ, b)-sub-
exponential random vectors for a constant Σ = Σt. Applying Theorem 2.12 at a fixed-time t = n with

λ =

√
2d log(1/ϵ) + 2 log(1/α)

∥Σ∥n
,

gives the following analogue of Corollary 2.5 in the sub-exponential setting.

Corollary A.2. Let X1, . . . , Xn be conditionally (Σ, B)-sub-exponential and satisfy Assumption 2. Fix
ϵ ∈ (0, 1). Then, with probability 1 − δ, simultaneously for all t ⩾ 1,∥∥∥∥1

t

∑
i⩽t

Xi − µ

∥∥∥∥ ⩽
1

1 − ϵ

(
1√
n

+
√
n

t

)√
∥Σ∥(d log(1/ϵ) + log(1/α))

2 . (31)

As in Corollary 2.5, this bound is tightest at t = n but remains time-uniform. At t = n, taking ϵ = 1/2 we
obtain a width of 2

√
2∥Σ∥(d log(2) + log(1/α)/n, which has the optimal dependence on d, n, and ∥Σ∥ for

isotropic sub-exponential random vectors.
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Sub-ψ bounds for non super-Gaussian ψ. Theorem 2.12 gave a CSS for sub-ψ distributions with
super-Gaussian ψ. While most common ψ functions are super-Gaussian, not all are. For example, consider
ψB,c,d(λ) = 1

cd log
(
cedλ+de−cλ

c+d

)
for c, d > 0 and λmax = ∞. This characterizes a sub-Bernoulli distribution

(in the sense that ψB,c,d is the CGF of a centered random variable supported on −c and d). It’s therefore
worth providing a result which holds for general ψ functions, both super-Gaussian and non-super-Gaussian.

The key to deriving Theorem 2.12 was noticing that a super-Gaussian ψ allows us to transform the definition
of a sub-ψ distribution (14) from a statement involving vectors in Sd−1 to vectors in Bd. This allowed us
to use uniform distributions over the ball when applying Proposition 1.1. If ψ is not super-Gaussian then
such a transformation isn’t possible. We must therefore work with distributions that are defined on the
unit sphere. This leads us to the von Mises-Fisher distribution. Before we expound on the details of this
distribution, let us state the result it enables.

Theorem A.3. Suppose (Xt)t⩾1 for Xt ∈ Rd, d ⩾ 2, are sub-ψ and satisfy Assumption 2. Let (λt)t⩾1 be a
predictable sequence in [0, λmax). Then, with probability at least 1 − α, for all t ⩾ 1,∥∥∥∥∥

∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽

√
d
∑
i⩽t ψ(λi)∥Σi∥ + 2

√
d+

√
d log(1/α)

2
3
∑
i⩽t λi

. (32)

Notice that unlike Theorem 2.12, the dimension dependence in Theorem A.3 multiplies the width of the
bound. That, combined with the prefactor of 3/2 typically leads to looser bounds than Theorem 2.12, so we
encourage practitioners to use the latter when possible.

Let us now introduce the von-Mises Fisher (vMF) distribution (Fisher, 1953) (also known as Langevin distri-
butions, Watamori, 1996). For x ∈ Sd−1, the vMF distribution has density γ(x;ϑ, κ) = Cd(κ) exp(κ⟨ϑ, x⟩),
where Cd(κ) = κd/2−1/[(2π)d/2Id/2−1(κ)] is the normalization constant. Here, Iℓ is the modified Bessel
function of the first kind of order ℓ, and κ > 0 is a scalar “concentration parameter". The expected value of
the vMF distribution obeys

Eθ∼γϑ
θ =

∫
Sd−1

θγ(dθ;ϑ, κ) = Ad(κ)ϑ, (33)

where Ad(κ) = Id/2(κ)/Id/2−1(κ). The vMF can be obtained by starting with a multivariate Gaussian
and then conditioning on observations with unit norm. We refer to Mardia et al. (2000) for more on the
vMF distribution, and for a general introduction to the field of “directional statistics,” which considers
distributions on the sphere. Moreover, Lemma C.2 in Appendix C proves that

DKL(γ(·;ϑ1, κ)∥γ(·;ϑ2, κ)) ⩽ 2κAd(κ). (34)

For an idea of its magnitude, Lemma C.3 proves that
√
dAd(

√
d) ∈ (2/3, 1). The vMF is only well-defined

for d ⩾ 2 so we restrict ourselves to this setting. We will often write γϑ(·) = γ(·;ϑ, κ), leaving the κ implicit.

Proof of Theorem A.3. We apply Proposition 1.1 with prior γ(·; 1, κ) and posteriors γ(·;ϑ, κ) for all ϑ ∈ Sd−1

to the process defined by Mt(θ) =
∏
i⩽t exp{λi⟨θ,Xi − µ⟩ −ψ(λi)⟨θ,Σiθ⟩}. This gives that with probability

1 − α, for all t ⩾ 1,∑
i⩽t

λi

∫
Sd−1

⟨θ,Xi − µ⟩γϑ(dθ) ⩽
∑
i⩽t

ψ(λi)
∫
Sd−1

⟨ϑ,Σiϑ⟩γϑ(dθ) + 2κAd(κ) + log(1/α).

Using (33) and upper bounding ⟨ϑ,Σiϑ⟩ as ∥Σi∥, the above display becomes∑
i⩽t

Ad(κ)λi⟨ϑ,Xi − µ⟩ ⩽
∑
i⩽t

ψ(λi)∥Σi∥+2κAd(κ) + log(1/α).

Dividing both sides by Ad(κ)
∑
i⩽t λi, taking a supremum over ϑ ∈ Sd−1, and then taking κ =

√
d and

applying Lemma C.3 gives the result.
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B Stitched bounds with LIL rate
Here we demonstrate how to achieve CSSs which shrink at a rate of O(

√
log(log(t))/t) and proving Theo-

rems 2.3, 2.9, 2.14, 2.15, and 3.8. This is done via “stitching,” which is a common technique in the literature
on confidence sequences and originates in Howard et al. (2021). Stitching involves applying distinct bounds
over geometrically spaced epochs. Bounds in each epoch can be engineered to be tighter than a bound
uniform over all time. The bounds are then carefully combined together using a union bound. To proceed,
we define our “stitching function” as

ℓ(m) = (m+ 1)2ζ(2), where ζ(2) =
∞∑
k=1

k−2 ≈ 1.645. (35)

Note that
∑
m⩾0

1
ℓ(m) = 1. In what follows, any function ℓ could be used such that

∑
m⩾0

1
ℓ(m) ⩽ 1 but here

we fix a particular choice for convenience.

B.1 Stitched Sub-Gamma Bound
Here we consider the sub-ψ bounds of Section 2.1 with ψ(λ) = ψG,c(λ) = λ2

2(1−cλ) , c ∈ R. We assume that
Σ = Σt for all t. Apply Theorem 2.12 in each epoch [2m, 2m+1) with a constant parameter λm and αm. We
obtain that with probability 1 − αm,∥∥∥∥∥∥1

t

∑
i⩽t

Xi − µ

∥∥∥∥∥∥ ⩽
1

1 − ϵ

(
ψ(λm)∥Σ∥t+ d log(1/ϵ) + rm

λmt

)
=: gm(t), ∀t ∈ [2m, 2m+1), (36)

where rm = log(1/αm). Taking a union bound gives that with probability 1 −
∑∞
m=0 αm, simultaneously for

all t ⩾ 1: ∥∥∥∥∥∥1
t

∑
i⩽t

Xi − µ

∥∥∥∥∥∥ ⩽ gm(t), where m ⩽ log2(t) ⩽ m+ 1.

We take αm = α/ℓ(m) so that
∑∞
m=0 αm = α. The remaining work resides in ensuring that gm(t) shrinks

at the desired iterated logarithm rate. We take

λm = ψ−1
(
d log(1/ϵ) + rm

2m∥Σ∥

)
,

where
ψ−1(u) = 2

c+
√
c2 + 2/u

.

Then 2rm/t ⩾ rm/2m ⩾ rm/t so

d log(1/ϵ) + rm
t∥Σ∥

⩽ ψ(λm) ⩽ 2d log(1/ϵ) + rm
t∥Σ∥

,

and since ψ−1(u) is increasing in u,

ψ−1
(
d log(1/ϵ) + rm

2m∥Σ∥

)
⩾

2
c+

√
c2 + 2t∥Σ∥/(rm + d log(1/ϵ))

.

Therefore,

gm(t) ⩽ 1
1 − ϵ

(
d log(1/ϵ)+rm

2m t+ d log(1/ϵ) + rm

tλm

)

⩽
3

1 − ϵ

(
d log(1/ϵ) + rm

tλm

)
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⩽
3

1 − ϵ

(
c+

√
c2 + 2t∥Σ∥

d log(1/ϵ) + rm

)(
d log(1/ϵ) + rm

2t

)
.

Since c is a constant and is dominated asymptotically by t∥Σ∥
d log(1/ϵ)+rm

, we have (taking ϵ = 1/2 for simplicity),

gm(t) ≲

√
t∥Σ∥

d log(2) + rm

(
d log(2) + rm

t

)
≲

√
∥Σ∥(d+ log(1/α) + log log(t))

t
.

Then notice that

rm = log(1/α) + log(ℓ(m)) ⩽ log(1/α) + 2 log(log2(t) + 1) + log(1.65),

where we’ve used that m ⩽ log2(t). It remains only to check that our choice of λm is legal, i.e., λ < 1/c.
Using that ψ−1 is increasing, we have

λm ⩽ ψ−1
(

2d log(2) + 2rm
t∥Σ∥

)
,

which is less than 1/c iff 1 <
√

1 + t∥Σ∥/(d log(2) + rm), which holds for all t ⩾ 1.

B.2 Stitched sub-exponential bound
Here we prove Theorem 2.15. Let ψ(λ) = λ2/2 for all |λ|< 1/b. Here we make the same choices we did
above, but the analysis can be tighter. In this case, ψ−1(u) =

√
2u so

λm =

√
d log(1/ϵ) + rm

2m−1∥Σ∥
,

and

gm(t) = 1
1 − ϵ

(
λm∥Σ∥

2 + d log(1/ϵ) + rm
λmt

)
=
√

∥Σ∥(d log(1/ϵ) + rm)
1 − ϵ

(
1

2
√

2m−1
+

√
2m−1

t

)

⩽

√
∥Σ∥(d log(1/ϵ) + rm)

1 − ϵ

(
1√
t

+ 1√
2t

)
<

1.71
1 − ϵ

√
∥Σ∥(d log(1/ϵ) + rm)

t
.

Finally, recall that we need to ensure that λm ⩽ 1/b, which holds if t ⩾ 2b
√

d log(1/ϵ)+rm

∥Σ∥ .

B.3 Stitched sub-Gaussian bound
Let fβ(Σ) = ∥Σ∥ + Tr(Σ)/β. Similarly to what was done above, applying Theorem 2.2 in each epoch
[2m, 2m+1) with parameters λm, αm, and βm gives∥∥∥∥∥∥1

t

∑
i⩽t

Xi − µ

∥∥∥∥∥∥ ⩽
tψN (λm)fβm

(Σ) + βm/2 + rm
tλm

=: gm(t), ∀t ∈ [2m, 2m+1), (37)

where rm = log(1/αm). As before we set αm = α/ℓ(m) and we take

λm = βm√
2m Tr(Σ)

, and βm = c

√
rm Tr(Σ)

∥Σ∥
.
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Then, noting that 2m ⩽ t < 2m+1 so λm ⩽
√

2βm/
√
tTr(Σ), we have

gm(t) = λmfβm
(Σ)

2 + βm/2 + rm
tλm

⩽
βmfβm(Σ)√

2tTr(Σ)
+ 1

2

√
Tr(Σ)
t

+ rm
βm

√
Tr(Σ)
t

= βm∥Σ∥√
2tTr(Σ)

+
√

Tr(Σ)
2t + 1

2

√
Tr(Σ)
t

+ rm
βm

√
Tr(Σ)
t

= c

√
rm∥Σ∥

2t + 1
c

√
rm∥Σ∥
t

+
(

1√
2

+ 1
2

)√
Tr(Σ)
t

.

Optimizing over c gives c = 21/4 and bounding rm as above gives the desired result.

B.4 Stitched log-concave bound
Our strategy is the same as in the previous sections. In this case we have

gm(t) = 2ChΣ(1)λ2
mt+ 4ChΣ(log(2/αm))

λmt
.

Consider taking

λm = κ

√
hΣ(log(2/αm))

hΣ(1)2m ,

for some κ > 0 to be determined later. Then, using that 2m ⩽ t and 2m ⩾ 2/t,

gm(t) = 2Cκ
√
hΣ(1)hΣ(log(2/αm))

2m + 4C
κt

√
hΣ(1)hΣ(log(2/αm))2m

⩽
√
hΣ(1)hΣ(log(2/αm))

(
2Cκ

√
2
t

+ 4C
κ

√
t

)
.

Optimizing over κ gives κ = 21/4, in which case we obtain

gm(t) ⩽ 6.73C
√
hΣ(1)hΣ(log(2/αm)

t
,

where

log(2/αm) ⩽ log(2ℓ(log2(t))/α)
⩽ log

(
2(log2(t) + 1)2 · 1.65/α

)
= 2 log(log2(t) + 1) + log(3.3/α).

Recalling that for u ⩾ 1, hΣ(1)hΣ(u) ⩽ Tr(Σ)
√
u + u

√
Tr(Σ)∥Σ∥ furnishes the claimed iterated logarithm

rate and proves Theorem 2.9.

B.5 Stitched Catoni-Giulini bound
Let Am = 2 exp(2/βm + 2) + 1. Following the strategy above, here we have

gm(t) = v2Amλ
2
mt+ βm/2 + rm
λmt

= v2Amλm + βm/2 + rm
λmt

.

Take

λm = c

√
βm/2 + rm
v2Am2m ,
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for some c > 0. Then

gm(t) = v

(
c

√
Am(βm/2 + rm)

2m + 1
c

√
2mAm(βm/2 + rm)

t2

)

⩽ v

(
c

√
2Am(βm/2 + rm)

t
+ 1
c

√
Am(βm/2 + rm)

t

)

< 1.69v
√
Am(βm/2 + rm)

t
,

if we take c = 2−1/4.

C Omitted proofs
Lemma C.1. Let Σ ∈ Rd×d be a covariance matrix. Then

2∥Σ∥
1 +

√
d
⩽

Tr
(
Σ2)

Tr(Σ) ⩽ ∥Σ∥. (38)

Proof. Let Σ have eigenvalues e1 ⩾ e2 ⩾ . . . ⩾ ed. The second inequality is easy: Tr
(
Σ2) =

∑
1⩽i⩽d e

2
i ⩽

e1
∑
i⩽d ei = ∥Σ∥Tr(Σ). As for the first inequality, let u = 1

d−1
∑

2⩽i⩽d ei be the average of the smallest
d− 1 eigenvalues. Using Jensen’s inequality, write

Tr
(
Σ2)

Tr(Σ) =
∑

1⩽i⩽d e
2
i∑

1⩽i⩽d ei
⩾
e2

1 + (d− 1)u2

e1 + (d− 1)u =: f(u).

The minimum of f for u > 0 occurs at u∗ = e1(
√
d+1)/(d−1) giving f(u∗) = 2e1/(1+

√
d) = 2∥Σ∥/(1+

√
d),

which proves the claim.

Lemma C.2. The Kullback-Leibler divergence from γ(ϑ0, κ) to γ(ϑ1, κ) satisfies

DKL(γ(ϑ1, κ)∥γ(ϑ0, κ)) ⩽ 2κAd(κ).

Proof. Let X ∼ γ(ϑ1, κ). By a direct calculation,

DKL(γ(ϑ1, κ)∥γ(ϑ0, κ)) = E
[
log γ(X;ϑ1, κ)

γ(X;ϑ0, κ)

]
= E [κ⟨ϑ1 − ϑ0, X⟩] = κ⟨ϑ1 − ϑ0, Ad(κ)ϑ1⟩.

Since both ϑ0, ϑ1 are on the unit sphere Sd−1, the inner product ⟨ϑ1 − ϑ0, ϑ1⟩ is upper bounded by 2, which
concludes the proof.

Lemma C.3. For any d ⩾ 1, 2
3 <

√
dAd(

√
d) < 1 where Ad(κ) is the vMF constant.

Proof. Note that,

√
dAd(

√
d) =

∑∞
m=0

√
d (

√
d/2)2m+d/2

m!Γ(m+d/2+1)∑∞
m=0

(
√
d/2)2m+d/2−1

m!Γ(m+d/2)

.

Denote the mth summands of the numerator and denominator by

W (m, d) =
∞∑
m=0

√
d

(
√
d/2)2m+d/2

m! Γ(m+ d/2 + 1) , V (m, d) = (
√
d/2)2m+d/2−1

m! Γ(m+ d/2) .

Then,
W (m, d)
V (m, d) = d/2

m+ d/2 ⩽ 1,
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equality only when m = 0. Therefore,

√
dAd(

√
d) =

∑∞
m=0 V (m, d) d/2

m+d/2∑∞
m=0 V (m, d)

< 1.

Further, observe that
W (m, d)

V (m+ 1, d) = 2(m+ 1).

Therefore
√
dAd(

√
d) =

∑∞
m=1 2mV (m, d)

V (0, d) +
∑∞
m=1 V (m, d)

,

and

1√
dAd(

√
d)

=
V (0, d) +

∑∞
m=1 V (m, d)∑∞

m=1 2mV (m, d)
<
V (0, d) +

∑∞
m=1 V (m, d)∑∞

m=1 2V (m, d)

<
V (0, d)
2V (1, d) + 1

2 = 1 + 1
2 = 3

2 .

Thus we conclude that 2
3 <

√
dAd(

√
d) < 1 for all d ⩾ 1.

C.1 Proofs for Section 2
Proof of Theorem 2.2 By definition of sub-Gaussianity (4), if X1, X2, . . . ∼ P are Σt-sub-Gaussian, then
the process (Ht(θ))t⩾1 where

Ht(θ) =
∏
i⩽t

exp
{
λi⟨θ,Xi − µ⟩ − λ2

i

2 ⟨θ,Σiθ⟩
}
,

is a supermartingale for all θ ∈ Rd. Let ρϑ be a Gaussian centered at ϑ with covariance β−1Id. Applying
Proposition 1.1 with the prior ρ0 and family of posteriors ρϑ, ϑ ∈ Sd−1, we obtain that with probability
1 − α, simultaneously for all t ⩾ 1 and ϑ ∈ Sd−1,∫ ∑

i⩽t

λi⟨θ,Xi − µ⟩ρϑ(dθ) ⩽
∫ ∑

i⩽t

λ2
i

2 ⟨θ,Σiθ⟩ρϑ(dθ) +DKL(ρϑ∥ρ0) + log(1/α)

⩽
∑
i⩽t

λ2
i

2 (⟨ϑ,Σiϑ⟩ + β−1 Tr(Σi)) + β

2 + log(1/α),

where we’ve used the formula

DKL(N(ϑ1,Σ1)∥N(ϑ2,Σ2)) = 1
2

(
Tr
(
Σ−1

2 Σ1
)

+ ⟨ϑ2 − ϑ1,Σ−1
2 (ϑ2 − ϑ1)⟩ − d+ log |Σ2|

|Σ1|

)
. (39)

The symmetry of the Gaussian distribution implies that
∫ ∑

i⩽t λi⟨θ,Xi − µ⟩ρϑ(dθ) =
∑
i⩽t λi⟨ϑ,Xi − µ⟩.

Noticing that ⟨ϑ,Σtϑ⟩ ⩽ ∥Σt∥, we obtain that with probability 1 − α, simultaneously for all t ⩾ 1,∥∥∥∥∥∥
∑
i⩽t

λi(Xi − µ)

∥∥∥∥∥∥ = sup
ϑ∈Sd−1

∑
i⩽t

λi⟨ϑ,Xi − µ⟩

⩽
∑
i⩽t

λ2
i

2 (∥Σi∥+β−1 Tr(Σi)) + β

2 + log
(

1
α

)
,

which, after rearranging, is the claimed inequality.
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Proof of Theorem 2.8 We take our parameter space in Proposition 1.1 to be Θ = Rd. Let ν Gaussian
with mean 0 and covariance β−1Σ and let ρu be a truncated Gaussian with mean u ∈ Σ1/2Sd−1, covariance
β−1Σ, and radius r > 0. Being slightly loose with notation and writing dρu for the density of ρu, the density
of the truncated normal can be written as

dρu(x) = 1{∥x− u∥ ⩽ r}
Z

dρu,

where Z is some normalizing constant and ρu is the usual non-truncated Gaussian. We follow Zhivotovskiy
(2024) in our calculation of the KL-divergence for truncated Gaussians. For a vector u ∈ Σ1/2Sd−1, the
KL-divergence between a truncated normal and ν is therefore

DKL(ρu∥ν) =
∫

log
(

1
Z

dρu
dν (θ)

)
ρu(dθ)

= log
(

1
Z

)
+ 1

2

∫
(−⟨θ − u, βΣ−1(θ − u)⟩ + ⟨θ, βΣ−1θ⟩)ρu(dθ)

= log
(

1
Z

)
+ β

2

∫
(2⟨θ,Σ−1u⟩ − ⟨u,Σ−1u⟩)ρu(dθ)

= log
(

1
Z

)
+ β⟨u,Σ−1u⟩

2 = log
(

1
Z

)
+ β

2 ,

where we’ve used that u = Σ1/2ϑ for some ϑ ∈ Sd−1 so ⟨u,Σ−1u⟩ = ⟨ϑ, ϑ⟩ = 1. We also have Z =
Pr(∥θ − u∥ ⩽ r) where θ ∼ ρu. Equivalently, Z = Pr(∥Y ∥ ⩽ r) where Y is a normal with mean 0 and
covariance β−1Σ. Hence 1−Z = Pr(∥Y ∥ > r) ⩽ E∥Y ∥2

/r2 = β−1 Tr(Σ)/r2. Thus, taking r =
√

2β−1 Tr(Σ)
yields Z ⩾ 1/2 and we obtain

DKL(ρu∥ν) ⩽ log(2) + β

2 . (40)

Now, consider the process (Lt(θ)) defined as

Lt(θ) =
∏
i⩽t

exp
{
λi⟨θ,Σ−1/2Xi⟩ − logE[exp

(
λi⟨θ,Σ−1/2X⟩

)
|Fi−1]

}
, (41)

which is a nonnegative martingale with initial value 1 as long as

logE
[
exp
(
λt⟨θ,Σ−1/2X⟩

)
|Ft−1

]
< ∞.

(Lt(θ) is a product of exponentials, each with expected value 1.) We want to use Lemma 2.7 to bound this
term. Note that by the log-concavity condition, we have∥∥∥⟨θ,Σ−1/2Xt⟩ − E[⟨θ,Σ−1/2X⟩|Ft−1]

∥∥∥
Φ1

=
∥∥∥⟨Σ−1/2θ,Xt − µ⟩

∥∥∥
Φ1

⩽ C∥θ∥.

Moreover, if θ ∼ ρu then by definition of the truncated Gaussian and using that ∥u∥= ∥Σ1/2ϑ∥⩽
√

∥Σ∥,

∥θ∥ ⩽ r + ∥u∥ ⩽ r +
√

∥Σ∥ =
√

2β−1 Tr(Σ) +
√

∥Σ∥ := Lβ .

Combining this with Lemma 2.7 we obtain

logE
[
exp
(
λt⟨θ,Σ−1/2X⟩

)
|Ft−1

]
⩽ λt⟨θ,Σ−1/2µ⟩ + 4λ2

tC
2L2

β , (42)

if
|λt|⩽

1
2CLβ

.
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(Note that the first term on the right hand side of (42) comes from the mean E[⟨θ,Σ−1/2X⟩|Ft−1] that lives
on the left hand side in Lemma 2.7.) Now, applying Proposition 1.1 with Lt(θ) and using (42) gives that
with probability 1 − α, for all u ∈ Σ1/2Sd−1 and t ⩾ 1,∫ ∑

i⩽t

λi⟨θ,Σ−1/2Xi⟩ρu(dθ)

⩽
∫ ∑

i⩽t

logE
[
exp
(
λi⟨θ,Σ−1/2X⟩

)
|Ft−1

]
ρu(dθ) + β

2 + log
(

2
α

)

⩽
∑
i⩽t

λi⟨u,Σ−1/2µ⟩ + 4C2L2
β

∑
i⩽t

λ2
i + β

2 + log
(

2
α

)
,

where the final line uses that ρu is symmetric hence
∫

⟨θ,Σ−1/2µ⟩ρu(dθ) = ⟨u,Σ−1/2µ⟩. From here, since
u = Σ1/2ϑ for some ϑ ∈ Sd−1, the above inequality rearranges to read∑

i⩽t

λi⟨ϑ,Xi − µ⟩ ⩽ 4C2L2
β

∑
i⩽t

λ2
i + β

2 + log
(

2
α

)
.

Consider setting λt = λ̂t

2CLβ
, where 0 < λ̂t ⩽ 1. Since ϑ was arbitrary in the above display, we obtain that

with probability 1 − α, for all t ⩾ 1,∥∥∥∥∥
∑
i⩽t λ̂iXi∑
i⩽t λ̂i

− µ

∥∥∥∥∥ ⩽
2CLβ(

∑
i⩽t λ̂

2
i + β/2 + log(2/α))∑
i⩽t λ̂i

.

Set ℓ = log(2/α) and consider choosing β = 2ℓ, in which case Lβ ⩽
√

Tr(Σ) +
√

∥Σ∥ = hΣ(1) and the above
display becomes∥∥∥∥∥

∑
i⩽t λ̂iXi∑
i⩽t λ̂i

− µ

∥∥∥∥∥ ⩽
2C(

√
Tr(Σ) +

√
∥Σ∥)

∑
i⩽t λ̂

2
i∑

i⩽t λ̂i
+

4C(
√

Tr(Σ)ℓ+ ℓ
√

∥Σ∥)∑
i⩽t λ̂i

=
2ChΣ(1)

∑
i⩽t λ̂

2
i + 4ChΣ(u)∑

i⩽t λ̂i
,

which is the desired bound.

Proof of Theorem 2.12 By Lemma 2.10 we may apply Proposition 1.1 with the process defined by

Mt(θ) =
∏
i⩽t

exp{λi⟨θ,Xi − µ⟩ − ψ(λi)⟨θ,Σiθ⟩},

for all θ ∈ Bd (not just for all θ ∈ Sd−1 as is suggested by (14)). Let ρϑ be a uniform distribution centered at
ϑ ∈ (1 − ϵ)Sd−1 ⊂ Bd with radius ϵ. Proposition 1.1 gives that with probability 1 −α, for all ϑ ∈ (1 − ϵ)Sd−1,∑

i⩽t

λi

∫
⟨θ,Xi − µ⟩ρϑ(dθ) ⩽

∑
i⩽t

ψ(λi)
∫

⟨θ,Σiθ⟩ρϑ(dθ) + d log
(

1
ϵ

)
+ log

(
1
α

)
,

where we’ve used the KL-divergence as calculated in (15). If θ ∼ ρϑ then ∥θ∥ ⩽ ∥ϑ∥ + ϵ ⩽ 1 by definition of
ρϑ and ⟨θ,Σiθ⟩ ⩽ supθ,ϑ∈Sd−1⟨θ,Σiϑ⟩ ⩽ ∥Σi∥. Moreover, since ρϑ is symmetric,

sup
ϑ∈(1−ϵ)Sd−1

∑
i⩽t

λi

∫
⟨θ,Xi − µ⟩ρϑ(dθ)

= sup
ϑ∈(1−ϵ)Sd−1

〈
ϑ,
∑
i⩽t

λi(Xi − µ)
〉
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= (1 − ϵ)
∥∥∥∥∑
i⩽t

λi(Xi − µ)
∥∥∥∥.

Therefore, with probability 1 − α, for all t ⩾ 1,∥∥∥∥∑i λiXi∑
i λi

− µ

∥∥∥∥ ⩽

∑
i⩽t ψ(λi)∥Σi∥+d log(1/ϵ) + log(1/α)

(1 − ϵ)
∑
i λi

,

which is the desired result.

Proof of Lemma 2.13 If ψ is CGF-like, then Howard et al. (2020, Proposition 1) shows that there exists
some a, c > 0 such that

ψ(λ) ⩽ aψG,c(λ) = aλ2

2(1 − cλ) .

If λt
t→∞−−−→ 0, then

ψ(λt)/ψN (λt) ⩽
a

1 − cλt

t→∞−−−→ a.

Therefore, we may write ψ(λt)/ψN (λt) = a+ ut for some ut that goes to 0 as t → ∞. Therefore,

∑
i⩽t

ψ(λi)∥Σi∥ =
∑
i⩽t

ψ(λi)
ψN (λi)

ψN (λi)∥Σi∥

=
∑
i⩽t

ψN (λi)∥Σi∥(a+ ui)

≲ (d+ r)
∑
i⩽t

a+ ui
i log(i+ 1)

≲ (d+ r) log log(t).

Hence,

Wt =
∑
i⩽t ψ(λi)∥Σi∥+d log(1/ϵ) + log(1/α)

(1 − ϵ)
∑
i λi

≲
(d+ r) log log(t) + d+ r√

∥Σ∥(d log(1/ϵ) + r)t/log(t)∥Σ∥

= Õ

(√
∥Σ∥(d+ r) log t

t

)
,

which is the desired rate.

Proof of Theorem 2.16 Let Xt be conditionally σt-sub-Gaussian. That is,

sup
v∈Sd−1

EP [exp(λ⟨v,Xt − µt⟩)|Ft−1] ⩽ exp
(
λ2σ2

t

2

)
. (43)

Note that we allow the sub-Gaussian parameter to change at each timestep. From (43) it follows that the
process defined by

Mt(θ, λ) =
∏
i⩽t

exp
{
λ⟨θ,Xi − µi⟩ − λ2σ2

i

2

}
,

is a nonnegative P -supermartingale for all λ ∈ R. We will consider the supermartingale resulting from
mixing over a Gaussian:

Mt(θ) :=
∫
λ∈R

Mt(θ, λ)π(λ; 0, a2)dλ, (44)
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where π is the density of a univariate Gaussian with mean 0 variance a2. To compute Mt(θ) let Dt(θ) =∑
i⩽t⟨θ,Xi − µi⟩, Ht =

∑
i⩽t σ

2
i , and write

Mt(θ) = 1
a
√

2π

∫
λ∈R

exp
{
λDt(θ) − λ2

2 Ht

}
exp

{
− λ2

2a2

}
dλ

= 1
a
√

2π

∫
λ∈R

exp
{

2λa2Dt(θ) − λ2(1 +Hta
2)

2a2

}
dλ.

Put ut = 1 +Hta
2 and vt = a2Dt(θ) and note that these are constants with respect to λ. Rewrite the above

as

Mt(θ) = 1
a
√

2π

∫
λ∈R

exp
{

−λ2ut + 2λvt
2a2

}
dλ

= 1
a
√

2π

∫
λ∈R

exp
{

−(λ2 − 2λvt/ut)
2a2/ut

}
dλ

= 1
a
√

2π

∫
λ∈R

exp
{

−(λ− vt/ut)2 + (vt/ut)2

2a2/ut

}
dλ

= 1
a
√

2π

∫
λ∈R

exp
{

−(λ− vt/ut)2

2a2/ut

}
dλ exp

{
vt

2a2ut

}
= 1

√
ut

exp
{

v2
t

2a2ut

}
= exp

{
v2
t

2a2ut
− 1

2 log(ut)
}
,

where the penultimate equality follows because the integrand is proportional to the density of a Gaussian
with mean vt/ut and variance a2/ut. We conclude that

Mt(θ) = exp
{

a2Dt(θ)
2(1 + a2Ht)

− log
√

1 + a2Ht

}
, (45)

is a nonnegative P -supermartingale. We can now apply Proposition 1.1 with uniform distributions as we
did for sub-ψ distributions in Section 2.3. Let ρϑ be a uniform distribution over the unit sphere of radius ϵ
centered at ϑ ∈ (1 − ϵ)Sd−1. Using (15) to bound the KL-divergence, we obtain that for all ϑ ∈ Sd−1, with
probability 1 − α, simultaneously for all t ⩾ 1,∫

Sd−1

a2D2
t (θ)

2(1 + a2Ht)
ρϑ(dθ) ⩽

∫
Sd−1

log
√

1 + a2Htρϑ(dθ) + d log(1/ϵ) + log(1/α) (46)

= log
√

1 + a2Ht + d log(1/ϵ) + log(1/α).

We work with (43) instead of the more general definition in (4) because we do not want the right hand side
to depend on θ. If it did then Ht would be a function of θ, and the integral on the left hand side of (46)
would become too complex to solve in closed-form. Continuing with the proof, since Ht is not a function of
θ, the above display rearranges to read∫

Sd−1
D2
t (θ)ρϑ(dθ) ⩽ 2(1 + a2Ht)

a2

(
d log(1/ϵ) + log

(√
1 + a2Ht/α

))
.

Taking square roots of both sides, Jensen’s inequality implies that∫
Sd−1

Dt(θ)γϑ(dθ) ⩽
(

2(1 + a2Ht)
a2

(
d log(1/ϵ) + log

(√
1 + a2Ht/α

)))1/2

.

Recalling the definition of Dt(θ) and integrating the left hand side as in the proof of Theorem 2.12 we obtain
that with probability 1 − α, simultaneously for all t ⩾ 1:∥∥∥∥∥∥

∑
i⩽t

(Xi − µi)

∥∥∥∥∥∥ ⩽
1

1 − ϵ

(
2(1 + a2Ht)

a2

(
d log(1/ϵ) + log

(√
1 + a2Ht/α

)))1/2

.
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Dividing both sides by t completes the proof.

C.2 Proofs for Section 3
Proof of Lemma 3.1 Delyon (2009, Equation (52)) demonstrates that for all x ∈ R, exp

(
x− x2/6

)
⩽

1 + x+ x2/3. If we take x = λiXi(θ), then applying expectations (w.r.t. P ) yields

EP
[
exp

{
λiXi(θ) − λ2

i

6 X2
i (θ)

} ∣∣∣∣Fi−1

]
⩽ 1 + λiEP [Xi(θ)|Fi−1] + λ2

i

3 EP [X2
i (θ)|Fi−1]

= 1 + λ2
i

3 EP [X2
i (θ)|Fi−1] ⩽ exp

{
λ2
i

3 EP [X2
i (θ)|Fi−1]

}
.

From here, note that

EP [X2
i (θ)|Fi−1] = EP [θ⊤(Xi − µ)(Xi − µ)⊤θ|Fi−1]

= θ⊤EP [(Xi − µ)(Xi − µ)⊤|Fi−1]θ = θ⊤Σθ.

Applying this to the display above and rearranging yields that

EP exp
{
λiXi(θ) − λ2

i

6 X2
i (θ) − λ2

i

3 ⟨θ,Σθ⟩
∣∣∣∣Fi−1

}
⩽ 1,

which in turn implies that S(θ) is a supermartingale.

Proof of Theorem 3.2 Let ρϑ be a Gaussian with mean ϑ and covariance β−1Id. Apply Proposition 1.1
to the supermartingale in Lemma 3.1. We obtain that with probability 1 − α, for all t ⩾ 1 and ϑ ∈ Sd−1,

∑
i⩽t

λi

∫
Xi(θ)ρϑ(dθ) ⩽

∑
i⩽t

λ2
i

6

∫
X2
i (θ) + 2⟨θ,Σiθ⟩ρϑ(dθ) + β/2 + log(1/α).

Now, let Mi be the matrix (Xi − µ)(Xi − µ)⊤ and write∫
X2
i (θ)ρϑ(dθ) =

∫
θ⊤Miθρϑ(dθ)

= ϑ⊤Miϑ+ β−1 Tr(Mi)
⩽ ∥Mi∥ + β−1 Tr(Mi)
= ∥Xi − µ∥2(1 + β−1)
⩽ (∥Xi∥ + v)2(1 + β−1).

Moreover, ∫
⟨θ,Σiθ⟩ρϑ(dθ) = ϑ⊤Σiϑ+ β−1 Tr(Σi) ⩽ ∥Σi∥ + β−1 Tr(Σi).

Putting this all together, we obtain that with probability 1 − α, for all ϑ ∈ Sd−1 and all t ⩾ 1,

∑
i⩽t

λiX
2
i (ϑ) ⩽ (1 + β−1)

∑
i⩽t

λ2
i

6 (∥Xi∥ + v)2 +
∑
i⩽t

λ2
i

3 (∥Σi∥ + β−1 Tr(Σi)) + β

2 + log
(

1
α

)
.

Noticing that supremum over all θ ∈ Sd−1 of the left hand side equals
∥∥∥∑i⩽t λi(Xi − µ)

∥∥∥ and then dividing
through by

∑
i⩽t λi gives the result.
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Proof of Theorem 3.5 Suppose that Xt is conditionally symmetric around the conditional mean µ for
all t ⩾ 1. This implies that for all θ ∈ Rd, ⟨θ,Xt − µ⟩ ∼ −⟨θ,Xt − µ⟩|Ft−1. de la Peña (1999, Lemma 1)
(see also Howard et al., 2020, Lemma 3) shows that for conditionally symmetric random variables (Yt)t⩾1
with mean 0, the process given by

∏
i⩽t exp{λiYi − λ2

iY
2
i /2} is a nonnegative supermartingale. Consider

this process with Yi = ⟨θ,Xi − µ⟩, and applying Proposition 1.1 with prior ρ0 and posteriors ρϑ, ϑ ∈ Sd−1,
(with covariance β−1Id as usual) we obtain that with probability 1 − α, simultaneously for all t ⩾ 1,∫

Rd

∑
i⩽t

λi⟨θ,Xi − µ⟩ρϑ(dθ) ⩽
∫
Rd

∑
i⩽t

λ2
i

2 ⟨θ,Xi − µ⟩2ρϑ(dθ) + β

2 + log(1/α).

Then, as in the proof of Theorem 3.2 above, we note that∫
⟨θ,Xi − µ⟩2ρϑ(dθ) ⩽

(
1 + 1

β

)
(∥Xi∥ + v)2.

Therefore, we obtain that with probability 1 − α, simultaneously for all t ⩾ 1,

sup
ϑ∈Sd−1

∑
i⩽t

⟨ϑ,Xi − µ⟩ ⩽
(

1 + 1
β

)∑
i⩽t

λ2
i

2 (∥Xi∥ + v)2 + β

2 + log(1/α).

Taking β = 1 completes the proof.

Proof of Lemma 3.6 First, let us observe the relationship

0 ⩽ 1 − a ∧ 1
a

⩽ a, ∀a > 0.

This is easily seen by case analysis. Indeed, for a ⩾ 1, we have (a ∧ 1)/a = 1/a and 1 − 1/a ⩽ 1 ⩽ a. For
a < 1, we have 1 − (a ∧ 1)/a = 1 − 1 = 0 ⩽ a.

Now, let
α(X) = λ∥X∥ ∧ 1

λ∥X∥
,

and note that the above analysis demonstrates that

|α(X) − 1|= 1 − α(X) ⩽ λ∥X∥. (47)

Therefore,

⟨ϑ, µt − µ⟩ = ⟨ϑ,E[α(X)X] − E[X]⟩
= E(α(X) − 1)⟨ϑ,X⟩
⩽ E|α(X) − 1||⟨ϑ,X⟩|
⩽ Eλ∥X∥∥ϑ∥∥X∥ by (47) and Cauchy-Schwarz
= λE∥X∥2 ∥ϑ∥ = 1
⩽ λv2 by assumption.

This proves the claim.

Proof of Theorem 3.7 First let us state the PAC-Bayesian theorem upon which we rely. The following,
due to Chugg et al. (2023, Corollary 15), is a time-uniform extension of the bound by Catoni (2004, Equation
(5.2.1)). It is based on applying Proposition 1.1 to the supermartingale defined by Ut(θ) =

∏
i⩽t exp{λifi(θ)−

logE exp(λifi(θ))}.

Lemma C.4. Let (Xt)t⩾1 ∼ P and let {ft : X ×Θ → R} be a sequence of measurable functions. Fix a prior
ν over Θ. Then, with probability 1 − α over P , for all t ⩾ 1 and all distributions ρ over Θ,∑

i⩽t

∫
Θ
fi(Xi, θ)ρ(dθ) ⩽

∑
i⩽t

∫
Θ

logEi−1e
fi(X,θ)ρ(dθ) +DKL(ρ∥ν) + log 1

α
.
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As stated in Section 3, we apply Lemma C.4 with the functions fi(Xi, θ) = λi⟨θ, thi(Xi) − µth
i ⟩. Keeping in

mind that Eθ∼ρϑ
⟨θ, thi(Xi) −µth

i ⟩ = ⟨ϑ, thi(Xi) −µth
i ⟩, we obtain that with probability 1 −α, simultaneously

for all t ⩾ 1,

sup
ϑ∈Sd−1

∑
i⩽t

λi⟨ϑ, thi(Xi) − µth
i ⟩ ⩽

∑
i⩽t

E
θ∼ρϑ

logE
{

eλi⟨θ,thi(Xi)−µth
i ⟩|Fi−1

}
+ β

2 + log 1
α
. (48)

Our second technical lemma, following Catoni and Giulini (2018), helps bound the right hand side of the
above.

Lemma C.5. For all t ⩾ 1,

E
θ∼ρϑ

log E
X∼P

{
eλi⟨θ,thi(X)−µth

i ⟩|Ft−1

}
⩽

1
4v

2λ2
i e

2/β+2.

Proof. To begin, notice that Jensen’s inequality gives∫
log E

X∼P

{
eλi⟨θ,thi(X)−µth

i ⟩
}
ρϑ(dθ)

⩽ log
∫

E
X∼P

{
eλi⟨θ,thi(X)−µth

i ⟩
}
ρϑ(dθ)

= log E
X∼P

{∫
eλi⟨θ,thi(X)−µth

i ⟩ρϑ(dθ)
}

= logE exp
(
λi
〈
ϑ, thi(X) − µth

i

〉
+ λ2

i

2β ∥thi(X) − µth
i ∥2

)
,

where the final line uses the usual closed-form expression of the multivariate Gaussian MGF. Define the
functions on R

g1(x) := 1
x

(ex − 1),

and
g2(x) := 2

x2 (ex − x− 1),

(with g1(0) = g2(0) = 1 by continuous extension). Both g1 and g2 are increasing. Notice that

ex+y = 1 + x+ x2

2 g2(x) + g1(y)yex. (49)

Consider setting x and y to be the two terms in the CGF above, i.e.,

x = λi⟨ϑ, thi(X) − µth
i ⟩,

y = λ2
i

2β ∥thi(X) − µth
i ∥2,

where we recall that ϑ ∈ Sd−1. Before applying (49) we would like to develop upper bounds on x and y.
Observe that

∥thi(X)∥ = λi∥X∥ ∧ 1
λi

⩽
1
λi
,

and consequently, ∥∥µth
i

∥∥ = ∥Ethi(X)∥ ⩽ E∥thi(X)∥ ⩽
1
λi
,

by Jensen’s inequality. Therefore, by Cauchy-Schwarz and the triangle inequality,

x ⩽ λi∥ϑ∥
∥∥thi(X) − µth

i

∥∥ ⩽ λi(∥thi(X)∥ +
∥∥µth

i

∥∥) ⩽ 2.
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Via similar reasoning, we can bound y as

y ⩽
λ2
i

2β (∥thi(X)∥ +
∥∥µth

i

∥∥)2 ⩽
2
β
.

Finally, substituting in these values of x and y to (49), taking expectations, and using the fact that g1 and
g2 are increasing gives

E
[
exp

(〈
ϑ, thi(X) − µth

i

〉
+ 1

2β ∥thi(X) − µth
i ∥2

) ∣∣∣∣Fi−1

]
⩽ 1 + λiE[⟨ϑ, thi(X) − µth

i ⟩|Fi−1] + g2 (2) λ
2
i

2 E[⟨ϑ, thi(X) − µth
i ⟩2|Fi−1]

+ g1

(
2
β

)
λ2
i e

2

2β E[
∥∥thi(X) − µth

i

∥∥2|Fi−1]

⩽ 1 + g2 (2) λ
2
i

2 E[
∥∥thi(X) − µth

i

∥∥2|Fi−1] + g1

(
2
β

)
λ2
i e

2

2β E[
∥∥thi(X) − µth

i

∥∥2|Fi−1],

where we’ve used that E[thi(X) − µth
i |Fi−1] = 0. Denote by X ′ an iid copy of X. Using the notation

Ei−1[·] = E[·|Fi−1], we can bound the norm as follows:

Ei−1[
∥∥thi(X) − µth

i

∥∥2] = Ei−1[∥thi(X)∥2] −
∥∥µth

i

∥∥2

= 1
2Ei−1

[
∥thi(X)∥2 − 2⟨thi(X), µth

i ⟩ + Ei−1[∥thi(X)∥2]
]

= 1
2 E
X

[
∥thi(X)∥2 − 2

〈
thi(X), E

X′
[thi(X ′)|Fi−1]

〉
+ E
X′

[
∥thi(X ′)∥2|Fi−1

] ∣∣∣∣Fi−1

]
= 1

2 E
X,X′

[
∥thi(X) − thi(X ′)∥2|Fi−1

]
⩽

1
2 E
X,X′

[
∥X −X ′∥2|Fi−1

]
= Ei−1∥X − Ei−1X∥2 ⩽ Ei−1∥X∥2 ⩽ v2,

where the first inequality uses the basic fact from convex analysis that, for a closed a convex set D ⊂ Rn
and any x,y ∈ Rn,

∥ΠD(x) − ΠD(y)∥ ⩽ ∥x − y∥,
where ΠD is the projection onto D. Putting everything together thus far, we have shown that∫

log E
X∼P

{
eλi⟨θ,thi(X)−µth

i ⟩
∣∣∣∣Fi−1

}
ρϑ(dθ)

⩽ log
{

1 + g2 (2) λ
2
i v

2

2 + g1

(
2
β

)
λ2
i e

2

2β v2
}

⩽ g2 (2) λ
2
i v

2

2 + g1

(
2
β

)
λ2
i e

2

2β v2

= v2λ
2
i

4

{
e2/β+2 − 3

}
⩽

1
4v

2λ2
i e

2/β+2,

which is the desired inequality.

To obtain the main result, we apply Lemmas C.5 and 3.6. For all ϑ ∈ Sd−1,∑
i⩽t

λi⟨ϑ, thi(Xi) − µ⟩ =
∑
i⩽t

λi(⟨ϑ, thi(Xi) − µth
i ⟩ + ⟨ϑ, µth

i − µ⟩)
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⩽
∑
i⩽t

λi⟨ϑ, thi(Xi) − µth
i ⟩ + v2

∑
i⩽t

λ2
i

⩽
v2e

2
β +2

4
∑
i⩽t

λ2
i + v2

∑
i⩽t

λ2
i + β

2 + log
(

1
α

)

⩽ v2
(

2e
2
β +2 + 1

)∑
i⩽t

λ2
i + β

2 + log
(

1
α

)
,

Noting that

sup
ϑ∈Sd−1

∑
i⩽t

λi⟨ϑ, thi(Xi) − µ⟩ =

∥∥∥∥∥∥
∑
i⩽t

λi(thi(Xi) − µ)

∥∥∥∥∥∥,
and dividing through by

∑
i⩽t λi gives the desired result.

D Simulation Details
Code can be found at https://github.com/bchugg/confidence-spheres.

Let us first describe the result of Duchi and Haque (2024), enabling us to transform any fixed-time estimator
into a sequential estimator which loses only an iterated-logarithm factor. Let µ̂n = µ̂(X1, . . . , Xn) be an
estimator of the mean µ which satisfies the following deviation inequality for iid observations X1, . . . , Xn:
For all n ⩾ 1,

P(∥µ̂n − µ∥⩾ F (log(1/α), n)) ⩽ α, (50)

for some function F : R × N → (0,∞). Then

Pr
(
∃k : ∥µ̂2k − µ∥⩾ F (log

(
π2k2/6α, 2k

)
)
)
⩽ α, (51)

implying that the estimator defined as

µ̂DHt =
{
µ̂t if t = 2k,
µ̂t−1, otherwise,

satisfies a time-uniform bound which suffers only an iterated logarithm penalty (plus some constants) over
the original. We call this a “doubling strategy,” as the estimator is updated every 2k timesteps, k ∈ N. In
order to plot the boundary, at every time step t, if t = 2k for some k, we plot F (log

(
π2k2/6α, 2k

)
, and

otherwise we plot the previous value of the boundary.

Let us now turn to the experimental details.

Section 2.1. The bound in Theorem 2.2 is implemented with the parameters

β =

√
2 Tr(Σ) log(1/α)

∥Σ∥
, λt =

√
β + 2 log(1/α)

(∥Σ∥+ Tr(Σ)/β)t log(t+ 10e4) .

Theorem 2.3 is implemented directly as stated. We compute the bound of Hsu et al. (2012) as in (9), making
it time-uniform via one of two methods: Either a union bound (taking αt = α/(t2 + t) at each timestep
t), or by the doubling method of Duchi and Haque (2024) above. In the left hand side of Figure 1 we use
Tr
(
Σ2) = Tr(Σ) = ∥Σ∥= 1 (eg distributions with identity covariance matrix). In the figure on the right

hand side, we fix ∥Σ∥= 1, Tr
(
Σ2) = 10 and vary Tr(Σ).

Section 3.3. For Theorem 3.7 we use β = 4 and

λt =

√
log(1/α)

20v2t log(t+ 10e4) .
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We use the following bound on the tournament median-of-means estimator: With probability 1 − δ,

∥µ̂n − µ∥⩽ max
{

240
√
λmax log(2/δ)

n
, 960

√
Tr(Σ)
n

}
(52)

For the geometric median-of-means estimator, the tightest constants we could find come from the survey of
Lugosi and Mendelson (2019a), which gives the following bound: With probability 1 − δ,

∥µ̂n − µ∥⩽ 4
√

Tr(Σ)(8 log(1/δ) + 1)
n

. (53)

For the GMoM estimator we fix ∥Σ∥= 1 and set Tr(Σ) = 5 and v2 = 5 for all estimators. We set Tr(Σ) = v2

for the reasons discussed in the caption, namely we are interested in how the bounds behave as functions of
their multipliers on the know variance/second moment bound.

E Empirical-Bernstein bound
Suppose there exists some B ∈ R+ such that supX∈X ∥X∥ ⩽ B. In this section we present an empirical-
Bernstein bound, meaning a bound whose width adapts to the observations themselves, not on any a priori
upper bound thereof like a traditional Hoeffding or Bernstein bound. The reason we present the bound in the
appendix is that the width of the CSS is dimension-dependent. This is suboptimal as there exists a dimension-
independent Bernstein bound for bounded random vectors (Gross, 2011; Kohler and Lucchi, 2017). Indeed,
very recently, Martinez-Taboada and Ramdas (2024) gave a dimension-free empirical Bernstein bound in
smooth Banach spaces (using different techniques). Whether a variational approach exists to providing a
dimension-free empirical Bernstein bound remains an open question.

For any t, let µ̄t := 1
t

∑
i⩽tXi be the empirical mean at time t, and define the function ψE(λ) := |log(1 − λ)+

λ| for λ ∈ [0, 1). The following supermartingale is a multivariate analogue of that used by Waudby-Smith
and Ramdas (2023, Eqn. (13)) to construct CSs, which in turn is based off of work by Howard et al. (2020;
2021) that generalized a lemma by Fan et al. (2015). The proof is in Appendix C.

Lemma E.1. Suppose (Xt)t⩾1 satisfies supt ∥Xt∥ ⩽ B and Assumption 2. Let (λt)t⩾1 be a predictable
sequence in [0, 1). For each θ ∈ Sd−1, the process N(θ) ≡ (Nt(θ))t⩾1 is a nonnegative P -supermartingale,
where

Nt(θ) =
∏
i⩽t

exp
{
λi
2B ⟨θ,Xi − µ⟩ − ψE(λi)

(2B)2 ⟨θ,Xi − µ̄i−1⟩2
}
.

Proof. Fan et al. (2015, Equation (4.11)) demonstrates that for all υ ⩾ −1 and λ ∈ [0, 1),

exp{λυ − ψE(λ)υ2} ⩽ 1 + λυ, (54)

where we recall that ψE(λ) = |log(1 − λ) + λ|= −λ− log(1 − λ). In order to demonstrate that (Nt(θ)) is a
P -NSM, it suffices to demonstrate that

EP
[
exp

{
λt
2B ⟨θ,Xt − µ⟩ − ψE(λt)

(2B)2 ⟨θ,Xt − µ̄t−1⟩2
} ∣∣∣∣Ft−1

]
⩽ 1,

for all t ⩾ 1. Inspired by a trick of Howard et al. (2021, Section A.8), set

Yt := Xt − µ

2B , δt = µ̄t − µ

2B ,

and observe that Yt − δt−1 = 1
2B (Xt − µ̄t−1). Then,

exp
{
λt
2B ⟨θ,Xt − µ⟩ − ψE(λt)

(2B)2 ⟨θ,Xt − µ̄t−1⟩2
}

= exp
{
λt⟨θ, Yt⟩ − ψE(λt)⟨θ, Yt − δt−1⟩2}
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= exp
{
λt⟨θ, Yt − δt−1⟩ − ψE(λt)⟨θ, Yt − δt−1⟩2} exp(λt⟨θ, δt−1⟩).

Since ∥θ∥ = 1 we have, by construction,

|⟨θ, Yt − δt−1⟩| ⩽ 1
2B (∥Xt∥ + ∥µ̄t−1∥) ⩽ 1,

since µ̄t−1 is an average of vectors each with norm at most B. Therefore, we may apply (54) with υ =
⟨θ, Yt − δt−1⟩, which, paired with the display above yields

exp
{
λt
2B ⟨θ,Xt − µ⟩ − ψE(λt)

(2B)2 ⟨θ,Xt − µ̄t−1⟩2
}

⩽ (1 + λt⟨θ, Yt − δt−1⟩) exp(λt⟨θ, δt−1⟩).

Taking expectations and noticing that EP [Yt|Ft−1] = 0 gives

EP
[
exp

{
λt
2B ⟨θ,Xt − µ⟩ − ψE(λt)

(2B)2 ⟨θ,Xt − µ̄t−1⟩2
} ∣∣∣∣Ft−1

]
⩽ (1 − λt⟨θ, δt−1⟩) exp(λt⟨θ, δt−1⟩) ⩽ 1,

where the final inequality uses the fact that 1 + x ⩽ ex for all x ∈ R. This completes the proof.

The “−µ̄i−1” can be replaced by any predictable estimate, and is a particularly important ingredient which
even in the scalar setting does not immediately follow from Fan et al. (2015), but it critically changes the
bound’s dependence from E[∥X∥2] to E[∥X − µ∥2]. Applying Proposition 1.1 to the supermartingale defined
above and using uniform distributions as our priors and posteriors, we obtain the following.

Theorem E.2. Suppose (Xt)t⩾1 ∼ P for any P obeying supX∼P ∥X∥ ⩽ 1/2 and Assumption 2. Let (λt)t⩾1
be a predictable sequence in (0, 1) and fix any 0 < ϵ < 1. Then, for all α ∈ (0, 1), with probability at least
1 − α, simultaneously for all t ⩾ 1,∥∥∥∥∥

∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽

∑
i⩽t ψE(λi)∥Xi − µ̄i−1∥2 + d log(1/ϵ) + log 1

α

(1 − ϵ)
∑
i⩽t λi

. (55)

Proof. As in Section 2.3, let ρϑ be a uniform distribution over Bd with radius ϵ centered at ϑ ∈ (1−ϵ)Sd−1 and
let ν be the uniform distribution over Sd−1. (We note that we can consider uniform distributions over the ball
because ψE is super-Gaussian; see the discussion in Section 2.3 and Lemma 2.10.) Applying Proposition 1.1
to Nt(θ) from Lemma E.1 gives that with probability 1 − α, for all t ⩾ 1 and all ϑ ∈ (1 − ϵ)Sd−1,∑

i⩽t

λi⟨ϑ,Xi − µ⟩ =
∫
Sd−1

∑
i⩽t

λi⟨θ,Xi − µ⟩ρϑ(dθ)

⩽
∫
Sd−1

∑
i⩽t

ψE(λi)⟨θ,Xi − µ̄i−1⟩2ρϑ(dθ) +DKL(ρϑ∥ν) + log(1/α)

⩽
∫
Sd−1

∑
i⩽t

ψE(λi)∥Xi − µ̄i−1∥2
ρϑ(dθ) + d log(1/ϵ) + log(1/α)

=
∑
i⩽t

ψE(λi)∥Xi − µ̄i−1∥2 + d log(1/ϵ) + log(1/α).

That is, with probability 1 − α, for all t ⩾ 1,

sup
ϑ∈(1−ϵ)Sd−1

〈
ϑ,
∑
i⩽t

(Xi − µ)
〉

⩽
∑
i⩽t

ψE(λi)∥Xi − µ̄i−1∥2 + d log(1/ϵ) + log(1/α).

The left hand side is equal to (1 − ϵ)
∥∥∥∑i⩽t λi(Xi − µ)

∥∥∥. Dividing by
∑
i λi results in the bound:∥∥∥∥∥

∑
i⩽t λiXi∑
i⩽t λi

− µ

∥∥∥∥∥ ⩽

∑
i⩽t ψE(λi)∥Xi − µ̄i−1∥2 + d log(1/ϵ) + log(1/α)

(1 − ϵ)
∑
i⩽t λi

,

which is the desired result.
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Figure 3: Left: The width of our empirical Bernstein CI as n → ∞, which approaches its asymptotic width
W∞. We use α = 0.05, d = 2, and random vectors comprised of two Beta(10,10) distributed random vari-
ables. Right: Performance of our empirical Bernstein bound compared to the multivariate (non-empirical)
Bernstein bound baseline, with oracle access to the true variance. Shaded areas provide the standard de-
viation across 100 trials. The distributions are mixtures of betas and binomials. Mixture 2 has the lowest
variance. As the variance decreases our empirical bounds get tighter and approach the tighest known oracle
bounds (black and red dotted lines) (Gross, 2011; Kohler and Lucchi, 2017).

Theorem E.2 immediately yields empirical-Bernstein CIs when instantiated at a fixed time n. For intuition,
note that ψE(λ) ≍ λ2/2 for small λ, so for λi ∝ 1/

√
n for all i, the denominator is

√
n while the numerator’s

first term does not depend on n. More interesting though is the dependence on the variance. Below we
analyze the asymptotic width of the CI under iid data when taking λi =

√
2d log(1/ϵ)+2 log(1/α)/̂σ2

i−1n, where
σ̂2
n = 1

n

∑
i⩽n ∥Xi − µ̄i∥2 is an empirical estimate of the variance σ2 = V(X) = E[∥X − µ∥2]. The width Wn

(the RHS of (55)) obeys
√
nWn

a.s.−−→ σ

1 − ϵ

√
2d log(1/ϵ) + 2 log(1/α). (56)

Therefore, the width of the bound scales with the true unknown variance. This can be seen as a generalization
of known results in d = 1 to multivariate settings. Indeed, in the scalar setting, the empirical-Bernstein
bound of Waudby-Smith and Ramdas (2023, Theorem 2) gives an asymptotic width of σ

√
2 log(2/α), and

that of Maurer and Pontil (2009) scales as σ
√

2 log(4/α). We might also compare our result to oracle
Bernstein bounds in the multivariate setting, which assume knowledge of the variance. Kohler and Lucchi
(2017), based on previous work by Gross (2011), show that if (Xt)nt=1 are iid, then with probability 1 − α,∥∥∥ 1
n

∑
i⩽nXi − µ

∥∥∥ ⩽ σ
√

8(log(1/α)+1/4)/n. Note that this a bound has no dimension-dependence.

In the sequential setting, applying this result with λt ≍
√
d+log(1/α)/t log t results in a width scaling as

Õ(B
√
d+ log(1/α) log(t)/t), where Õ hides iterated logarithm factors. Combined with the insights in the

fixed-time setting explored above, we suggest taking λt ≍
√
d+log(1/α)/̂σ2

t−1t log t. The extra log(t) in the
denominator is required to ensure the rate is

√
log(t)/t. We emphasize that our bounds hold for all pre-

dictable sequences (λt) in (0, 1), but the precise selection matters for the asymptotic width and the empirical
performance.

E.1 Asymptotic width
Here we study the asymptotic width of our empirical Bernstein confidence intervals and demonstrate that
they scale with the true variance over time.

We assume the data are iid. Let σ2 = V(X) = E[∥X − µ∥2]. Fix a sample size n, let σ̂2
n =

1
n

∑n
i=1 ∥Xi − µ̄i−1∥2, and consider

λt =

√
c(d log(1/ϵ) + log(1/α))

σ̂2
t−1n

, ∀t ⩾ 1,
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for some constant c. Here we define σ̂2
0 = 1. Our goal is to show that there exists a c such that

√
nWn,

where Wn is the width of the empirical-Bernstein interval in Theorem E.2, converges almost surely to the
quantity σ

1−ϵ

√
2d log(1/ϵ) + 2 log(1/α). Our proof follows similar steps to Waudby-Smith and Ramdas (2023,

Appendix E.2) who prove the result in the scalar setting. Most of the relevant mechanics still go through,
however.

We build up to the result via a sequence of lemmas.

Lemma E.3. σ̂2
n converges to σ2 almost surely.

Proof. Decompose σ̂2
n as follows:

σ̂2
n = 1

n

n∑
i=1

∥Xi − µ̄i−1∥2 = 1
n

n∑
i=1

∥Xi − µ+ µ− µ̄i−1∥2

= 1
n

n∑
i=1

∥Xi − µ∥2 + 2
n

n∑
i=1

⟨Xi − µ, µ− µ̄i−1⟩ + 1
n

n∑
i=1

∥µ− µ̄i−1∥2
. (57)

Now, by the SLLN, the first sum converges to σ2 almost surely. As for the second sum, write∣∣∣∣∣ 2n
n∑
i=1

⟨Xi − µ, µ− µ̄i−1⟩

∣∣∣∣∣ ⩽ 2
n

n∑
i=1

∥Xi − µ∥∥µ− µ̄i−1∥ ⩽
2
n

n∑
i=1

∥µ− µ̄i−1∥ a.s.−−→ 0,

where almost sure convergence follows from combining the following three observations: (i) If the absolute
value of a sequence converges to zero, then the sequence converges to zero; (ii) If a sequence converges to a
value, then its partial sums converge to that value; (iii) µ̄i−1 converges to µ a.s., so by continuous mapping
theorem ∥µ− µ̄i−1∥ a.s−−→ 0. The third sum in (57) converges almost surely to 0 for the same reason. This
completes the proof.

Lemma E.4.
∑
i⩽n ψE(λi)∥Xi − µ̄i−1∥2 converges to c

2 (d log(1/ϵ) + log(1/α)) almost surely.

Proof. Define the function ψH(λi) = λ2
i /8. The “H” stands for Hoeffding, and the notation is borrowed from

Howard et al. (2020). Now, Waudby-Smith and Ramdas (2023) demonstrate that ψE(λ)
4ψH (λi) → 1 as λ → 0.

Therefore, we can write ψE(λi)/ψH(λi) = 4 + 4vi where vi → 0 as i → ∞, since λi
a.s.−−→ 0. Furthermore, by

Lemma E.3, we can write σ2/σ̂2
n = 1 + un for some un

a.s.−−→ 0. Therefore,
n∑
i=1

ψE(λi)∥Xi − µ̄i−1∥2 =
n∑
i=1

ψE(λi)
ψH(λi)

ψH(λi)∥Xi − µ̄i−1∥2

= 1
2

n∑
i=1

λ2
i ∥Xi − µ̄i−1∥2(1 + vi)

= c(d log(1/ϵ) + log(1/α))
2n

n∑
i=1

∥Xi − µ̄i−1∥2

σ̂2
i

(1 + vi)

= c(d log(1/ϵ) + log(1/α))
2n

n∑
i=1

∥Xi − µ̄i−1∥2

σ2︸ ︷︷ ︸
:=Ki

(1 + ui)(1 + vi).

Write (1 + ui)(1 + vi) = 1 + wi where wi
a.s.−−→ 0. Then, the above sum becomes

n∑
i=1

Ki(1 + wi) = c(d log(1/ϵ) + log(1/α))
2σ2

{
1
n

n∑
i=1

∥Xi − µ̄i−1∥2(1 + wi)
}

= c(d log(1/ϵ) + log(1/α))
2σ2

{
σ̂2
n + σ̂2

nwi
}
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a.s.−−→ c(d log(1/ϵ) + log(1/α))
2 ,

since σ̂2
n

a.s.−−→ σ2 by Lemma E.3 and wi
a.s.−−→ 0.

Lemma E.5. 1√
n

∑
i⩽n λi converges to

√
c(d log(1/ϵ)+log(1/α))

σ2 almost surely.

Proof. Via similar reasoning as above, we can write σ/σ̂i → 1 +ui for some ui
a.s.−−→ 0. (Here we’ve employed

the continuous mapping theorem on Lemma E.3.) Therefore,

1√
n

n∑
i=1

λi = 1√
n

n∑
i=1

√
c(d log(1/ϵ) + log(1/α))

σ̂2
i−1n

=
√
c(d log(1/ϵ) + log(1/α))

nσ

n∑
i=1

√
σ2

σ̂2
i−1

a.s.−−→
√
c(d log(1/ϵ) + log(1/α))

σ2 ,

where we used the fact that if a sequence converges to a value then so too do its partial sums.

Now, let

Wn :=
∑
i⩽t ψE(λi)∥Xi − µ̄i−1∥2

(1 − ϵ)
∑
i⩽t λi

+
d log(1/ϵ) + log 1

α

(1 − ϵ)
∑
i⩽t λi

, (58)

be the width of our CI in Theorem E.2. We have

√
nWn =

∑
i⩽t ψE(λi)∥Xi − µ̄i−1∥2 + d log(1/ϵ) + log 1

α
1√
n

(1 − ϵ)
∑
i⩽t λi

a.s.−−→
c
2 (d log(1/ϵ) + log(1/α)) + d log(1/ϵ) + log(1/α)

(1 − ϵ)
√
c(d log(1/ϵ) + log(1/α))/σ2

=
σ
√
d log(1/ϵ) + log(1/α)

1 − ϵ

(√
c

2 + 1√
c

)
.

Minimizing over c gives c = 2, in which case we obtain
√
nWn

a.s.−−→ σ

1 − ϵ

√
2d log(1/ϵ) + log(1/α).
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