
Diffusion Models Demand Contrastive Guidance
for Adversarial Purification to Advance

Mingyuan Bai * 1 Wei Huang * 2 Tenghui Li * 3 1 4 Andong Wang 1 Junbin Gao 5 Cesar F Caiafa 1 6 Qibin Zhao 1

Abstract

In adversarial defense, adversarial purification can
be viewed as a special generation task with the
purpose to remove adversarial attacks and dif-
fusion models excel in adversarial purification
for their strong generative power. With different
predetermined generation requirements, various
types of guidance have been proposed, but few
of them focuses on adversarial purification. In
this work, we propose to guide diffusion mod-
els for adversarial purification using contrastive
guidance. We theoretically derive the proper
noise level added in the forward process diffu-
sion models for adversarial purification from a
feature learning perspective. For the reverse pro-
cess, it is implied that the role of contrastive loss
guidance is to facilitate the evolution towards the
signal direction. From the theoretical findings
and implications, we design the forward process
with the proper amount of Gaussian noise added
and the reverse process with the gradient of con-
trastive loss as the guidance of diffusion models
for adversarial purification. Empirically, exten-
sive experiments on CIFAR-10, CIFAR-100, the
German Traffic Sign Recognition Benchmark and
ImageNet datasets with ResNet and WideResNet
classifiers show that our method outperforms most
of current adversarial training and adversarial pu-
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rification methods by a large improvement.

1. Introduction
Adversarial defense has been an important method to resist
adversarial attack to deep learning models. These adversar-
ial attacks are imperceptible by human sense but can cause
deep neural networks (DNNs) to misclassify adversarially
attacked data. To address this vulnerability of DNNs, many
adversarial defense methods were designed, such as adver-
sarial training (Madry et al., 2018), certified methods for
training (Gowal et al., 2019; Zhang et al., 2018; 2020a; Fro-
sio & Kautz, 2023), and adversarial purification (Shi et al.,
2021; Yoon et al., 2021; Nie et al., 2022; Wang et al., 2022;
Xiao et al., 2023). Adversarial training and certified meth-
ods for training rely on generated attacks, as a result, they
can only defend against such attacks. For unseen threats,
there are adversarial training methods designed to defend
against them, however, at the cost of significant clean accu-
racy decay (Laidlaw et al., 2021; Dolatabadi et al., 2022).

Instead, adversarial purification methods do not assume the
form of threat models and do not require retraining the clas-
sifier. For example, given adversarial examples, they use
generative models to generate clean examples such that they
are correctly classified (Samangouei et al., 2018; Hill et al.,
2021; Shi et al., 2021; Yoon et al., 2021). In recent years,
diffusion models have been attracting increasing attention
for their strong generative power and achieve the state-of-
the-art performance for adversarial purification (Nie et al.,
2022; Xiao et al., 2023). Besides, it is still a relatively new
topic for leveraging diffusion models to conduct adversarial
purification. DiffPure (Nie et al., 2022) firstly diffuses the
adversarial example with a small amount of Gaussian noise
followed by a reverse diffusion process, and hence removes
the adversarial attack, meanwhile preserving the semantic
information. However, theoretical studies in DiffPure show
that its upper bound of difference between purified data and
clean data is larger than the adversarial attacks. Also, its
purified data is still relatively indistinguishable among differ-
ent classes under common pretrained classifiers. A guided
diffusion model for adversarial purification uses the differ-
ence between adversarial example and purified example as
a guidance (Wang et al., 2022) during purifying the adver-
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sarial examples. Hence they provided a balance between
retaining image semantics and destroying adversarial per-
turbations, achieving high standard and robust accuracy for
adversarial purification. Other diffusion models undertake
purification against backdoor attacks instead of adversarial
attacks and also obtain impressive purification results (Shi
et al., 2023).

Many diffusion models for image generation are designed
with different guidance to accomplish different goals rather
than adversarial purification. Classifier guided diffusion
models (Dhariwal & Nichol, 2021) synthesize data by max-
imizing the joint probability of the synthesized data and the
predetermined labels. Diffusion models with classifier-free
guidance (Ho & Salimans, 2022) generate data conditioned
on the predetermined labels or the text conditions. How-
ever, for adversarial purification, label and text condition
information is unavailable. Lu et al. (2023) find that en-
ergy guidance for diffusion models can lead the data to fit
a desired data distribution Also, they proved that using a
contrastive loss to learn the energy provides the guarantee
to converge to the exact guidance under unlimited model
capacity and data samples.

In our work, inspired by Lu et al. (2023)’s theoretical find-
ings, we aim to answer the question: if we consider the
adversarial examples distribution as the given data distribu-
tion, can contrastive guidance guide this distribution to the
clean data distribution for diffusion models on adversarial
purification?

To this end, we theoretically study the diffusion models for
adversarial purification and the effect of contrastive guid-
ance on it. Accordingly, we propose contrastive guided
diffusion models for adversarial purification. In the for-
ward diffusion process, we gradually add Gaussian noises
to adversarial examples, until adversarial attacks are dif-
fused towards Gaussian noises, but label semantics are not
destroyed. Experiments on CIFAR-10, CIFAR-100, Ger-
man Traffic Sign Recognition Benchmark (GTSRB) and
ImageNet datasets demonstrate that our proposed guided
diffusion model for adversarial purification outperforms
most baseline models against various adversarial attacks.
Our contributions are as follows.

1. We theoretically derive the proper Gaussian noise level
in the forward process and find the possible role of
contrastive loss guidance: to facilitate the evolution
towards the signal direction in the reverse process of
diffusion models for adversarial purification.

2. We propose contrastive guided diffusion models for
adversarial purification accordingly.

3. We conduct extensive experiments which show diffu-
sion models demand contrastive guidance for adversar-
ial purification to advance in three common benchmark

datasets against various adversarial attacks.

2. Related Work
To resist adversarial attacks, there have been a large number
of past attempts. Adversarial training (Madry et al., 2018)
synthesize adversarial attacks and train DNNs to produce
correct output. However, they are only effective to adversar-
ial attacks which the DNNs are trained with. Unseen threats
can be defended by some adversarial training methods, but
incurring significant drop in performance (Laidlaw et al.,
2021; Dolatabadi et al., 2022). Certified methods for train-
ing provide estimates of correct output bounds used for train-
ing (Gowal et al., 2019; Zhang et al., 2018; 2020a; Frosio &
Kautz, 2023), but these methods also cannot defend against
unseen threats. Unlike those aforementioned adversarial
defense methods, adversarial purification methods remove
adversarial attacks from data without assumptions on the
threat models or downstream classifiers (Samangouei et al.,
2018; Hill et al., 2021; Shi et al., 2021; Yoon et al., 2021;
Nie et al., 2022; Xiao et al., 2023). They purify adversarial
examples as data preprocessing in a plug-n-play manner be-
fore classification so as to make classifiers produce correct
outputs. Generative adversarial networks (GANs) (Saman-
gouei et al., 2018) were trained to generate clean data given
adversarial examples. Energy-based models (EBMs) are
trained with Markov-Chain Monte-Carlo (Hill et al., 2021)
or denoising score matching (Yoon et al., 2021) to gener-
ate clean data, given adversarial examples. However, the
performance of GAN-based or EBM-based adversarial pu-
rification models is constrained by their generative power.
Due to the powerfulness of diffusion models on data gener-
ation, they came onto the stage for adversarial purification
and showed significant improvement on performance. Diff-
Pure (Nie et al., 2022) imposes a time condition to diffusion
models for adversarial purification, where the number of
steps to add Gaussian noises is selected to both diffuse ad-
versarial attacks and preserve semantics in data. DensePure
(Xiao et al., 2023) did one step more by improving certified
robustness of classifiers. Other than adversarial attacks, dif-
fusion models also succeed in purifying backdoor attacked
examples (Shi et al., 2023).

In order to generate data with different purposes, a number
of guidance for diffusion models are proposed. Classifier
guidance for diffusion models (Dhariwal & Nichol, 2021)
guides the whole generation process using the classification
result from a classifier, i.e., maximizing the joint probability
of the predicted semantic label and the generated image.
Classifier-free guided diffusion models (Ho & Salimans,
2022) simply generate data using a combination of condi-
tional diffusion model and a jointly trained unconditional
diffusion model, given the conditions such as labels or text
conditions which are not available for adversarial purifi-
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cation tasks. Loss guidance (Song et al., 2023) samples
different losses using Monte Carlo methods to reduce the
approximation bias. Universal guidance (Bansal et al., 2024)
controls diffusion models by arbitrary guidance modalities
without retraining use-specific components. Lu et al. (2023)
proved that energy guidance can guide a distribution to the
desired distribution. Furthermore, energy learned using the
contrastive loss is guaranteed to converge to the exact guid-
ance, assuming unlimited model capacity and data samples.
For adversarial training, Ouyang et al. (2023) theoretically
and empirically demonstrated that data synthesized by con-
trastive guided diffusion models can enhance adversarial
training.

3. Theoretical Study
In this section, we delve into theoretical findings from a fea-
ture learning perspective, focusing on a well-regarded distri-
bution model celebrated for its simplicity and effectiveness
in theoretically understanding intricate learning behaviors
(Schmidt et al., 2018; Augustin et al., 2020). Initially, we
illustrate how DiffPure (Nie et al., 2022) effectively purifies
adversarial perturbations to enhance robust classification,
followed by a demonstration of how a properly trained con-
trastive guidance can further boost robust accuracy.

For theoretical analysis, we adopt a high dimension setting
and take the Gaussian mixture model as the data genera-
tion model. Lemma 3.1 first provides several concentration
bounds for the inner product between noise and signal vec-
tors. The main idea is that, the noise vector and signal vector
is almost orthogonal to each other. Furthermore, we exam-
ine that is well-trained linear network can tell the true label
of data example generated from Gaussian mixture model
in Lemma 3.2. Later, we introduce an adversarial attack,
which is verified to be effective by Lemma 3.3. Finally,
the effectiveness of DiffPure method is demonstrated by
Theorem 3.4. In the theorem, we find that reverse diffusion
has a potential to recover the predicted label against attack.

3.1. Data and Adversarial Model

Consider a binary classification task where the input-label
pair (x, y) ∈ Rd × {−1, 1} follows the Gaussian mixture
model (Schmidt et al., 2018):

x = yµ+ ξ, (1)

where the label y is uniformly distributed on the set {−1, 1},
while µ ∈ Rd represents a fixed ‘feature’ component. Ad-
ditionally, ξ follows a normal distribution N (0, Id) and
represents the random ‘noise’ component, which is indepen-
dent of the label y.

Suppose we are given n i.i.d. training examples
{(xi, yi)}ni=1 drawn from model (1), i.e., xi = yiµ +

ξi, ∀i ∈ [n]. Following Schmidt et al. (2018), we adopt a
linear classifier ŷ(x) := sign (⟨θ∗,x⟩) parameterized by

θ∗ =
1

n

n∑
i=1

yixi ∈ Rd. (2)

In the high-dimensional setting, it can be verified that each
training data (xi, yi) can be correctly classified with high
probability due to the concentration of measure.

For self-contained purpose, we introduce the following
Lemma.

Lemma 3.1 (Lemma B.2 in Cao et al. (2022), and
Lemma B.3 in Kou et al. (2023)). Suppose that δ > 0,
d = Ω(log(4n/δ)) and {ξi}ni=1 ⊂ Rd are the random

‘noise’ components corresponding to the input training data
{xi}ni=1. Then it holds with probability at least 1− δ that

d/2 ≤ ∥ξi∥22 ≤ 3d/2,

|⟨ξi, ξi′⟩| ≤ 2
√

d log(4n2/δ),

|⟨ξi,µ⟩| ≤ ∥µ∥2
√
2 log(8n/δ),

for all i, i′ ∈ [n].

Based on the above Lemma, we can have our first claim,

Lemma 3.2. Suppose that δ > 0 and d > 16(n −
1)2 log(4n2/δ) and ∥µ∥2 > 2

√
2 log(8n/δ), then with

probability at least 1− δ, it follows that

sign(⟨xi,θ
∗⟩) = sign(yi).

The proof of Lemma 3.2 can be found in Appendix A.

Now we consider an adversarial example xa
i = xi + δi.

By Lemma 3.1, we find that the ℓ2 norm of noise vector
ξi is about

√
d. Thus we define a critical quantity named

signal-to-noise ration as SNR = ∥µ∥2√
d

. Then we claim that,
the following

δi = −32nSNR2yi

n∑
i′=1

yi′ξi′ (3)

is a successful attack, as summarized in the following
Lemma.

Lemma 3.3. Assuming the conditions specified in
Lemma 3.2 are satisfied, and if nSNR > 1 and
d > max{8n∥µ∥2

√
2 log(8n/δ), 64n2 log(4n2/δ)}, then

it can be established with probability at least 1− δ that

sign(⟨xa
i ,θ

∗⟩) = −sign(yi).

The proof of Lemma 3.3 can be found in Appendix A. In
Lemma 3.3, we adopt the high dimension setting, which
ensures that attack on noise vector can efficiently reverse the
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prediction sign of trained network. On the other hand, the
condition nSNR > 1 implies that the number of training
sample and signal-to-noise are large enough such that the
diffusion method has the potential to recover the prediction
against attack examples.

3.2. A Feature Learning Justification for DiffPure

Given a data point x randomly generated from the Gaussian
mixture model (1), we consider a forward diffusion process
starting with x(0) = x. Suppose the probability density of
x(t) conditioned on x(0) at time t is given as follows:

qt(x(t)|x(0)) = N (x(t)|αtx(0), σ
2
t I). (4)

Then, the corresponding diffusion process in reverse-time
can be given as (Nie et al., 2022):

dx(t)=
[
f(t)x(t)− 1

2
g2(t)∇x(t) log qt(x(t))

]
dt+g(t)dω,

where functions f(t) = d logαt

dt , g2(t) = dσ2
t

dt − 2d logαt

dt σ2
t ,

∇x(t) log qt(x(t)) is the score function (Song et al., 2021),
and ω(t) is a standard d-dimensional reverse-time Wiener
process. Given the forward process (4), we can deduce that
the marginal distribution qt is also a mixture of Gaussians:

qt(x(t)) =

∫
qt(x(t)|x(0))q(x(0))dx(0)

=
1

2

∫
(2πσ2

t )
− d

2 exp

(
− (x(t)− αtx(0))

2

2σ2
t

)
(2π)−

d
2

exp

(
− (x(0)− µ)2

2

)
dx(0) +

1

2

∫
dx(0)(2πσ2

t )
− d

2

exp

(
− (x(t)− αtx(0))

2

2σ2
t

)
(2π)−

d
2 exp

(
− (x(0) + µ)2

2

)
=
∑
y=±1

1

2
N (x(t)|αtyµ, (σ

2
t + α2

t )I).

The score function can be expressed as follows,

∇x(t) log qt(x(t))

=

∑
y=±1

1
2N (x(t)|αtyµ, (σ

2
t + α2

t )I)(αtyµ− x(t))

(σ2
t + αt)

∑
y=±1

1
2N (x(t)|αtyµ, (σ2

t + α2
t )I)

= (tanh(⟨x(t), α2
tµ⟩)αtµ− x(t))/(σ2

t + α2
t ).

In practice, obtaining an exact expression of the score func-
tion is not feasible, and researchers typically train a proxy
model s(·) to estimate the score function (Song et al., 2021),
which is then used in the backward process. To thoroughly
simplify the theoretical derivation and focus our efforts on
uncovering the working mechanism of DiffPure (Nie et al.,
2022), we have made a mild assumption that the score func-
tion is exactly estimated via a pre-trained model s(·), i.e.,
s(x(t)) = ∇x(t) log qt(x(t)).

Furthermore, we consider αt = exp(−t), and σ2
t =

1− exp(−2t). In this case, σ2
t + α2

t = 1. Similarly a
setting has been adopted in (Shah et al., 2023). Then we
can conclude that f(t) = −1 and g2(t) = 2. Then we find
that the reverse diffusion process with an exactly estimated
score function can be simplified as:

dx(t) = [f(t)x(t)− 1

2
g2(t)s(x(t))]dt+ g(t)dω(t)

= − tanh(⟨x(t), αtµ⟩)αtµdt+
√
2dω(t).

The reverse process starts from t∗. By a choosing a proper
t∗, the following theorem states that DiffPure is able to
recover the sign of encoder on the attacked examples.

Theorem 3.4. Assuming that t∗ ≤ log( ∥µ∥2

20
√

2 log(8n/δ)
),

∥µ∥2 ≥ 4
√

2n log(8n/δ) and nSNR2 ≤ 1

16
√

2 log(8n/δ)
,

then with probability at least 1 − δ, the recovered x(0)
example stratifies

yi⟨x(0)),µ⟩ ≤ exp(−1

2
) +

1

2
exp(−t∗)∥µ∥22

− exp(−1

2
exp(−2∥µ∥22t∗)).

The proof of Theorem 3.4 can be found in Appendix A.

3.3. Enhanced Purification Via Contrastive Guidance

Theorem 3.4 states that with a proper choice of t∗, the
example recovered by reverse diffusion has a potential to be
fixed. However, it requires carefully choice of the diffusion
time t∗. A natural question is that can we design a guidance
that can enhance reverse diffusion such that the learning
direction in the signal vector (µ) can be boosted? Inspired
by (Ouyang et al., 2023; Lu et al., 2023), we introduce the
contrastive guidance. Following we provide an analysis for
the effect of contrastive guidance. Suppose that F (x(t)) =
⟨µ,x(t)⟩. Here we assume a well-learned encoder F (x(t)).
Then the contrastive guidance follows:

∇x(t) log

(
eF (x(t))⊤F (x(t))∑M

j=1 e
F (x(t))⊤F (xj(t))

)

= ∇x(t) log

(
e⟨µ,x(t)⟩2∑M

j=1 e
⟨µ,x(t)⟩⟨µ,xj(t)⟩

)

= 2⟨x(t),µ⟩µ−
∑

j⟨xj(t),µ⟩e⟨µ,x(t)⟩⟨µ,xj(t)⟩∑
j e

⟨µ,x(t)⟩⟨µ,xj(t)⟩
µ. (5)

It is found that constrative loss guidance (5), we observe
that can further boost the learning in the signal direction.
First, the term induced from positive pair 2⟨x(t),µ⟩µ is the
direction of yiµ. Second, the negative pair term provides
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Algorithm 1 Adversarial Purification in Contrastive Guided
Diffusion Models

Require: each minibatch of m adversarial examples
X a = {xa,(i)}mi=1, temperature τ , time t = t∗, guidance
strength hyperparameter λ, time step ∆t
for i = 1 to m do
x(t∗)(i) =

√
αt∗x

a,(i) +
√
1− αt∗ϵϵϵ

end for
while t ≥ 0 do

for i = 1 to m do
Choose x(t)

(i)
p as the positive pair of x(t)(i)

Choose x(t)
(i)
n

1 as the negative pair of x(t)(i)

ϵ̃θ(x(t)
(i))=ϵθ(x(t)

(i))+λ∇x(t)ℓ(x(t)a,x(t)p; τ)
x(t) = SDEINT(x(t∗), frev, grev, ω̄ωω, t

∗, t)
t = t−∆t

end for
end while
Return purified data X0 = {x̂(0)(i) = x(0)(i)}mi=1

guidance in the direction of −yjµ. The negative pair implies
that yj = −yi, leading the same guidance direction as the
positive pair. Together, the constrastive loss guidance boosts
the learning in direction of signal during reverse diffusion
process.

4. Contrastive Guided Diffusion Models for
Adversarial Purification

The theoretical studies in Section 3 unveil that diffusion
models require proper noise levels (t∗) for forward pro-
cesses and contrastive guidance for reverse processes to
successfully purify adversarial examples. Hence, we pro-
pose Contrastive Guided Diffusion Models for Adversarial
Purification.

4.1. Forward Diffusion Process for Adversarial
Purification

Here we consider the continuous-time diffusion models
where t ∈ [0, 1] (Song et al., 2021). The forward diffusion
process for adversarial purification is a forward SDE. It
gradually adds Gaussian noises to adversarial examples
xa ∈ Rd from t = 0 to t = 1, i.e., x(0) = xa, and diffuses
adversarial attacks into Gaussian noises. During the forward
process, the clean data distribution p(x) and the adversarial
sample distribution q(x) become closer, i.e., ∂DKL(pt∥qt)

∂t ≤
0, where the equality occurs only at pt = qt as Gaussian
noises, in other words, t = 1. Following DiffPure (Nie et al.,
2022) and the findings in theoretical studies in Section 3.2,
we aim to stop the forward process at t∗ ∈ (0, 1) to obtain
a balance between removing local adversarial attacks and
preserving global label semantics, as in Eq. (6). Then we
stochastically solve for the purified data x̂(0) in the reverse

process starting from x(t∗) which can be expressed as

x(t∗) =
√
αt∗x

a +
√
1− αt∗ϵϵϵ, (6)

where αt∗ =
∏t∗

0 αt, αt ∈ (0, 1), and ϵϵϵ ∼ N (000, Id).
Hence, the classification results are more likely to be cor-
rect, compared to the case where the reverse process starts
at x(1) ∼ N (0, Id).

4.2. Contrastive Guided Diffusion Model for
Adversarial Purification

The theoretical studies in Section 3.3 prove that contrastive
guidance is able to enhance the diffusion models for adver-
sarial purification. Hence we propose to guide the diffusion
model for adversarial purification using contrastive guid-
ance.

As aforementioned in Section 4.1, the reverse process starts
from x(t∗). Hence the whole reverse process is formulated
as follows.

x̂(0) = SDEINT(x(t∗), frev, grev, ω̄ωω, t
∗, 0), (7)

where SDEINT is a reverse SDE solver (Nie et al., 2022)
with the initial value x(t∗), the drift coefficient frev, the
diffusion coefficient grev, the Wiener process ω̄ωω, the initial
time t∗ and the end time 0. Here the drift coefficient and the
diffusion coefficient are

frev(x, t) := −1

2
σ(t)[x+ 2ϵ̃θ(x, t)], grev(t) =

√
σ(t),

where ϵ̃θ(x, t) is the approximated score function ϵθ(x, t)
plus the contrastive guidance. In specific, ϵ̃θ(x(t, ω̄ωω), t) is

ϵ̃θ(x(t)) =ϵθ(x(t)) + λ∇x(t)ℓ(x(t)a,x(t)p; τ), (8)

where λ is the hyperparameter representing the strength of
guidance. ∇x(t)ℓ(x(t)a,x(t)p; τ) is the contrastive guid-
ance, where ℓ(x(t)a,x(t)p; τ) is the contrastive loss. x(t)a
is the anchor at each time t. x(t)p is its positive pair. There
are a number of methods to select positive pairs. For ex-
ample, for a minibatch Xt = {x(t)i}mi=1 at the time t, the
positive pair of an anchor x(t)(i)a , i = 1, 2, · · · ,m at the
time t is x(t+∆t)(i) from last time t+∆t in the reverse
process. We refer the audience to Appendix C.1 in Ouyang
et al. (2023)’s work for the selection strategies. τ is the tem-
perature which is a hyperparameter. From the theoretical
findings in Section 3.3 and the theoretical results by Lu et al.
(2023), we first adopt the InfoNCE loss for ℓ(x(t),x(t)p; τ),
because it is derived to be the theoretical guaranteed loss to
enhance the learning direction of signal. We also adopt the
hard negative mining loss for ℓ(x(t)a,x(t)p; τ) because of
its empirical powerfulness (Ouyang et al., 2023).
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In specific, at time t, the InfoNCE loss is

ℓInfoNCE(x(t)a,x(t)p; τ)

= − log

(
gτ (x(t)a,x(t)p)∑m

k=1 1k ̸=agτ (x(t)a,x(t)k)

)
,

(9)

where m is the batch size. gτ (x(t)a,x(t)p; τ) is to measure
the similarity between the anchor x(t)a and its positive pair
x(t)p, where gτ (x,x

′; τ) = exp(F (x)⊤F (x′)/τ). F (·) is
a feature extractor. Similarly, gτ (x(t)a,x(t)k) measures
the similarity between the anchor x(t)a and its negative
pair x(t)k, k ̸= a. Here, we consider the negative pairs as
all the samples in the same minibatch and at the time step
t as the anchor x(t)a, which are not x(t)a. Overall, the
InfoNCE loss aims to pull the positive pairs close and push
the negative pairs away.

However, not all the samples except x(t)a are true nega-
tives. In order to resolve this issue, the hard negative mining
(HNM) criterion (Chuang et al., 2020; Robinson et al., 2021)
can be applied to construct the contrastive guidance as

ℓHNM(x(t)a,x(t)p; τ)

= − log

(
gτ (x(t)a,x(t)p)

gτ (x(t)a,x(t)p) +
m
τ−hτ (xa)

)
,

(10)

where τ− is the probability of observing other classes than
that of x(t)a. hτ (xa) measures the similarity between dif-
ferent the anchor and the negative pair as

hτ (x(t)a) = Ex(t)n∼qβ [gτ (x(t)a,x(t)n)]

− τ+Ev∼q+β
[gτ (x(t)a,v)],

where qβ is an unnormalized von Mises-Fisher distribution
with the mean direction F (x). The concentration parameter
β controls the hardness of negative mining. Approximation
of qβ and q+β can be achieved by Monte-Carlo importance
sampling. For more details of the HNM loss, we kindly
refer to work by Chuang et al. (2020) and Robinson et al.
(2021). Note that HNM loss is still an unsupervised con-
trastive learning loss function. When we conduct guidance
with it for adversarial purification, there is no label input.
The HNM loss emphasizes on negative pairs whose repre-
sentations are currently very similar. Hence, it can enhance
the dissimilarity between the samples from different classes
in the feature space.

It should be noted that the feature extractor F (·) requires
training on each minibatch {x(i)}mi=1 in the training set.
Also, Contrastive Guided Diffusion Model for Adversarial
Purification does not require any change of the original
training process of diffusion models.

5. Experiments
We investigate the empirical performance of Contrastive
Guided Diffusion Model for Adversarial Purification on four

benchmark datasets: CIFAR-10, CIFAR-100, the German
Traffic Sign Recognition Benchmark (GTSRB) (Houben
et al., 2013) and ImageNet datasets. We conduct our exper-
iments against various adversarial attacks, compared with
the adversarial defense methods with the state-of-the-art
performance listed on RobustBench (Croce et al., 2020)
and the other adversarial purification methods (Nie et al.,
2022). The results demonstrate that the performance of
Contrastive Guided Diffusion Model for Adversarial Pu-
rification excels the current state-of-the-art performance
on the CIFAR-10 dataset. It also outperforms the baseline
method DiffPure with the current state-of-the-art perfor-
mance on the GTSRB dataset. On the CIFAR-100 dataset,
we run ablation studies to scrutinize the effect of different
sampling methods and the effect of contrastive guidance
on diffusion models for adversarial purification. The code
is available at https://github.com/tenghuilee/
ContrastDiffPurification. The results show sig-
nificant improvement on adversarial purification using con-
trastive guidance for diffusion models. The details are as
follows.

5.1. Experimental Settings

Datasets As aforementioned, we apply four benchmark
datasets: CIFAR-10, CIFAR-100, GTSRB and ImageNet
datasets, for experiments. For the CIFAR-10 dataset
(Krizhevsky et al., 2009), we follow Nie et al. (2022)’s
settings to select data for evaluation. Note that because of
the computational power constraint, we present the results
from the randomly selected subsets of the dataset in Sec-
tion 5.2. We also use the same setting on the CIFAR-100
(Krizhevsky et al., 2009) dataset for evaluation. The GT-
SRB dataset contains 39,252 training images in 43 classes
and 12,629 images for testing, and the image sizes vary
between 15× 15 to 250× 250. For the results from the full
datasets, we kindly refer the audience to Appendices. In
the experiment, all images from the first three datasets are
reshaped to 32× 32.

Classifiers, evaluation metrics and attacks We use differ-
ent classifiers to evaluate the performance of our method
against baselines on different datasets. For the CIFAR-10
dataset, we test the performance of all the baselines and
Contrastive Guided Diffusion Model for Purification on
WideResNet-28-10, WideResNet-70-16 and ResNet-50 as
in RobustBench and Nie et al. (2022)’s work. The perfor-
mance on the GTSRB dataset is examined on ResNet-18.
In terms of the CIFAR-100 dataset, the ablation studies are
conducted on WideResNet-28-10. These classifiers produce
the standard accuracy and the robust accuracy. The standard
accuracy measures the performance of these adversarial de-
fense methods on test sets for all three datasets, whereas the
robust accuracy measures their performance on these test
sets adversarial attacked by AutoAttack and BPDA+EOT
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attacks. In specific, we present our experimental results on
strong adaptive attacks in this section, where AutoAttack
ℓ∞ and ℓ2 threat models are applied. In order to address the
stochasticity in diffusion models and denoising processes,
we also apply expectation of time (EOT) to AutoAttack.
Also, we apply the BPDA+EOT attack (Hill et al., 2021)
for a fair comparison with other adversarial purification
methods, including DiffPure (Nie et al., 2022).

5.2. Experimental Results

The overall experimental results on CIFAR-10 and GTSRB
datasets demonstrate the improved adversarial defense us-
ing Contrastive Guided Diffusion Model for Adversarial
Purification. On the CIFAR-10 dataset, we evaluate the
performance of our method against adversarial training
methods with the state-of-the-art performance listed on Ro-
bustBench and DiffPure in Tables 1 and 2 on AutoAttack
ℓ∞(ϵ = 8/255) and ℓ2(ϵ = 0.5) threat models, respec-
tively. The results in Tables 1 indicate that our method
outperforms adversarial training methods and DiffPure with
the state-of-the-art performance defending against the Au-
toAttack ℓ∞ threat model (ϵ = 8/255) evaluated by clas-
sifiers WideResNet-28-10 and WideResNet-70-16 on the
robust accuracy by 12.17% and 11.52%, respectively. The
standard accuracy of our method is also comparable with
the state-of-the-art performance. Table 2 shows that our
method can still achieve better performance than adversar-
ial training methods and DiffPure with the state-of-the-art
performance against ℓ2 threat model (ϵ = 0.5) evaluated
by WideResNet-28-10 by 0.7% in terms of the robust accu-
racy, with comparable performance to the state-of-the-art
on standard accuracy. It indicates that the trade-off between
the standard accuracy and the robust accuracy still is still
unsolved by our methods and remains an interesting topic
to study in the future work. Besides, for the same threat
model, our method obtains higher robust accuracy and com-
parable standard accuracy to DiffPure, but lower standard
accuracy and comparable robust accuracy to the state-of-the-
art performance by adversarial training methods. It seems
that our method tends to prefer stronger attacks and weaker
classifiers. As adversarial training methods have seen ad-
versarial attacks during training, it is impressive that our
method outperform them without knowing the adversarial
attacks beforehand. This is also validated in Table 3.

In Table 4, comparing with other adversarial purifica-
tion methods evaluated against BPDA+EOT attack on
WideResNet-28-10, the performance of our method is higher
than the state-of-the-art performance by DiffPure in terms of
the robust accuracy, at a little cost on the standard accuracy.
It is consistent with our previous findings on the standard-
accuracy-robust-accuracy trade-off and the preference of
our method from results in Tables 1 and 2.

Table 1. Standard accuracy and robust accuracy against AutoAt-
tack ℓ∞ (ϵ = 8/255) on CIFAR-10, obtained by WideResNet-28-
10 and WideResNet-70-16. (t∗ = 0.1 for diffusion models)

Method Extra Data Standard Acc Robust Acc
WideResNet-28-10
(Zhang et al., 2020b) ✓ 89.36 59.96

(Wu et al., 2020) ✓ 88.25 62.11
(Gowal et al., 2020) ✓ 89.48 62.70

(Cui et al., 2023) ✓ 92.16 67.73
(Wang et al., 2023) ✗ 92.44 67.31

(Xu et al., 2023) ✗ 93.69 63.89
(Wu et al., 2020) ✗ 85.36 59.18

(Rebuffi et al., 2021) ✗ 87.33 61.72
(Gowal et al., 2021) ✗ 87.50 65.24

(Nie et al., 2022) ✗ 89.02 70.64
Ours ✗ 91.41 82.81

WideResNet-70-16
(Gowal et al., 2020) ✓ 91.10 66.02
(Rebuffi et al., 2021) ✓ 92.23 68.56
(Gowal et al., 2020) ✗ 85.29 59.57
(Rebuffi et al., 2021) ✗ 88.54 64.46
(Gowal et al., 2021) ✗ 88.74 66.60
(Wang et al., 2023) ✗ 93.25 70.69
(Nie et al., 2022) ✗ 90.07 71.29

Ours ✗ 92.97 82.81

Table 2. Standard accuracy and robust accuracy against AutoAt-
tack ℓ2 (ϵ = 0.5) on CIFAR-10, obtained by different classifier
architectures. (t∗ = 0.075 for diffusion models, and∗methods use
WideResNet-34-10, with the same width but more layers than the
default one.)

Method Extra Data Standard Acc Robust Acc
WideResNet-28-10

(Augustin et al., 2020)∗ ✓ 92.23 77.93
(Rony et al., 2019) ✗ 89.05 66.41
(Ding et al., 2020) ✗ 88.02 67.77
(Wu et al., 2020)∗ ✗ 88.51 72.85

(Sehwag et al., 2021)∗ ✗ 90.31 75.39
(Rebuffi et al., 2021) ✗ 91.79 78.32
(Wang et al., 2023) ✗ 95.16 83.68
(Nie et al., 2022) ✗ 91.03 78.58

Ours ✗ 93.75 84.38
WideResNet-70-16
(Gowal et al., 2020) ✓ 94.74 79.88
(Rebuffi et al., 2021) ✓ 95.74 81.44
(Gowal et al., 2020) ✗ 90.90 74.03
(Rebuffi et al., 2021) ✗ 92.41 80.86
(Wang et al., 2023) ✗ 95.54 84.97
(Nie et al., 2022) ✗ 92.68 80.60

Ours ✗ 90.63 82.82

Furthermore, we also scrutinize the performance on the
GTSRB dataset against ℓ∞(ϵ = 8/255) and ℓ∞(ϵ = 0.5)
threat models with AutoAttack, and the ℓ∞(ϵ = 8/255)
threat model with BPDA+EOT attack. According to results
in Table 5, our method outperforms DiffPure (Nie et al.,
2022) for both standard accuracy and robust accuracy by
1.56% and 27.34%, respectively against AutoAttacks with
ℓ∞ perturbations, ϵ = 8/255. For AutoAttack with ℓ2 per-
turbations, ϵ = 0.5, our method achieves higher robust
accuracy than DiffPure by 11.97% with 3.13% lower stan-
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Table 3. Standard accuracy and robust accuracies against unseen threat models on ResNet-50 for CIFAR-10. We keep the same evaluation
settings with (Laidlaw et al., 2021), where the attack bounds are ϵ = 8/255 for AutoAttack ℓ∞, and ϵ = 1 for AutoAttack ℓ2. The
baseline results are reported from the respective papers. (t∗ = 0.125 for diffusion models)

Method Standard Acc Robust Acc
ℓ∞ ℓ2

Adv. Training with ℓ∞ (Laidlaw et al., 2021) 86.8 49.00 19.20
Adv. Training with ℓ2 (Laidlaw et al., 2021) 85.0 39.5 47.80

PAT-self (Laidlaw et al., 2021) 82.40 30.20 34.90
ADV. CRAIG (Dolatabadi et al., 2022) 83.20 40.00 33.90

ADV. GRADMATCH (Dolatabadi et al., 2022) 83.10 39.20 34.10
DIFFPURE (Nie et al., 2022) 88.20 70.00 70.90

Ours 96.36 73.44 79.12
Table 4. Comparison with different adversarial purification methods using BPDA+EOT with ℓ∞ perturbations. We evaluate on
WideResNet-28-10 for CIFAR-10, and keep the experimental settings the same with (Hill et al., 2021), where ϵ = 8/255. (∗The
purification is actually a variant of the LD sampling.)

Method Purification Standard Acc Robust Acc
(Song et al., 2018) Gibbs Update 95.00 9.00
(Yang et al., 2019) Mask+Recon. 94.00 15.00
(Hill et al., 2021) EBM+LD 84.12 54.90

(Yoon et al., 2021) DSM+LD∗ 86.14 70.01
(Nie et al., 2022) (t∗ = 0.075) Diffusion 91.03 77.43

(Nie et al., 2022) (t∗ = 0.1) Diffusion 89.02 81.40
Ours (t∗ = 0.1) Diffusion 92.61 81.94

Table 5. Standard accuracy and robust accuracy on the GTSRB
dataset evaluated on ResNet-18. (a) We evaluate using AutoAttack
with ℓ∞ perturbations, where ϵ = 8/255. (b) We evaluate using
AutoAttack with ℓ2 perturbations with ϵ = 0.5. (c) We evaluate us-
ing BPDA+EOT attack with ℓ∞ perturbations where ϵ = 8/255.

(a) AutoAttack with ℓ∞ perturbations, ϵ = 8/255

Method Standard Acc Robust Acc
(Nie et al., 2022) (t∗ = 0.0.075) 77.35 42.19

Ours (t∗ = 0.075) 78.91 69.53
(b) AutoAttack with ℓ2 perturbations, ϵ = 0.5

Method Standard Acc Robust Acc
(Nie et al., 2022) (t∗ = 0.075) 87.50 59.38

Ours (t∗ = 0.075) 84.37 71.35
(c) BPDA+EOT with ℓ∞ perturbations, ϵ = 8/255

Method Standard Acc Robust Acc
(Nie et al., 2022) (t∗ = 0.075) 80.00 61.43

Ours (t∗ = 0.075) 80.00 61.25

dard accuracy. Against BPDA+EOT with ℓ∞ perturbations
with ϵ = 8/255, our method has the same standard accu-
racy with DiffPure, with 0.18% lower robust accuracy than
DiffPure. This minor inferiority may be due to randomness.
These results show that our method can significantly resist
strong adaptive adversarial attacks. For weaker attacks, it
can still at least achieve similar performance without the
guidance. The ablation studies provide a deeper analysis on
the effect of contrastive guidance of diffusion models for
adversarial purification.

5.3. Ablation Studies

We embark on an exploration through ablation studies of
our proposed method, examining its performance variations
under distinct diffusion types. Additionally, we extend our

Table 6. Standard accuracy and robust accuracy against AutoAt-
tack ℓ∞ (ϵ = 8/255), obtained by WideResNet-28-10. (t∗ = 0.1)

(a) Comparison of diffusion type under CIFAR-10
Method Standard Acc Robust Acc
VP-SDE 91.67 82.81
VP-ODE 93.75 69.79

(b) Comparison of diffusion under CIFAR-100
Method Standard Acc Robust Acc

Diffusion 62.50 8.60
Diffusion + Contrastive 57.82 24.22

analysis to another dataset, evaluating the model’s robust-
ness against ℓ∞ perturbations (ϵ = 8/255) using the Au-
toAttack technique. The experiments are conducted with
the WideResNet-28-10 architecture, employing (t∗ = 0.1).

Table 6a assesses the influence of various diffusion types,
VP-SDE and VP-ODE, on our method in CIFAR-10. VP-
SDE exhibits higher standard accuracy, while VP-ODE ex-
cels in robust accuracy. Comparisons on CIFAR-100, de-
picted in Table 6b, reveal the baseline method’s superior
standard accuracy, yet the proposed method outperforms in
robust accuracy. For the results on the ImageNet dataset, we
kindly refer the audience to Appendices.

6. Conclusion and Discussion
This research addresses the critical challenges in adversarial
purification. We introduce Contrastive Guided Diffusion
Model for Adversarial Purification. This framework effec-
tively neutralizes adversarial attacks while preserving image
semantics. Supported by the rigorous theory and extensive
experiments, our approach excels, especially against strong
adaptive adversarial threats. This work not only overcomes
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existing limitations but also paves the way for innovative
and practical advancements in adversarial defense.

Limitations While our approach excels against various
adversarial threats, it may require further optimization to
handle high-dimensional data efficiently. Additionally, the
computational cost of our method, particularly in resource-
constrained environments, remains a potential limitation.

Impact Statement
This paper presents work whose goal is to advance the field
of adversarial defense. There are many potential societal
and ethical consequences of our work, such as enhancing
technological guarantees for social risk management on
citizens’ asset safety.
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A. Proofs
Proof of Lemma 3.2. The Lemma can be proved by showing yi⟨xi,θ

∗⟩ > 0. By the definition of the model θ∗, we have

yi⟨xi,θ
∗⟩ =⟨µ+ yiξi,µ+

1

n

n∑
i′=1

yi′ξi′⟩

=⟨µ,µ⟩+ yi⟨ξi,µ⟩+
1

n

n∑
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yi′⟨µ, ξi′⟩+
1

n
⟨yiξi, yiξi⟩+

1
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≥∥µ∥22 − |⟨ξi,µ⟩| −
1

n

n∑
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|⟨µ, ξi′⟩|+
1

n
∥ξi∥22 −

1

n

n∑
i′ ̸=i

|⟨ξi, ξi′⟩|.

(11)

By Lemma 3.1, we will have

yi⟨xi,θ
∗⟩ ≥∥µ∥22 − 2∥µ∥2

√
2 log(8n/δ) +

d

2n
− 2

n− 1

n

√
d log(4n2/δ) > 0,

according to the given conditions.

Proof of Lemma 3.3. We prove the Lemma by showing yi⟨θ∗,xa
i ⟩ < 0.
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≤ 2

(
∥µ∥22 +

1

n
∥ξi∥22

)
+

〈
µ,−32nSNR2

n∑
i′=1

yi′ξi′

〉
+

1

n

n∑
i′=1

yi′

〈
ξi′ ,−32nSNR2

n∑
i′=1

yi′ξi′

〉

≤ 2∥µ∥22 +
3d

n
+ 32n2SNR2∥µ∥2

√
2 log(8n/δ)− 32nSNR2

(
d

2
− 2n

√
d log(4n2/δ)

)
< −1

2
∥µ∥22

< 0,

where the first inequality holds due to the last line of Eq. (11), the second inequality is by Lemma 3.1 and the third inequality
is by nSNR > 1 and d > max{8n∥µ∥2

√
2 log(8n/δ), 64n2 log(4n2/δ)}.

Proof of Theorem 3.4. Define x̃(t) = x(t)−
√
2ω(t), then we find that

dx̃(t) = − tanh(⟨x̃(t) +
√
2ω(t), αtµ⟩)αtµdt.

By concentration property stated in Lemma 3.1, we know that with probability at least 1− δ,

|⟨ω(t),µ⟩| < ∥µ∥2
√

2 log(8n/δ).

Define γ(t) ≜ ⟨x̃(t),µ⟩, and ρ(t) ≜
√
2⟨ω(t),µ⟩, then we obtain,

dγ(t) = − tanh(αt(γ(t) + ρ(t)))αt∥µ∥22dt.

12
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According to the forward diffusion process, the distribution of attacked example at time t can be calculated

qt(x
a(t)) =

∫
qt(x

a(t)|xa(0))q(xa(0))dxa(0)

=
1

2

∫
(2πσ2

t )
− d

2 exp(− (xa(t)− αtx
a(0))2

2σ2
t

)(2πσ2
a)

− d
2 exp(− (xa(0)− µ)2

2σ2
a

)dxa(0)

+
1

2

∫
(2πσ2

t )
− d

2 exp(− (xa(t)− αtx
a(0))2

2σ2
t

)(2πσ2
a)

− d
2 exp(− (xa(0) + µ)2

2σ2
a

)dxa(0)

=
∑
y=±1

1

2
N (xa(t)|yiαtµ, (σ

2
t + α2

tσ
2
a)I)

with a variance constant σ2
a = 1− 64n∥µ∥22/d+ 1024n3∥µ∥42/d2. Thus, the adversarial example diffused in the forward

process at time t can be written as

xa(t) = yαtµ+ ξ̃
a
(t),

where ξ̃
a
(t) is the perturbation component satisfying ξ̃

a
(t) ∼ N (0, (σ2

t + α2
tσ

2
a)I)).

Now we choose a t∗, such that

yγ(t∗) > |ρ(t∗)|. (12)

To achieve the above requirement, we have

yγ(t∗) = ⟨αt∗µ+ yξ̃
a
(t),µ⟩

= αt∗∥µ∥22 + y⟨ξ̃
a
(t),µ⟩

≥ exp(−t∗)∥µ∥22 −
√
σ2
t + α2

tσ
2
a∥µ∥2

√
2 log(8n/δ)

≥ exp(−t∗)∥µ∥22 − [1− exp(−2t∗) + exp(−t∗)(1 + 32n
3
2 ∥µ∥22/d)]∥µ∥2

√
2 log(8n/δ)

≥ exp(−t∗)∥µ∥22 − (∥µ∥2
√

2 log(8n/δ) + 2
√
n exp(−t∗)∥µ∥2)

≥ 1

2
exp(−t∗)∥µ∥22.

Th first inequality is by Lemma 3.1, the second inequality is due to
√

x2 + y2 ≤ |x|+ |y|, and the third inequality is by
nSNR2 ≤ 1

16
√

2 log(8n/δ)
. The last inequality is by t∗ ≤ log( ∥µ∥2

4
√

2 log(8n/δ)
) and ∥µ∥2 ≥ 4

√
2n log(8n/δ).

On the other hand, by Lemma 3.1, we know

|ρ(t∗)| ≤ ∥µ∥2
√

4 log(8n/δ).

As a result, with the condition that t∗ ≤ log( ∥µ∥2

20
√

2 log(8n/δ)
), we conclude that

yγ(t∗) ≥ 5|ρ(t∗)|.

Furthermore, we consider the discrete reverse process, which leads to

γ(t− 1)− γ(t) = tanh(exp(−t)(γ(t) + ρ(t))) exp(−t)∥µ∥22.

By inequality (12), we know that, the sign of γ(t∗) + ρ(t∗) is dominated by γ(t∗). Without loss of generality, we consider

13
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yi = 1. Taking telescoping sum over t = t∗, t∗ − 1, · · · , 0 then gives

γ(0) ≤
t∗∑
t=0

tanh(exp(−t)(γ(t) + ρ(t))) exp(−t)∥µ∥22

≤
t∗∑
t=0

exp(−2t)(γ(t) + ρ(t))∥µ∥22

≤ exp(−1

2
) +

1

2
exp(−t∗)∥µ∥22 − exp(−1

2
exp(−2∥µ∥22t∗)).

B. More Experimental Results
B.1. A Discussion on Gradient of Diffusion Models Involved in Adversarial Purification

As aforementioned in Section 5.2, diffusion-based adversarial purification methods, i.e., DiffPure (Nie et al., 2022) and
our proposed model, utilize the settings on the gradient as Nie et al. (2022) for the experimental design. In other words,
the gradients of diffusion models and the gradients of classifiers are accessible to the attackers. In this section, we also
demonstrate the results from the settings where attackers cannot access gradients of the diffusion-based purifiers: DiffPure,
guided diffusion models for adversarial purification (GDMP) (Wang et al., 2022) and our proposed model in Table 7.

Table 7. Standard accuracy and robust accuracy against different attackers: AutoAttack with ℓ∞(ϵ = 8/255), AutoAttack ℓ2(ϵ = 1),
AutoAttack ℓ2(ϵ = 0.5), and the PGD+EOT attack on WideResNet-28-10, WideResNet-70-16 or ResNet-50 for the CIFAR-10 dataset,
without accesses to the gradients of diffusion-based purifiers.

t∗ ϵ Solver Attacker Classifier Purifier Standard Accuracy Robust Accuracy

100 8/255 SDE AutoAttack ℓ∞ WideResNet-28-10
DiffPure 89.32± 0.79 77.86± 0.75
GDMP 90.23± 1.94 77.80± 0.88
Ours 89.71± 0.82 77.08± 1.06

100 8/255 ODE AutoAttack ℓ∞ WideResNet-28-10 DiffPure 90.95± 0.56 67.38± 0.32
Ours 91.80± 1.05 68.36± 1.52

100 8/255 SDE AutoAttack ℓ∞ WideResNet-70-16 DiffPure 90.23± 0.28 80.21± 0.49
Ours 91.08± 0.75 79.10± 0.42

125 8/255 SDE AutoAttack ℓ∞ ResNet-50 DiffPure 87.96± 0.92 76.69± 0.91
Ours 88.35± 0.64 75.91± 0.33

125 1 SDE AutoAttack ℓ2 ResNet-50 DiffPure 88.02± 0.72 76.30± 2.08
Ours 87.04± 0.96 74.80± 0.28

75 0.5 SDE AutoAttack ℓ2 WideResNet-28-10
DiffPure 91.15± 0.33 81.84± 0.84
GDMP 91.02± 0.97 80.60± 1.44
Ours 91.21± 0.89 80.92± 1.09

75 0.5 SDE AutoAttack ℓ2 WideResNet-70-16 DiffPure 92.97± 0.28 84.05± 1.12
Ours 93.03± 0.51 83.01± 0.28

100 8/255 SDE PGD+EOT WideResNet-28-10
DiffPure 89.78± 1.30 84.44± 0.92
GDMP 89.91± 1.34 86.00± 0.51
Ours 89.78± 1.30 84.83± 0.97

In specific, we compare the performance of DiffPure in the cases where the attacker can and cannot obtain the gradients of
the purifier against the PGD+EOT attack on WideResNet-28-10 for the CIFAR-10 dataset in Table 8. The results demonstrate
that turning on the gradients of purifiers, i.e., accesses to the gradient of purifiers, can allow the attackers to attack the
purifiers as well and hence reduce the effect of the purifiers, where the standard accuracy and the robust accuracy are both
lower than the cases of no access to the gradients of purifiers.
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Table 8. Standard accuracy and robust accuracy of DiffPure with attackers having accesses or no access to the gradient of the purifier,
against the PGD+EOT attack with t∗ = 100, ϵ = 8/255, the solver as SDE, evaluated by the classifier WideResNet-28-10

Gradient On/Off Standard Accuracy Robust Accuracy
DiffPure Grad On 89.52± 1.21 81.70± 0.24
DiffPure Grad Off 89.78± 1.30 84.44± 0.92

B.2. Experimental Results on the PGD+EOT Attack

The PGD+EOT attack is recently scrutinized and identified as an effective method for measuring the robustness of purification
methods against adversarial attacks (Lee & Kim, 2023). We further investigate our proposed method against the PGD+EOT
attack, comparing with other two diffusion models for adversarial purification: DiffPure (Nie et al., 2022) and GDMP (Wang
et al., 2022) on the CIFAR-100 dataset and the ImageNet dataset in Tables 9 and 10, with the attackers having no access to
the gradients of the purifiers. For the CIFAR-10 dataset, the performance of DiffPure, GDMP and our method against the
PGD+EOT attack is presented in the last row of Table 7.

Table 9. Standard accuracy and robust accuracy of DiffPure, GDMP and our proposed method with t∗ = 100, ϵ = 8/255 and the SDE
solver, against the PGD+EOT attack without the access to the gradient of purifiers on the CIFAR-100 dataset, evaluated by the classifier
WideResNet-28-10

Method Standard Accuracy Robust Accuracy
DiffPure 50.20± 1.27 34.64± 0.09
GDMP 50.13± 1.21 34.90± 1.04
Ours 50.20± 1.27 34.70± 1.13

Table 10. Standard accuracy and robust accuracy of DiffPure, GDMP and our proposed method with t∗ = 100, ϵ = 4/255 and the SDE
solver, against the PGD+EOT attack without the access to the gradient of purifiers on the ImageNet dataset, evaluated by the classifiers
ResNet-50 and the transformer classifier xcit-small-24-p16-224 3

Classifier Method Standard Accuracy Robust Accuracy
ResNet-50 DiffPure 70.41± 0.29 42.58± 0.20
ResNet-50 GDMP 70.41± 0.29 42.58± 0.00
ResNet-50 Ours 70.41± 0.29 41.70± 0.10

xcit-small-24-p16-224 DiffPure 76.56± 0.59 55.57± 0.10
xcit-small-24-p16-224 GDMP 76.56± 0.39 55.27± 0.00
xcit-small-24-p16-224 Ours 76.56± 0.59 55.47± 0.59

B.3. Qualitative Results

Furthermore, we also qualitatively examine the performance of our proposed method to evaluate the purification result from
the human perception. We demonstrate the purification results on the ImageNet dataset in Figure 1 and the CIFAR-10 dataset
in Figure 2, against the PGD+EOT and the AutoAttack, respectively. Figures 1 and 2 indicate that our proposed method is
able to purify the attacked images successfully. The contours and the colors are well preserved in the purification results.
From human perception we can easily recognize the saliency and the label. Also, the details of the purification results are
vivid and very similar to the clean images, even for the difficult cases such as fingers, numbers and alphabetical letters.
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(a) Clean images

(b) x(t∗), t∗ = 100: Diffused adversarial examples by the PGD+EOT attack with ϵ = 4/255 for 100 steps

(c) x̂(0): Purified by DiffPure, t∗ = 100

(d) x̂(0): Purified by GDMP, t∗ = 100

(e) x̂(0): Purified by our method, t∗ = 100

Figure 1. Qualitative results evaluated on the ImageNet dataset
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(a) x(t∗): Diffused adversarial examples by Au-
toAttack ℓ∞ with ϵ = 8/255 for 100 steps

(b) Clean images (c) x̂(0): Purified by DiffPure, t∗ = 100

(d) x̂(0): Purified by GDMP, t∗ = 100 (e) x̂(0): Purified by our method, t∗ =
100

Figure 2. Qualitative results on the CIFAR-10 dataset
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