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Abstract. Due to the capability of abdominal images to accurately
represent the spatial distribution and size relationships of lesion com-
ponents in the body, precise segmentation of these images can signifi-
cantly assist doctors in diagnosing illnesses. To address issues such as
high computational resource consumption and inaccurate boundary de-
lineation, we propose a two-stage segmentation framework with multi-
scale feature fusion. This approach aims to enhance segmentation ac-
curacy while reducing computational complexity. In the initial stage, a
coarse segmentation network is employed to identify the location of seg-
mentation targets with minimal computational overhead.Subsequently,
in the second stage, we introduce a multi-scale feature fusion module
that incorporates cross-layer connectivity. This method enhances the
network’s context-awareness capabilities and improves its ability to cap-
ture boundary information of intricate medical structures. Our proposed
method has achieved notable results, with an average Dice Similarity
Coefficient (DSC) score of 85.60% and 37.26% for organs and lesions, re-
spectively, on the validation set. Additionally, the average running time
and area under the GPU memory-time curve are reported as 11 seconds
and 24,858.1 megabytes, demonstrating the efficiency and effectiveness
of our approach in both accuracy and resource utilization.

Keywords: Deep learning · Abdominal organ segmentation · Feature
fusion · Tumor segmentation

1 Introduction

Cancers affecting abdominal organs are a significant medical concern, par-
ticularly with colorectal and pancreatic malignancies ranking as the second and
third leading causes of cancer-related mortality [6]. Computed Tomography (CT)
scanning plays a crucial role in providing prognostic insights for oncological pa-
tients and remains a widely used technique for therapeutic monitoring. In both
clinical research trials and routine medical practice, the assessment of tumor
dimensions [3] and organ characteristics on CT scans often relies on manual
two-dimensional measurements, following criteria such as the Response Evalua-
tion Criteria In Solid Tumors (RECIST) guidelines [25]. However, this method
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of evaluation introduces inherent subjectivity and is susceptible to significant
inter and intra-professional variations. Furthermore, existing challenges tend to
focus predominantly on specific tumor categories, such as hepatic or renal ma-
lignancies.

Convolutional neural networks (CNNs) [1] possess the capability to autonomo-
usly acquire image features by conducting convolution operations, thereby facili-
tating automated feature extraction. Yuan et al.[27] proposed a two-branch UNet
architecture, adding a branch to the original network to learn global features.The
3D-based coarse-to-fine framework [32] enables the gradual processing of input
data at various granularity levels, progressively enhancing segmentation results
while conserving computational resources.Yuan et al.[28] designed a better com-
bination of convolutional neural network and Transformer to capture dual atten-
tion features. Complementary features were generated in the Transformer and
CNN domains. Feature fusion is crucial in medical image segmentation, as it in-
tegrates various pieces of information, addresses image complexity, and enhances
model accuracy and generalization. UNet++[31] improved skip connections by
nesting them layer and layer, and experiments on several datasets achieved per-
fect performance. FFA-Net [20] combines features from different levels, directing
the network’s attention towards more effective information. It assigns greater
weight to important features while preserving shallow features.In addition, it
also proposed skip connections[23] that can combine the original features while
recovering the resolution. Han et al.[9] utilize deep semi-supervised learning with
a precision-focused pseudo-labeling approach, effectively expanding the training
dataset for liver CT image segmentation. Achieving superior results with mini-
mal labeled data from the LiTS dataset. SS-Net[26] addresses the challenges of
semi-supervised medical image segmentation by enforcing pixel-level smoothness,
promoting inter-class separation, and achieving state-of-the-art performance on
LA and ACDC datasets. GEPS-Net[14] combines graph-enhanced segmentation
with semi-super-vised learning, notably improving pancreas segmentation on CT
scans, surpassing methods with limited data, and aiding early diagnoses and
adaptive therapy.

We intensity normalize and resample the size of the original image and
perform extensive data enhancement. Abdominal organs as well as tumors are
segmented and post-processed using a two-stage segmentation framework. The
two-stage segmentation method is used to segment 3D abdominal organs and tu-
mor images to improve accuracy, especially when dealing with complex anatom-
ical structures, the error rate can be effectively reduced by the first stage of
localization and initial segmentation, while the second stage can segment tu-
mors and organs more finely. For large datasets, this method can reduce the
computational burden and improve efficiency.

2 Method

Our proposed method is a whole-volume-based two-stage framework. Details
about the method are described as follows:
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Firstly, for the localization of organs and tumors, we adopt a lightweight
model to optimize the model with fewer parameters and computational require-
ments; Secondly, we use mixed precision training to represent the model pa-
rameters with low accuracy, which can reduce computational overhead without
significant performance loss. Finally, for duplicate inputs, cache the output re-
sults of the model to reduce duplicate calculations and improve inference speed.

2.1 Preprocessing

The proposed method includes the following pre-processing steps:

– Resize the image to a right-anterior-inferior (RAI) view.
– Remove the background (label 0) by threshold segmentation.
– Considering the memory constraints of the current training process, we re-

sampled the image to a fixed size [160, 160, 160] and applied it to coarse and
fine segmentation inputs.

– Intensity normalization: all images are cropped to [-500,500], and z-score
normalization is applied based on the mean and standard deviation of the
intensity values.

– Our framework employs a mixed-precision approach throughout the work-
flow to improve the efficiency of the training and testing procedures.

2.2 Proposed Method

Coarse 
segmentation MSFF[C1,H1,W1,D1]

[C2,H2,W2,D2]
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Fig. 1. The whole architecture of our proprosed methods. the MSFF block is the
multi-scale feature fusion block, the Mixed conv block is the hybrid convolution block
consisting of Conv-IN-Drop-ReLU, and the Res block represents the residual block.

The proposed network is shown in Fig.1. For abdominal medical images, the
anatomical structures and lesion locations are complex and variable. The varying
sizes of tumors tend to lead to category imbalance problems, and have a certain
degree of artifacts and noise. To solve this issue, we design a two-stage network
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Fig. 2. Comparison of different residual connection methods.

[32] with multi-scale feature fusion network. We first use a lightweight U-shaped
network [4] to obtain the approximate location and distribution of segmented
targets. The network input is x ∈ RB×C×H1×W1×D1 , where B denotes the size of
the batch, C denotes the number of input channels and H1×W1×D1 denotes the
size after re-sampling. After localization, Specific optimization of the segmented
target edges is performed. The network input is x ∈ RB×C×H2×W2×D2 . Impor-
tantly, we design a multi-scale feature fusion module. It is used to enhance the
important features in the encoding stage and improve the context-awareness of
the network. It can effectively reduce the loss of information and blurred edges
caused during the decoding process, thus enhancing the overall segmentation of
medical images.

2.3 Backbone network

The two-stage framework is illustrated in Fig.1. We use a coarse segmen-
tation network for initial localization of the segmentation target. As shown in
Fig.2, a 1 × 1 × 1convolution is added to the connected path of the residu-
als. Compared to the original residual connection, this solves the semantic loss
problem. In the deeper layers of the network, it can enhance the transfer and
expression of information. It is also effective in preventing the gradient from dis-
appearing. After pre-processing, the edges of the segmentation target are then
finely segmented. Different organs or structures vary greatly in shape and size.
The network channels are increased from [8,16,32,64,128] to [16,32,64,128,256]
to extract richer features. This improves the ability to accurately locate details
of segmented target edges.

Abdominal medical data [8] have differences in images due to differences
in acquisition equipment. We combine the two residual approaches in Fig.2 to
form a mixed convolution block. This block incorporates two at each layer in the
encoding stage and one at each layer in the decoding stage. We use instancenorm
to reinforce detailed features and enhance the consistency of intensity distribu-
tion within the region of interest. It reduces the impact of variability on feature
extraction and enables better learning of the image feature representation. The
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final input to the network is passed through a 1× 1× 1convolution to obtain a
segmented probability map utilizing a sigmoid function.

Loss function: Abdominal medical images face the challenges of overlapping
tissue structures and organ deformation, complicating network training. There-
fore, our loss function uses a combination of binary cross entropy (BCE) loss
and dice coefficient (Dice) loss [15]. It effectively solves the category imbalance
problem. Our loss function expression can be described as follows:

Ltotal = LBCE + LDice (1)

LBCE = − 1

N

∑
i

M∑
c=1

yic log Pic (2)

LDice = 1− 2|X ∩ Y |+ ε

|X|+ |Y |+ ε
(3)

Unlabeled data play a role in our experiments, involving the utilization of
1800 instances for inference. We divided the model training into two distinct
phases, employing partially labeled data. Subsequent to model saving, predic-
tions were applied to the entire pool of unlabeled data to generate pseudo-images
and credible scores. We selected the top fifty percent most dependable instances
during the prediction process. Furthermore, a new pseudo dataset is crafted by
amalgamating this selection with a partially labeled dataset.

However, the outcomes didn’t meet our expectations as they fell notably
short. We reverted to the fully supervised approach, which yielded a 3-5% en-
hancement compared to previous results.

Due to time and equipment constraints, we did not use untagged images.
Pseudo-labels generated by the FLARE22 winning algorithm [13] and the best-
accuracy-algorithm [22] are used during the research and exploration of the
methodology, and the segmentation of organs and tumors is performed using
the pseudo-labeled data and the data from FLARE2023.

2.4 Post-processing

Utilizing the Python connected-components-3d and fastremap3 packages
[30], we extract the largest connected component of the segmentation mask per
each class for both coarse and fine outputs, ensuring noise impact avoidance by
employing the connected component analysis and selecting the maximum con-
nected component as the final segmentation outcome.

3 Experiments

3.1 Dataset and evaluation measures

FLARE2023 is an extension of the FLARE2021 [17] and FLARE2022 [18]
challenges. This challenge aims to promote the development of universal organ
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and tumor segmentation [11] in abdominal CT scans. In FLARE2023, add the
lesion segmentation task. Different from existing tumor segmentation challenges
[3], FLARE2023 focuses on pan-cancer segmentation, which covers various ab-
dominal cancer types. The segmentation targets cover 13 organs and various
abdominal lesions. The training dataset is curated from more than 30 medical
centers under the license permission, including TCIA [5], LiTS [2], MSD [21],
KiTS [10,12], autoPET [7], TotalSegmentator [24], and AbdomenCT-1K [19].
2200 cases have partial labels and 1800 cases are unlabeled. The validation set
consists of 100 CT scans of various cancer types. The test set consists of 400 CT
scans of various cancer types. Specifically, the segmentation algorithm should
segment 13 organs (liver, spleen, pancreas, right kidney, left kidney, stomach,
gallbladder, esophagus, aorta, inferior vena cava, right adrenal gland, left adrenal
gland, and duodenum) and one tumor class with all kinds of cancer types (such as
liver cancer, kidney cancer, stomach cancer, pancreas cancer, colon cancer) in ab-
dominal CT scans. All the CT scans only have image information and the center
information is not available.The organ annotation process used ITK-SNAP [29],
and MedSAM [16].

The evaluation metrics consist of segmentation accuracy metrics and seg-
mentation efficiency metrics. The segmentation accuracy metricsconsist of two
measures: Dice Similarity Coefficient (DSC) and Normalized Surface Dice (NSD).
The segmentation efficiency metrics consist of two measures: running time (s)
and area under GPU memory-time curve (MB). All measures will be used to
compute the ranking. Moreover, the GPU memory consumption has a 4 GB
tolerance.

3.2 Implementation details

Environment settings The development environments and requirements are
presented in Table 1.

Table 1. Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz(×8)
RAM 16×4GB; 2.67MT/s
GPU (number and type) NVIDIA GeForce RTX 2080Ti 11G(×4)
CUDA version 11.6
Programming language Python 3.9
Deep learning framework Pytorch (Torch 1.13.0)

Training protocols The training protocols of the baseline method is shown in
Table 2 and Table 3
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Table 2. Training protocols.

Network initialization "he" normal initialization
Batch size 1
Patch size 160×160×160
Total epochs 200
Optimizer Adam with betas(0.9, 0.99), L2 penalty: 0.00001
Initial learning rate (lr) 0.0001
Lr decay schedule halved by 20 epochs
Training time 48 hours
Loss function Dice loss + BCE loss
Number of model parameters 28.82M
Number of flops 41.54G

Table 3. Training protocols for the refine model.

Network initialization “he" normal initialization
Batch size 1
Patch size 160×160×160
Total epochs 200
Optimizer Adam with betas(0.9, 0.99), L2 penalty: 0.00001
Initial learning rate (lr) 0.0001
Lr decay schedule halved by 20 epochs
Training time 48 hours
Number of model parameters 36.32M
Number of flops 48.14G
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4 Results and discussion

Table 4. The performance on the validation set is represented by the average values
in the table.

Target Public Validation Online Validation
DSC(%) NSD(%) DSC(%) NSD(%)

Liver 97.69±0.51 98.50±1.57 97.78 87.87
Right Kindney 91.74±6.79 91.19±8.31 90.32 84.61
Spleen 95.13±1.02 96.61±2.06 97.32 94.02
Pancreas 83.09±6.44 93.87±5.14 84.09 70.21
Aorta 94.60±1.25 96.84±1.98 91.99 87.59
Inferior vena cava 91.90±2.89 92.89±3.46 90.28 83.95
Right adrenal gland 77.96±6.91 90.09±2.45 76.46 80.36
Left adrenal gland 72.24±8.56 85.89±5.76 73.46 77.89
Gallbladder 74.02±20.45 73.09±24.56 73.73 62.93
Esophagus 74.41±15.67 85.70±19.48 71.31 62.21
Stomach 89.70±2.14 92.28±3.14 88.75 67.27
Duodenum 77.19±8.19 90.61±5.13 75.46 62.41
Left kidney 93.09±4.23 93.17±2.54 91.94 85.83
Tumor 37.26±23.14 29.09±30.41 39.94 26.47
Average 82.14±7.11 86.41±7.53 81.63 73.83

Table 5. Quantitative evaluation of segmentation efficiency in terms of the running
them and GPU memory consumption

Case ID Image Size Runnning time(s) Max GPU(MB) Total GPU(MB)
0001 (512,512,55) 5.79 1005 11145
0051 (512,512,100) 7.12 1293 10536
0017 (512,512,150) 8.41 1940 10549
0019 (512,512,215) 10.55 2138 11474
0099 (512,512,334) 13.33 2620 12965
0063 (512,512,448) 16.81 2838 12863
0048 (512,512,499) 19.22 2985 13425
0029 (512,512,554) 23.71 3241 14562

4.1 Quantitative results on validation set

Table 4 illustrates the results of this work on the validation cases whose
ground truth are publicly provided by FLARE2023. Our method performs well
in the task of segmenting multiple abdominal organs. The Dice similarity coef-
ficients (DSC) of key organs such as the liver, kidney, spleen, and aorta are all
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above 0.9, and the Normalized Surface Distance (NSDs) also remain above 0.9.
This highlights the superior ability of our method in capturing organ contours
and morphology, proving our significant advantage in organ segmentation.

Tumor segmentation presented challenges due to uncertainties in tumor
number and size, leading to recognition errors and omissions during segmenta-
tion. Consequently, the method achieved a DSC coefficient of 37.26% and an
NSD coefficient of 29.09%, highlighting room for improvement in tumor recogni-
tion and delineation.Our method fully utilizes the strategy of multi-scale feature
fusion, which is one of the keys to our success. By integrating image information
at different scales, our model can capture the details and structures of organs
more accurately. This strategy results in very satisfactory DSC and NSD values
for most organs, which is a clear indication of the advantages of our method in
segmentation tasks. Although we have achieved remarkable results, we recognize
that there is room for further improvement in the results of tumor segmenta-
tion. Table 5 presents a quantitative evaluation of runtime and GPU memory
consumption.

In our final submission, we exclusively utilized labeled data for the segmen-
tation of abdominal organs and tumors. Our segmentation approach involved
a two-stage network, which encompasses the entire segmentation process. Fur-
thermore, we conducted ablation experiments to substantiate the benefits of
employing this two-stage network. The results of our approach are presented in
Table 6.

Table 6. Ablation research in our methodology (s represents training using a single
stage network, and d represents training using a two-stage network.)

Number Organ DSC Organ NSD Tumor DSC Tumor NSD
1(s) 81.40 79.51 10.25 9.88
2(d) 86.50 90.88 37.26 29.09

4.2 Qualitative results on validation set

In Figure 3, the upper two layers (ID13 and ID81) exhibit favorable segmen-
tation, while the lower two layers (ID35 and ID51) display suboptimal segmen-
tation results. The horizontal axis represents the original image, Ground Truth,
ablation experiment outcomes, and segmentation results achieved through our
proposed method. In instances characterized by effective segmentation, the con-
tours of organs are distinctly delineated, highlighting the robust performance
of our multi-scale method during the feature recovery phase. Conversely, for
cases demonstrating inadequate segmentation, the accurate identification of or-
gan sizes poses a challenge. Specifically, organs such as the gallbladder, duode-
num, adrenal gland, and esophagus have not been precisely delineated.

Our proposed method has demonstrated effectiveness in the segmentation of
multiple abdominal organs and their associated tumors. Particularly, when con-
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Fig. 3. Visualization results for some cases.

fronted with large abdominal tumors characterized by a relatively flat contour
and a normal tumor count, our method exhibits high-performance segmentation,
achieving notable results for both organs and tumors. Acknowledging the sig-
nificance of addressing instances of segmentation failure, we delve into potential
causes, including our method’s limitation in accurately determining the number
of tumors within the abdomen. This limitation can lead to misidentification and
the overlooking of tumors. Furthermore, during the model training process, a dis-
parity arises between tumors and organs: organs typically have fixed positions
and shapes, allowing for more comprehensive feature learning, while tumors ex-
hibit diverse positions and shapes, resulting in insufficiently learned features. To
address this, we plan to enhance the model’s training frequency, aiming to attain
higher levels of segmentation accuracy.
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4.3 Segmentation efficiency results on validation set

The average running time is 11.0 s per case in inference phase, and average
used GPU memory is 2654 MB. The area under GPU memory-time curve is
24858.1 and the area under CPU utilization-time curve is 1240.5.

4.4 Limitation and future work

In our future research endeavors, we acknowledge the challenges associated
with the time-consuming and labor-intensive nature of labeling medical image
data for abdominal organ and tumor segmentation. Recognizing the limitations
of fully supervised methods, we aim to pivot towards the advancement of semi-
supervised segmentation techniques. This strategic shift involves exploring inno-
vative approaches that effectively leverage a combination of limited annotated
data and a larger pool of unlabeled data, aiming to strike a balance between
accuracy and practicality in real-world medical image processing.

To address the complexities of labeling, our research will delve into the
integration of advanced deep learning architectures and techniques, including
self-training and consistency regularization. By harnessing the power of unla-
beled data, we seek to enhance the robustness and generalization capabilities of
our segmentation model. Through these efforts, our objective is to contribute
significantly to the field of medical image processing, offering more accurate and
efficient solutions for the segmentation of abdominal organs and tumors.

5 Conclusion

In this paper, our proposed network shows excellent efficacy in abdominal
medical image segmentation. Through extensive experiments, we have verified
the effectiveness of two-stage segmentation. Particularly, ours have achieved im-
pressive outcomes when segmenting larger organs, and they’ve shown even more
promising results in the context of segmenting smaller tissues. However, in the
case of organ tumors, there is still a relatively long way to go.

Acknowledgements The authors of this paper declare that the segmentation
method they implemented for participation in the FLARE 2023 challenge has not
used any pre-trained models nor additional datasets other than those provided
by the organizers. The proposed solution is fully automatic without any manual
intervention.
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