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ABSTRACT

In efforts to bypass computationally-expensive density functional theory (DFT)
calculations for energy minimization and structure relaxation, rapid progress in
the development of machine learning force fields (MLFF) and more robust models
that adhere to quantum chemistry/physical paradigms and constraints have been
realized. However, most research to date involves energy predictions in a static
frame only (i.e., given a specific atomic configuration, predict the energy of the
current or final instance), which neglects intermediary physical insight-providing
contexts. In this work, we developed RelaxNet, a dynamics-aware, equivariant
deep learning model that leverages neural ordinary differential equations (neu-
ral ODEs) and message passing neural networks (MPNNs) for predicting the
energy relaxation landscape between the initial unrelaxed structure and final re-
laxed structure for the first time. From just the initial structure, which is often
the configuration that is fed into DFT simulations, we can accurately recover the
energy/forces for the entire trajectory at a competitive prediction accuracy. We
further provide extensive insights on the use of implicit vs. explicit latent embed-
ding evolution schemes to offer perspectives on optimal methods for future works
integrating expensive graph-based neural networks and neural ODEs.

1 INTRODUCTION

Density functional theory (DFT) simulations are long-standing prerequisites for most conventional
atomistic simulation methods (e.g., Grand Canonical Monte Carlo, molecular dynamics) that require
force field inputs. DFT can effectively optimize an unrelaxed structure to a more stable configura-
tion by minimizing the potential energy landscape as guided by the forces acting on each atom in
the structure. However, DFT is computationally-expensive and often exhibit slow convergence, es-
pecially for large/complex systems. There is also a growing need for adaptable and scalable force
fields that can easily extend to different molecular structure groups (e.g., metal-based compounds
vs. inorganic molecules). To bypass these time-consuming energy-based methods and address these
point, machine-learned force fields (MLFF), which can be computed using surrogate models, have
been proposed as a viable method of obtaining efficiently-computed atomic interaction parameters
with DFT-level accuracy (Botu et al.; Chmiela et al. (a;c); Unke et al.). These models generally
emphasize representation learning, specifically developing adequate architectures and features that
can capture the underlying latent physics and quantum mechanics principles that are intrinsic to
these molecular systems. While there are many advances in this direction, there is currently no work
devoted to expanding these concepts towards dynamics-level frameworks. The ability to model the
DFT relaxation trajectory from a structure’s initial unrelaxed state to its final relaxed state, for exam-
ple, can be valuable. Most of the existing research focuses on static, single-frame energy and force
field predictions, which limits the scope of understanding how a structure evolves towards equilib-
rium. Traditional one-to-one structure–property mappings can be useful for obtaining the energy at
a very specific given state (but provides little information on the equilibrium) or for predicting final
states given the initial states (but lacks information on the intermediate states).

To model these dynamics, a framework that can inherently learn the derivatives and vector fields
of the system, like neural ordinary differential equations (ODEs), would be ideal. Neural ODEs,
however, can be time-consuming and memory-intensive, especially when large networks, like graph-
based models, are used as the ODE backbone, since this method requires numerical integration
evaluation at each solver step. The intermediate states are usually stored as well, which could
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similarly blow up memory usage. Thus, we need to either (1) develop an efficient, yet sufficiently
expressive, neural representation that can be updated in each ODE step, or (2) reformulate how the
latent dynamics are updated within the model. In this work, we explore both options in depth, which
can help inform appropriate model selection in the future. We bridge these primary knowledge gaps
by introducing RelaxNet, a fully-equivariant, neural ODE-based model that can learn energies and
force fields at the intermediate and final states from only the initial state. We also note that RelaxNet
can be used to aid existing DFT efforts by predicting near-equilibrium states, which can serve as
a starting point for DFT simulations, thus reducing the expected convergence time (compared to
starting from the initial state). As the first trajectory-learning work in the MLFF field, this method
can contribute greatly to advancing equivariant ODE-based models in addition to their applications
in scientific domains.

To summarize, this work makes the following key contributions:

1. We propose a new physics-informed modeling framework to predict the relaxation trajec-
tory, for the first time, based on energy and dynamics-conserving principles.

2. We develop RelaxNet, a fully-equivariant neural ODE model that is capable of learning
smooth surrogate dynamics exhibited in DFT relaxation. Provided only the initial unre-
laxed atomic configuration, the model can predict the energies and forces for n frames of
the trajectory at the competitive accuracies demonstrated by other state-of-the-art models.

3. We analyzed the effects of using implicit vs. explicit latent embedding evolution in neural
ODEs, which can inform future relaxation trajectory prediction works that marry equivari-
ant graph-based and ODE-based neural networks.

2 RELATED WORK

Equivariant graph neural networks. Since a crystal structure can be defined as an undirected
graph, a graph neural network (GNN) can incorporate spatial information in the learning of local
atomic properties and their interactions. Thus, GNNs are effective message passing-based frame-
works that can allow for high-quality molecular structure representations. A graph, G = (V,E),
can be deconstructed into nodes, vi ∈ V , and edges, eij ∈ E. Additional node- (h - e.g., electroneg-
ativity, atomic number) or edge-based (r - e.g., bond distance) features can be imposed. A general
GNN workflow can be outlined in Eqs. (1a) and (1b), where m is the message used to update the
nodal representation, σa is an aggregative operation, ϕm is the message passing function, and ϕu is
a generic update function.

mij = σa

(
ϕm(h

(l)
i ,h

(l)
j , rij)

)
,∀j ∈ N (i) (1a)

h
(l+1)
i = ϕu

(
h
(l)
i ,mij

)
(1b)

Depending on the feature representation methods and message passing layers, different graph trans-
formations can yield different predictions. This is nonideal for anisotropic predictions (e.g., forces),
thus motivating the need for equivariant models. Specifically, the energy and forces of the molecu-
lar structure should be conserved and consistent after applying translational (Eq. (2a)) and rotational
(Eq. (2b), where S is a rotational group function) transformations.

E(r) = E(r+∆x) (2a)
E(r) = S(G(r)) (2b)

Several methods of establishing equivariance in graph-based networks have been proposed. NequIP
(Batzner et al.), for example, uses E(3)-equivariant convolutions to describe geometric tensor inter-
actions. These convolution filters are based on learnable radial functions and spherical harmonics
(to achieve rotational invariance). Other works have extended equivariance to an E(n)-space, as
proposed by Satorras et al. (EGNN) and Mao et al. (ENINet), which ensures invariance with respect
to translational, rotational, and reflective operations. In the former work, spherical harmonics were
not used; instead, equivariant graph convolution layers were established with only distance-based
inputs. Likewise, in the latter study, equivariant vectorial representations were introduced using
directional message passing via many-body tensor representation (MBTR).

Energy and force field prediction. Naturally, these equivariant models can be extended to
periodicity-dependent applications, like molecular modeling and DFT. In one such case, symmetric
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gradient domain machine learning (sGDML) (Chmiela et al. (b)) model has been used to reproduce
global potential energy surfaces (PES) for molecules with a few dozen atoms. Other works like
DeepEF (Wu et al.) and DeePMD (Wang et al.) can predict energy/forces via an atomic self-attentive
model coupled with a geometric optimizer (in the former case) and deep, rotationally-invariant neu-
ral network (in the latter case). Research efforts have also explored the use of genetic/evolutionary
algorithms (Bin Faheem et al.) and KNN/random forest regressors (Nakata & Bai) for obtaining
optimized force field parameters. In recent years, many studies have developed more robust ML
frameworks for modeling quantum interactions and predicting energy (e.g., internal energy, atom-
ization energy, in addition to other thermodynamic properties (e.g., enthalpy, Gibbs free energy,
using the QM9 database, which features small, organic molecules. SchNet (Schütt et al.), for exam-
ple, introduced continuous-filter convolutional neural networks, which more-accurately models local
correlations, that allows for non-discretized PES reconstruction. In 2020, DimeNet (Gasteiger et al.
(b)) (and later, DimeNet++ (Gasteiger et al. (a))) established directional message passing, which
embeds messages passed rather than the atoms themselves. Later in 2023, Allegro (Musaelian et al.)
presented a locally-equivariant deep neural network that doesn’t use atom-centered message passing.
Chen & Ong also developed M3GNET, which is a universal interatomic potential that incorporates
three-body effects, unlike earlier models (e.g., CGCNN) that only consider pairwise interactions. Fi-
nally, there is ALIGNN (Choudhary & DeCost), a GNN-based model that performs message passing
on the interatomic bond graph and line graph corresponding to bond angles.

Molecular structure relaxation. Earlier works on structure relaxation have also leveraged machine
learning methods to obtain or accelerate the search for stable crystal configurations, although the
discipline is currently not as well-explored as general force field prediction. In one such study, an it-
erative active learning approach can be used alongside machine-learning interatomic potentials (e.g.,
moment tensor potentials (MTPs)) to construct interatomic interaction models, thereby facilitating
rapid crystal structure prediction (Podryabinkin et al.). Another study combined finetuned-MLFF
and machine-learning surrogate models for learning reconstruction motifs and optimizing initial
sampling structures to achieve energy-minimized structures, which can assist in point defect predic-
tions (Mosquera-Lois et al.). Similarly, the introduction of DeepRelax (Yang et al.), a non-iterative
equivariant graph neural network (EGNN)-based generative model that can predict relaxation quan-
tities, has enabled low-energy crystal determination.

3 BACKGROUND & PRELIMINARIES

Energy minimization and force field calculations. For a given potential energy surface (PES),
which can be defined by the total potential energy of a system (that is a function of the atomic
coordinates, r = {r1, r2, ..., rN} ∈ R3N ), we can minimize this energy, E = E(r), to achieve
the most stable molecular configuration. To enforce energy conservation and directly couple energy
and force, we define the force acting on each atom in the x, y, z-directions by taking the negative
gradient of energy with respect to position, as shown in Eq. (3). By jointly considering energy, force,
and atomic coordinates, we can ensure physical consistency and allow the model to learn dynamic
updates that mirror common iterative techniques, like Velocity Verlet and quasi-Newton algorithms.

F⃗ (r) = −∇rE(r) ⇒ F⃗i(r) = −∂E(r)/∂ri for i = 1, ..., 3N (3)

Modeling smooth surrogate relaxation dynamics. Neural ODEs can be used to capture the contin-
uous, physics-based relaxation dynamics via hidden state evolution, as generally defined in Eqs. (4a)
and (4b). The evolution of the latent state s(t) at pseudotime t is determined by an ODE, in which
the governing dynamics are parameterized by a neural network f . A visualization of the relaxation
trajectory is shown in Figure 1.

ds(t)

dt
= f(s(t), t; θp) (4a)

s(T ) = s(0) +

∫ T

0

f(s(t), t; θp)dt (4b)

For physical systems, however, the ODE system (shown below), in its simplest form, can
be defined as a function of the position (r(t)) and velocity (u(t)), like in Newton’s second
law. In this case, the force (F ) is derived from energy, which is a learnable neural network.
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Figure 1: An overview visualization of
the relaxation trajectory from the initial
unrelaxed state to final relaxed state, as
governed by forces (and structure-level
energy minimization).

d

dt

[
r(t)

u(t)

]
=

[
u(t)

1
mF (r(t))

]
It should also be noted that DFT time, in this context,
is not real physical time, rather a pseudotime (similar
to those in score-based generative and normalizing flow
models). Since we are observing the problem from an
optimization standpoint, quasi-Newton methods with ar-
tificial timesteps should suffice as long as the natural or-
der of the relaxation trajectory is preserved. The learnable
network should intrinsically learn the surrogate progres-
sion rule (i.e., surrogate dynamic) to equilibrium, since
force is still evaluated at each step.

4 METHODS

4.1 DATA

The dataset was derived from JARVIS DFT (3D) database, which contains 33,473 unique crys-
tal structures. However, after data processing, only 28,342 samples was used for training. From
the vasprun.xml file of each structure, we extracted the atomic energy and per-atom forces
(at different timesteps of the energy minimization process), their corresponding structures (x, y, z-
coordinates), and the atomic numbers. We can also extract the total charges from the OUTCAR
file. Finally, we can retrieve the adjacency/connectivity matrix of each structure via crystallographic
(.cif) files. The structural information, atomic number, and coordination number will define the
input features, and the energy/forces will constitute the outputs. Unlike the QM9 database, which
has organic structures exhibiting only 5 unique elements and made up of less than 30 atoms, the
JARVIS DFT database features structures with 86 distinct elements, including metals, and a maxi-
mum of 96 atoms. The data distribution for both datasets can be found in Figure A.1.

4.2 ENFORCING EQUIVARIANCE

Spherical harmonics. To establish equivariance and maintain translational/rotational invariance,
explicit cartesian inputs should be avoided. Instead, we can map the cartesian space onto a spherical
surface, which can help establish equivariance while also maintaining the flexibility of point inputs.
Spherical harmonic expansion, for example, can be used to enforce rotational invariance, since it
is constituted by orthonormal integration over all angles. Spherical harmonics, Y (l)

m (θ, φ), form
basis functions for angular-dependent models (and follows Wigner D-matrices under rotation) by
encoding the angular position of the node, and by extension, the global rotational symmetries.

The spherical harmonics are given by Eq. (5), where N (l)
m is the normalization constant that enforces

orthonormality, exp(imφ) is the azimuthal component, and P
(l)
m (cos θ) are the Legendre polynomi-

als. Here, θ is the polar angle/colatitude, defined as θ = arccos(z/r), ϕ = arctan(y/x), l is the
orbital angular momentum quantum number, and m is the magnetic quantum number (−l ≤ m ≤ l).
The quantum numbers ultimately dictate the complexity of the spherical harmonic embeddings.

Y (l)
m (θ, φ) =

∑
m

N (l)
m exp(imφ)P (l)

m (cos θ) (5)

Linking spherical Bessel functions and spherical harmonics expansion. To incorporate local,
relative spatial information (e.g., distance), we can expand the spherical harmonics to include a
radial coefficient, c(l)m (r). By using relative displacement, translational invariance can also be pre-
served. This term can be expressed using (1) gaussian radial basis functions (RBFs), defined as
c
(l)
m (r) = exp(−β(r − r0)

2), (2) polynomial basis functions (which can also be used as an enve-
lope function for radial functions to increase the general expressivity of the representation), and (3)
spherical Bessel functions, which can be used to capture wave-like properties as commonly seen
in quantum mechanical systems, like in the Schrödinger equation (defined in Eq. (6a) for Bessel
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function of the first kind). RBFs alone are not as robust for molecular systems, since they can only
approximate, rather than fully capture, the oscillatory and decaying effects inherent to atomistic
simulations. Additionally, RBFs do not abide by orthogonality, unlike spherical Bessel functions.
The full spherical harmonics expansion (Eq. (6b)) considers both angular and radial information.

c(l)m (r) =
√
π/2rJl+1/2(r) (6a)

f(r, θ, φ) =

lmax∑
l=0

l∑
m=−1

c(l)m (r)Y (l)
m (θ, φ) (6b)

4.3 RELAXNET ARCHITECTURE

The primary inputs to RelaxNet are the invariant node features described in Section 4.1 and the
transformed radial features described in Section 4.2. The overall network can be found in Figure 2.

Interaction layer. The atomic interactions can be encoded with the interaction layer (DTNN mod-
ule), which is comprised of a GNN for capturing pairwise interactions and a MPNN (denoted as
TripletMPNN) for higher-order, three-body interactions. The angles are computed for each three-
atom system and are cosine-transformed and passed through a zonal spherical harmonics function
(which neglects dihedral effects). These angular embeddings are concatenated with the bond dis-
tances and spherical harmonics-expanded radial features, and will serve as inputs to the two MLP
blocks, MLPs and MLPv , which will yield scalar and vector messages, respectively. These scalar
messages are responsible for updating the existing node features. The outputs of the MLPv block
will be multiplied with an orthogonal basis set, B, which is constructed with the Gram-Schmidt
algorithm, and are then aggregated on a per-node level. The outputs from the mixed vector em-
bedding layers, MLPm, can be multiplied with the aggregated embeddings and added to the gated
vector embeddings (calculated from MLPg) to get the updated vector features. Similarly, the posi-
tions/coordinates can be updated by multiplying the outputs from the MLPc block with the direction
unit vectors and subsequently adding them to the original position. The embeddings from each
DTNN layer in the encoder block will be updated and concatenated to make up the final embedding.

Figure 2: The RelaxNet architecture leverages a neural ODE wrapper to evolve the surrogate dy-
namics involved in DFT relaxation via either implicit or explicit latent embedding update steps.
The latent embeddings, h, are computed from the encoder block, which is made up of DTNN layers
with residual connections. The DTNN layer is comprised of TripletMPNN layers and a pairwise
GNN. The dotted boxes/arrows indicate variables/blocks that can be excluded (vector messages, v)
or interchanged (h updates) in the overall model.

Neural ODE. We initialize the neural ODE with the states x(0) and u(0), where x(0) is the initial
unrelaxed position and u(0) is a learned (initial velocity) embedding from the spherical harmonics-
expanded edge features for the initial structure. The encoder is used to produce interaction-based
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embeddings based on the position of the atoms at each pseudotime step, and are passed to an atten-
tion block. Finally, we pass these scalar embeddings to a MLP block to get the per-structure energy,
after which the per-atom forces can be computed by taking the gradient of the energy with respect to
the position of each atom. We can then update the surrogate dynamics states by setting dx/dt = u
and du/dt = F̂ /m, where m is the atomic mass. For the ODE solver, we used a rk4 fixed step
solver with a relative tolerance of rtol=1e-3 and an absolute tolerance of atol=1e-3.

Implicit vs. explicit latent embedding evolution. We experimented with two different methods
of latent embedding updates. When the latent embeddings evolve implicitly (i.e., the interaction
embedding is not an initialized state for the neural ODE), the latent variable, h, is recomputed for
each evolved positional state, x(t). On the contrary, the h for explicit latent embedding evolution is
established as an initial state (denoted as h(0)), and is calculated using the same encoding block (but
at the initial unrelaxed position) and updated via a MLP for each pseudotime step.

4.4 TRAINING

Loss function. The model is directly supervised on several types of losses, including the per-
structure (1) energy (E) and (2) energy landscape’s monotonicity, and the per-atom (3) forces (F ),
(4) displacement (x), and (5) directions. Here, t is the frame number in a trajectory with a total
of T frames, s is the sample number in a batch with S structures, and N is the number of atoms
in the system. Loss terms 1, 3, and 4 simply ensure that the predicted values (e.g., ŷ) are close
to their ground-truth values (e.g., y), while loss term 2 enforces a smooth energy function and a
monotonically-decreasing energy throughout the relaxation trajectory. Finally, loss term 5, modeled
by cosine similarity, imposes a stricter alignment between the true and predicted directions. The loss
function (Eq. (7)) is defined as the following, where λ represents the weight for each loss term.

L =
λ1

T · S

T∑
t=1

S∑
s=1

∣∣Et,s − Êt,s

∣∣+ λ2

T (S − 1)

T∑
t=1

S−1∑
s=1

ReLU
(
Êt,s+1 − Êt,s

)
+

λ3

T · S · 3N

T∑
t=1

S∑
s=1

3N∑
i=1

(
Ft,s,i − F̂t,s,i

)2
+

λ4

T · S · 3N

T∑
t=1

S∑
s=1

3N∑
i=1

(
xt,s,i − x̂t,s,i

)2
+ λ5

∑
i∈M(1− cos θi)∥∆xi∥∑

i∈M ∥∆xi∥+ δ
, where x = xtf − xt0 and cos θi =

xi

∥∆xi∥
· x̂i

∥∆x̂i∥
(7)

Hyperparameters. During training, we use an AdamW optimizer with an initial learning rate of
5e-4 (ReduceLROnPlateau scheduler with a factor of 0.8 and an 8-epoch patience) and a weight
decay of 5e-5. The model is trained over 1000 epochs with a training patience of 20 epochs to
prevent overfitting. The train, validation, and test splits are 90/5/5. We used two NVIDIA Volta
V100 GPUs (1 GPU = 32 GB), each accommodating a batch size of 64 crystals.

5 EXPERIMENTS

We performed several experiments to quantify the performance of the model. First, we establish a
baseline model with just the encoder block (no neural ODE), examining the effects of the number
of DTNN blocks on energy prediction quality. Next, we explore the effects of using implicit vs.
explicit latent embedding evolution by comparing the energy/force mean absolute error (MAE) and
average per-epoch training time for various cases by modulating the number of frames and struc-
tures. Finally, we benchmarked RelaxNet with other state-of-the-art energy prediction models and
further investigated the effects of energy/displacement on the MAEE .

5.1 BASELINE MODEL: FINAL FRAME PREDICTION

We first consider a baseline model that is constructed from only an encoder block (no neural ODE
envelope). For various training set sizes and different numbers of DTNN blocks (e.g., 2, 4), we
evaluate the MAEE at the final frame and the average time it takes the model to complete an epoch,
as tabulated in Table 1. The results indicate that using 4 DTNN blocks yields higher MAEE and
per-epoch training duration, which could be attributed to overfitting.
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Table 1: Global energy MAEs for the baseline
model (no neural ODE) predictions at the final
frame only using 2 DTNN blocks/4 DTNN blocks
for different number of samples.

S
MAEE

[eV] (↓)
Avg. time per

epoch [min] (↓)
1,000 6.362/16.947 1.24/2.10
2,000 5.824/13.103 2.32/3.74
5,000 3.436/8.606 5.39/9.38

Thus, for future experiments, we constrain our
model to only 2 DTNN blocks. The lower
memory cost and faster runtime associated with
using less DTNN blocks would also be advanta-
geous for regulating the neural ODE’s compu-
tational efficiency. We similarly observe that in
using more unique training samples, the model
can achieve better energy prediction perfor-
mance.

5.2 ABLATION STUDY: TRAJECTORY PREDICTION

In the second experiment, we examine RelaxNet’s performance by comparing the use of an implicit
vs. explicit latent embedding evolution scheme. To also better understand the effects of trajectory
length (i.e., the number of considered frames) and the number of unique crystal structures on pre-
diction quality, we performed an auxiliary ablation study. For demonstration, we used only 2 DTNN
blocks for all cases in this section. Additionally, to ensure fair comparisons for each case, we col-
lected all samples that have at least n frames in the trajectory. We then sample n equidistant frames
from the full trajectory (including the initial and final frames).

Table 2: An ablation study comparing the implicit vs. explicit latent embedding evolution cases for
different numbers of trajectory frames and unique crystal structures. The shaded rows indicate cases
where the same structures are used. The global MAEs for energy/force predictions and the average
training time per epoch are tabulated. The percent change from the baseline (2 DTNN blocks) final
frame MAEE and per-epoch runtime are reported. The percent change from the implicit all-frame
MAEE and per-epoch runtime are also noted.

n S Stot
Global MAEE

(final/all) [eV] (↓)

MAEF

(final/all)
[eV/Å] (↓)

Avg. time per
epoch [min] (↓)

Implicit latent
embedding
evolution

3 5,000 15,000 3.670/3.671 0.0005/0.0068 133.30
5 5,000 25,000 5.053/5.042 (+47.1%) 0.0001/0.0051 293.63 (+5347.7%)

10 5,000 50,000 6.457/6.472 0.0003/0.0044 311.25
5 2,000 10,000 8.727/8.718 (+49.8%) 0.0008/0.0081 61.88 (+2567.2%)

10 1,000 10,000 5.892/5.918 (-7.4%) 0.0005/0.0120 31.16 (+2412.9%)

Explicit latent
embedding
evolution

3 5,000 15,000 2.983/3.031 (-17.4%) 0.0008/0.0031 17.95 (-86.5%)
5 5,000 25,000 2.764/2.781 (-44.8%) 0.0004/0.0025 27.50 (-90.6%)

10 5,000 50,000 2.235/2.257 (-65.1%) 0.0003/0.0023 49.84 (-84.0%)
5 2,000 10,000 4.582/4.652 (-46.6%) 0.0007/0.0043 11.34 (-81.7%)

10 1,000 10,000 4.503/4.174 (-29.4%) 0.0015/0.0108 11.54 (-63.0%)
5 24,311 121,555 2.919/2.996 0.0000/0.0005 136.80

Comparing implicit vs. explicit latent evolution methods. In Table 2, we disentangle the effects
of (1) the number of frames by using the same 5,000 structures (shaded rows) and (2) the number
of total samples in the training set. For the explicit cases, the global MAEE and per-atom MAEF

decreases as the number of frames increase for the same 5,000 unique structures, which can be at-
tributed to the intermediate frames providing more context to the model in reconstructing a smoother
relaxation trajectory. We also note that after training with the same total number of samples, Stot,
the final and aggregated MAEE is comparable for both cases, while the MAEF is higher for the
case with less unique samples but more frames, which highlights the importance of diversity and
size of the training set. On the contrary, the implicit model results reveal that MAEE increases as
more frames are used. We also want to note that despite the long training duration of each epoch, the
model converges relatively quickly (20-200 epochs), unlike other models that require 100s or 1000s
of epochs for full convergence.

From this ablation study, we demonstrate that using explicit latent embedding updates is sufficient
for obtaining full trajectory energy predictions with lower MAEE (17.4-65.1% better) and quicker
per-epoch training time (63.0-90.6% faster) than the implicit scheme. This method would also be
more suitable for large training sets.
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Baseline vs. trajectory-level prediction performance. For the same number of unique structures,
the MAEE at the final frame for the non-neural ODE (baseline) cases are 19.6-29.2% higher (com-
pared to the explicit latent embedding evolution case), highlighting the advantage of using a neural
ODE-based model with an equivariant encoder layer as the foundation. Compared to the baseline
MAEE , however, the implicit model achieves better energy predictions for the 1,000 sample case.

Per-frame MAEs. We can further break down the global energy and force errors into per-
frame and cumulative MAEs, as depicted in Figure 3, which can provide clearer insights
into the individual contributions of each state along the trajectory. In particular, we per-
formed this analysis for the implicit latent embedding case with 10 frames and 1,000 samples.

Figure 3: RelaxNet’s energy
and force prediction performance
for the implicit latent embedding
evolution/10 frame/1,000 structure
case. The (top) per-frame en-
ergy MAEs are plotted with an
inset parity plot comparing the
ground-truth and predicted ener-
gies. Similarly, the (bottom) per-
frame force MAEs and cumulative
density function of these MAEs
curves are plotted.

From the MAE vs. frame index plots, it is evident that the per-
frame energy and force MAEs decrease exponentially, with
the lowest MAEs observed at the final relaxed frame, which
is generally expected since the energy/forces decrease as the
structure approaches a more stable configuration. Similarly,
we note that the cumulative probability curve shifts to the left
for each relaxation step, indicating that there are lower er-
rors with more relaxed frames. The overall energy predictions
also show strong agreements, as indicated by the parity plot
(PCC=0.979).

5.3 BENCHMARKING

We then compared the RelaxNet model with explicit latent
embedding evolution to other state-of-the-art energy predic-
tion models (detailed in the JARVIS leaderboard from Choud-
hary et al.), like ALIGNN (Choudhary & DeCost), MatFormer
(Cui et al.), PotNet (Lin et al.), and KGCNN (Reiser et al.), as
shown in Table 3.

Table 3: Benchmarking RelaxNet with other state-of-the-art
energy prediction models.

Model S MAEE [meV/atom] (↓)
ALIGNN (all) 55,713 33.1
MatFormer (all) 55,713 32.2
potnet (all) 55,713 29.3
kgcnn coNGN (all) 55,713 29.1
kgcnn coGN (all) 55,713 27.1
RelaxNet (final/all) 24,311 17.060/24.646

Specifically, we compared the MAEE (obtained from k-fold
cross-validation on the test set) in our work for the 24,311
unique structure case. Currently, the kgcnn coGN can achieve
the lowest MAEE at 27.1 meV/atom, followed by kgcnn coNGN at 29.1 meV/atom. We can also
broadly deduce the models’ performance with other datasets. For example, M3GNET (Chen &
Ong), which is trained on the trajectory of 62,783 unique crystals (total of 187,687 samples) from
the Materials Project (MP) database, yielded a MAEE of 35 meV/atom. In the extensive bench-
marking study conducted by Choudhary & DeCost that compared the MAEE for different models
across the MP and JARVIS databases, the authors noted that the models attained higher performance
on the MP database, likely due to MP’s larger dataset and lower target energies (50% lower) for MP
structures. RelaxNet can achieve a MAEE of 17.060 (final frame) and 24.646 (all frame) meV/atom.

We want to emphasize, however, that this benchmarking study has a few qualifications. First, Re-
laxNet was trained with fewer samples overall, since the neural ODE requires exactly n frames,
which can lead to a truncated database if n > ntot (ntot = total number of frames for the structure)
or complete sample omission if n < ntot. As evident from Table 2, the MAEE (especially on a per-
atom level) generally decreases with more training samples. Second, the RelaxNet predicts the entire
trajectory energies with a single initial frame (so intermediate energy predictions are also reliant on
predicted intermediate states), while the other works predict the energies with absolute states. With
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these considerations and the benchmarking results in mind, we note that while this study does not
provide a strict one-to-one comparison, we can extrapolate that RelaxNet can achieve a relatively
competitive prediction accuracy.

5.4 EFFECTS OF ENERGY AND DISPLACEMENT ON ENERGY PREDICTION

Figure 4: The MAEE (and over-
layed KDE density) plotted against
the energy and average per-frame
displacement (xt − x0).

We can also visualize the general effect of energy and average
per-frame displacement (xt − x0) on MAEE , as outlined in
Figure 4. First, we observed that most true displacements are
concentrated between 10−3 and 10−2 Å. Second, the MAEE

decreases as the movement increases and energy magnitude
decreases. This is consistent with earlier results, such that Re-
laxNet generated better final frame predictions, which could
be attributed to the flatter energy landscape near equilibrium
(e.g., smaller gradients), hence improving final energy predic-
tions. Moreover, for higher energy magnitudes (regardless of
signs), the resulting MAEE is higher, as expected.

6 CONCLUSION

In this work, we developed RelaxNet, a surrogate dynamics-
aware neural ODE-based model with a fully-equivariant back-
bone. We demonstrated the ability to evolve this descriptive,
graph-based neural network ODE scaffold without memory
explosion and within a reasonable training time. Moreover,
unlike earlier works that predict energy/forces at static frames, our current model, for the first time,
can predict the per-structure energy and per-atom forces for the entire DFT relaxation trajectory,
provided only the initial unrelaxed frame (i.e., positions). In addition, we thoroughly explored the
effects of using implicit vs. explicit latent embedding evolution schemes via ablation studies. Af-
terwards, we benchmarked RelaxNet with other state-of-the-art force field prediction models, which
revealed the exceptional predictive capabilities of our model. To summarize, this work can ex-
pedite computationally-expensive DFT studies by (1) informing researchers on the expected final
energy/forces and (2) providing users a more equilibrated (i.e., more stable crystal configuration)
starting point for their DFT simulations.

7 LIMITATIONS & FUTURE WORKS

To our knowledge, we are the first to predict the DFT relaxation trajectory from the initial unrelaxed
state. While we were able to achieve promising results in regards to energy and force predictions, we
recognize that the model could benefit from higher computational efficiency (i.e., faster training).
There are also opportunities for extending this work to include stress prediction for the full trajectory,
since the stress can be calculated by taking the gradient of energy with respect to the strain or
lattice geometry. To achieve this, we can adapt our existing model to jointly train energy, force,
displacement, and stress. An additional state to account for the lattice dynamics in the neural ODE
may also be required. Another research direction could potentially include shifting the problem
from a predictive to a generative framework. While neural ODEs can naturally digest and learn
dynamics, they are also limited by their requirement for a specified trajectory length. Transformers
that are constrained with physics-based equations, therefore, can be a powerful alternative, since they
can generate each frame autoregressively, irrespective of trajectory length. This method can also be
more suitable for the JARVIS dataset and offer more flexibility, because the trajectory lengths for
each structure can vary widely.

By acknowledging these limitations, we highlight the large opportunity space and potential for future
exploration in relaxation trajectory research. For example, while this work is currently constrained
to JARVIS materials, it can also be extended to the biology discipline (e.g., protein folding, which
is essentially structure relaxation) to accelerate drug discovery efforts. Similarly, we can apply
these principles to other traditional atomistic simulation methods, which can significantly decrease
computational requirements and runtimes.
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Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional Message Passing for Molec-
ular Graphs, b. URL http://arxiv.org/abs/2003.03123.

Yuchao Lin, Keqiang Yan, Youzhi Luo, Yi Liu, Xiaoning Qian, and Shuiwang Ji. Efficient Ap-
proximations of Complete Interatomic Potentials for Crystal Property Prediction. URL http:
//arxiv.org/abs/2306.10045.

Jiashun Mao, Jianmin Wang, Amir Zeb, Kwang-Hwi Cho, Haiyan Jin, Jongwan Kim, Onju Lee,
Yunyun Wang, and Kyoung Tai No. Transformer-Based Molecular Generative Model for Antivi-
ral Drug Design. 64(7):2733–2745. ISSN 1549-9596. doi: 10.1021/acs.jcim.3c00536. URL
https://doi.org/10.1021/acs.jcim.3c00536.

Irea Mosquera-Lois, Seán R. Kavanagh, Alex M. Ganose, and Aron Walsh. Machine-learning
structural reconstructions for accelerated point defect calculations. 10(1):1–9. ISSN 2057-
3960. doi: 10.1038/s41524-024-01303-9. URL https://www.nature.com/articles/
s41524-024-01303-9.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atom-
istic dynamics. 14(1):579. ISSN 2041-1723. doi: 10.1038/s41467-023-36329-y. URL
https://www.nature.com/articles/s41467-023-36329-y.

Hiroya Nakata and Shandan Bai. Development of a new parameter optimization scheme for a re-
active force field based on a machine learning approach. 40(23):2000–2012. ISSN 1096-987X.
doi: 10.1002/jcc.25841. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/jcc.25841.

Evgeny V. Podryabinkin, Evgeny V. Tikhonov, Alexander V. Shapeev, and Artem R. Oganov. Accel-
erating crystal structure prediction by machine-learning interatomic potentials with active learn-
ing. 99(6):064114. doi: 10.1103/PhysRevB.99.064114. URL https://link.aps.org/
doi/10.1103/PhysRevB.99.064114.
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A APPENDIX

Figure A.1: The data distribution of the JARVIS DFT 3D database, featuring 33,000 different
molecular structures, and the QM9 database, which consists of 134,000 small organic molecules.
Only the initial and final structures’ distributions are included in both datasets.
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