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ABSTRACT

Existing post-training quantization methods for large language models (LLMs)
offer remarkable success. However, the increasingly marginal performance gains
suggest that existing quantization strategies are insufficient to support the develop-
ment of more compressed models. To inspire new directions for future research,
this paper introduces the concept of null space into LLMs quantization. We ar-
gue that the quantization error can be effectively alleviated by constraining the
post-quantization weight perturbation to lie within the null space of input activa-
tions. To prove this fresh idea, we propose an intuitive example projection method
on several PTQ baselines to validate whether the performance will be further im-
proved. Specifically, we devise an efficient and accurate null space projection
approximation tailored to the characteristics of LLMs, and then theoretically de-
rive a closed-form solution for an equivalent vector of the obtained projection
matrix to satisfy practical inference condition. When validating our method on
several milestone PTQ baselines, further performance improvements can be no-
ticed obviously, demonstrating the novel perspective of null space optimization
for LLMs quantization is effective. We view this paper the first step to alleviate
the quantization error based on the insights of null space, hoping it inspiring future
researchers to design more advanced quantization methods. Codes are available
at https://anonymous.4open.science/r/q2n-2236

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Achiam et al., 2023; Bai et al., 2023) have
demonstrated remarkable performance across various tasks in recent years. However, billions of
parameters in LLMs incurs significant storage and inference overheads. To address these issues,
quantization (Li et al., 2021; Dettmers et al., 2022; Nagel et al., 2020), which reduces memory
requirements and accelerates inference by converting high-precision values in LLMs into low-bit
representations, receives tremendous attention. Existing quantization approaches can be divided
into Quantization-aware Training (QAT) (Liu et al., 2023; Xu et al., 2024; Du et al., 2024) and
Post-training Quantization (PTQ) (Xiao et al., 2023; Lin et al., 2024; Yuan et al., 2023) according
to the pipeline. Between them, PTQ is more popular in LLM community because of its efficiency
and resource-friendliness. Currently, PTQ techniques for LLMs can achieve lossless performance at
4-bit (Frantar et al., 2022; Shao et al., 2023; Zhao et al., 2024) and high-accuracy inference at 1.61-3
bits (Chee et al., 2023; Zhao et al., 2025b; Huang et al., 2024).

Despite the development of various advanced quantization strategies, they all suffer from a shared
limitation. As known, all existing methods are uniformly motivated by the goal of minimizing quan-
tization error. For example, the weight-only quantization error is formulated by ∥WX − WqX∥22
(Zhao et al., 2025a). From a numerical perspective, regardless of how effective the quantization
method is, the error is fundamentally unavoidable. Without additional constraints, such numerical
error (W −Wq) is bound to negatively affect the final output. Recognizing this limitation, we sys-
tematically consider the following question: Given the inevitability of numerical error, is there a
way to alleviate its impact on the final quantization error?
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Aiming at this question, in this paper we propose a pioneering perspective that quantization error
can be effectively alleviated through the theoretical properties of Null Space (Coleman & Pothen,
1986; 1987; Ravfogel et al., 2020). Specifically, for weight-only quantization, we aim to prove that
as long as the weight perturbation (W −Wq) lies in the null space of the input activations, the final
quantization error will be alleviated effectively (∥(W −Wq)X∥22 ≈ 0). Here we select a straightfor-
ward method to prove this perspective: constructing an approximate projection for quantized model
that maps the numerical error into the null space. If performance enhancements appear, this insight
will be proved to be effective.

During validation, we face two main challenges. Typically, computing the null space projection
relies on SVD decomposition (Wang et al., 2024), where the left singular vectors corresponding
to zero singular values span the null space (Fang et al., 2024; Tang et al., 2025). However, the
large matrix dimensions make SVD computation extremely expensive, and the singular values of
activation matrices rarely exhibit exact zeros. To address these issues, we propose an efficient and
accurate approximation method to get the null space projection ∆ based on the Prefix-Suffix Sum
Ratio of singular values. In addition, since there only exists Wq during inference for a quantized
model, simply applying (W − Wq)∆X ≈ 0 is not practically meaningful, and storing ∆ would
incur additional memory overhead. Considering this, we reformulate the null space optimization as
solving W − αWq = (W −Wq)∆ and derive a closed-form solution for the equivalent projection
vector α, where α can be easily absorbed into the scaling factors to avoid extra memory costs while
achieving null space optimization.

We integrate our example approximation method with several milestone PTQ baselines to validate
whether the performance will be further improved. As the results in Section 4, consistent enhance-
ments occur on various LLMs and tasks, clarifying that alleviating quantization error based on null
space makes great sense. We view this paper as the first step towards alleviating quantization er-
ror based on the insights of null space. Rather than performance enhancement at present, our
work introduces a fresh perspective and novel direction for future quantization development.

2 RELATED WORKS

2.1 QUANTIZATION FOR LLMS

Quantization is one of the most widely studied model compression techniques (Frantar & Alistarh,
2023; Gou et al., 2021; Hu et al., 2022), offering both high performance and high compression
ratios. According to the pipeline, existing approaches fall into two categories: Quantization-aware
training (QAT) and Post-training quantization (PTQ). QAT (Liu et al., 2023; Wang et al., 2023;
Ma et al., 2024) requires training from scratch and updating the weights, which can achieve higher
performance generally but the increased training overheads significantly hinders its development.

In contrast, PTQ only need a small scale calibration set to get effective quantization parameters, so its
efficiency and resource-friendliness have made it more popular in LLM community. GPTQ Frantar
et al. (2022) leverages second-order information to dynamically update the remaining weights during
quantization. AWQ (Lin et al., 2024) assesses the saliency of different weight channels based on
the input activations and allocates appropriate scaling factors accordingly. QuIP (Chee et al., 2023)
utilizes incoherence preprocessing to transform the weights, achieving high performance at 2-bit.
Despite their success, all existing methods suffer from inevitable performance degradation caused by
conventional quantization error formulation, demonstrating imperative extra optimization constraint.

2.2 NULL SPACE CONSTRAINT LEARNING

Null space is a classical concept in linear algebra which is extensively studied in mathematics (Frit-
telli et al., 1997), and recently it is increasingly applied in machine learning (Zhang et al., 2016).
Adam-NSCL (Wang et al., 2021) introduces null space optimization into continual learning by forc-
ing the network parameter update lying in the null space of the input feature to balance plasticity
and stability. LoRA-Null (Tang et al., 2025) builds adapters initialized from the null space of the
pretrained knowledge acitivation to encounter catastrophic forgetting in model finetuning. In knowl-
edge editing, AlphaEdit (Fang et al., 2024) leverages this theoretical insights to balance knowledge-
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update error and knowledge-preservation error. Inspired by these advances, for the first time we
introduce null space theory into model quantization to alleviate the impact of quantization error.

3 METHOD

In this section, we first introduce the concept of the null space and how it helps alleviate the quan-
tization error. Subsequently, we introduce our proposed null space projection method to validate
this perspective. Specifically, we claim that the conventional SVD-based method to get null space
projection is not practical for LLMs, and then propose an efficient and accurate example null space
approximation method accordingly. Finally, to satisfy practical inference, we redefine the objective
of null space optimization and derive a closed-form solution for the equivalent projection vector α.

3.1 NULL SPACE OPTIMIZATION ALLEVIATES QUANTIZATION ERROR

Model quantization aims to convert high-precision values into corresponding low-bit formats to
reduce inference overheads. For LLMs, the weight-only quantization function can be elaborated as:

Wq = s(clamp(⌊W
s
⌉+ z, 0, 2b − 1)− z), (1)

where W ∈ Rn×m and Wq ∈ Rn×m indicate full-precision and quantized weights respectively. ⌊·⌉
denotes round-to-nearest operator. s is the scaling factor and z is the zero-point. Then, the objective
of all existing weight-only quantization approaches is to minimize the squared error of full-precision
and quantized outputs, as formulated by:

argmin
Wq

∥WX −WqX∥22. (2)

However, using this objective alone leads to a common issue across all existing methods: regard-
less of how advanced the quantization algorithm is, a numerical discrepancy from the full-precision
weights will always exist. Without additional constraints, the numerical error (W − Wq) will in-
evitably degrade the final performance, which will be more serious at low-bit (2-3 bits) scenario.
This observation motivates us to ask the question: Considering that the numerical error is unavoid-
able, can we instead alleviate its impact by some strategy?

Null space, a classical theory in linear algebra, enters our view, which is defined as follows: Given
two matrices A and B, A lies in the null space of B if and only if AB = 0. Based on it, we
reconsider the question above and present the following lemma:

Lemma 3.1 If the numerical error (W − Wq) lies in the null space of input activation X , the
quantization error formulation will be changed into:

∥WX −WqX∥22 = ∥(W −Wq)X∥22 ≈ 0. (3)

Lemma 3.1 implies that as long as the weight perturbation induced by quantization lies within
the null space of the input activations, the quantization error will be significantly alleviated.
Therefore, in this paper we aim to prove this perspective effective by devising an effective and
accurate projection ∆ for the numerical error (W −Wq), achieving post-quantization optimization.

3.2 EFFICIENT AND ACCURATE APPROXIMATION FOR NULL SPACE PROJECTION

In previous section, we establish that if the weight perturbation after quantization lies into the null
space of the input activations, the quantization error can be effectively mitigated. Next, we aim to
validate it by providing a post-quantization null space projection.

Following existing methods (Wang et al., 2021; Fang et al., 2024), the layer-wise null space of in-
put activation X can be modeled as that of their uncentered covariance matrix XXT to guarantee
stability, whose null space is equal to that of X (please refer to Appendix for detailed proof). Sub-
sequently, the first step of the conventional method for conducting null space projection is to apply
SVD decomposition to XXT :

U,Σ, V = SVD(XXT ), (4)
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where U/V and Σ denote the left/right singular vector and the diagonal matrix with r singular
values (r = rank(XXT)), respectively. Then, extract the column vectors in U corresponding to zero
singular values to conduct a submatrix U1 (the remaining submatrix is U2). With U1, we can get the
null space projection operator ∆ = U1U

T
1 (refer to Appendix for detailed proof), which satisfies:

∥(W −Wq)∆X∥22 ≈ 0. (5)
Although this traditional approach achieves great success in prior scenarios, we identify several
limitations when applying it to LLMs: (a) The dimension of activation matrices in LLMs is
much higher, making their SVD decomposition prohibitively slow; (b) the singular values of
activation matrices in LLMs rarely reach exact zeros, hindering the derivation of null space
projection. To successfully adapt to LLMs quantization, we introduce the following improvements
over the conventional null space projection derivation.

Efficient Eigenvalue Decomposition Computing the null space projection only requires the sin-
gular values and left singular vectors. For large-scale real symmetric matrices XXT , the eigen-
vectors are identical to the left singular vectors, and the singular values correspond to the absolute
values of the eigenvalues. As a result, Eq. 4 can be reformulated as: XXT = UΣUT= QλQT ,
where Q and λ are the eigenvectors and eigenvalues, respectively.

Although the two are mathematically related, in practice, computing SVD requires multiple House-
holder transformations and leverages implicit QR iterations to approximate the singular values,
which result in a more complex computation pipeline. In contrast, eigenvalue decomposition al-
lows for faster eigenvalue computation via the QR algorithm (Watkins, 1982), and efficient recovery
of eigenvectors through inverse iteration. Moreover, PyTorch’s backend acceleration framework
(Paszke, 2019) employs a divide-and-conquer strategy specifically optimized for eigenvalue decom-
position of real symmetric matrices to achieve higher computational efficiency. Therefore, we sug-
gest estimating the null space for LLMs by eigenvalue decomposition via QR-based iteration instead
of conventional SVD, which significantly improves decomposition efficiency. In Table 3 we report
the improvements in decomposition efficiency and the corresponding accuracy comparison, demon-
strating its superiority.

Accurate Null Space Approximation It is hard to guarantee that there exists exact zero singular
values in the activation matrices of LLMs. Moreover, we observe that the rank returned by PyTorch’s
built-in matrix rank estimation which implicitly ignores small singular values differs significantly
from the fact, as shown in Figure 1, impeding the calculation of null space projection. To address
this issue, in this part we introduce how to get the null space projection in the absence of exact zero
singular values.

PyTorch: Rank = 5

Figure 1: Singular values of Ac-
tivations in LLMs.

According to Principal Component Analysis, we can consider
U2 as the principal components (XXT = U2λU

T
2 ). Because

U1 contains the vectors corresponding to all the smallest singu-
lar values in λ, the null space can be approximated by adaptively
selecting the range of U1. Motivated by it, we propose a novel
accurate approximation method to get the null space projection
based on the Prefix-Suffix Sum Ratio of singular values. Specifi-
cally, we observe that the first singular value in LLMs activations
is much larger than the sum of the others, so we remove the first
value to eliminate its impact. Subsequently, we select a thresh-
old t, and then identify an index k such that the ratio between the
sum of eigenvalues after k and the sum before k does not exceed
t, which can be elaborated as:

R =

∑m
i=k+1 λi∑k
i=1 λi

≤ t. (6)

The ratio threshold t is empirically set to 0.1. After identifying the index k that satisfies the threshold
condition, we redefine the range of U1 accordingly to estimate the null space projection ∆ based on
U1U

T
1 . With this projection, we can successfully map the quantization numerical error (W −Wq)

into the null space of X , which satisfies ∥(W −Wq)∆X∥22 ≈ 0.

It is worth noting that (Wang et al., 2021) estimates the null space by selecting singular values that
are 50 times larger than the smallest one. While effective for small-scale image features in CNNs,
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their approach fails to provide reliable null space estimation for LLMs. Detailed comparison among
PyTorch, Adam-NSCL and ours are provided in Table 4, demonstrating our method consistently
leads to better performance.

3.3 CLOSED-FORM SOLUTION FOR THE EQUIVALENT VECTOR OF NULL SPACE
PROJECTION

Although we get the null space projection efficiently and accurately, there are only quantized
weights Wq and no full-precision weights W for a real-quantized LLM during inference, mak-
ing Eq. 5 no longer practically meaningful. Moreover, storing ∆, a large scale projection matrix,
will incur additional memory overhead. To eliminate this challenge, in this subsection we focus on
exploring a memory-free alternative of Eq. 5 to achieve the null space optimization directly on Wq .

To avoid additional memory overheads, the alternative must be integrated into existing components.
As known, a real-quantized model involves not only low-bit weights but also full-precision channel-
wise scaling factors. Therefore, we define an equivalent projection vector α for Wq , which fully
avoids any extra memory costs by applying Hadamard product with the scaling factors.

Critically, to ensure the projection vector α applied to Wq achieves the same effect as the original
projection matrix ∆ applied to the quantization numerical error (W −Wq), we define the objective
function as below:

α∗ = argmin
α

∥(W −Wq)×∆− (W − αWq)∥22. (7)

It is important to note that Wq has already undergone optimization by the quantization process, such
as GPTQ. Directly imposing modification on Wq through α may disrupt these prior optimizations.
To address this, we augment Eq. 7 with a regularization term that ensures the result of null space
optimization (αWq) remains close to the original fake-quantized weights (Wq). Concretely, we
constrain the projection vector α to stay close to the unit vector. With this regularization, Eq. 7 is
reformulated as:

α∗ = argmin
α

(∥(W −Wq)×∆− (W − αWq)∥22 + λ∥α− 1∥22), (8)

where λ is the regularization coefficient which is set to 0.2 empirically. The most straightforward
approach for solving α∗ is backpropagation. However, BP significantly increases the algorithm’s
complexity and hinders scalability. Considering this problem, we instead derive a closed-form so-
lution by reformulating the objective function as a least squares problem. Since the quadratic term
is strictly positive definite, the objective is strongly convex and admits a unique global optimum.
By setting the gradient of the objective to zero, we obtain the closed-form solution for the optimal
equivalent projection vector:

α∗
i =

⟨W i
q , H

i⟩+ λ

⟨W i
q ,W

i
q⟩+ λ

, (9)

where i is the i-th dimension and H = W − (W −Wq) ×∆. The detailed derivation is available
in Appendix. Directly applying α∗ to Wq makes the null space optimization for quantized model
practically meaningful, because it has a similar effect with projecting the quantization error using ∆,
while completely avoiding additional memory overheads. In Figure 3, we compare the performance
of closed-form solution with the projection vector optimized by BP to prove our superiority.

The pipeline of our null space optimization for LLMs PTQ is summarized in Algorithm 1, which
is named as Q2N, short for Quantize-to-Nullspace, to highlight the novel perspective compared to
all previous works. In the following section, we leverage our Q2N to validate the effectiveness of
alleviating quantization error via null space optimization.

4 EXPERIMENTS

In this section, we conduct experiments to address the following questions to prove the effectiveness
of our null space optimization strategy for LLMs quantization:

• RQ1: Can null space optimization consistently improve the performance of a quantized LLM on
both language generation and downstream reasoning tasks? Will calibration sets and model structure
influence the effectiveness of null space optimization?

5
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Algorithm 1 Overall algorithm of our example null space optimization method for LLMs PTQ.

Require: full-precision weights W ; input activation X; quantization method Q(·);
Ensure: quantized weights optimized by null space projection;
1: # Get the original quantized weights.
2: Wq = Q(W ).
3: # Compute the eigenvalue decomposition of of XXT efficiently.
4: U, λ, UT = Eigen(XXT ).
5: # Compute the Prefix-Suffix Sum Ratio of singular values based on threshold t to get the index k.
6: R =

∑m
i=k+1 λi∑k
i=1 λi

≤ t.
7: # Get U1 that corresponds to the last k singular values.
8: U1 = U [:, k :].
9: # Compute null space projection ∆.

10: ∆ = U1U
T
1 .

11: # Compute the equivalent projection vector α for Wq .
12: H = W − (W −Wq)×∆.

13: α∗ =
⟨W i

q ,H
i⟩+λ

⟨W i
q ,W

i
q⟩+λ

.

14: return the final quantized weights optimized by null space projection α∗Wq .

• RQ2: Will quantization strategy influence the effectiveness of null space optimization? Beyond
weight-only quantization, is null space optimization also applicable to weight-activation schemes?

• RQ3: When proving null space optimization is effective for quantization, how much speedup
does the efficient eigenvalue decomposition method offer compared to conventional SVD-based
approaches, and does it affect the final performance?

• RQ4: Is our accurate null space approximation method more effective than Adam-NSCL and
PyTorch’s built-in matrix rank estimation function?

• RQ5: How does our closed-form solution for the null space projection vector compare with the
more intuitive BP-based approach?

4.1 EXPERIMENTAL SETUP

Models and Baseline Methods. Our experiments are primarily conducted on LLaMA3 (8B, 70B),
LLaMA3.1 (8B, 70B) and LLaMA3.3 (70B) (Grattafiori et al., 2024), as they are currently the
most popular and widely applied open-sourced LLMs. In addition, three prominent star LLMs
(DeepSeekMoE-16B (Dai et al., 2024), Qwen2.5-32B (Yang et al., 2024) and Qwen3-32B (Team,
2025)) are also included for evaluation. We integrate our Q2N with GPTQ (Frantar et al., 2022),
the broadest practically deployed LLMs PTQ method, to valid different performance aspects. To
ensure generality, we also select four baseline methods (QuIP (Chee et al., 2023), PB-LLM (Shang
et al., 2023), LeanQuant (Zhang & Shrivastava, 2024) and QuaRot (Ashkboos et al., 2024)) which
represent diverse quantization strategies according to (Zhao et al., 2025a).

Implementation Details. According to Section 3, quantization error becomes more pronounced
at lower bit, so our null space optimization focus on 2(g128)/3-bit scenario. For accurate null space
approximation and the closed-form solution of the projection vector, the threshold t is set to 0.1
and the regularization coefficient λ is set to 0.2 (optimal in most cases, please refer to Appendix for
detailed). Our calibration set consists of 128 random 2048 token-segments from WikiText2 (Merity
et al., 2016) and C4 (Raffel et al., 2020). All procedures are deployed on 1 A800-80G GPU.

Evaluation Metrics. We evaluate language generation capability (perplexity ↓) and downstream
reasoning capability (zero-shot accuracy ↑) for the optimized quantized LLMs. For language gen-
eration tasks, the test data comes from WikiText2, PTB (Marcus et al., 1994) and C4. Downstream
reasoning tasks includes ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), Race (Lai et al.,
2017), MMLU (Hendrycks et al., 2020), PIQA (Bisk et al., 2020) and WinoGrande (Sakaguchi et al.,
2021), using the open-sourced toolkit lm-evaluation-harness (Gao et al., 2024) to evaluate.

6
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Table 1: Evaluation results of different structural LLMs quantized by GPTQ (with Q2N or not) on
language generation and downstream reasoning tasks (3-bit for 8B, 2-bit for the others).

Model Calib Q2N Language Generation (↓) Downstream Reasoning (%, ↑)

Wiki PTB C4 ARC-c ARC-e HellaS RACE MMLU PIQA WinoG

LLaMA3-8B
Wiki × 18.74 35.87 35.74 26.02 37.46 52.71 30.72 24.28 59.58 59.19

✓ 13.85 33.09 27.18 29.10 44.19 55.82 33.40 26.76 63.71 62.04

C4 × 19.83 33.96 23.08 24.66 40.03 48.72 35.12 29.93 60.01 62.04
✓ 17.55 26.67 20.20 28.92 45.20 62.11 34.26 32.09 63.76 62.27

LLaMA3.1-8B
Wiki × 15.67 36.44 26.32 31.91 50.25 51.25 34.26 24.19 66.00 61.96

✓ 12.31 28.61 23.16 32.42 54.17 56.66 37.22 24.84 69.37 62.43

C4 × 24.55 36.72 26.79 31.23 49.71 58.70 34.07 32.25 66.27 60.06
✓ 17.79 25.77 20.01 34.30 57.11 62.40 36.84 33.26 69.75 60.30

LLaMA3-70B
Wiki × 16.40 29.21 32.00 26.19 37.58 49.24 31.67 25.98 61.70 56.51

✓ 14.84 28.80 27.62 26.52 39.02 52.23 32.76 23.32 63.00 58.56

C4 × 22.39 30.17 26.89 25.26 36.41 50.10 32.15 25.72 60.01 56.91
✓ 19.92 28.80 23.72 25.70 39.29 54.17 33.68 26.41 62.50 59.98

LLaMA3.1-70B
Wiki × 14.36 26.53 27.41 28.24 43.27 53.04 31.87 25.71 63.44 57.30

✓ 13.09 24.93 25.36 29.78 46.17 54.13 32.63 27.00 64.60 58.46

C4 × 18.97 27.61 21.97 29.95 45.08 57.53 33.40 25.28 67.25 58.33
✓ 17.42 24.30 20.64 30.97 45.66 60.32 34.83 28.03 69.21 60.14

LLaMA3.3-70B
Wiki × 15.27 28.33 31.18 31.31 44.87 57.66 36.84 27.94 66.27 59.59

✓ 13.92 26.64 26.52 32.08 46.25 59.51 37.61 28.81 66.83 60.30

C4 × 18.34 25.04 21.67 31.91 46.63 59.49 36.65 34.56 68.44 61.33
✓ 17.58 24.90 20.95 32.00 48.78 62.16 37.51 36.43 68.88 61.33

DeepSeek-16B
Wiki × 27.36 - 107.81 24.40 31.94 33.97 25.26 23.83 55.60 50.36

✓ 22.07 - 79.55 26.28 32.87 37.38 26.41 24.99 61.26 52.25

C4 × 48.45 - 48.34 23.81 35.40 38.93 28.90 23.49 60.34 50.59
✓ 45.17 - 35.23 26.96 40.32 41.77 29.85 24.34 62.08 51.85

Qwen2.5-32B
Wiki × 13.82 28.58 25.14 30.46 41.67 51.17 32.82 26.78 62.24 50.28

✓ 12.29 24.68 22.01 31.80 46.30 54.80 36.65 27.36 63.22 50.91

C4 × 23.23 26.33 18.29 28.24 43.73 55.91 33.11 28.77 63.71 52.09
✓ 15.83 23.51 17.83 31.91 44.99 60.82 33.88 30.77 67.90 52.70

Qwen3-32B
Wiki × 22.89 56.08 35.45 27.82 33.92 43.01 28.71 24.40 53.54 52.72

✓ 18.50 43.85 28.62 29.78 36.66 47.78 29.76 24.73 58.38 53.54

C4 × 37.10 54.97 26.59 25.43 32.45 47.85 30.21 24.88 57.50 51.46
✓ 26.98 42.97 22.72 28.50 35.73 53.09 31.96 25.24 59.85 53.59

4.2 PERFORMANCE ON LANGUAGE GENERATION AND DOWNSTREAM REASONING (RQ1)

Language generation represents the most fundamental capability of LLMs, and accuracy on down-
stream reasoning tasks reflects their capacity for logical inference. To verify whether null space
optimization can consistently improve the performance, we combine our Q2N with GPTQ, the most
popular LLM quantization algorithm currently, to quantize several SOTA star open-sourced LLMs
for evaluation. Specifically, LLaMA3/3.1-8B are quantized to 3-bit while the others are 2-bit with
groupsize 128. From Table 1, we can observe that, regardless of the model, calibration set, or evalu-
ation metric, incorporating Q2N consistently improves the performance. For example, LLaMA3-8B
only achieves 48.72% on HellaSwag initially, while increasing to 62.11% after null space optimiza-
tion. Therefore, we can answer RQ1 that null space optimization consistently improve the perfor-
mance on language generation and downstream reasoning task, and both calibration sets and model
structure will not influence its effectiveness.

4.3 PERFORMANCE ENHANCEMENTS ON DIFFERENT STRATEGIES (RQ2)

To valid whether quantization strategy has negative impacts, followed by (Zhao et al., 2025a) we
select three SOTA baseline methods from different PTQ strategies to combine with our Q2N: QuIP
(Chee et al., 2023) represents rotation-based strategy, PB-LLM (Shang et al., 2023) typifies the com-
bination of salience-based and compensation-based strategy, and LeanQuant (Zhang & Shrivastava,
2024) exemplifies the combination of optimization and compensation-based strategy. As indicated
by Figure 2, all three baselines experience notable performance improvements. For example, QuIP
achieves a 7.3 reduction in perplexity on WikiText2 at 2-bit, LeanQuant improves inference accuracy
on HellaSwag by 10.7%.
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Figure 2: Performance enhancements when incorporating Q2N with the baselines of different strate-
gies on LLaMA3.3-70B (2-bit, C4 Calib). Detailed results please refer to Appendix.

Table 2: Performance enhancement
on QuaRot (W4A4, C4 Calib).

LLaMA Methods Wiki PTB C4

3-8B QuaRot 8.57 13.60 11.95
+Q2N 8.51 13.41 11.88

3.1-70B QuaRot 6.48 11.67 10.24
+Q2N 6.39 11.55 10.19

3.3-70B QuaRot 7.39 13.48 11.54
+Q2N 7.29 13.08 11.39

We also extend the scope to weight-activation (WA) PTQ sce-
nario. Specifically, we select QuaRot (Ashkboos et al., 2024),
the state-of-the-art WA method, to perform W4A4 quantiza-
tion on LLaMA families, and then use Q2N to optimize the
quantized weights after its original process. As demonstrated
in Table 2, our Q2N further pushes the performance limits at
each metric. Therefore, we can answer RQ2 that null space
optimization enables performance improvements on diverse
quantization strategies, including the SOTA WA method.

4.4 EFFICIENT EIGENVALUE DECOMPOSITION vs SVD DECOMPOSITION (RQ3)

Table 3: Runtime and performance comparison be-
tween conventional SVD and our efficient decompo-
sition method on LLaMA3.1-8B (3-bit, C4 Calib).

Methods Runtime (s) Perplexity (↓) Avg.Acc (↑)
Q K V O Up Gate Down Wiki C4

SVD 4.14 4.15 4.14 3.16 3.48 3.54 142.84 23.24 23.36 43.95%
Q2N 0.15 0.17 0.15 0.15 0.16 0.15 3.35 17.79 20.01 50.57%

We decide to prove the effectiveness of
null space optimization through a post-
quantization projection. In Section 3.2, we
establish that the large matrix sizes in LLMs
makes the conventional SVD-based null
space projection method extremely slow. In
this part, we empirically demonstrate the
speed and performance differences between
SVD and our Efficient eigenvalue decom-
position. Specifically, we replace our ef-
ficient decomposition component in Q2N with SVD and combine it with GPTQ to quantize
LLaMA3.1-8B (3-bit, C4 calibration), and then record the per-layer runtime of both methods as
well as their performance. As presented in Table 3, our efficient decomposition method achieves
substantial runtime reductions across all linear layers compared to SVD, with speedups ranging
from 21.07 (self attn.o proj) to 42.64 (mlp.down proj). At the same time, it also outperforms SVD
in terms of both perplexity and average accuracy.

4.5 ACCURATE NULL SPACE APPROXIMATION vs ADAM-NSCL & PYTORCH (RQ4)

In Section 3.2, we introduce an accurate null space approximation method based on the Prefix-Suffix
Sum Ratio of singular values to address the challenge that the activations in LLMs rarely contain
exact zero singular values. Previously, Adam-NSCL (Wang et al., 2021) computes the null space in
continual learning for CNN-based image classification. In addition, PyTorch also provides a built-
in matrix rank estimation function Torch.linalg.matrix rank(), which implicitly ignores
small singular values. In Table 4, we compare the three approaches on LLaMA3.1-8B (3-bit, C4

8
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Table 4: Performance comparison among naive GPTQ, PyTorch, Adam-NSCL and our accurate null
space approximation method on LLaMA3.1-8B (3-bit, C4 calibration).

Methods Language Generation (↓) Downstream Reasoning (%, ↑)

Wiki PTB C4 ARC-c ARC-e HellaS RACE MMLU PIQA WinoG

GPTQ 24.55 36.72 26.79 31.23 49.71 58.70 34.07 32.25 66.27 60.06
PyTorch 23.19 31.20 32.54 31.06 48.70 52.62 35.79 26.22 67.85 60.23

Adam-NSCL 18.98 23.53 20.96 31.57 50.59 52.95 35.98 26.11 70.67 59.98
Q2N 17.79 25.77 20.01 34.30 57.11 62.40 36.84 33.26 69.75 60.30

calibration), which indicate that our null space approximation method used in Q2N consistently
outperforms the others. Notably, all null space based methods improve upon naive GPTQ, indirectly
validating the importance of integrating null space optimization with LLMs quantization.

4.6 CLOSED-FORM SOLUTION VS BACKPROPAGATION (RQ5)
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Figure 3: Performance comparison be-
tween our closed-form solution and BP
(Up: training epochs; Down: learning
rates) on LLaMA3.1-8B (3-bit, C4 Calib).

In Section 3.3, we theoretically derive a closed-form
solution for the equivalent vector of the null space pro-
jection to satisfy practical inference. As known, the
most intuitive way to get the optimal projection vector
is learning via backpropagation. To compare the per-
formance with our closed-form solution, we initialize
a unit vector m and optimize it via BP using the objec-
tive min ∥(W−Wq)×∆−(W−mWq)∥22 with differ-
ent training epochs (20, 50 and 100) and learning rates
(5e-4, 1e-3 and 2e-3). As shown in Figure 3, the per-
formance of BP-based projection vectors is unstable
and lacks a consistent pattern. For example, 100 train-
ing epochs yield higher average accuracy, while 20
epochs result in better average perplexity. Under 20-
epoch setting, increasing the learning rate leads to di-
vergent trends in accuracy and perplexity. In contrast,
our derived closed-form solution consistently performs
the best, highlighting its superiority.

Taking all the discussion above into consideration, we
prove that null space optimization can effectively fur-
ther alleviate the quantization error. Notablely, we
must emphasize that although the performance im-
provements of Q2N is relatively limited, it proves
the feasibility of null space optimization. Compared to performance improvements at present,
the novel perspective it provides for future research is more important.

5 CONCLUSION

Existing PTQ methods suffer from inevitable quantization errors which also hinder the development
of more advanced quantization algorithms. To provide a new direction for future research, in this
paper we introduce null space optimization strategy into LLMs PTQ. We claim that by mapping
the post-quantization weight perturbation into the null space of input activations, quantization errors
can be effectively alleviated. By proposing an efficient and accurate example null space optimization
method named Q2N and integrating it with several milestone baselines to validate the performance
enhancements, we successfully prove the effectiveness of the idea of null space optimization for
LLMs quantization. We hope our insightful perspective can provide fresh guideline for future quan-
tization methods development.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization
of large language models with guarantees. Advances in Neural Information Processing Systems,
36:4396–4429, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Thomas F Coleman and Alex Pothen. The null space problem i. complexity. SIAM Journal on
Algebraic Discrete Methods, 7(4):527–537, 1986.

Thomas F Coleman and Alex Pothen. The null space problem ii. algorithms. SIAM Journal on
Algebraic Discrete Methods, 8(4):544–563, 1987.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318–30332, 2022.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. arXiv preprint arXiv:2402.10631,
2024.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. arXiv
preprint arXiv:2410.02355, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Simonetta Frittelli, Carlos N Kozameh, Ezra T Newman, Carlo Rovelli, and Ranjeet S Tate. Quan-
tization of the null-surface formulation of general relativity. Physical Review D, 56(2):889, 1997.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, 2021.

10

https://zenodo.org/records/12608602


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv e-prints, pp. arXiv–2407, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Lifeng Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 1, 2024.

Mitch Marcus, Grace Kim, Mary Ann Marcinkiewicz, Robert MacIntyre, Ann Bies, Mark Ferguson,
Karen Katz, and Britta Schasberger. The penn treebank: Annotating predicate argument structure.
In Human Language Technology: Proceedings of a Workshop held at Plainsboro, New Jersey,
March 8-11, 1994, 1994.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Carl D Meyer. Matrix analysis and applied linear algebra. SIAM, 2023.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International conference on machine
learning, pp. 7197–7206. PMLR, 2020.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Shauli Ravfogel, Yanai Elazar, Hila Gonen, Michael Twiton, and Yoav Goldberg. Null it out: Guard-
ing protected attributes by iterative nullspace projection. arXiv preprint arXiv:2004.07667, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large lan-
guage models. arXiv preprint arXiv:2310.00034, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models. arXiv preprint arXiv:2308.13137, 2023.

Pengwei Tang, Yong Liu, Dongjie Zhang, Xing Wu, and Debing Zhang. Lora-null: Low-rank
adaptation via null space for large language models. arXiv preprint arXiv:2503.02659, 2025.

Qwen Team. Qwen3, April 2025. URL https://qwenlm.github.io/blog/qwen3/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

Shipeng Wang, Xiaorong Li, Jian Sun, and Zongben Xu. Training networks in null space of feature
covariance for continual learning. In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 184–193, 2021.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

David S Watkins. Understanding the qr algorithm. SIAM review, 24(4):427–440, 1982.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. arXiv preprint
arXiv:2402.11295, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for
large language models. arXiv preprint arXiv:2304.01089, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Li Zhang, Tao Xiang, and Shaogang Gong. Learning a discriminative null space for person re-
identification. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1239–1248, 2016.

Tianyi Zhang and Anshumali Shrivastava. Leanquant: Accurate and scalable large language model
quantization with loss-error-aware grid. arXiv preprint arXiv:2407.10032, 2024.

Jiaqi Zhao, Miao Zhang, Chao Zeng, Ming Wang, Xuebo Liu, and Liqiang Nie. Lrquant: Learnable
and robust post-training quantization for large language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2240–2255, 2024.

Jiaqi Zhao, Ming Wang, Miao Zhang, Yuzhang Shang, Xuebo Liu, Yaowei Wang, Min Zhang, and
Liqiang Nie. Benchmarking post-training quantization in llms: Comprehensive taxonomy, unified
evaluation, and comparative analysis. arXiv preprint arXiv:2502.13178, 2025a.

Jiaqi Zhao, Miao Zhang, Ming Wang, Yuzhang Shang, Kaihao Zhang, Weili Guan, Yaowei Wang,
and Min Zhang. Ptq1. 61: Push the real limit of extremely low-bit post-training quantization
methods for large language models. arXiv preprint arXiv:2502.13179, 2025b.

12

https://qwenlm.github.io/blog/qwen3/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DETAILED PROOFS

In this section, we provide the detailed proofs corresponding to the null space projection approxi-
mation and our closed-form solution for the equivalent vector.

A.1 PROOF FOR THE SHARED NULL SPACE OF X AND ITS UNCENTERED COVARIANCE
MATRIX XXT

Lemma A.1 Given input activations X ∈ Rn×m. Then the null space of X is equal to the null
space of its uncentered covariance matrix XXT , i.e.,

Null(X) = Null(XXT ).

Proof of Lemma A.1. We show that w ∈ Null(X) if and only if w ∈ Null(XXT ).

(⇒) Suppose w ∈ Null(X). Then wX = 0, and thus

wXXT = (wX)XT = 0,

which implies w ∈ Null(XXT ).

(⇐) Conversely, suppose w ∈ Null(XXT ). Then

0 = w(XXT ) = (wX)XT

Since w and X are guaranteed to be nonzero, wX = 0 holds, i.e., w ∈ Null(X).

Therefore, Null(X) = Null(XXT ).

A.2 PROOF FOR NULL SPACE PROJECTION ∆ = U1U
T
1

Lemma A.2 ∆ = U1U
T
1 serves as the null space projection which can project the quantization

numerical error of weights into the null space of X , i.e.,

U1U
T
1 X = ∆X = (W −Wq)∆X = 0.

Proof of Lemma A.2. According to Section 3.2, the left singular vector of XXT is defined as

U = [U2, U1]. We further define the singular values λ =

[
λ2 0
0 λ1

]
, where all singular values of

zero are in λ1, i.e., λ1 = 0. Since U is an orthogonal matrix, we can further derive that:

UT
1 XXT = UT

1 U2λ2U
T
2 = 0,

which indicates that the columns of U1 span the null space for XXT . According to (Meyer, 2023)
(Eq. 5.13.4), the orthogonal projector of XXT can be elaborated as:

∆ = U1U
T
1 .

Thus (W −Wq)∆X = (W −Wq)U1U
T
1 X = 0 holds.

Based on Lemma A.1 and Lemma A.2, we can get that U1U
T
1 serves as the null space projection of

the input activation.

A.3 THEORETICAL DERIVATION OF THE CLOSED-FORM SOLUTION FOR THE EQUIVALENT
PROJECTION VECTOR

To satisfy practical inference constraints, the equivalent projection vector α must operate directly
on the quantized weights (Wq) and achieve the same effect as the null space projection ∆ applied to
the post-quantization weight perturbation (W −Wq), so the objective function is formulated as:

L(α) = ∥(W −Wq)×∆− (W − αWq)∥22 + λ(α− 1)2I,

where the second term is the regularization term avoiding disturbing prior optimizations.

13
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Figure 4: Segmentation results on singular values according to the Prefix-Suffix Sum Ratio.

Then we define H = W − (W −Wq)×∆, take the derivative of L with respect to each dimension
i of α and set it to zero:

∂L
∂αi

= −2⟨W i
q , H

i⟩+ 2αi⟨W i
q ,W

i
q⟩+ 2λ(αi − 1) = 0.

Rearranging the terms, we get:

αi(⟨W i
q ,W

i
q⟩+ λ) = ⟨W i

q , H
i⟩+ λ.

Solving for αi, we get the closed-form solution for the optimal equivalent projection vector α∗:

α∗
i =

⟨W i
q , H

i⟩+ λ

⟨W i
q ,W

i
q⟩+ λ

.

Applying α∗ to Wq , we can make the null space optimization for quantized model practically mean-
ingful.

B VISUALIZATIONS OF THE PREFIX-SUFFIX SUM RATIO OF SINGULAR
VALUES

We propose to use the Prefix-Suffix Sum Ratio of singular values to accurately approximate the null
space projection. Here we present layer-wise visualizations of the segmentation results on several
LLMs according to Eq. 6 with threshold t = 0.1 to highlight the outcomes. The visualizations
are shown in Figure 5, where we remove the top 5 singular values to smooth the curves while not
affecting the segmentation results.
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Figure 5: Hyper-parameter exploration based on performance on different LLMs and baselines.

t λ
C4 WikiText2

Wiki PTB C4 Wiki PTB C4

0.1 0.1 21.46 27.15 18.85 15.86 29.43 23.77
0.1 0.2 17.79 25.77 20.01 12.31 28.61 23.16
0.1 0.3 17.92 30.34 21.00 14.95 34.12 23.83
0.1 0.4 17.50 25.90 21.11 14.50 33.89 22.92
0.1 0.5 21.84 35.63 24.62 15.50 34.74 26.71
0.1 0.6 24.80 30.95 25.74 12.69 34.70 23.63
0.1 0.7 18.93 31.38 24.92 15.99 27.24 27.73
0.1 0.8 21.19 26.38 24.39 13.47 29.90 23.49
0.1 0.9 19.04 34.01 23.99 12.71 29.49 23.98

0.05 0.2 20.05 23.50 20.89 13.04 37.72 23.46
0.15 0.2 20.80 33.55 23.30 14.49 30.76 24.36
0.2 0.2 18.90 25.03 20.19 15.32 31.73 25.25

Table 5: Hyper-parameters (ratio threshold t and regularization coefficient λ) selection based on
perplexity on LLaMA3.1-8B quantized by GPTQ with Q2N.

C ANALYSIS AND VISUALIZATION ON HYPER-PARAMETERS SELECTION

To achieve the best performance under our framework, we conduct a thorough investigation into the
selection of the ratio threshold t in null space approximation and the regularization coefficient λ in
closed-form solution of equivalent projection vector. Specifically, we employ coordinate descent
to search for the optimal hyper-parameters. We first identify the optimal regularization coefficient
λ within the range [0.1, 0.9] while fixing the ratio threshold t = 0.1, and then search for the op-
timal ratio threshold t within [0.05, 0.2]. After research, we empirically give the overall optimal
hyper-parameter combination in most cases: t = 0.1 and λ = 0.2. Table 5 gives the examples
on LLaMA3.1-8B quantized by GPTQ (3-bit). In addition, we also discover some distinctions in
specific baselines and models, such as LLaMA3-8B-GPTQ-WikiText2-3bit (t = 0.1, λ = 0.3) and
LLaMA3.3-70B-LeanQuant-C4-3bit (t = 0.05, λ = 0.2). Therefore, we conduct extensive exper-
iments across various models and baselines to identify a more robust and stable hyperparameter
interval, with results shown in Figure. The heatmap illustrates that performance is generally better
when t < 0.1 and λ lies between 0.1 and 0.4. We also analyze why this range is better. As shown
in Figure 5, when t = 0.1, the split point obtained by PSSR better fits the distribution of effective
eigenvalues. When the threshold becomes larger, the split point shifts significantly into the long-tail
region, resulting in poor estimation of the effective eigenvalues. When λ is too large, the closed-
form solution tends to keep the model weights unchanged rather than projecting the quantization
error into the null space. In summary, we recommend searching for t within [0.1, 0.4] and selecting
λ from 0.05 and 0.1 based on our observations. We also experiment with defining the two hyper-
parameters as learnable for optimization, but discover that this approach underperforms compared to
coordinate descent or grid search. We consider the manual hyper-parameter selection as a limitation
of our current method.
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Model Baselines Calib Q2N Language Generation (↓) Downstream Reasoning (%, ↑)
Wiki PTB C4 ARC-c ARC-e HellaS RACE MMLU PIQA WinoG

LLaMA3-70B

QuIP
Wiki × 49.08 75.72 62.14 20.99 32.74 32.33 26.12 23.12 55.60 51.70

✓ 47.50 70.70 57.65 22.87 33.75 29.40 28.04 23.18 59.03 53.04

C4 × 61.99 81.10 65.39 24.32 35.86 30.94 25.26 22.93 58.92 50.99
✓ 54.78 68.64 58.55 24.74 38.01 32.87 27.37 24.43 59.30 50.99

PB-LLM
Wiki × 18.35 46.94 191.2 25.26 41.25 41.23 26.03 25.36 59.09 53.91

✓ 16.64 40.67 85.20 28.24 44.49 45.27 30.91 26.16 62.35 55.41

C4 × 25.60 55.01 39.56 25.43 37.88 51.46 36.08 28.22 54.84 58.88
✓ 22.37 41.31 36.07 26.71 30.13 55.22 37.42 29.58 61.21 60.93

LLaMA3.1-70B

QuIP
Wiki × 42.73 71.39 52.85 22.70 32.41 32.74 27.85 23.12 55.71 51.38

✓ 23.73 43.66 35.51 25.60 35.73 38.86 29.28 23.75 59.47 55.33

C4 × 46.04 62.78 50.21 23.21 36.15 33.35 26.41 23.40 58.43 48.54
✓ 33.37 53.76 38.96 25.34 36.87 39.48 30.14 22.96 60.83 50.83

PB-LLM
Wiki × 25.04 74.17 521.5 25.94 43.43 46.16 29.38 24.17 61.59 55.49

✓ 22.66 60.74 444.7 27.73 46.63 47.53 29.47 24.33 63.44 56.75

C4 × 34.73 70.51 104.9 21.59 29.38 49.79 32.73 27.96 53.21 57.93
✓ 28.27 50.38 91.06 27.30 33.29 49.87 33.49 28.59 55.82 59.04

LLaMA3.3-70B

QuIP
Wiki × 36.62 64.42 46.46 23.12 32.66 35.27 29.19 23.05 56.80 53.12

✓ 20.12 36.71 29.24 27.30 44.02 49.30 35.31 25.05 63.71 53.20

C4 × 30.29 52.52 34.09 25.51 37.75 34.44 31.20 23.81 61.43 51.14
✓ 24.04 38.66 28.85 27.05 45.03 49.47 34.55 24.98 66.43 52.88

PB-LLM
Wiki × 18.44 49.97 68.19 32.42 53.07 50.44 37.70 30.05 64.64 57.77

✓ 17.39 44.37 45.74 33.45 54.25 55.88 37.80 32.53 68.01 58.72

C4 × 24.66 51.19 49.06 26.02 27.53 55.11 39.71 33.10 53.43 60.24
✓ 23.16 45.57 39.98 27.47 28.16 57.32 40.19 33.96 54.62 61.17

OWQ C4 × 82.47 57.45 49.74 48.89 72.90 52.50 23.92 62.78 76.44 64.48
✓ 55.26 49.34 46.09 49.57 74.07 45.40 25.45 63.69 77.37 64.64

LeanQuant C4 × 47.40 83.44 61.45 59.30 82.15 50.12 46.32 75.43 82.05 68.35
✓ 40.18 66.07 53.63 59.56 83.25 60.80 47.27 76.30 82.37 69.61

Table 6: Detailed Evaluation results on different LLMs quantized by different weight-only baselines
(with Q2N or not) on language generation and downstream reasoning tasks (2-bit).

Model Methods Language Generation (↓) Downstream Reasoning (%, ↑)

Wiki PTB C4 ARC-c ARC-e HellaS Lambda MMLU PIQA WinoG

LLaMA3-8B AWQ 13.30 24.01 17.27 42.41 67.13 69.25 42.89 37.35 74.43 67.25
+Q2N 12.29 20.98 16.16 43.42 68.07 70.06 43.98 38.44 75.27 68.65

LLaMA3-70B AWQ 15.18 69.30 21.13 43.01 65.03 60.04 25.52 47.46 75.24 58.48
+Q2N 13.96 55.24 19.82 44.34 66.07 60.95 26.54 48.42 76.08 59.64

Qwen3-32B AWQ 11.84 20.06 14.66 45.8 70.71 75.91 41.41 69.68 49.51 60.69
+Q2N 10.14 17.62 13.28 47.32 71.65 76.22 46.08 72.20 53.69 63.58

Table 7: Performance improvements when incorporating Q2N with AWQ (3-bit).

D DETAILED RESULTS WHEN INCORPORATING Q2N WITH OTHER
BASELINES

In Section 4.3, we report the brief performance enhancements when incorporating our Q2N with
three SOTA baselines within different strategies. Here we present the corresponding detailed per-
formance on each metric in language generation and downstream reasoning tasks, where QuIP /
PB-LLM / OWQ / LeanQuant are with Table 6, AWQ is shown in Table 7 and QuaRot is shown in
Table 8.
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LLaMA Methods C4 WikiText2

Wiki PTB C4 Wiki PTB C4

3-8B QuaRot 8.57 13.60 11.95 8.43 13.59 12.10
+Q2N 8.51 13.41 11.88 8.45 13.56 12.02

3-70B QuaRot 72.15 313.02 166.41 108.25 264.18 342.07
+Q2N 69.03 148.58 146.31 43.37 148.19 117.50

3.1-70B QuaRot 6.48 11.67 10.24 6.31 11.74 10.35
+Q2N 6.39 11.55 10.19 6.27 11.48 10.21

3.3-70B QuaRot 7.39 13.48 11.54 7.38 13.54 11.86
+Q2N 7.29 13.08 11.39 7.25 13.08 11.61

Table 8: Performance enhancement (PPL, ↓) when incorporating Q2N with QuaRot (W4A4).
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