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Abstract

Structured knowledge such as Knowledge001
Graph (KG) has long been utilized by humans002
in real-world scenarios (e.g., clinical diagnosis003
and children’s education) together with free-004
form narratives. Despite exceptional text gener-005
ation ability, whether Large Language Models006
(LLMs) are adaptative to and well-performed007
in these specialized real-world tasks has been008
overlooked. In the LLM era, is structured009
knowledge still useful for domain-specific010
tasks? In this paper, we propose a new interac-011
tive storytelling task grounded in real-world012
needs: preschool teachers and parents edu-013
cate children on real-world knowledge through014
questioning-answering (QA) beyond story nar-015
ratives during storytelling. For this task, we016
1) design an annotation framework to leverage017
established commonsense KG to enrich narra-018
tive QA, and 2) construct an expert-annotated019
FairytaleCQA dataset (5, 868 QA-pairs) with020
external commonsense knowledge for evalua-021
tion. Our experiments show that: 1) expert-022
annotated structured knowledge can enhance023
LLMs’ (e.g., GPT-4) performance; 2) our de-024
signed QAG pipeline can support a small fine-025
tuned LM to consistently outperform large026
LLMs on FairytaleCQA.027

1 Introduction028

Humans have spent considerable effort collect-029

ing and organizing structured knowledge, such as030

Knowledge Graphs (KGs), in various real-world031

tasks and scenarios (Vrandečić and Krötzsch, 2014;032

Lehmann et al., 2015). For example, in interac-033

tive storytelling, preschool teachers or parents com-034

monly have structured knowledge in their minds035

and want to extend the story to associated real-036

world knowledge (Parish-Morris et al., 2013; Sara-037

cho, 2017) to enrich children’s real-world percep-038

tion, good moral qualities, etc. In another cir-039

cumstance, clinicians employ structured rules and040

knowledge, such as medical protocols, when con-041

Figure 1: An example of FairytaleCQA dataset. In
each story section, human educational experts select a
concept word, link it to a desired external knowledge,
and manually write an appropriate QA pair. Human
annotators always prioritize educational appropriateness
at each of the three steps.

ducting clinical diagnosis for a patient (American 042

Diabetes Association, 2011; ElSayed et al., 2023). 043

In recent years, large language models (LLMs) 044

such as GPT-3.5, GPT-4 (OpenAI, 2023), and 045

Llama 2 (Touvron et al., 2023) have shown ex- 046

ceptional generation capability in various natural 047

language generation (NLG) tasks (Robinson et al., 048

2022; Singhal et al., 2023). However, the per- 049

formance of LLMs in real-world domain-specific 050

tasks, where humans typically rely on structured 051

knowledge (i.e., interactive storytelling), has been 052

overlooked but holds significant importance. 053

In this paper, we propose a QA-pair generation 054

(QAG) task grounded in real-world needs, where 055

preschool teachers or parents want to extend story 056

content to associated external commonsense knowl- 057

edge during the interactive storytelling process. 058

Despite existing AI-enabled storytelling systems 059

(Shakeri et al., 2021; Zhang et al., 2022) have been 060

increasingly utilized in supporting interactive sto- 061

rytelling activities, most are grounded in the story 062

textual content (Xu et al., 2022), which does not 063

faithfully facilitate parents need to incorporate ex- 064

ternal real-world knowledge during the storytelling 065

process. Thus, these State-of-the-art (SOTA) sys- 066

tems have limited ability to generate QA-pairs as- 067

sociated with external knowledge. 068
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To bridge the gap, we design and implement069

an annotation framework that retrieves and recom-070

mends structured commonsense knowledge from071

an external KG with carefully designed heuristics072

and recommendation algorithms. Leveraging our073

annotation framework, we then recruit 11 chil-074

dren’s education experts to extend the fairytale075

stories from FAIRYTALEQA dataset and the re-076

sulting FairytaleCQA dataset 1 comprises 5, 868077

story-inspired QA-pairs associated with external078

commonsense knowledge.079

We demonstrate the utility of structured knowl-080

edge with a comprehensive analysis of QAG ex-081

periments on different pipelines backed by SOTA082

LLMs, including GPT-3.5, GPT-4, and Llama 2 2.083

Specifically, we construct an end-to-end pipeline084

and a KG-assisted pipeline with expert-annotated085

structured knowledge as input to explore the useful-086

ness of expert-annotated structured knowledge for087

LLMs. We carefully design the prompts with clear088

and informative instructions and compare the per-089

formance of robust SOTA LLMs in both zero-shot090

and few-shot In-Context Learning (ICL) settings.091

Automated evaluation and human evaluation on our092

FairytaleCQA dataset show that:093

• Human-prioritized knowledge (i.e., triplets)094

from external KG can elevate LLM perfor-095

mance in the domain-specific QAG task.096

• Our carefully designed workflow can aug-097

ment a fine-tuned small LM to outperform098

large LLMs (e.g., GPT-4) in real-world099

domain-specific tasks.100

2 Related Work101

2.1 Structured Knowledge Source102

Leveraging different structured external knowl-103

edge for constructing commonsense-related QA104

datasets (Talmor et al., 2018; Auer et al., 2023)105

has been widely explored and adopted. How-106

ever, these datasets have limited relevance to107

children’s education beyond story context. In108

addition, structured knowledge sources such as109

ATOMIC (Sap et al., 2019) and Wikidata (Vran-110

dečić and Krötzsch, 2014) contain complex factual111

information, which might not be suitable for chil-112

dren’s education. ConceptNet (Speer et al., 2017)113

1We will release our dataset and code once our paper get
accepted.

2We also experiment with Flan-T5-XXL (Chung et al.,
2022), Alpaca (Taori et al., 2023) and Mistral-7B (Jiang et al.,
2023) and report the results in Appendix E.

Dataset # books # QA-pairs External
Knowledge Annotator Document

Source

StoryQA 148 38, 703 Yes Crowd-Sourced Story books
FAIRYTALEQA 278 10, 580 No Expert Story books
EduQG 13 5, 018 No Expert Text books

FairytaleCQA 278 5, 868 Yes Expert Story books

Table 1: Properties of existing datasets focusing on
children’s education compared with our FairytaleCQA.

is a vast graph widely used as an external knowl- 114

edge source in NLP tasks (Bosselut et al., 2019; 115

Xu et al., 2020). Knowledge in ConceptNet is rep- 116

resented in the simple triplet format of (concept1, 117

relation, concept2) to support commonsense rea- 118

soning, aligning well with the need for children’s 119

education that the knowledge should be broad and 120

not too tricky. Our work follows prior literature 121

to use ConceptNet as our structured knowledge 122

source to facilitate QA-pair annotation. 123

2.2 QA Datasets in the Educational Domain 124

General-purpose QA datasets, such as Narra- 125

tiveQA (Kočiský et al., 2018) and SQuAD2.0 (Ra- 126

jpurkar et al., 2018), primarily focus on crowd- 127

sourced QA-pairs grounded in texts, lacking the 128

incorporation of external knowledge for enhanced 129

comprehension and expertise in children’s edu- 130

cation. While QA datasets such as Common- 131

senseQA (Talmor et al., 2018) and SciQA (Auer 132

et al., 2023)in the general domain contain common- 133

sense, they usually lack appropriate context (e.g., 134

fairytale stories) for QA-pairs to anchor on. Thus, 135

these datasets are not appropriate to a specific sce- 136

nario like children’s education or a specific age 137

group like children aged 3 to 6. 138

Targeting children’s education, Zhao et al. (2023) 139

propose StoryQA, a QA dataset containing out- 140

of-context questions. Annotated by crowd work- 141

ers with limited children’s education knowledge 142

and lacking structured external knowledge, this 143

dataset potentially compromises the quality and 144

consistency of generated QA-pairs for children’s 145

education. Experts-annotated QA datasets such as 146

FAIRYTALEQA (Xu et al., 2022) and EduQG (Had- 147

ifar et al., 2023) center on story context, lacking 148

out-of-context questions or external knowledge. 149

To meet parents’ needs with an experts-labeled, 150

large-scale QA dataset containing structured ex- 151

ternal knowledge, we propose FairytaleCQA. We 152

summarize key properties of education-oriented 153

QA datasets and FairytaleCQA in Table 1. 154
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2.3 QA-pair Annotation Frameworks155

Existing annotation frameworks such as Potato (Pei156

et al., 2022) and Piaf (Keraron et al., 2020) mostly157

focus on facilitating extractive QA-pairs grounded158

in the text, which support QA-pair annotation by159

providing source texts and allowing annotators to160

highlight a span of text as an answer to a ques-161

tion. Zhao et al. (2023) design a data collection162

user interface that allows annotators to type in an-163

swers in their own words. These aforementioned164

annotation frameworks are sufficient for document-165

grounded QA-pair annotation. However, without166

a structured form of external knowledge, annota-167

tors may have difficulty systematically incorporat-168

ing external knowledge into anchored document169

text. Thus, an annotation framework that facilitates170

QA-pair annotations supported by coherent and171

structured external knowledge is essential.172

2.4 QA-Pair Generation173

Existing QAG methods could be broadly catego-174

rized into heuristics-based and neural network-175

based methods. Heuristics-based models (Yao,176

2010; Labutov et al., 2015; Das et al., 2016) have177

more control over the generated QA-pairs, yet of-178

ten lack diversity. Neural network-based meth-179

ods (Zhou et al., 2018; Zhao et al., 2022) are more180

prevalent recently, with the rapid development of181

pre-trained language models (Devlin et al., 2019a;182

Liu et al., 2019). Yet, the generation qualities of183

neural network-based approaches highly depend on184

the training datasets, resulting in potential underper-185

formance for domains requiring specific expertise,186

such as children’s education.187

Recent advances in LLMs (Chung et al., 2022;188

OpenAI, 2023) show exceptional natural language189

generation (NLG) capabilities. While conversa-190

tional LLMs like GPT-4, and FLAN-T5 demon-191

strate superior zero-shot and few-shot in-context192

learning performance, their adaptability and perfor-193

mance in specialized domains, such as children’s194

education, remain underexplored. We experiment195

with a series of QAG pipelines using SOTA LLMs196

to assess their performance thoroughly.197

3 FairytaleCQA198

FairytaleCQA aims to facilitate parents’ story-199

telling process with structured knowledge. Our200

dataset consists of 5, 868 QA-pairs annotated by201

children’s education experts leveraging our specifi-202

cally designed annotation framework. We present203

FairytaleCQA Mean St.D Min Max

# sections / story 14.7 9.2 2 60
# tokens per story 2196.7 1401.3 228 7577
# tokens / section 149.1 63.6 12 447
# questions / story 21.1 16.9 2 126
# questions / section 1.4 0.7 1 9
# tokens / question 5.4 1.7 3 19
# tokens / answer 4.9 2.3 1 20

Table 2: Core statistics of our FairytaleCQA dataset,
which comprises 278 books and 5, 868 QA-pairs.

the core statistics of FairytaleCQA in Table 2 and 204

show one example in Figure 1. Figure 2 illustrates 205

the complete annotation process. 206

3.1 Source Narrative 207

Plenty of excellent work (Xu et al., 2022; Zhao 208

et al., 2023) has focused on creating high-quality 209

text corpus for children’s reading comprehension 210

capabilities. Specifically, FAIRYTALEQA (Xu 211

et al., 2022) comprises 278 classic fairytale sto- 212

ries from diverse origins, and all the stories have 213

been evaluated as suitable for 10th-grade children 214

and younger. Afterward, the stories are parsed by 215

children’s education experts into shorter sections of 216

around 150 words, which leads the FAIRYTALEQA 217

dataset to a unique and high-quality text corpus for 218

children’s reading comprehension. We build on 219

prior work and take the story sections from FAIRY- 220

TALEQA as the source text for FairytaleCQA. 221

3.2 Annotation Framework 222

The ultimate goal of our annotation framework is to 223

provide QA-pairs that originate from the concepts 224

in the stories and ask for associated external 225

commonsense knowledge suitable for preschool 226

children. To better incorporate story texts with 227

structured knowledge and facilitate experts’ anno- 228

tation process, we 1) develop carefully designed 229

user interfaces, take the parent-children storytelling 230

process into account, and 2) approach the annota- 231

tion process by decomposing it into three steps: 232

1. Concept Selection: The first interface (Fig- 233

ure 5) displays one fairytale story section, and 234

candidate concepts are highlighted in grey to 235

select. Annotators need to identify a concept 236

from the story that meets the following crite- 237

ria: tier 1 or tier 2 (Beck et al., 2013) vocabu- 238

lary and a concrete noun, verb, or adjective. 239

2. Knowledge Matching: In the second inter- 240

face (Figure 6), annotators need to select com- 241

monsense knowledge based on the identified 242
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Figure 2: The user interface to facilitate our annotation task. The words highlighted in grey are candidate concepts.
The blue block shows the Wiktionary explanation, and the yellow block lists our recommended triplets.

concept but goes beyond the story text.243

3. QA-Pair Creation: The third interface (Fig-244

ure 2) involves creating a QA-pair with either245

the question or answer containing the selected246

concept. The question should go beyond the247

stories’ context and focus on the generated248

common-sense, fact-based knowledge.249

To facilitate the annotation process by provid-250

ing recommendations for external commonsense251

knowledge, we design our annotation framework252

by retrieving and recommending commonsense253

knowledge triplets from ConceptNet (Speer et al.,254

2017), a publicly available, large-scale common-255

sense Knowledge Graph.256

We recruit 11 education experts experienced in257

preschool education for the annotation task. To en-258

sure the created QA-pairs suit parents’ real-world259

needs, experts are asked to mimic parents’ habits260

during storytelling. Thus, for each story section, ex-261

perts are asked to choose one or two concepts that262

are most beneficial for children’s education from263

the text, according to parents’ habit of asking ques-264

tions in this storytelling scenario. When selecting265

commonsense triplets and creating QA-pairs, ex-266

perts are asked to take children’s cognitive and emo-267

tional levels into account and write QA-pairs that268

are most appropriate for 3-6-year-olds. Aligned269

with the user interface design demonstrated in Fig-270

ure 2, we present the 3-step workflow of QA-pair271

annotation below, which follows Figure 3.272

3.2.1 Step 1. Concept Selection273

We develop a collection of heuristics to filter can-274

didate concepts that meet the requirement for sub-275

task 1 described in Section 3.2. First, we leverage 276

the spaCy (Honnibal and Montani, 2017) to filter 277

auxiliary words and punctuation3 from the original 278

text. Then, we use AllenNLP’s semantic role la- 279

beling tool (Gardner et al., 2017) to tag the latent 280

structure of each sentence in the story content. This 281

process identifies and retains key elements repre- 282

sented by semantic roles , which are subsequently 283

treated as potential candidate concepts. 284

3.2.2 Step 2. Knowledge Matching 285

Inspired by Xu et al. (2020)’s work of combining 286

Wiktionary4 and ConceptNet (Speer et al., 2017) 287

for commonsense question answering, as well as 288

filtering out weak relations in ConceptNet, we im- 289

plement a knowledge matching module that can 290

retrieve and rank the knowledge associated with 291

each candidate concept in the source text. 292

More specifically, once the annotator selects a 293

candidate concept, our knowledge matching mod- 294

ule (1) retrieves a list of commonsense triplets, with 295

the format of (source concept, relation, target con- 296

cept) from ConceptNet as external knowledge; (2) 297

filters out weak relations in ConceptNet, leaving 13 298

relation types for annotation (Complete relation list 299

in Appendix B). In addition to the commonsense 300

knowledge retrieval, we retrieve a sentence expla- 301

nation from Wiktionary for each candidate concept 302

to support expert annotations. 303

The second step in our knowledge matching 304

module is to rank and select diverse and representa- 305

3tagged by ‘auxiliary’, ‘adposition’, ‘determiner’, ‘parti-
cle’, ‘punctuation’, ‘symbol’, and ‘other’

4https://www.wiktionary.org/

4

https://www.wiktionary.org/


Figure 3: Workflow of the experts’ annotation process.
Experts need to select a concept first, then match it with
the most suitable knowledge and finally create a QA-
pair based on the selected knowledge.

tive triplets from all retrieved commonsense triplets306

associated with the selected concept. We use the307

concatenation of the relation and related concept in308

each triplet to calculate the average similarity be-309

tween every other retrieved triplet using the Term310

Frequency-Inverse Document Frequency (TF-IDF).311

We rank all retrieved triplets with 1 − s + w,312

where s denotes the similarity score and w denotes313

the weight of a triplet provided by ConceptNet, re-314

flecting the combined influence and credibility of315

the triplet by summing up the weights coming from316

all the sources that support it. We recommend the317

top six ranked triplets to annotators to balance pro-318

viding a sufficient selection and avoiding excessive319

distractions during the annotation task.320

3.2.3 Step 3. QA-Pair Creation321

Annotators need to create QA-pairs based on se-322

lected commonsense triplets. For each triplet, an-323

notators are instructed to incorporate one concept324

in the question or answer and include the relation325

from the triplet in the resulting QA-pair.326

3.3 Cross-Validation327

The consistency between annotators’ triplet selec-328

tion and QA-pair creation is accessed through cross-329

validation. Details of our cross-validation are ex-330

plained in Appendix A. Out of 100 randomly se-331

lected sections in the validation and test splits, 86%332

of the triplets that appear in the top-3 list are se-333

lected by both annotators, and 56% of the triplets334

are ranked top by the validator, indicating very high335

consistency between experts for triplet selection.336

In addition, we evaluate the similarity of two QA-337

pairs (the question and answer are concatenated for338

the evaluation) created by two annotators based on339

the identical triplet with Rouge-L. The Rouge-L340

F1 score of QA-pair creation between annotators341

is 0.53, which shows a shared tendency among 342

experts when it comes to selecting commonsense 343

knowledge and creating a QA-pair that is both bene- 344

ficial and appropriate for children’s education. This 345

observation reinforces the necessity of experts’ an- 346

notation in constructing a high-quality QA dataset 347

for children’s education. 348

3.4 Statistics of FairytaleCQA 349

Figure 4 demonstrates the distribution of common- 350

sense relations in the dataset, and Table 2 illustrates 351

detailed statistics of the dataset. On average, each 352

section is annotated with approximately 1.4 QA- 353

pairs. In FairytaleCQA, the top 3 commonsense 354

relations selected by experts are is a, has subevent 355

and is the antonym of, respectively constituting 356

35.5%, 16.2% and 15.2% of all commonsense re- 357

lations. is used for, is at location of and is capable 358

of each constitute 8.8%, 7.5%, and 5.2% of all 359

commonsense relations. The proportion of other 360

relations is less than 5%. The distribution of ques- 361

tion types in FairytaleCQA is shown in Table 6. 362

In FairytaleCQA, questions start with ‘what’, the 363

most common question type, constituting 86.0%. 364

Questions starting with ‘why’ and ‘how’ constitute 365

about 7.2% and 2.4%, respectively. 366

According to experts’ annotation, commonsense 367

relation is a and ‘what’ questions have a much 368

higher proportion than other relations and ques- 369

tions. Children aged 3-6, in the exploration stage 370

and highly curious about the world (Chouinard 371

et al., 2007; Jirout and Klahr, 2012), naturally tend 372

to ask questions to satisfy their curiosity. Accord- 373

ingly, parents are more inclined to use ‘what’ ques- 374

tions to inspire children’s thinking and promote 375

active knowledge acquisition (Yu et al., 2019). Con- 376

sistent with parents’ preferences, the fact that ex- 377

perts’ annotated questions share a high consensus 378

of ‘what’ questions is more in line with children’s 379

learning and cognitive characteristics. 380

Figure 4: Distribution of commonsense relations anno-
tated by experts in the FairytaleCQA dataset

4 Experiment 381

We investigate the utility of structured knowledge 382

regarding the following research questions: 383
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• RQ1: Is structured knowledge still useful in384

domain-specific tasks?385

• RQ2: Can a much smaller model fine-tuned386

with KG-supported annotations beat generic387

LLMs in a specialized domain?388

We approach RQ1 by conducting QA-pair genera-389

tion (QAG) experiments with SOTA LLMs in an390

end-to-end (baseline) pipeline with carefully cu-391

rated prompts and a KG-assisted pipeline, where392

we provide human-annotated triplets to LLMs. To393

further investigate RQ2 as well as demonstrate the394

usefulness of our dataset, we fine-tune a T5-Large395

model with our FairytaleCQA and comprehen-396

sively evaluate its QAG performance with LLMs397

across three carefully designed pipelines that simu-398

late the human expert workflow.399

The evaluation comprises six SOTA LLMs:400

GPT-3.5, GPT-4 (OpenAI, 2023), FLAN-T5-401

XXL (Chung et al., 2022), Alpaca (Taori et al.,402

2023), Mistral (Jiang et al., 2023) and Llama403

2 (Touvron et al., 2023). We carefully design the404

prompt inputs (Appendix H) with clear and in-405

formative instructions, including 13 relation types406

(Appendix B) in ConceptNet. The goal is to lever-407

age LLMs to generate diverse triplets similar to408

those created by human education experts.409

For both experiments, we utilize Rouge-L (Lin,410

2004) to evaluate the quality of the concatenated411

QA-pairs between the generated ones and two412

expert-annotated ground-truths for each data, and413

report the averaged score across all test data. We414

perform experiments with GPT-3.5 and GPT-4415

three times for each setting to calculate a ro-416

bust and reliable averaged score. Additional417

scores of sentence similarity using Sentence Trans-418

former (Reimers and Gurevych, 2019) are shown419

in Appendix E; however, we believe this metric can420

not faithfully represent the domain specialty with a421

generic evaluation model. As a result, We conduct422

a human evaluation to further evaluate the qual-423

ity of QA-pairs generated by LLMs and experts’424

annotation from the educational perspective.425

4.1 End2End QAG vs. KG-Assisted QAG426

(RQ1)427

To investigate the utility of structured knowledge428

in this domain-specific QAG task, we carefully de-429

sign two distinct QAG pipelines. For each LLM430

involved in this experiment (Llama 2, GPT-3.5,431

and GPT-4), we employ both zero-shot and few-432

shot in-context learning (ICL) (Wei et al., 2022a)433

approaches to thoroughly examine the QAG perfor- 434

mance of SOTA LLMs for our specific QAG task, 435

where we randomly sample examples from the vali- 436

dation split from FairytaleCQA as demonstrations 437

for the few-shot ICL approaches. We fine-tune a 438

T5-Large model for each pipeline to examine how 439

a much smaller domain-specific model, supported 440

by human-annotated triplets as additional input, 441

performs compared to generic LLMs. The experi- 442

ment settings and hyper-parameters can be found 443

in Appendix D. 444

End-to-end QAG pipeline The system generates 445

QA-pairs directly from a story section, serving as 446

the baseline. To exploit LLMs’ comprehensive 447

generation ability and simulate experts’ annotation 448

process, we design two end-to-end variations: 449

1. w/o triplets: Directly generate QA-pairs from 450

the input text (baseline). 451

2. w/ triplets: Generate a commonsense triplet 452

alongside the QA-pair. 453

KG-assisted QAG pipeline We provide expert- 454

annotated commonsense triplets for each story sec- 455

tion as input guidance to examine the usefulness of 456

structured knowledge in this specialized QAG task. 457

The prompt inputs are shown in Table 18. 458

4.1.1 Experiment Results 459

We report the performance of the aforementioned 460

LLMs with each proposed pipeline in Table 3 and 461

report the complete results in Table 7 in Appendix, 462

including LLMs that perform worse than GPT-4, 463

such as Mistral-7B (Jiang et al., 2023). Examples 464

of GPT-generated QA-pairs, as well as experts’ 465

annotations on the same section, can be found in 466

Appendix G. Across all the end-to-end pipelines for 467

each LLM, the 5-shot ICL pipeline consistently out- 468

performs both zero-shot and 1-shot ICL pipelines. 469

For the end-to-end setting that asks LLMs to 470

generate triplets along with QA-pairs, we can ob- 471

serve improvements on Llama 2 and GPT-3.5 with 472

the ICL approach but also observe lower perfor- 473

mance with GPT-4. This observation may imply 474

that GPT-4 is already equipped with enough knowl- 475

edge to generate QA-pairs, and the triplet genera- 476

tion requirement posts a negative effect on the QAG 477

task. To explore GPT-4’s strong generation capa- 478

bilities under the end-to-end setting, we utilize the 479

Chain-of-Thoughts (Wei et al., 2022b) prompting 480

to facilitate this specialized QAG task on GPT-4. 481

Nevertheless, the result in Table 3 does not wit- 482

ness an obvious improvement compared with the 483
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Pipeline Category
T5-Large
fine-tuned Llama 2 GPT-3.5 GPT-4

(0.77B) (7B) (175B) (1,760B)

End2End
pipeline

(w/o triplets)

zero-shot 0.332 0.213 0.194 0.277
1-shot - 0.192 0.239 0.272
5-shot - 0.241 0.262 0.287

End2End
pipeline

(w/ triplets)

zero-shot 0.279 0.177 0.220 0.243
1-shot - 0.206 0.252 0.251
5-shot - 0.269 0.264 0.248
CoT - - - 0.271

KG-assisted
pipeline

10-shot 0.510
(zero-shot) 0.470 0.541 0.527

Table 3: QAG performance of the end-to-end and KG-
assisted pipelines with LLMs. LLMs are provided with
structured knowledge annotated by experts in the KG-
assisted pipeline.

ICL approach. It is worth noting that with the as-484

sistance of this structured knowledge, all LLMs485

as well as the domain-specific fine-tuned language486

model can far exceed the end-to-end pipeline in the487

QAG task, which justifies that human-annotated488

structured knowledge is still useful in such real-489

world domain-specific tasks.490

4.2 Domain Fine-tuned T5-Large vs. LLMs491

(RQ2)492

We further investigate the performance of a small493

model fine-tuned with domain-specific knowledge494

compared with generic LLMs without expert an-495

notation. To establish robust LLM baselines and496

harness the full potential of their reasoning and nat-497

ural language generation capabilities, we design a498

2-step and 3-step pipeline in addition to the end-to-499

end pipeline by mimicking the experts’ annotation500

workflow. For each multi-step pipeline, we also501

fine-tune a T5-Large model on FairytaleCQA for502

each step and utilize the model output for the pre-503

vious step (e.g., generated triplets) as part of the504

input for the next model (e.g., generate QA-pairs505

given the story content and generated triplets).506

2-step QAG pipeline The pipeline consists of507

two steps: (1) generates an external commonsense508

triplet given the story content, and (2) generates509

QA-pairs with the input of the generated triplets.510

3-step QAG pipeline Mimicking the experts’511

annotation process, this pipeline comprises three512

steps: (1) selects a concept from the story first,513

(2) creates the corresponding commonsense triplet514

based on the selected concept, and (3) generates515

QA-pairs based on the generated triplet.516

We select the best-performing LLMs in the517

end-to-end pipeline from the previous experiment,518

Models Category End2End
w/o triplets

End2End
w/ triplets

2-step
pipeline

3-step
pipeline

T5-Large
fine-tuned

(0.77B)
zero-shot 0.332 0.279 0.279 0.290

Alpaca
(7B)

zero-shot 0.124 0.266 - -
few-shot 0.251 0.239 - -

Mistral
(7B)

zero-shot 0.229 0.209 - -
few-shot 0.267 0.257 - -

Llama 2
(7B)

zero-shot 0.213 0.177 - -
few-shot 0.241 0.269 0.263 -

GPT-3.5
(175B)

zero-shot 0.194 0.220 - -
few-shot 0.262 0.264 0.279 0.282

GPT-4
(1,760B)

zero-shot 0.277 0.243 - -
few-shot 0.287 0.251 0.271 -

Table 4: Rouge-L scores of generated QA-pairs using
the T5-Large fine-tuned model and LLMs across end-
to-end, 2-step and 3-step pipelines. Bolded numbers
are global best performance within each setting.

namely GPT-3.5, GPT-4 and Llama 2 for the 2-step 519

QAG pipeline. Given the strong QAG capability of 520

GPT-3.5 shown in the 2-step pipeline, we further 521

conduct our 3-step pipeline through GPT-3.5 and 522

strictly limit the number of QA-pairs generated in 523

each section in the prompt (Table 19, 20). 524

4.2.1 Experiment Results 525

We present the models’ performance in Table 4 and 526

examples of generated results for each pipeline is 527

shown in Appendix G. The system evaluation of the 528

T5-Large model fine-tuned on our FairytaleCQA 529

consistently outperforms generic LLMs across all 530

pipelines by Rouge-L. This observation justifies 531

that a smaller language model assisted with do- 532

main expertise as well as structured knowledge 533

can reliably perform better than generic LLMs 534

in domain-specific scenarios. 535

Comparing the models’ performance across 536

pipelines, the overall system’s performance of the 537

2-step pipeline exhibits a slight enhancement com- 538

pared to the end-to-end pipeline. 539

We attribute this to the challenge of creating 540

commonsense triplets as properly and accurately 541

as experts in the first step, as experts rely on struc- 542

tured external knowledge source ConceptNet to cre- 543

ate QA-pairs. In other words, the domain experts 544

exhibit much better “timing” of when and where 545

to provide and incorporate structured knowledge, 546

whereas generic LLMs fall short of this nuanced 547

mental behavior in terms of domain-specific tasks. 548

The Rouge-L scores of the fine-tuned T5-Large 549

and GPT-3.5 in the 3-step pipeline are both better 550

than those of the 2-step pipeline, indicating that 551
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Dimension Human T5-Large
fine-tuned GPT-4 p-value

Grammar Correctness 4.893 4.843 4.871 0.209/0.519
Answer Relevancy 4.696 4.329 4.379 <0.01
Contexual Consistency 4.657 4.639 4.529 <0.05
Educational Appropriateness 4.493 4.325 4.318 <0.01

Table 5: The human evaluation results of ex-
perts’ annotation, GPT-4 and T5-Large fine-tuned on
FairytaleCQA in the end-to-end pipeline setting.

using structured external knowledge like human an-552

notators does assist the model in performing better553

on both identifying a concept and selecting a com-554

monsense triplet. This result justifies the validity555

of our proposed annotation framework. By infus-556

ing structured knowledge with free-form narrative,557

the framework facilitates both domain-specific lan-558

guage models and LLMs. We believe this method559

of incorporating structured knowledge with free-560

form narrative can be applicable in similar tasks561

but of different specialized domains.562

4.3 Human Evaluation563

To comprehensively investigate the helpfulness of564

structured knowledge in the specific QAG task of565

children’s education, we further conduct a human566

study to compare the generated QA-pairs.567

More specifically, according to the supe-568

rior performance of T5-Large fine-tuned on569

FairytaleCQA and GPT-4 with 5-shot ICL ap-570

proach in an end-to-end pipeline, we select these571

two models along with experts’ annotation for hu-572

man evaluation. We randomly select ten story573

books from the test split of FairytaleCQA, and574

sample seven sections per book. For each section,575

there are three QA-pairs created based on the story576

narrative (experts’ annotation, and QA-pairs gen-577

erated by GPT-4 and fine-tuned T5-Large), sum-578

ming up 210 QA-pairs for the human evaluation.579

QA-pairs are randomized for each section and the580

sources are omitted to the human subjects for a581

fair evaluation. Four education experts are asked582

to evaluate each QA-pair on the following four583

dimensions with a 5-point Likert scale:584

1. Grammar Correctness: The QA-pair is in read-585

able English grammar and words;586

2. Answer Relevancy: The answer is correct corre-587

sponding to the question;588

3. Contextual Consistency: The QA-pair originates589

from the story and goes beyond the context;590

4. Children’s Educational Appropriateness: The591

QA-pair is appropriate in young children’s read-592

ing experience of interactive storytelling;593

Table 5 illustrates the average scores in each 594

dimension and the detailed paired sample t-test re- 595

sults are shown in Table 9 in the Appendix. We 596

observe that experts-created QA-pairs outperform 597

those generated by both GPT-4 and fine-tuned T5- 598

Large model approaches on all four dimensions. 599

Our paired sample t-tests shows that experts’ an- 600

notation has significant differences in three out of 601

four dimensions compared with models’ genera- 602

tion. This justifies the utility of our FairytaleCQA. 603

For the Contexual Conisistancy dimension, in 604

which we assess whether a QA-pair is both associ- 605

ated with story contexts and external commonsense 606

knowledge, the fine-tuned T5-Large significantly 607

outperformed GPT-4, behind experts’ annotations. 608

For the Children’s Educational Appropriate- 609

ness dimension, the T5-Large model fine-tuned 610

on FairytaleCQA also exhibits better performance 611

than GPT-4. This result suggests that fine-tuned 612

with KG-supported expert annotation, the T5-Large 613

model can benefit from the assistance of structured 614

knowledge as well as experts’ domain-specificity. 615

Therefore, benefiting from experts’ annotation 616

assisted by structured knowledge, the fine-tuned 617

T5-Large is capable of generating QA-pairs that 1) 618

contain external structured knowledge, and 2) are 619

appropriate for young children’s interactive story- 620

telling experience. The performance of T5-large 621

fine-tuned on FairytaleCQA also proves that our 622

proposed annotation framework can effectively in- 623

fuse structured knowledge with free-form narrative, 624

facilitating similar tasks in other specific domains. 625

5 Conclusion and Future Work 626

In summary, we present a real-world scenario 627

where structured knowledge is needed to facilitate 628

interactive storytelling. We collected a QA dataset, 629

namely FairytaleCQA, for children’s education by 630

leveraging a novel annotation framework that facil- 631

itates scalable expert annotations using structured 632

external knowledge. Our bi-fold experiments in- 633

vestigate the utility of structured knowledge and 634

LLMs performance in domain-specific tasks. 635

One possible future work entails refining the 636

structure of the QAG model structure, using LLMs 637

to generate QA-pairs that align more closely with 638

the actual needs of parents. Another future direc- 639

tion involves using FairytaleCQA and model to de- 640

velop a human-AI education system, aiding parents 641

and early educators in formulating questions dur- 642

ing story readings, and addressing their language, 643

knowledge, time, or motivation constraints. 644
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6 Limitations645

This work primarily focuses on investigating the646

usefulness of structured knowledge in domain-647

specific tasks. Our experiment with domain648

experts-annotated dataset solely utilizes a T5-Large649

model to generate QA-pairs. However, we are650

aware that the performance of other models such as651

BERT (Devlin et al., 2019b), BART (Lewis et al.,652

2019), etc. is to be further explored.653

In this work, we try to comprehensively utilize654

LLMs generation capabilities in QAG; thus, we655

designed three QAG pipelines to investigate the656

performance of LLMs on these pipelines. Nev-657

ertheless, we can further experiment with more658

LLMs and explore more ICL approaches with each659

LLM. This is intended to enhance the generation660

of QA-pairs that are better suited for children’s ed-661

ucation. In addition, based on LLM’s performance662

within each generation step, we can use the com-663

bination of well-performed LLMs to construct a664

robust QAG system in this scenario.665

Besides, in the knowledge matching module of666

our annotation framework, we currently focus on667

commonsense representations involving two con-668

cepts and a relation. The incorporation of meta-669

paths connecting multiple concepts is an area that670

is still to be explored.671
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Appendix978

A Cross-Validation979

To validate and ensure the quality of annotated980

QA-pairs across annotators and to assess the agree-981

ment of triplet selection and QA-pair creation be-982

tween annotators, we implement additional user983

interfaces for the cross-validation process. We ran-984

domly selected 50 QA-pairs in each test and valida-985

tion split (100 QA-pairs in total), and two annota-986

tors were asked to cross-validate each other’s anno-987

tation (denoted by annotatorA and annotatorB ,988

correspondingly):989

1. Shown in Figure 7, annotatorA is provided990

the story section and the concept selected991

by annotatorB . For each selected concept,992

annotatorA is asked to rank the top 3 triplets993

from the same recommended triplet list given994

to annotatorB , verifying the triplet selection995

agreement between annotators (Figure 8).996

2. In the next step, annotatorA is asked to cre-997

ate a QA-pair based on the word and triplet998

selected by annotatorB , evaluating the simi-999

larity of QA-pairs between annotators given1000

the identical triplet (Figure 9).1001

3. After submitting the QA-pair in Step 2,1002

annotatorA is provided with the question cre-1003

ated by annotatorB based on the same triplet,1004

and annotatorA is asked to write an answer1005

to the question to cross-validate the question-1006

answering agreement (Figure 10).1007

B ConceptNet Relations1008

We follow Xu et al. (2020)’s work to filter out weak1009

relations in ConceptNet, and our ranking algorithm1010

uses the following 13 relations in our annotation1011

framework as well as GPT prompts: causes, de-1012

sires, has context of, has property, has subevent, is1013

a, is at location of, is capable of, is created by, is1014

made of, is part of, is the antonym of, is used for.1015

C Distribution of Question Type1016

The distribution of question type in FairytaleCQA1017

is shown in Table 6.1018

D Hyper-parameters and Experiment1019

Settings1020

We conducted our experiments on Google Colab1021

with A100. Following common practice when fine-1022

tuning the T5-Large model, we use the learning1023

rate of 1e-4 and train our model on 3 epochs.1024

Interrogative Train
split

Val
split

Test
split

Total
percentage (%)

what 3779 628 641 86.01
why 227 93 105 7.24
who 76 10 14 1.70

where 41 3 7 0.87
when 20 12 8 0.68
how 112 13 15 2.39
other 42 10 9 1.04

Table 6: Distribution of question types in
FairytaleCQA.

E Complete QAG Pipeline Results 1025

We demonstrate the complete performance of 1026

LLMs in our QAG pipeline using both zero-shot 1027

and few-shot ICL approaches in Table 7 and 8. 1028

Models Categroy

End2End Pipeline
w/o triplets

End2End Pipeline
w/ triplets

Rouge-L
Sent

Similarity
Rouge-L

Sent
Similarity

T5-Large
fine-tuned

zero-shot 0.332 0.289 0.279 0.263

Alpaca
zero-shot 0.124 0.186 0.266 0.207
1-shot 0.251 0.182 0.239 0.186

Mistral
zero-shot 0.229 0.237 0.209 0.229
1-shot 0.227 0.237 0.231 0.241
5-shot 0.267 0.241 0.257 0.251

Llama 2
zero-shot 0.213 0.234 0.177 0.225
1-shot 0.192 0.217 0.206 0.237
5-shot 0.241 0.240 0.269 0.253

Flan-T5-XXL 1-shot 0.264 0.246 0.194 0.209

GPT-3.5
zero-shot 0.194 0.233 0.220 0.252
1-shot 0.239 0.262 0.252 0.271
5-shot 0.262 0.279 0.264 0.266

GPT-4
zero-shot 0.277 0.252 0.243 0.261
1-shot 0.272 0.279 0.251 0.292
5-shot 0.287 0.311 0.248 0.283
CoT - - 0.271 0.270

Table 7: Rouge-L and Sentence Similarity scores of
LLMs on end-to-end pipeline. Bolded numbers are
global best performance within each setting on each
metrics.

F Human Evaluation Results 1029

Table 9 demonstrates the paired sample t-Test re- 1030

sults on our designed four dimensions. Three out 1031

of four dimensions exhibits significant difference. 1032

G Examples of Generated QA-pairs 1033

We randomly sample a section, and the generated 1034

QA-pairs of each pipeline can be found in Ta- 1035

ble 10, 11, 12, 13, 14. For the end-to-end pipeline, 1036

only the generation results of models with the best 1037

automatic evaluation results are demonstrated here. 1038
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Models Categroy
2-step Pipeline 3-step Pipeline

Rouge-L
Sent

Similarity
Rouge-L

Sent
Similarity

T5-Large
fine-tuned

zero-shot 0.279 0.263 0.290 0.289

Llama 2 10-shot 0.263 0.247 - -

GPT-3.5 10-shot 0.279 0.293 0.282 0.247

GPT-4 10-shot 0.271 0.293 - -

Table 8: Rouge-L and Sentence Similarity scores of
LLMs on 2-step and 3-step pipelines. Bolded numbers
are global best performance within each setting on each
metrics.

H GPT Prompts1039

In order to utilize GPT’s strong reasoning and gen-1040

eration capability as well as control GPT-generated1041

questions as much as possible meets the needs of1042

parents, we carefully design our prompts for GPT-1043

3.5 and GPT-4.1044

For end-to-end pipeline, there are two variations1045

based on the system: (1) Directly generate a QA-1046

pair based on a provided story section. (2) From a1047

story section, generate a commonsense triplet and1048

a QA-pair based on the triplet.1049

Table 15, 16 list our prompts for GPT in the two1050

abovementioned approaches.1051

For 2-step pipeline, we first ask GPT to generate1052

a commonsense triplet from a provided story sec-1053

tion, and then we ask GPT to generate a QA-pair1054

based on a triplet. Table 17, 18 show our prompts1055

for the two steps, respectively.1056

We add an additional step before commonsense1057

triplet generation in 3-step pipeline. For a provided1058

story section, we ask GPT to identify a keyword1059

in the text, then generate a commonsense triplet1060

based on that keyword. Our prompts for the two1061

steps are shown in Table 19 and 20. The final step1062

is the same as the second step in 2-step pipeline.1063

I User Interface for Annotation System1064

We implement an annotation system to facilitate1065

QA-pair annotation with associated external knowl-1066

edge. Figure 5, 6 and 2 show the annotation inter-1067

face for human experts.1068

We also conduct cross-validation to assess the1069

agreement among annotators. Figure 7, 8, 9 and 101070

demonstrate user interfaces for each step to support1071

the cross-validation process.1072
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Figure 5: Annotation process1: Browse a displayed section, with candidate words highlighted in grey.

Dimension Model Mean St.D t df p-value

Grammar Correctness Human 4.893 0.560
GPT-4 4.871 0.514 0.646 349 0.519
T5-Large fine-tuned 4.842 0.585 1.259 349 0.209

Answer Relevancy** Human 4.696 0.683
GPT-4 4.379 0.869 5.123 279 <0.01
T5-Large fine-tuned 4.329 1.111 5.487 279 <0.01

Contexual Consistency* Human 4.657 0.882
GPT-4 4.529 0.974 2.240 279 0.026
T5-Large fine-tuned 4.639 0.972 5.487 279 0.729

Educational Human 4.493 0.892
Appropriateness** GPT-4 4.318 2.974 3.113 279 <0.01

T5-Large fine-tuned 4.325 0.972 2.937 279 <0.01
Note: * denotes p-value <0.05, ** denotes p-value <0.01

Table 9: The paired sample t Test result of human annotators in comparison of GPT-4 and T5-Large fine-tuned on
FairytaleCQA in an end-to-end QAG setting.
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Figure 6: Annotation process2: After selecting a word (highlighted in red), related explanation in Wiktionary and
candidate commonsense triplets in ConceptNet will display.

Figure 7: Cross-validation process1: Browse a displayed section, with candidate words highlighted in grey.
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Figure 8: Cross-validation process2: Select a word annotated by others and rank the candidate triplets.

Figure 9: Cross-validation process3: After ranking top3 triplets, the triplet selected originally by the other annotator
is displayed, the validator should create a QA-pair based on the original triplet.
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Figure 10: Cross-validation process4: Validator is asked to answer the question created by the other annotator using
the triplet originally selected by the other annotator.
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Story section:
At the time when the Tang dynasty reigned over
the Middle Kingdom, there were master
swordsmen of various kinds.
Those who came first were the saints of the
sword. They were able to take different shapes
at will, and their swords were like strokes of
lightning.
...
They wore a hidden dagger at their side and
carried a leather bag at their belt.
By magic means they were able to turn human
heads into flowing water.
...

Human annotated QA-pairs

Triplet: (bag, is used for, carrying things)
Question: What is a bag used for?
Answer: A bag is used for carrying things.

Triplet: (dagger, is a, short sword)
Question: What is a short sword called?
Answer: A dagger.

Table 10: A randomly selected story section and two
experts annotated QA-pairs.

End-to-end QAG pipeline (generate
QA-pairs only)

GPT-4 5-shot
Question: What is a dagger used for?
Answer: Cutting.

T5-Large Fine-tuned
Question: What is a sword?
Answer: A sword is a long-bladed weapon.

Table 11: Generated QA-pairs using end-to-end QAG
pipeline on GPT-4 and T5-Large without generating
commonsense triplets. The QA-pairs are generated
based on the story section in Table 10

End-to-end QAG pipeline
(generate triplets and QA-pairs)

GPT-4 5-shot
Triplet: (dagger, is used for, protection)
Question: What can a dagger be used for?
Answer: Protection.

T5-Large Fine-tuned
Triplet: (dagger, is a, knife)
Question: What is a dagger?
Answer: A dagger is a knife.

Table 12: Generated QA-pairs and commonsense
triplets using end-to-end QAG pipeline on GPT-4 and
T5-Large. The QA-pairs are generated based on the
story section in Table 10

2-step QAG pipeline

GPT-3.5 10-shot
Triplet: (sword, is used for, fighting)
Question: What is a sword used for?
Answer: Fighting.

GPT-4 10-shot
Triplet: (sword, is used for, protection)
Question: What might someone use a sword
for?
Answer: Protection.

T5-Large Fine-tuned
Triplet: (dagger, is a, knife)
Question: What is a dagger?
Answer: A dagger is a sharp knife.

Table 13: Generated QA-pairs and commonsense
triplets using 2-step QAG pipeline on GPT-3.5, GPT-4
and T5-Large. The QA-pairs are generated based on the
story section in Table 10
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3-step QAG pipeline

GPT-3.5 1-shot
Triplet: (lightning, is a, electrical discharge)
Question: What is lightning?
Answer: Electrical discharge.

T5-Large Fine-tuned
Triplet: (bag, is used for, carrying things)
Question: What do people use bags for?
Answer: People use bags for carrying things.

Table 14: Generated QA-pairs and commonsense
triplets using 3-step QAG pipeline on GPT-3.5 and T5-
Large. The QA-pairs are generated based on the story
section in Table 10
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Prompt for GPT in end-to-end pipeline
generate QA-pairs only

I need you to help generate a question and answer pair for young children aged three to six. I will
provide you with a short section of a story delimited by triple quotes. Please follow these steps:
1. For each sentence, identify one key word that meets the following criteria: it is relatively complex, it
is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
2. After this, you need to completely forget about the story that I gave you, remembering only the
words you identified.
3. Based on each selected word, generate a question and answer pair that either the question or the
answer contains that word. For example, if your identified word is ’apple’, your question could be:
where do apples grow?; what do apples taste like? What color are apples? These questions should go
beyond the context of the stories.
Each question should have one single correct answer that would be the same regardless of the
children’s experiences. The questions should be focused on common-sense, fact-based knowledge.
The common-sense, fact-based knowledge should be based on the selected word and is in the form of a
triple such as A relation B, where A and B are two concepts and the selected word can be either A or B.
You should use one of the following relations for the common-sense knowledge:

causes
desires
has context of
has property
has subevent
is a
is at location of
is capable of
is created by
is made of
is part of
is the antonym of
is used for

4. After this, select one question-answer pair that you think best meets my criteria. Please note that the
question should be answerable without reading the story.
The answer should only be a concrete noun, verb, or adjective.
Return the selected question-answer pair in the following format:

question: ...
answer: ...

〈story 〉:
{story1 for few-shot}

〈response 〉:
{response1 for few-shot}
... ...

〈story 〉:
{story for the current data}

〈response 〉:

Table 15: Prompt for GPT in end-to-end QAG approach with generating commonsense triplet.
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Prompt for GPT in end-to-end pipeline
generate triplets and QA-pairs

I need you to help generate a question and answer pair for young children aged three to six. I will
provide you with a short section of a story delimited by triple quotes. Please follow these steps:
1. For each sentence, identify one key word that meets the following criteria: it is relatively complex, it
is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
2. After this, you need to completely forget about the story that I gave you, remembering only the
words you identified.
3. Based on each selected word, generate one common-sense relation based on the selected word. This
common-sense relation should go beyond the context of the stories. For example, if your identified
word is ’apple’, your common-sense relation could be: apple grows on trees; apples are red. The
common-sense, fact-based knowledge should be based on the selected word and is in the form of a
triple such as ’A relation B’, where A and B are two concepts and the selected word can be either A or
B. You should use one of the following relations for the common-sense knowledge:

causes
desires
has context of
has property
has subevent
is a
is at location of
is capable of
is created by
is made of
is part of
is the antonym of
is used for

4. After this, generate a question and answer pair based on the common-sense, fact-based knowledge
you generated. Either the question or the answer should contain that identified word. Each question
should have one single correct answer that would be the same regardless of the children’s experiences.
5. After this, select one question-answer pair that you think best meet my criteria. Please note that the
question should be answerable without reading the story.
The answer should only be a concrete noun, verb, or adjective.
Return the generated common-sense knowledge and selected question-answer pair in the following
format:
commonsense: (A, relation, B)
question: ...
answer: ...

〈story 〉:
{story1 for few-shot}

〈response 〉:
{response1 for few-shot}

... ...

〈story 〉:
{story for the current data}

〈response 〉:

Table 16: Prompt for GPT in end-to-end QAG approach with generating commonsense triplet.
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Prompt for GPT in 2-step pipeline: Step 1

I need you to help generate commonsense knowledge for young children aged three to six. The
commonsense knowledge you should write can be seen as a relation about two concepts. I will provide
you with a short section of a story delimited by triple quotes. Please follow these steps:
1. For each sentence, identify one key word that meets the following criteria: it is relatively complex, it
is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or adjective.
2. After this, you need to completely forget about the story that I gave you, remembering only the
words you identified.
3. Based on each selected word, generate a common-sense, fact-based knowledge.
For example, if your identified word is ’apple’, your commonsense relation could be: apple is a fruit;
apple is used for eating.
The common-sense, fact-based knowledge should be based on the selected word and is in the form of a
triple such as ’A relation B’, where A and B are two concepts and the selected word can be either A or
B. You should use one of the following relations for the common-sense knowledge:

causes
desires
has context of
has property
has subevent
is a
is at location of
is capable of
is created by
is made of
is part of
is the antonym of
is used for

Return the generated common-sense knowledge in the following format:

commonsense: (A, relation, B)

〈story 〉:
{story1 for few-shot}

〈response 〉:
{response1 for few-shot}
... ...

〈story 〉:
{story for the current data}

〈response 〉:

Table 17: Prompt for step 1 in GPT 2-step QAG approach.
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Prompt for GPT in 2-step pipeline: Step 2

I need you to help generate a question and answer pair for young children aged three to six. I will
provide you with a piece of commonsense knowledge. Please follow these steps:
1. Based on provided commonsense knowledge, generate a question and answer pair that either the
question or the answer contains a concept in the commonsense knowledge.
The questions should be focused on commonsense, fact-based knowledge.
For example, given the commonsense knowledge of ’apple is used for eating’, your question could be:
what is apple used for?
Each question should have one single correct answer that would be the same regardless of the
children’s experiences. The answer should only be a concrete noun, verb, or adjective.
Return the generated question-answer pair in the following format:

question: ...
answer: ...

〈commonsense knowledge 〉:
{commonsense knowledge1 for few-shot}

〈response 〉:
{response1 for few-shot}
... ...

〈commonsense knowledge 〉:
{commonsense knowledge generated by GPT in Step 1 for the current data}

〈response 〉:

Table 18: Prompt for step 2 in GPT 2-step QAG approach.
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Prompt for GPT in 3-step pipeline: Step 1

I need you to help identify a key word from a story text for young children aged three to six. The key
word should be able to expand as commonsense knowledge. I will provide you with a short section of a
story delimited by triple quotes, and candidate words in this section. Please follow these steps:
1. For all the candidate words in this section, identify a key word that meets the following criteria: it is
relatively complex, it is considered tier 1 or tier 2 vocabulary, and it is a concrete noun, verb, or
adjective.
Return three identified key word in the following format:

key word:

〈story 〉:
{story1 for few-shot}

〈candidate words 〉:
{candidate words1 for few-shot}

〈response 〉:
{response1 for few-shot}
... ...

〈story 〉:
{story for the current data}

〈candidate words 〉:
{candidate words for the current data}

〈response 〉:

Table 19: Prompt for step 1 in GPT 3-step QAG approach.
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Prompt for GPT in 3-step pipeline: Step 2

I need you to help generate commonsense knowledge based on a key word for young children aged
three to six. The commonsense knowledge you should write can be seen as a relation about two
concepts.
I will provide you with one key word identified in a story, and for each key word, I will provide you
with six commonsense knowledge as candidate triples in the form of a triple such as ’A relation B’,
where A and B are two concepts and the key word can be either A or B. Please follow these steps:
1. Based on each selected word and candidate triples, choose one triple as a common-sense, fact-based
knowledge that is best for children’s education.
For example, if your key word is ’apple’, your commonsense relation could be: (apple, is a, fruit);
(apple, is used for,eating); (apple, is, sweet); (apple, has property, red); (apple, is at location of, trees);
(apple, is used for, apple_pie).
Return one generated common-sense knowledge in the following format:

commonsense: (A, relation, B)
〈key word 〉:
{key word1 for few-shot}

〈candidate triples 〉:
{candidate triples1 for few-shot}

〈response 〉:
{response1 for few-shot}
... ...

〈key word 〉:
{key word for the current data}

〈candidate triples 〉:
{candidate triples for the current data}

〈response 〉:

Table 20: Prompt for step 2 in GPT 3-step QAG approach.
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