
Finding good policies in average-reward Markov
Decision Processes without prior knowledge

Adrienne Tuynman
adrienne.tuynman@inria.fr

Rémy Degenne
remy.degenne@inria.fr

Emilie Kaufmann
emilie.kaufmann@univ-lille.fr

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189-CRIStAL, F-59000 Lille, France

Abstract

We revisit the identification of an ε-optimal policy in average-reward Markov
Decision Processes (MDP). In such MDPs, two measures of complexity have
appeared in the literature: the diameter, D, and the optimal bias span, H , which
satisfy H ≤ D. Prior work have studied the complexity of ε-optimal policy
identification only when a generative model is available. In this case, it is known
that there exists an MDP with D ≃ H for which the sample complexity to output
an ε-optimal policy is Ω(SAD/ε2) where S and A are the sizes of the state and
action spaces. Recently, an algorithm with a sample complexity of order SAH/ε2

has been proposed, but it requires the knowledge of H . We first show that the
sample complexity required to estimate H is not bounded by any function of S,A
and H , ruling out the possibility to easily make the previous algorithm agnostic
to H . By relying instead on a diameter estimation procedure, we propose the first
algorithm for (ε, δ)-PAC policy identification that does not need any form of prior
knowledge on the MDP. Its sample complexity scales in SAD/ε2 in the regime
of small ε, which is near-optimal. In the online setting, our first contribution is
a lower bound which implies that a sample complexity polynomial in H cannot
be achieved in this setting. Then, we propose an online algorithm with a sample
complexity in SAD2/ε2, as well as a novel approach based on a data-dependent
stopping rule that we believe is promising to further reduce this bound.

1 Introduction

Reinforcement learning (RL) is a paradigm in which an agent interacts with its environment, modeled
as a Markov Decision Process (MDP), by taking actions and observing rewards. Its goal is to learn, or
to act according to, a good policy, that is a mapping from state to actions which maximizes cumulative
rewards. However, there are different ways to define this notion of (expected) cumulative reward:
in the finite horizon setting, one should maximize the expected sum of rewards up to a certain fixed
horizon; in the discounted setting, each consecutive reward is γ times as important as the previous
one, with 0 < γ < 1. In this paper, we focus on the average reward setting, in which the value of a
policy is measured by its asymptotic mean reward per time step. This setting is ideal for long-term
learning, as there is no need to tune the horizon or discount parameters. However, the asymptotic
nature of its optimality criterion makes the problem more complicated and highly sensitive to small
changes in the MDP, which is less observable in the finite horizon or discounted settings.

Formally, a Markov Decision Processes is defined as a tuple (S,A,P ,r) where S is the state space
of finite size S, A is the action space of finite size A. Letting ΣX denote the set of distribution
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over a set X , P : S × A → ΣS is the (assumed unknown) transition kernel, and r : S × A →
Σ[0,1] is the reward kernel. For each state-action pair (s, a), we denote by rs,a = E[r(s, a)] the
(assumed known) mean reward1. At each time step t, the agent observes a state st ∈ S, takes
an action at, and observes a reward rt ∼ r(st, at) and a next state st+1 ∼ P (st, at). In an
average-reward MDP (AR-MDP) the value of a policy π : S 7→ ∆(A) is measured with its gain
gπ(s) = limT→+∞

1
T Eπ

[∑T−1
t=0 rt|s0 = s

]
where the expectation is taken when the agent follows

policy π (i.e., st ∼ π(at)) from the initial state s. In this paper, we consider weakly communicating
MDPs (defined in Section 2) in which a policy π⋆ maximizing the gain in all states exists and has a
constant value, denoted by gπ⋆

.

We are interested in the best policy identification problem: we want to build an algorithm that learns
the MDP by taking actions and collecting observations, until it can, after some (possibly random)
number of interactions τ output a policy π̂ that is near-optimal. More precisely, given two parameters
ε ∈ (0, 1) and δ ∈ (0, 1) we seek an (ε, δ)-Probably Approximately Correct (PAC) algorithm, that is
an algorithm that satisfies

P (τ <∞,∃s ∈ S, gπ⋆
− gπ̂(s) > ε) ≤ δ .

Our objective is to find such an algorithm that has minimal sample complexity, i.e., that requires
the least amount of steps τ , with high probability or in expectation. Two different models can be
considered for the collection of observations. In the online model, the algorithm can only choose the
action at to sample at each time step, as the state st is determined by the MDP’s dynamics and the
previous actions. With a generative model however the agent can sample the reward and next state of
any state action pair (st, at), regardless of which state it arrived in at the previous time step.

To the best of our knowledge, prior work on (ε, δ)-PAC best policy identification in AR-MDPs has
exclusively considered the generative model setting. In the online setting, the regret minimization
objective has however been studied a lot (e.g., [9, 2, 3]). Existing sample complexity or regret
bounds feature different notions of complexity of the MDP, besides its size S,A. The diameter
D and the optimal bias span H , formally defined in the next section, are two such complexity
notions that both feature in lower or upper bounds on the sample complexity of existing algorithms.
More specifically for (ε, δ)-PAC policy identification, the work of [22] provides a worse-case lower
bound showing that there exists an MDP on which any (ε, δ)-PAC algorithm using a generative
model should have a sample complexity larger than Ω((SAD/ε2) log(1/δ)). The recent work
of [27] provides an (ε, δ)-PAC algorithm that takes H as input and whose sample complexity is
Õ
(
(SAH/ε2) log(1/δ)

)
2. Using that H ≤ D, this algorithm is thus optimal, and the lower bound

is also in Ω̃((SAH/ε2) log(1/δ)). This raises the following question: can an algorithm attain the
same optimal sample complexity without prior knowledge of H? More broadly, as detailed in the
next section, all existing (ε, δ)-PAC algorithms require some form of prior knowledge on the MDP,
and we propose the first algorithms that are agnostic to the MDP.

Contributions In the generative model setting, a first hope to get an algorithm agnostic to H is
to plug-in a tight upper bound on this quantity in the algorithm of [27]. Our first contribution is a
negative result: the number of samples necessary to estimate H within a prescribed accuracy is not
polynomial in H , S and A. This result is proved in Section 3. On the positive side, by combining a
procedure for estimating the diameter D inspired by [21] with the algorithm of [27] we propose in
Section 4 Diameter Free Exploration (DFE), an algorithm for communicating MDPs that does not
require any prior knowledge on the MDP and has a near-optimal Õ

(
(SAD/ε2) log(1/δ)

)
sample

complexity in the asymptotic regime of small ε. Then in Section 5 we discuss the hardness of
(ε, δ)-PAC policy identification in the online setting. We notably prove a lower bound showing that
the sample complexity of (ε, δ)-PAC policy identification cannot always be polynomial in S,A and
H , even with the knowledge of H . On the algorithmic side, we propose in Section 6 an online variant
of DFE whose sample complexity scales in SAD2/ε2. As prior work, DFE hinges on a conversion
between the discounted and average-reward settings [22] and uses uniform sampling. Departing from
this approach, we further propose a novel data-dependent stopping rule tailored for AR-MDPs that

1In most practical cases, the reward of the system are decided preemptively, and the uncertainty solely resides
in the dynamics; moreover, estimating rewards is often easier than estimating the transition probabilities, and
doing it can be done at little cost, therefore not changing our results much.

2In the paper, the Õ hides constant factors and logarithmic terms in S,A,D or H , 1/ε and log(1/δ).
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can be used both in the generative model and the online setting. We prove that it is (ε, δ)-PAC for
any (possibly adaptive) sampling rule and give preliminary sample complexity guarantees.

2 Related work

In order to position our work in the literature on best policy identification in average-reward MDP,
we start by recalling some properties of average-reward MDPs and give a formal definition of the
different complexity measures that have appeared in the literature.

First of all, it can be more or less easy to travel through the MDP and visit some states. We call
an MDP weakly communicating if there exists a closed set of states that are all reachable from
every other state (meaning S ′ ⊂ S such that for any s, s′ in S ′, minπ:S→AE[min{t, st = s′}|s0 =
s,∀t′, at′ = π(st′)] < +∞) and a possibly empty set of states which are transient (meaning the
return time min{t, st = s} when the chain starts with s0 = s is not almost surely finite) under any
policy. Furthermore, when there is no such transient state, the MDP is then communicating, and it is
possible to define the diameter of the MDP to quantify how fast circulating in the MDP can be:

D = max
s ̸=s′

min
π:S→A

E[min{t > 0, st = s′}|s0 = s,∀t′, at′ = π(st′)] .

Finally, if the MDP satisfies for any policy π and states s, s′ thatE[min{t, st = s′}|s0 = s,∀t′, at′ =
π(st′)] < +∞, then the MDP is ergodic. If the MDP satisfies this except for a possibly empty set of
transient states, the MDP is then called unichain. In the following, the MDPs are all considered at
least weakly communicating, though some results shall require some stronger assumptions, which we
will specify. Notably, every mention of the diameter will assume communicating MDPs.

The diameter has appeared in previous upper and lower bound on the regret [9] and in the lower bound
of [22] for best policy identification. The diameter is also used in the literature on the Stochastic
Shortest Path (SSP) problem, in which one seek to minimize the sum of cost obtained before some
goal state is reached (some details on this alternative framework are given in Appendix B). The
SSP-diameter is defined as the maximum over states of the minimum expected steps to the goal state,
and it appears in the sample complexity bounds given by [21]. We will see in the following that
there are multiple similarities between the SSP setting and our average-reward setting, the use of the
diameter being only one of them.

For a policy π : S → A, we define the gain gπ(s) = limT→+∞
1
T E

[∑T−1
t=0 rt|s0 = s

]
. By writing

Pπ = (P (s, π(s)))s, and introducing Pπ = limT→+∞
1
T

∑T
t=1 P

t−1
π the asymptotic distribution

matrix, as well as defining rπ(s) = E[r(s, π(s))], we have gπ(s) = Pπ(s)rπ . Finally, we can define
the bias vector bπ =

∑+∞
t=1

(
P t−1
π − Pπ

)
· rπ . Those vectors satisfy the so-called Poisson equations

(see [18]): {
(I − Pπ)gπ = 0 (3)
gπ + (I − Pπ)bπ = rπ (4)

We notice that the solution, bπ, is defined up to an additive element in Ker(I − Pπ). Therefore, if
the Markov chain is unichain for the (assumed unique) optimal policy (which is the case in weakly
communicating MDPs), then the optimal gain vector is a constant g⋆, and b⋆ the bias vector of said
optimal policy is defined up to an additive constant satisfying

g⋆ + b⋆(s) = max
a
{r(s, a) + ps,ab

⋆} , (5)

where ps,a is the (row) vector of transition probabilities from (s, a). We further define

H = max
s

b⋆(s)−min
s

b⋆(s)

as the span of the optimal bias. The optimal bias span is always smaller than the diameter [2], which
motivates a line of work replacing D with H in existing regret bounds [2, 7]. These improved bounds
are however obtained only when H is known. Similarly existing sample complexity bounds featuring
H all require this knowledge, as discussed in more detail below.

In addition to the diameter D and the optimal bias span H , we define the mixing time

t⋆mix = max
π

inf

{
t ≥ 1 : max

s

∥∥P t
π(s)− Pπ(s)

∥∥
1
≤ 1

2

}
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which has also appeared in previous sample complexity bounds. By default the maximum is taken
over all stochastic policies π : S → ΣA, and we denote by t⋆mix,D the same quantity where the
maximum is restricted to deterministic policies.

Table 1: Existing sample complexity bounds in the generative model setting

Algorithm Bound Setting

[23] Õ
(

SA(τt⋆mix)
2

ε2 log(1/δ)
)

1√
τS
≤ Pπ(s) ≤

√
τ

S , τ known
t⋆mix over all policies, known

[11] Õ
(

SA(t⋆mix)
2

ε2 log(1/δ)
)

t⋆mix, known

[12] Õ
(

SAt⋆mix,D
ε3 log(1/δ)

)
t⋆mix,D, known

[16] Õ
(

SA(t⋆mix)
3

ε2 log(1/δ)
)

t⋆mix, known (policy gradient)

[24] Õ
(

SAt⋆mix,D
ε2 log(1/δ)

)
t⋆mix,D, known

[22] Õ
(
SAH
ε3 log(1/δ)

)
H known

[26] Õ
([

SAH2

ε2 + S2AH
ε

]
log(1/δ)

)
H known

[27] Õ
(
SAH
ε2

)
H known

This paper Õ
([

SAD
ε2 + S2AD2

]
log(1/δ)

)
no prior knowledge

[12] Ω
(

SAt⋆mix
ε2

)
Lower bound (worse case)

[22] Ω
(
SAD
ε2 log(1/δ)

)
Lower bound (worse case)

Multiple papers have considered the problem of finding an ε-optimal policy in average-reward with
access to a generative model. We summarize existing results in Table 1. [12] and [22] derived worse
case lower bounds for the problem by exhibiting MDPs on which a certain number of samples must be
collected to guarantee correctness of any (ε, δ)-PAC algorithm. The literature has first focused on the
mixing time as a measure of the complexity of MDPs [23, 11, 12, 16], until the mixing time-scaling
lower-bound for the sample complexity was matched by [24], for an algorithm taking t⋆mix,D as input.
Algorithms using the optimal bias span H were introduced more recently, by [22] and [26], and the
lower bound scaling in H was matched up to logarithmic factors by [27]. This side of the literature
has mostly used the links between discounted and average-reward MDPs and has used that for known
H it is possible to choose a discount γ (with 1− γ of order ε/H) such that H-optimal policies in the
discounted MDP are ε-optimal in the average-reward MDP [22]. This idea leads to upper bounds
of the sample complexity that scale with the (assumed known) upper bound on H . To make these
algorithms agnostic to the MDP, a natural question is therefore: can we find a tight upper bound on
H from the data?

3 On the hardness of estimating H

In this section, we investigate the complexity of estimating the optimal bias span H and more
specifically of finding upper bounds on this quantity.

Definition 1. We say an algorithm computes a ∆-tight upper bound for the optimal bias span with
probability 1 − δ when, on any MDP of optimal bias H , it outputs Ĥ such that with probability
higher than 1− δ, H ≤ Ĥ ≤ H +∆.

Theorem 1 shows that there exists an MDP on which the sample complexity of an algorithm finding a
∆-tight upper bound with probability larger than 1− δ can be arbitrarily large. As a consequence,
there cannot exist a bound on this sample complexity depending solely on S, A, H , δ and ∆.
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Theorem 1. For any δ < 1
2e4 , T > 0, ∆, there exists an ergodic MDPM with optimal bias span

H = 1/2, S = 3 and A = 2 such that any algorithm that computes a ∆-tight upper bound for the
optimal bias span with probability 1− δ under a generative model assumption needs (in expectation)
more than T samples inM.

Sketch of proof To give an idea of the proof, we first focus on the weakly-communicating setting,
with the full proof and the necessary ergodicity transformation detailed in Appendix A. We use the
family of MDPs (MR)0<R<1 displayed in Figure 1. Indeed, having R < 1/2 makes the full-line
policy optimal; since moving from one state to the optimal final state (1) is very easy in this case,
no state is drastically worse than another, hence a small optimal bias span, H = 1/2. However,
R > 1/2 makes the dashed-line policy optimal; moving from state 3 to state 2 is more difficult as p
is small, taking on average 1/p time steps, and state 3 has a worse reward than state 2; thus state 3 is
considered way worse than state 2, hence a high optimal bias span, H = 1+p

p R. Thus, to bound H

tightly, one needs to know whether R > 1/2 or R < 1/2, which can require many samples if R is
very close to 1/2.

1

2 3

1
2 , 1

R, 1 0, 1− p

0, p

0, 1

0,
1 0, 1

Figure 1: MDPMR, the hard instance for Theorem 1. Each arrow corresponds to a state-action and
next state combination, and is annotated with the mean reward of the action and the probability of the
transition. Arrows with a different line style correspond to different actions.

We remark that since the hard MDP instance in our proof has a fixed optimal bias span 1/2, we would
have the same problem if we looked for algorithms trying to find Ĥ such that, with high probability,
H ≤ Ĥ ≤ (1 + ∆)H . Moreover, instead of looking for upper bound we could also consider the task
of estimating H within a given margin of error and the same issue would arise.

While Theorem 1 does not preclude the existence of an algorithm that is agnostic to H and reaches a
Õ((SAH/ε2) log(1/δ)) sample complexity, it still suggests that assuming a known upper bound on
H is a lot to ask. In the next section we will see that for communicating MDPs such an assumption is
not needed to attain a near-optimal sample complexity.

4 A near-optimal algorithm without prior knowledge

As we have seen, finding tight upper bounds on H is not feasible in finite time. In the literature on
regret minimization, in which improved regret bounds featuring H have also been derived when H is
known, two types of workarounds have been used. In the REGAL algorithm3, [2] propose to use a
doubling trick to counter not knowing H , at the expense of an additional factor of

√
S in the regret.

The doubling trick method is not applicable to BPI problems, though. For communicating MDPs,
the idea of plugging-in an upper bound on D which is also a (not necessarily tight) upper bound on
H was first proposed by [25] and permits to match the minimax lower bound on the regret of [9]
featuring D. In this section, we translate this idea to the best policy identification setting.

We propose Diameter Free Exploration (DFE), stated as Algorithm 1, which combines a diameter
estimation sub-routine that follows from the work of [21, 20] with the state-of-the-art algorithm of

3Some issues about this algorithm are detailed in [6], but the doubling trick still deserves consideration.
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Data: Accuracy ε ∈ (0, 1), confidence level δ ∈ (0, 1)

Let D̂ be the output of Algorithm 2 with accuracy 1 and confidence level δ/2.
Let π̂ be the output of Algorithm 3 with accuracy ε, upper bound H = D̂ and confidence level
δ/2

return π̂
Algorithm 1: Diameter Free Exploration (DFE)

[27] when (an upper bound on) H is known. Both components are described in details in Appendix B
with their theoretical properties. More precisely, DFE first calls Algorithm 2 to output a quantity
D̂ which satisfies D ≤ D̂ ≤ 4D with probability larger than 1 − δ/2, using a random number
of samples N from each state action pair (s, a) that satisfies N = Õ(D2(log(1/δ) + S)). Then
Algorithm 3 (which also uses uniform sampling) takes as input D̂ and is guaranteed to output a
policy that is ε-optimal with probability larger than 1− δ/2, using a total number of samples of order
Õ
(

SAD̂
ε2 log

(
1
δ

))
. This gives the following theorem.

Theorem 2. Algorithm 1 is (ε, δ)-PAC and its sample complexity satisfies, with probability 1− δ,

τ = Õ
([

SAD

ε2
+D2SA

]
log

(
1

δ

)
+D2S2A

)
.

From Theorem 4 of [22], there exists a communicating MDP with a sample complexity in
Ω
(
SAD
ε2 ln (1/δ)

)
. Therefore, the DFE algorithm is worse than the lower bound by a multiplicative

factor
(
1 +Dε2 + DSε2

log 1/δ

)
. In particular, in the regime of small ε, this algorithm is optimal up to

logarithmic factors.

5 On the hardness of best policy identification in the online setting

In the online setting, many algorithms with regret guarantees have been designed, however to the best
of our knowledge there exists no online algorithm that is guaranteed to output a policy π̂ satisfying
gπ̂ ≥ g∗−ε with probability larger than 1−δ4. In this section, we give some elements of explanation.

On the hardness of a regret to PAC conversion In the finite-horizon setting, [10] gave a way
to convert any algorithm guaranteeing sublinear regret into a BPI algorithm with finite sample
complexity. However, in average-reward MDP, this conversion is not straightforward. Indeed, it
hinges on the fact that selecting at random one of the policies played during the regret-minimizing
algorithm should yield a good enough policy: the more time steps there are, the smaller the regret
induced by the most recent policy is, thus the better the policy is. However, in our setting, we know
that the empirical mean reward of a policy converges towards the gain of this policy, but the speed of
this convergence is determined by the mixing time. Moreover, as shown in [22], this mixing time can
be arbitrarily large. However, the regret is not defined asymptotically. In [9], the regret at time T

is defined as Tg∗ − E[
∑T

t=1 rt]. In [17], the regret is Eπ∗ [
∑T

t=1 rt]− E[
∑T

t=1 rt]. As the mixing
time can be big, it is possible that these regret measures are small for a large number of steps, but that
the underlying policy is not anywhere near asymptotically optimal.

It is therefore not possible to preemptively define the number of steps necessary for the regret-
minimizing algorithm to find an asymptotically good policy, and not just one that is good on the
short term. For example, for any N ∈ N, N ≥ 2, consider the MDPMp displayed in Figure 2
with p = 1

N and any p′ < 1−ε
1+εp. While the dashed-line policy is asymptotically best, the full-lined

policy is better for at least N time steps, and is not even ε-optimal, as we show in Appendix C.1.
An algorithm guaranteeing low regret (over a slightly modified version of the MDP to guarantee
ergodicity) could therefore take the full-line action for a number of steps independent of the known
parameters S and A, and the knowledge of N would be required to know how many samples are

4The work of [16] provides an online policy gradient algorithm for ergodic MDPs but its guarantees are
not expressed in the PAC setting considered in the paper (rather with simple regret). Moreover, this algorithm
requires some prior knowledge on the MDP through some parameter β related to the mixing time
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12 3

1, 1− p

0, 1− p

1, 1− p′ 0, 1− p′

0, p

1, p′ 1, p

0, p′

Figure 2: MDPMp,p′ with high mixing time.

s1 s2 s3 ... sS
{1, p}

j1 j2 jS−2

jS−1

{1, 1− p}

Figure 3: MDPMj , the hard instance for Theorem 3

necessary for best policy identification. This means that a wrapper turning any regret minimization
algorithm into a best policy identification algorithm would require estimating and incorporating this
measure N somewhere, which argues against the existence of a straightforward wrapper as in the
episodic setting. Similar arguments in the SSP setting have been brought up for example in [21].

A hardness result As the following lower bound shows, it is in fact not possible at all to have an
online best policy identification algorithm that has a sample complexity bound polynomial in S, A
and H . This result is as a counterpart of the hardness result proved by [5] in SSP-MDPs.

Theorem 3. For any S ≥ 4, A ≥ 4, ε ∈
(
0, 1

4

)
, δ ∈

(
0, 1

16

)
, and any (ε, δ)-PAC online algorithm,

there exists a weakly communicating MDP with S states, A actions, mean rewards in [0, 1], H ≤ S

and D ≥ AS−1/16ε such that if the algorithm starts in a given state s1, E[τ ] = Ω
(

AS−1

ε

)
.

Sketch of proof For j ∈ (S − 1)A, we define the hard instanceMj as in Figure 3. An agent in s2
must execute the precise sequence of actions j to get back to s1, which is the only state that generates
non zero rewards. Since not learning this precise sequence would mean the agent will perform badly
on one of theMj , and therefore perform a very suboptimal policy, the agent will need to have a big
enough sample size to at least see s2 with high probability when starting in s1. With a small value of
p, it is possible to make the sample complexity exponentially big, as we detail in Appendix C.2.

This hard MDP is actually inspired from the hard SSP-MDP instance considered by [5] to prove
that sample-efficient learning is impossible in the online setting of SSP. Indeed, their hard MDP is
one where the cost is always the same in each state, in which case we can easily transform the SSP
problem into an average reward one, as shown in Figure 5. Indeed, if the costs of the SSP-MDP are
all equal and non-zero, then finding an optimal policy in it can be show to be equivalent to finding an
optimal policy in the corresponding AR-MDP in which the only reward is in the initial state.

We remark that while the hard MDP instancesMj used in our proof have an optimal bias span H
that is upper bounded by S, its diameter is exponential is S. Hence while Theorem 3 implies that no
online algorithm can get a O

(
SAH
ε2

)
sample complexity (with or without the knowledge of H) on

every instance and for every ε, it does not rule out the possibility to have an online algorithm with a
sample complexity scaling with D. We propose such an algorithm in the next section.

7



6 Algorithms for the online setting

6.1 Diameter Free Exploration for the online setting

Our first idea to tackle the online setting is to propose an online variant of the Diameter Free
Exploration algorithm from Section 4. While the first ingredient of DFE is Algorithm 2, a diameter
estimation procedure based on a generative model, we could use instead the online diameter estimation
procedure proposed by [20] to get an upper bound D ≤ D̂ ≤ 4D with probability larger than 1− δ
using a slightly worse sample complexity in Ōδ(D

3SA)5. The second ingredient, Algorithm 3, starts
by collecting a fixed number of samples n proportional to (D̂/ε2) log (12SA/(δε)) from each (s, a),
using the generative model. We can replace this step by using the GOSPRL algorithm of [20] to
collect this amount of samples with an online algorithm, which requires Ōδ(SADn +D3/2S2A)
samples, with high probability. We call the resulting algorithm Online-DFE.

Theorem 4. Online-DFE is (ε, δ)-PAC and its sample complexity satisfies, with probability larger

than 1− δ, τ = Ōδ

(
SAD2

ε2 + S2AD3
)

.

Compared to Theorem 2 for the generative model setting, we note a multiplicative D factor in the
sample complexity, as well as a less explicit dependency in δ. Still, it provides an online PAC
algorithm whose sample complexity scales in SAD2/ε2 in the small ε regime. We remark that the
extra factor D compared to the lower bound for the generative setting comes from the use of GOSPRL
and the (mostly theoretical) conversion from the generative to the online setting. To get more efficient
algorithms, a promising direction is to investigate more adaptive algorithms, directly tailored for the
average-reward setting. This is what we do next.

6.2 Towards more adaptive algorithms

We recall that an identification algorithm uses three components: a sampling rule, selecting at time t
a state-action pair (st, at), after which the next state st+1 ∼ P (st, at) and the reward rt ∼ r(st, at)
is observed; a stopping rule τ which decides whether the data collection can be stopped, and a
recommendation π̂ which is a guess for a near-optimal policy that depends on the first τ observations.
In the online setting, the sampling rule is actually reduced to the choice of at given st, as we have the
constraint that st+1 ∼ P (st, at). In this section we introduce a novel stopping rule, that can be used
in conjunction with different sampling rule, possibly in the online setting.

The Value Iteration stopping rule We first introduce some notation to define the stopping rule.
We denote by Nn

s,a =
∑n

t=1 1((st, at) = (s, a)) the number of visits to the state action pair (s, a) in
the first n steps and p̂ns,a the empirical estimate of the transition probability vector ps,a built at step n,
where pns,a can be arbitrarily chosen to be the constant vector equal to 1

S if Nn
s,a = 0.

Our stopping rule takes inspiration from the stopping condition of value iteration for average-reward
MDPs. It relies on a sequence of bias vectors bn ∈ RS and on the ability to build confidence
intervals on the quantity Is,a(n) = rs,a + ps,abn − bn(s). This leads us to build an upper bound
of the span of Is,a(n), which can be seen as the average-reward equivalent of the Bellman error as
defined in [8]. We know that, if bn = b⋆, then (maxa Is,a(n))s is equal to the constant vector g⋆.
Conversely, by Theorem 8.5.5 of [18], if the span of (maxa Is,a(n))s is small, then the associated
policy π(s) = argmaxa Is,a(n) is approaching the optimal one; this can be used to derive a criterion
for correctness of value iteration in average-reward MDPs. Therefore, by examining an upper-bound
on the span of I , we get the following theorem.

Theorem 5. In a weakly communicating MDP, for a given vector bn ∈ RS , if for all pairs (s, a) we
have ps,abn ∈

(
Ln
s,a(bn; δ), U

n
s,a(bn; δ)

)
, then defining π̂n(s) = argmaxa I

n,♭
s,a (bn; δ), we have

min
s

max
a

In,♭s,a (bn; δ) ≤ gπ̂n
≤ g⋆ ≤ max

s
max

a
In,♯s,a (bn; δ)

where In,♭s,a (bn; δ) := rs,a + Ln
s,a(bn; δ)− bn(s) and In,♯s,a (bn; δ) := rs,a + Un

s,a(bn; δ)− bn(s).

5the Ōδ notation hides constants and logarithmic terms in S,A,D, H and 1/δ (instead of log(1/δ) in Õ) as
the work of [20] did not try to optimize the dependency in δ, as we did in Section 4.
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Now to propose a concrete stopping rule, we provide expressions of U and L chosen such that the
premise of Theorem 5 is satisfied in every round n, with high probability. KL(p, q) denotes the
Kullback-Leibler divergence between the probability vectors p and q on S .
Definition 2. Given a sequence of (bn)n, we define

Un
s,a(bn; δ) = max

{
p′bn

∣∣∣∣Nn
s,aKL(p̂ns,a, p

′) ≤ x(δ,Nn
s,a)

}
Ln
s,a(bn, δ) = min

{
p′bn

∣∣∣∣Nn
s,aKL(p̂ns,a, p

′) ≤ x(δ,Nn
s,a)

}
for the threshold function x(δ, y) = log(SA/δ) + (S − 1) log (e(1 + y/(S − 1))) and let

τε,δ = min
n

{
max

s
max

a
In,♯s,a (bn, δ)−min

s
max

a
In,♭s,a (bn; δ) ≤ ε

}
. (6)

The following result is a consequence of Theorem 5 and a KL-based time uniform concentration
result for the transition probabilities from [1] (Lemma 5 in Appendix). Using Pinsker’s inequality
(see Remark 1 in Appendix where we discuss some computational aspects), we can also justify that
this theorem hold for Un

s,a, Ln
s,a replaced by

Ũn
s,a(bn; δ) = p̂ns,abn+ ||bn||∞

√
2x(δ,Nn

s,a)

Nn
s,a

, L̃n
s,a(bn; δ) = p̂ns,abn−||bn||∞

√
2x(δ,Nn

s,a)

Nn
s,a

. (7)

Theorem 6. For any sampling rule ((sn, an))n, and any sequence (bn)n of bias vectors, the algorithm
using the stopping rule τ = τε,δ defined in (6) and recommending π̂(s) = argmaxa I

τ,♭
s,a(bτ ; δ)

satisfies P (τ <∞, g⋆ − gπ̂ > ε) ≤ δ.

Theorem 6 shows that for any sampling rule, be it in the generative model or in the online setting, the
stopping rule (6) and associated recommendation rule yields an (ε, δ)-PAC algorithm, for any choice
of bias vector sequence bn. Of course, bad choices of sampling rules and bias vectors could still yield
τ =∞ almost surely (e.g. picking always (st, at) = (s1, a1) when a generative model is available).

Choosing a sampling rule As a sanity-check we analyze in Appendix D.2 an algorithm which
combines the simplest possible sampling rule, uniform sampling from a generative model, with the
VI stopping rule (6) where the sequence of biais vector is bn = b̂n where b̂n is the optimal bias vector
in the AR-MDP with rewards rs,a and transition probabilities given by (p̂ns,a)s,a (see Algorithm 4).
We prove in Theorem 9 that in unichain MDPs, for sufficiently small ε the sample complexity of this
algorithm is bounded with probability larger than 1 − δ by Õ

(
SA(H∨ΓM)2

ε2

(
log 1

δ + S
))

, where
ΓM is some constant depending on the MDP. We refer the reader to Appendix D.2 for the definition
of this constant, that has a complex expression and should be in most case larger than H .

We remark that we could also use GOSPRL to turn Algorithm 4 into an online algorithm (using phases
of increasing length in which we collect a uniform number of samples using GOSPRL and check our
stopping rule), with a sample complexity essentially multiplied by D. However the resulting sample
complexity is likely to be much larger than SAD2/ε2 in the small ε regime, making this algorithm
not very interesting. We believe that to get efficient algorithms for the online setting it is important to
depart from this uniform sampling + GOSPRL approach. Our stopping rule actually suggests some
clever online choices that could be used to make the algorithm stop earlier. For example it could be
interesting to make a greedy choice of the bias vector bn that minimizes over b ∈ RS the quantity
maxs maxa I

n,♯
s,a (b; δ)−mins maxa I

n,♭
s,a (b; δ). Assuming we could compute this vector, a possible

online sampling rule could be optimistic choice an = argmaxa[rs,a + Un
sn,a(bn, δ)]. We leave the

analysis of such algorithms for future work.

7 Conclusion and perspective

We provided several elements indicating that the optimal bias span H may not be an adequate
complexity measure for ε-optimal policy identification in an average-reward MDP. In the generative
model setting, as all existing algorithms with sample complexity featuring H require prior knowledge
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of this quantity, we investigated the question of estimating H and proved that the sample complexity
of this estimation task can be arbitrarily large. Then, in the online setting, we gave a lower bound on
the sample complexity indicating that no algorithm can get a SAH/ε2 sample complexity on every
MDP, with or without the knowledge of H . On the algorithmic side, we proposed the first best policy
identification algorithms for the generative model setting that does not require any form of prior
knowledge on the MDP. By estimating the diameter D instead of H , DFE attains a near-optimal
sample complexity in SAD/ε2 for communicating MDPs. We further proposed an online variant
of DFE with a slightly larger SAD2/ε2 sample complexity, which is a factor D away from the
worse case lower bound established in the generative model setting. We leave as an open question
whether there exists online algorithms with a SAD/ε2 sample complexity. In future work, we will
investigate whether the novel adaptive stopping rule proposed in our work can lead to this reduced
sample complexity, when combined with a suitable online sampling rule.
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A Proof of Theorem 1

We only prove here the result for weakly communicating MDPs, and provide the ergodic MDP
necessary to prove the general theorem.

Fix δ, T and ∆. Define d = e4 and d′ = 128. Let ε = min

{
1
10 ,

∆
2 ,

1

2
√

32Td′
− ln 2dδ+1

}
, p =

1
2+ε

∆−ε . To

ease the notation, we denote byMε andM′
ε respectively the MDPsM 1

2−ε andM 1
2+ε in Figure

1. The rewards distribution in these MDPs are assumed to be Bernoulli variables with the means
indicated in the figure.

The optimal policy inMε always chooses the actions represented by a full line. Its gain is 1
2 , its

bias vector (up to an additive constant) is (0,− 1
2 ,−

1
2 ). InM′

ε, the optimal policy always chooses
the dashed actions and its optimal gain is 1

2 + ε. Using the Poisson equations, we can show that its

associated bias vector (up to an additive constant) is
(
−
(
1
2 + ε

)
1+p
p , 0,−

(
1
2 + ε

)
1
p

)
. With Hε the

span of the optimal bias forMε and H ′
ε that ofM′

ε, we have:

H ′
ε −Hε =

1

p

((
1

2
+ ε

)
(1 + p)− p

2

)
=

1

p

(
1

2
+ ε

)
+ ε

=
∆− ε
1
2 + ε

(
1

2
+ ε

)
+ ε

= ∆

Consider now an algorithm that outputs Ĥ a ∆-tight upper bound for the optimal bias span with
probability greater than 1− δ on any MDP. We denote by P and P ′ the probability with regards to
Mε andM′

ε respectively, and E and E′ the associated expectation.

We denote by τ the total number of samples used before stopping, by T̂ the number of samples of the
dashed action taken in state 2 before stopping and by Kt the number of times the agent gets a reward
of 1 among the first t visits of state 2. We introduce the three events

E1 = {Ĥ < H ′
ε}

E2 =

{
max

1≤t≤t⋆
|
(
1

2
− ε

)
t−Kt| ≤ z

}
E3 =

{
T̂ ≤ t⋆

}
,

where we define z =
√
2
(
1
2 − ε

) (
1
2 + ε

)
t⋆ ln d

θ , with θ = exp

(
−4d′ε2t⋆

( 1
2−ε)( 1

2+ε)

)
and let t⋆ =

( 1
2−ε)( 1

2+ε)
4d′ε2 ln 1

2dδ . We let E = E1 ∩ E2 ∩ E3.

Let W be the interaction history of the learner and the generative model, L(w) = P (W = w) and
L′(w) = P ′(W = w). For K = KT̂ ,

L′(W )

L(W )
1E =

(1/2 + ε)K(1/2− ε)T̂−K

(1/2− ε)K(1/2 + ε)T̂−K
1E ≥

θ

d
1E

by the arguments within the proof for Lemma 13 of [5]. Using a change of measure, we can write

P ′(E1) ≥ P ′(E) = E′[1E(W )] = E

[
L′(W )

L(W )
1E(W )

]
≥ θ

d
P (E) = 2δP (E). (8)

Moreover, inMε, Kt − (1/2− ε) t is the sum of t Bernoulli variables of expectation (1/2− ε), and
thus of variance (1/2− ε)(1/2 + ε). Kolmogorov’s inequality states that

P (E2) = P

(
max

1≤t≤t⋆

∣∣∣∣Kt −
(
1

2
− ε

)
t

∣∣∣∣ > ε

)
≤

t⋆
(
1
2 − ε

) (
1
2 + ε

)
ε2

which entails P (E2) ≥ 7/8. The detailed computation is given in the proof for Lemma 12 of [5].
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Now, we assume towards contradiction that P (E3) ≥ 7/8. Using the above, this yields

P
(
E
)
≤ P (E1) + P (E2) + P (E3)

≤ δ +
2

8

<
1

2
,

where the first inequality uses that P (E1) ≥ 1− δ by the correctness of the algorithm and the second
inequality uses that δ ≤ 1

2e4 . Hence, we have P (E) > 1
2 which leads to P ′(E1) > δ using (8). This

contradicts the correctness of the algorithm. Therefore, we have P (E3) < 7
8 .

It follows that with probability larger than 1
8 , T̂ ≥ t⋆ onMε, hence

E[τ ] ≥ E[T̂ ] ≥ t⋆

8
≥ T,

which concludes the proof.

More generally, adding the transitions described in Figure 4 with τ ′ = τp
1+p can be used to show that

computing a ∆
1+τ -tight upper bound for the optimal bias span with high probability would need in

expectation more than T samples.

1

2 3

1
2 , 1− τ

1
2 , τ/21

2
, τ
/2

R, 1− τ ′ 0, 1− p

0, p

0, 1

0,
1 0, 1

1
2
−
ε,
τ
′

Figure 4: M̃R in the ergodic case

B Complements for Section 4

In this Appendix, we provide some details on the two components of our near-optimal algorithm: a
procedure to provide a high-probability upper bound on the diameter (Algorithm 2) and a near-optimal
algorithm for best policy identification in an average reward MDP that requires an upper bound on H
as an input (Algorithm 3). Finally, we give the proof of Theorem 2.

B.1 Diameter Estimation Procedure

The procedure proposed by [20] for estimating the diameter hinges on the observation that the
diameter can expressed in terms of optimal values in a goal-oriented Markov Decision Decision (or
SSP-MDP for Stochastic Shortest Path). We recall that in a SSP-MDP the transition kernel is coupled
with a goal state sg ∈ S and a cost function c : (s, a) 7→ c(s, a). The value of a (deterministic) policy
π, that is to be minimized, is denoted by

V π
c,sg (s) = Eπ

 τ
(sg)
π (s)∑
t=1

c(st, π(st))

∣∣∣∣∣∣∣ s1 = s
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where τ (sg)π (s) = inf{t : st+1 = sg|s1 = s, π} is the number of steps before reaching the goal when
starting from state s and following policy π. The diameter can thus be written

D = max
s

max
s′ ̸=s

min
π

E[τ (s)π (s′)] = max
s

max
s′ ̸=s

min
π

V π
1,s(s

′)

= max
s

max
s′ ̸=s

V ⋆
1,s(s

′)

where V ⋆
c,sg denotes the optimal (i.e. minimal) value function in the SSP-MDP with cost c and goal

state sg and 1 is the cost function that is constant and equal to 1.

Prior works on SSP-MDPs [19, 21] have proposed and analyzed an Extended Value Iteration scheme
for SSP, whose goal is to obtain confidence bounds on V ⋆

c,sg , that we now recall for completeness.
Given a cost function c and a goal state sg, EVI-SSPc,sg takes as input a set of plausible transitions
P = (P(s, a))s,a such that P(s, a) are included in the set of probability distribution over S (and
the unknown vectors ps,a is believed to belong to P(s, a)), and a precision µVI. It introduces the
extended optimal Bellman operator, defined for v ∈ RS as

L̃v(s) = min
a∈A

[
c(s, a) + min

p̃∈P(s,a)
p̃v

]
for all s ̸= sg and L̃v(g) = 0. EVI-SSPc,sg sets v0 = 0 ∈ RS and defines vj+1 = L̃vj for j ≥ 0. It
stops at iteration ȷ̃ = min {j : ∥vj+1 − vj∥ ≤ µVI} and outputs ṽ = vȷ̃. It also outputs an optimistic
transition kernel p̃ = (p̃s,a)s,a, defined for all s, a as

p̃s,a ∈ argmin
p̃∈P(s,a)

p̃v

and the optimistic greedy policy

π̃(s) = argmin
a∈A

[c(s, a) + p̃v] .

We denote by Ṽ π
c,sg (s) the value function of policy π in the SSP with cost function c, goal state sg

and transition kernel p̃. Previous work (see e.g. Lemma 4 of [21]) have established the following
properties.

Lemma 1. Assume that, for all (s, a), ps,a ∈ P(s, a). Letting (ṽ, p̃, π̃) = EVI-SSPc,sg (P, µVI), the
following inequalities hold (component-wise):

(i) ṽ ≤ V ⋆
c,sg and ṽ ≤ Ṽ ⋆

c,sg ≤ Ṽ π̃
c,sg

(ii) if µVI ≤ cmin

2 then Ṽ π̃
c,sg ≤

(
1 + 2µVI

cmin

)
ṽ.

Notably, this result gives an upper bound on the optimal value in the optimistic SSP-MDP. With the
additional help of a simulation lemma, proved by [20], we can further relate it to the value in the true
SSP-MDP.

Lemma 2 (Lemma 2 in [21]). 6 Let p and p̃ be two transition kernels such that for all (s, a),
∥ps,a − p̃s,a∥1 ≤ η. Assume that cmin > 0 and that under both p and p̃ there exists at least one
policy that reaches sg almost surely from any state (such a policy is called proper). Let π be a proper
policy in p̃ such that

2η∥Ṽ π
c,sg∥∞ ≤ cmin. (9)

Then π is proper in p and

∀s ∈ S, V π
c,sg (s) ≤

(
1 +

2η∥Ṽ π
c,sg∥∞

cmin

)
Ṽ π
c,sg (s)

6Compared to the original statement, we fixed a small typo in the condition (9), and also propagated the
changes accordingly in the definition of Algorithm 2 and its analysis.
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Finally, the last step to be able to apply Lemma 1 is to construct the sets P(s, a) that contains the true
transition probabilities with high probability. This can be done as in the rest of the paper by relying
on Lemma 5, which gives confidence regions of the form

{p ∈ ΣS : ∥p− p̂s,a,n∥1 ≤ B(n, δ)}

where p̂s,a,n is the empirical estimate of the transition probability after the n-th transition has been

observed from (s, a) and B(n, δ) =
√

2 log(SA/δ)+2(S−1) log(e(1+n/(S−1)))
n .

The resulting algorithm for estimating the diameter is described in Algorithm 2. It is a slight variation
of the procedures proposed by [20] to estimate the SSP diameter and by [21] to estimate the diameter
in the online setting. In particular, our instantiation relies on simpler confidence regions.

Data: Accuracy ε > 0, confidence level δ ∈ (0, 1)
Set W = 1

2 and ṽ∞ = 1
while ṽ∞ > W do

W ← 2W
Set accuracy η = ε

4W and compute N = N(δ, η) = inf{n : B(n, δ) ≤ η}
Call the generative model until each (s, a) gets N visits.
Let each (s, a) let P(s, a) = {p ∈ ΣS : ∥p− p̂s,a,N∥1 ≤ η} and P = (P(s, a))s,a.
for s = s1, ..., sS do

Let (ṽ(s), p̃(s), π̃(s)) = EVI-SSP1,s

(
P, 1∧ε

2

)
end
Let ṽ∞ = maxs maxs′ ̸=s ṽ

(s)(s′).
end
return D̂ = (1 + ηṽ∞/2)ṽ∞

Algorithm 2: A diameter estimation procedure

Theorem 7. Let ε ≤ 1. With probability 1− δ, Algorithm 2 run with parameters ε and δ outputs an
estimate D̂ which satisfies

D ≤ D̂ ≤
(
1 +

ε(1 + ε)

2

)
(1 + ε)D

using SA×N(δ, ε
8D ) samples where

N(δ, η) := inf {n > 0 : B(n, δ) ≤ η} ,

leading to an overall sample complexity of

Õ
(
D2SA

ε2
log

(
1

δ

)
+

D2S2A

ε2

)
where the Õ ignores logarithmic factors in S,A,D, 1/ε and log(1/δ).

Proof. The proof closely follows that of [20]. We let Wn be the value of W in the n-th iteration
of the while loop (starting at n = 1), such that Wn = 2n−1. We define ηn = ε

4Wn
and ṽn the

value of ṽ∞ at the end of the n-th iteration. The number of iteration used by the algorithm is
ñ = min{n : ṽn ≤Wn}.
Assume the event

E = (∀s, a,∀n ≥ 1, ∥p̂s,a,n − ps,a∥1 ≤ B(n, δ))

holds. Using a property of the EVI scheme (first statement in Lemma 1), for all n, ṽ(s)n ≤ V ⋆
1,s ≤ D

(component-wise), which yields ṽn ≤ D. Hence ñ is bounded by min{n : D ≤Wn} ≤ log2(D)+1.
We now bound the final accuracy η̃ := ηñ. First, as ṽ∞ := ṽñ ≤Wñ, we have η̃ ≤ ε

4ṽ∞
. Moreover,

using that
D ≥ ṽñ−1 > Wñ−1 = Wñ

2

further yields
ε

8D
≤ η̃ ≤ ε

4ṽ∞
.
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We let ṽ(s), p̃(s), π̃(s) be the output of Extended Value Iteration with goal state s in the final iteration,
and let Ṽ1,s denote the value function in the SSP MDP with costs 1, goal state s and transition kernel
p̃(s). For every s, s′, using the simulation lemma, we have

V ⋆
1,s(s

′) ≤ V π̃(s)

1,s (s′) ≤ (1 + 2η̃∥Ṽ π̃(s)

1,s ∥∞)Ṽ π̃(s)

1,s (s′)

provided that the condition
2η̃∥Ṽ π̃(s)

1,s ∥∞ ≤ 1

is satisfied. This is the case by using the second statement of Lemma 1 together with the upper bound
on η̃ established above:

2η̃∥Ṽ π̃(s)

1,s ∥∞ ≤ 2η̃(1 + ε)∥ṽ(s)∥∞ ≤ 2η̃(1 + ε)ṽ∞ ≤
ε(1 + ε)

2
≤ 1 ,

where the last step uses that ε ≤ 1. Hence, one can write

V ⋆
1,s(s

′) ≤ (1 + 2η̃∥Ṽ π̃(s)

1,s ∥∞)Ṽ π̃(s)

1,s (s′)

(a)

≤ (1 + 2η̃(1 + ε)∥ṽ(s)∥∞)(1 + ε)ṽ(s)(s′)

(b)

≤ (1 + 2η̃(1 + ε)ṽ∞)(1 + ε)ṽ∞ = D̂

(c)

≤
(
1 +

(1 + ε)ε

2

)
(1 + ε)D,

where (a) uses the second statement of Lemma 1, (b) uses the definition of ṽ∞ and (c) uses that
ṽ∞ ≤ D and η̃v∞ ≤ ε/4. Recalling that D = maxs,s′ ̸=s V

⋆
1,s(s

′) yields that, on event E ,

D ≤ D̂ ≤ (1 +
(1 + ε)ε

2
)(1 + ε)D.

Moreover, the number of samples collected per transition is N(δ, η̃) ≤ N
(
δ, ε

8D

)
.

The conclusion follows from the fact that E holds with probability larger than 1− δ (Lemma 5) and
by upper bounding N

(
δ, ε

8D

)
using Lemma 6 in Appendix E. Specifically, choosing the parameters

∆2 = η2, a = 2 log
(
SA
δ

)
, b = 2(S − 1), c = e and d = e

S−1 we get

N(δ, η) ≤ 1

η2
log

(
SA

δ

)
+

2(S − 1)

η2
log

(
e+

e

(S − 1)η4
log

(
SA

δ

)
+

8e

η4

)
.

which leads to the approximation stated in Theorem 7.

B.2 Near-optimal algorithm using the knowledge of H

We recall here for completeness the algorithm of [27] to find an ε-optimal policy in an average
reward MDP when an upper bound H of the optimal bias span H is known, and its theoretical
guarantees. The algorithm consists in a slight variation of the Perturbed Empirical Model-Based
Planning algorithm originally given by [15] (for which a refined analysis was proposed by [27]) with
the reduction from the average reward to the discounted case from [22].

Data: Accuracy ε ∈ (0, 1], upper bound H on H , confidence level δ ∈ (0, 1)
Set discount factor γ = 1− ε

12H

Set n = 144C2H
ε2 log

(
12SA
δε

)
with C2 the constant in Theorem 1 of [27]

Collect n samples from the transition in each (s, a)
Let p̂ be the estimated transition kernel based on all transitions collected
Compute the randomized reward function r̃(s, a) = r(s, a) +Xs,a where Xs,a

i.i.d∼ U
([
0, ε

72

])
Compute π̂ the optimal policy in the discounted MDP (γ, p̂, r̃)
return π̂

Algorithm 3: Algorithm 2 from [27]
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Theorem 8. With probability 1− δ, Algorithm 3 with parameters ε ∈ (0, 1], H satisfying H ≤ H
and δ ∈ (0, 1) outputs a policy π̂ satisfying

P
(
∀s ∈ S, ρ⋆ − ρπ̂(s) ≤ ε

)
≥ 1− δ

and collects a (deterministic) total number of transitions given by

144C2SAH

ε2
log

(
12SA

δε

)
,

where C2 is the constant in Theorem 1 of [27].

B.3 Proof of Theorem 2

We let D̂ be the output of Algorithm 2 run with parameters 1 and δ/2 and τ1 the total number of
samples it uses. From Theorem 7, it holds that

P
(
D ≤ D̂ ≤ 4D, τ1 = Õ

(
D2SA log(1/δ) +D2S2A

))
≥ 1− δ/2.

We let π̂ be the output of Algorithm 3 run with parameter ε, D̂ and δ/2 and τ2 the total number of
samples it uses. Using Theorem 8, we have

P

(
g⋆ − gπ̂ ≤ ε, τ2 ≤

144C2SAD̂

ε2
log

(
24SA

δε

)∣∣∣∣∣D ≤ D̂

)
≥ 1− δ/2.

The total sample complexity being τ = τ1 + τ2, using a union bound yields that with probability
1− δ, it holds that g⋆ − gπ̂ ≤ ε and

τ ≤ Õ
(
D2SA log(1/δ) +D2S2A

)
+

576C2SAD

ε2
log

(
24SA

δε

)
= Õ

([
SAD

ε2
+D2SA

]
log

(
1

δ

)
+D2S2A

)
= Õ

([
SAD

ε2
+D2S2A

]
log

(
1

δ

))
.

C Complements for Section 5

C.1 Study of the MDPMp,p′

We recall the MDP introduced in Figure 2. We prove the following: for any N , for any p < 1/N
and any p′ < 1−ε

1+εp, the policy in full line π is optimal for more than N steps, but is not ε-optimal in
average reward.

12 3

1, 1− p

0, 1− p

1, 1− p′ 0, 1− p′

0, p

1, p′ 1, p

0, p′

Figure 2: MDPMp,p′ (repeated from page 7)

For that, we define un the probability of being in state 1 at timestep n. We note that un does not

depend on the policy chosen. Since we know
{
u0 = 1

un+1 = (1− p)un + p′(1− un)
, we have

un = (1− p− p′)n
(
1− p′

p+ p′

)
+

p′

p+ p′
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Therefore, the (asymptotic) gain for the full-line policy π is gπ = p′

p+p′ , while that of the dashed-line

policy π′ is gπ′ = 1− p′

p+p′ =
p

p+p′ . Since p′ < 1−ε
1+εp,

p′(1 + ε) < p(1− ε)

p′ < p− (p+ p′)ε

gπ < gπ′ − ε

and we have indeed that π is not ε-optimal.

Moreover, the empirical reward up to step n for policy π is rn =
∑n

t=0 un, and r′n = n+1−
∑n

t=0 un

for policy π′. As (rn/n)n is decreasing and (r′n/n)n is increasing, policy π′ becomes better than π
when

∑n
t=0 un ≤ n+1

2 , that is, when

(n+ 1)
p′

p+ p′
+

(
1− p′

p+ p′

) n∑
t=0

(1− p− p′)t ≤ n+ 1

2

p

p+ p′
· 1

n+ 1
· 1− (1− p− p′)n+1

p+ p′
≤ 1

2
− p′

p+ p′

which implies

p

p+ p′
· 1

n+ 1
· (n+ 1)(p+ p′)− n(n+ 1)(p+ p′)2

p+ p′
≤ 1

2
− p′

p+ p′

by using that (1 − x)n+1 < 1 − (n + 1)x + n(n + 1)x2/2 for any 0 < x < 1. Finally, π′ being
better than π at timestep n implies −n

2 ≤
(

1
2 −

p′

p+p′

)
1
p −

1
p+p′ , i.e., n ≥ 1

p ≥ N .

C.2 Proof of Theorem 3

Proof. For S,A, ε, δ satisfying the assumptions of Theorem 3, we let p = 16ε
AS−1 and define the family

of MDPsMj for any j ∈ AS−1, displayed in Figure 3. There are A actions available in each of the
S states, but the figure only displays actions with distinct transitions.

s1 s2 s3 ... sS
{1, p}

j1 j2 jS−2

jS−1

{1, 1− p}

Figure 3: MDPMj (repeated from page 7)

• In state s1, for any action a, a reward of 1 is incurred, and there is probability p of getting
into state s2, and probability 1− p of staying in s1.

• In state sn for n ∈ {2, . . . , S}, taking action jn−1 transitions to state sn+1 (where sS+1 =
s1) and every other action transitions to state s2, with no reward.

To summarize, it is very unlikely to get into state s2; but, once it has been entered, only one specific
deterministic policy can allow an agent to get back to the favorable state s1.

Let π be a (possibly stochastic) policy. Let us write pji = π(ji−1|si) for i ∈ {2, ...S}, and xj
π =∏S

i=2 p
j
i . With Pπ,j the transition matrix under π in MDPMj , and Pπ,j = limT→∞

1
T

∑T
t=1 P

t−1
π,j ,

we know that Pπ,jPπ,j = Pπ,j . Since the MDPMj is unichain, by theorem A.2 of [18], all the
rows of Pπ,j are identical to a vector (η1, ...ηS) ∈ ΣS .
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We therefore deduce the following linear system:

η1 = (1− p)η1 + pjSηS

η2 = pη1 +

S∑
n=2

(1− pjn)ηn

∀n ∈ {3, ...S}, ηn = pjn−1ηn−1

S∑
n=1

ηn = 1

Injecting the third equation into the second yields η2 = pη1 +
∑S−1

n=2(ηn − ηn+1) + ηS − xj
πη2 and

finally xj
πη2 = pη1. Therefore,

η1

(
1 +

p(1 + pj2 + pj2p
j
3 + ...+ xj

π)

xj
π

)
= 1 =⇒ η1 ≤

1

1 + p

xj
π

,

using that 1 + pj1 + pj2p
j
3 + ...+ xj

π ≥ 1. Finally,

gjπ ≤
1

1 + p

xj
π

.

The optimal policy inMj is to play action jn−1 in state sn for n ∈ {2, . . . , S}, so the above equation
becomes η1(1 + p(S − 1)) = 1 and the optimal gain inMj is gj = 1

1+p(S−1) .

If a policy π is ε-optimal inMj , we have

gjπ ≥ gj − ε

1

1 + p

xj
π

≥ 1

1 + p(S − 1)
− ε

(S − 1)p ≥ p

xj
π

− ε

(
1 + (S − 1)p+

p

xj
π

+
(S − 1)p2

xj
π

)
xj
π ≥ p

1− ε (1 + (S − 1)p)

(S − 1)p+ ε (1 + (S − 1)p)

(S − 1)xj
π ≥

1

1 + ε ((S−1)p+1)2

(S−1)p(1−ε−ε(S−1)p)

Since (S − 1)p ≤ 1
4 , (1 + (S − 1)p)

2 ≤ 2. Since we also have ε < 1
4 , (1− ε− ε(S − 1)p) ≥ 1

2 .
Therefore, (S − 1)xj

π ≥ 1
1+ 4ε

(S−1)p

. Finally, 4ε
(S−1)p ≥ 1, and xj

π ≥
p
8ε . Since

∑
j x

j
π = 1,

we deduce that each policy π can be ε-optimal for at most 8ε
p MDPs in {Mj}j . By denoting

yjπ = 1{π is ε-optimal in Mj}, we have
∑

j y
j
π ≤ 8ε

p .

For the remainder of the proof, we can use the proof of Theorem 9 of [5], which we retranscribe
here. Assume towards contradiction that there exists a learner that is (ε, δ)-correct whose sample
complexity is smaller than 1/p with probability larger than 7/8 on all the instances (Mj)j . By
writing E1 the event that the first 1/p steps from s1 all transit to s1; E2 the event that the learner uses
at most 1/p samples; and E = E1 ∩ E2; we can prove that for every j, writing Pj the probability
distribution w.r.t.Mj , we have Pj(E) ≥ 1

8 .

We let E ′ be the bad event in which the policy π̂ returned by the learner is not ε-optimal. We observe
that on the event E , the distribution of the output policy π̂ conditionally to E is independent on j as
on the event E , the algorithm has never visited another state than s1 before stopping and outputting
π̂. We denote by P (π̂|E) the common value of Pj(π̂|E) for all j, which satisfies

∫
π̂
P (π̂|E)dπ̂ = 1.
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It follows that
∑

j

∫
π̂
P (π̂|E)yjπ̂dπ̂ ≤

8ε
p and that there exists j such that

∫
π̂
Pj(π̂|E)yjπ̂dπ̂ =∫

π̂
P (π̂|E)yjπ̂dπ̂ ≤

8ε
pAS−1 . For this value of j,

Pj(E ′|E) = 1−
∫
π̂

Pj(π̂|E)yjπ̂dπ̂ ≥ 1− 8ε

pAS−1
=

1

2

The overall failure probability in Mj is thus Pj(E ′) ≥ Pj(E)Pj(E ′|E) ≥ 1
16 > δ, which is

a contradiction. Therefore, for all (ε, δ)-PAC algorithm there exists an instance Mj for which
Pj(τ > 1/p) ≥ 1/8, hence the expected sample complexity under this instance is larger than 1/8p.

Let us finally compute the diameter and bias span of MDP Mj . For states s1 and sS , the only
(deterministic) policy with finite traveling time from s1 to sj is the policy which plays action jn−1 in
state sn for any n ∈ {2, ...S}. As the bottleneck of exploration is the small probability to transition
from s1 to s2, the travel time is biggest from s1 to s2. Therefore,

D = min
π:S→A

E[min{t > 0, st = s1}|s0 = sS ,∀t′, at′ = π(st′)] =
1

p
+ S − 1 = S − 1 +

AS−1

16ε

As for the bias span, by fixing b(s2) = 0, the Poisson equations (5) yield for i ∈ {3, ...S} that
b(si) = (i− 2)g, and finally b(s1) = (S − 1)g ≤ S.

Figure 5: An SSP-MDP and its average reward transformation
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D Complements for Section 6

D.1 Correctness of the stopping rule

Proof. (Theorem 5) We first note that gπ̂n = P π̂nrπ̂n = P π̂n [rπ̂n + Pπ̂tbn − bn] where we use that
P π̂nPπ̂n = P π̂n .

Since for all s, a, ps,abn ≥ Ln
s,a(bn; δ), we have

gπ̂n ≥ P π̂n

[
rπ̂n

+
(
Ln
s,π̂n(s)

(bn; δ)
)
s
− bn

]
= P π̂n

(
max

a
In,♭s,a (bn; δ)

)
s

by the definition of π̂n, and finally gπ̂n
≥ mins maxa I

n,♭
s,a (bn; δ).

For π a stationary deterministic optimal policy satisfying the optimal Poisson equation (5) (that exists
according to Theorem 8.4.3 and 8.4.4 of [18]),

g = gπ = Pπrπ = Pπ [rπ + Pπbn − bn] ≤ Pπ

[
rπ +

(
Un
s,π̂n(s)

(bn; δ)
)
s
− bn

]
≤ Pπ

(
max

a
In,♯s,a (bn; δ)

)
s

and finally g ≤ maxs maxa I
n,♯
s,a (bn; δ)

Finally, since g is the gain of an optimal policy, g ≥ gπ̂n
.

Proof. (Theorem 6) By Theorem 5, we have
P [τ < +∞, gπ̂ < g⋆ − ε]

≤ P
[
∃n, g⋆ − gπ̂n

> ε,max
s

max
a

In,♯s,a (bn; δ)−min
s

max
a

In,♭s,a (bn; δ) ≤ ε
]

≤ P
[
∃n, ∃s, a, ps,abn /∈ [Ls,a(bn; δ), U

n
s,a(bn; δ)]

]
Using further a union bound and the definitions of U and L,

P [τ < +∞, gπ̂ < g⋆ − ε]

≤ P
[
∃n, ∃s, a, ps,abn ≥ Un

s,a(bn; δ)) ∪ ∃n, ∃s, a, ps,abn ≤ Ln
s,a(bn; δ))

]
≤ P

[
∃n, ∃s,∃a,KL(p̂ns,a, ps,a) >

x
(
δ,Nn

s,a

)
Nn

s,a

]
≤ δ ,

where the last inequality follows from the concentration result given in Lemma 5.

D.2 A sample complexity analysis

In this section, we present and analyze an algorithm for the generative model setting using the
simplest possible sampling rule, uniform sampling, together with the adaptive stopping rule (6)
for bn = b̂n such that b̂n is the optimal bias function in the AR-MDP with transition probabilities
given by (p̂ns,a)s,a (normalized so that the bias in the first state is always 0). The pseudo-code of the
algorithm is given in Algorithm 4.
Remark 1. The quantities Un

s,a and Ln
s,a in Definition 2 are solutions to complex optimization

problems and can be expensive to compute. Several modifications are possible to prevent long run
times. First, it is possible not to check for stopping at each time step while preserving correctness.
Second, the stopping rule can be relaxed with the following looser confidence intervals which satisfy
Un
s,a(bn; δ) ≤ Ũn

s,a(bn; δ) and Ln
s,a(bn; δ) ≥ L̃n

s,a(bn; δ) using Pinsker’s inequality:

Ũn
s,a(bn; δ) = p̂ns,abn + ||bn||∞

√
2x(δ,Nn

s,a)

Nn
s,a

, L̃n
s,a(bn; δ) = p̂ns,abn − ||bn||∞

√
2x(δ,Nn

s,a)

Nn
s,a

.

Theorem 6 (as well as our sample complexity analysis to follow) still applies for these alternative
choices which are easier to compute but yield looser confidence intervals and thus in theory a larger
sample complexity.
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Data: Accuracy ε ∈ (0, 1), confidence level δ ∈ (0, 1)
n = 0, bn = 0, In,♯s,a (bn, δ) = 1, In,♯s,a (bn, δ) = 0;
while maxs maxa I

n,♯
s,a (bn, δ)−mins maxa I

n,♭
s,a (bn; δ) > ε do

for (s, a) ∈ S ×A do
Sample a reward and a next state of s, a

end
n = n+ SA;
Compute p̂ns,a for each (s, a)

Compute bn = b̂n the bias of the empirical MDP, with rewards rs,a and transitions p̂ns,a;
Compute In,♯s,a (bn, δ) and In,♭s,a (bn, δ) using U,L from Definition 2 (or the relaxations (7))

end
return π̂n =

(
argmaxa I

n,♭
s,a (bn; δ)

)
s

Algorithm 4: Uniform sampling combined with adaptive stopping

We analyze Algorithm 4 for unichain MDPs, for which we are able to derive a simulation lemma,
akin to those existing in the discounted [14] or SSP [21] settings. It relates the gains and the bias in
two AR-MDPs that are close enough.

A simulation lemma for AR-MDPs To introduce this result, we need the following definitions.
Definition 3. Let DM be the set of policies generating a unichain Markov chain on a weakly
communicating MDP M . For M an MDP and π ∈ DM ,

Ππ =

 1 0 ... 0
1
... IS−1

1

−( 0 Pπ(s1, s2) ... Pπ(s1, sS)
... ...
0 Pπ(sS , s2) ... Pπ(sS , sS)

)

is the matrix such that the Poisson equations (3) and (4) rewrite as Ππhπ = rπ with r the average
reward vector and hπ = (gπ, bπ(s2)− bπ(s1), ...bπ(sS)− bπ(s1)). We further define

δ1 = min
π,gπ ̸=g⋆

|gπ − g⋆|, ∆1 = max
π∈DM

||Π−1
π || and ∆2 = max

π∈DM

||hπ||∞

where the norm used is the operator norm associated to the infinity norm, ||A|| =
sup||x||∞=1 ||Ax||∞.

We can show with results from [18] that Ππ is invertible for any unichain policy π, hence ∆1 is
well-defined. Indeed, by Theorem A.7 and (A.4), there exist solutions to the Poisson equations. By
Theorem 8.2.6, the solution is unique up to an additive vector in the kernel of (I − P ), which is of
dimension 1 for unichain MDPs as proved in Theorem A.5. Therefore, since in the unichain setting
solutions to ΠπHπ = rπ are exactly solutions for (4), we can conclude.

The following two lemmas can be extracted from the proofs of Lemmas 7 and 8 of [4]. For
completeness, we provide a full proof in Appendix D.3.
Lemma 3 (Simulation lemma). Let p′ : S × A → ΣS be the transition probability matrix of a
weakly communicating MDP M ′ with the same reward function r as M . For a given policy π that is
unichain on M , if for all (s, a) we have ||p′s,a − ps,a||1 ≤ x

∆1(∆2+x) then ||hπ − hM ′

π ||∞ ≤ x.

Lemma 4. Suppose M unichain. Let p′ : S × A → ΣS be the transition probability matrix of a
unichain MDP M ′ with the same reward function r as M . If for all s, a we have ||p′s,a − ps,a||1 ≤

x
∆1(∆2+x) where x ≤ δ1/2, then ||b⋆ − b⋆,M

′ ||∞ ≤ x.

It is necessary to suppose M unichain, because without this assumption, there is no guarantee that
there exists a policy π that is optimal in M ′ and unichain in M .

Sample complexity bound Using these results together with our previous concentration result
for the transitions (Lemma 5) permits to prove the following high-probability bound on the sample
complexity of Algorithm 4, which features the quantity ΓM := ∆1(∆2 + δ1/2).
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Theorem 9. For ε ≤ δ1, with probability larger than 1− δ, the sample complexity of Algorithm 4 on
a unichain MDP satisfies

τ = Õ
(
SA((H + 1) ∨ ΓM)2

ε2

(
log

(
1

δ

)
+ S

))
.

Just like DFE, Algorithm 4 is an (ε, δ)-PAC algorithm using a generative model that does not require
any prior knowledge on the MDP, as its stopping rule is fully data-dependent. Their sample complexity
in the regime of small ε and small δ both scale in (SAc(M)/ε2) log(1/δ) but for different complexity
quantities: c1(M) = D for Algorithm 1 while c2(M) = ((H + 1) ∨ ΓM)2 for Algorithm 4. We
know from the lower bound that the latter has to be larger for some MDPs, but so far we did not
manage to quantify their difference (even if we suspect that c2 can be much larger than c1). Besides
this, we hope that the sample complexity of Algorithm 4 can be significantly reduced by the use of
smarter (online) sampling rules.

D.3 Simulation lemmas

Proof. (Lemma 3) First, let us fix any policy π and y < 1
||Π−1

π || such that maxs,a ||ps,a − p′s,a||1 ≤ y.

We thus have Ππhπ = Π′
πh

M ′

π . Ππ −Π′
π = P ′

π − Pπ , and therefore ||Ππ −Π′
π|| < y.

hπ(Ππ −Π′
π) = Π′

π(h
M ′

π − hπ)

||Π′−1
π || · ||hπ|| · y > ||hM ′

π − hπ||∞
Moreover,

||Π′−1
π || ≤ ||Π−1

π || · ||ΠπΠ
′−1
π || − ||Π−1

π ||+ ||Π−1
π ||

||Π′−1
π || ≤ ||Π−1

π || · ||ΠπΠ
′−1
π − I||+ ||Π−1

π ||
||Π′−1

π || ≤ ||Π−1
π || · ||Π′−1

π || · y + ||Π−1
π ||

||Π′−1
π || ≤

||Π−1
π ||

1− ||Π−1
π || · y

since ||Π−1
π || · y < 1.

And therefore,

||hπ − hM ′

π || <
||Π−1

π || · ||hπ|| · y
1− ||Π−1

π || · y
≤ ∆1∆2y

1−∆1y

Therefore, for any x, taking y = x
∆1∆2+x∆1

gives the result.

Proof. (Lemma 4) Fix x < δ1/2, and let π be an optimal policy in M ′. For any policy π′, using
Lemma 3 successively with policy π and policy π′ yields gπ > g′π − x ≥ g′π′ − x > gπ′ − 2x and
finally gπ > gπ′ − δ1, which implies by definition of δ1 that gπ ≥ gπ′ , and therefore π is optimal in
M . Hence applying Lemma 3 to π yields the result.

D.4 Proof of Theorem 9

Fix a unichain MDP. We prove in Theorem 10 below an explicit upper bound on the sample complexity
of Algorithm 4. For ε ≤ δ1, we deduce from it that

τ = Õ
(
SA((H + 1) ∨ ΓM)2

ε2

(
log

(
1

δ

)
+ S

))
,

as claimed in Theorem 9.
Theorem 10. With probability larger than 1− δ, the sample complexity of Algorithm 4 is smaller
than

SA(S − 1)
y

C

(
1 +

2C

y
log

(
y + 2

C

))
where y = 1 + lnSA/δ

S−1 and C = 1
288

min(δ1,ε)
2

max(H+1,ΓM)2 .
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Proof of Theorem 10 We write Nt =
⌊

t
SA

⌋
to denote the number of visits in each state action pair

at time step t. We denote by b the optimal bias function (normalized to be equal to zero in the first
state). We set ξ ∈ (0, 1

6 ) to be determined later and define the three events

E =

∀t, ∀s, a, ||p̂ts,a − ps,a||1 ≤

√
2x(δ,Nt)

Nt


E1(ξ, t) =

{
||b̂t − b||∞ < ξε

}
E2(ξ, t) =

∀s, a, ||b̂t||∞
√

2
x(δ,Nt)

Nt
< min

((
1

4
− 3

2
ξ

)
ε, ||b̂t||∞

)
Using Lemma 5, we know that P(E) ≥ 1− δ.

We first prove that, if E ∩ E1(ξ, t) ∩ E2(ξ, t) is satisfied for a certain time step t, then the
stopping condition (6) is satisfied at this time step. To this end, let us assume that E ∩ E1(ξ, t) ∩
E2(ξ, t) holds for a fixed t and ξ. We recall the definition of the confidence bounds U and L from
Definition 2 and their relaxations Ũ and L̃ defined in (7). For all (s, a), we have

rs,a + U t
s,a(b̂t; δ)− b̂t(s) ≤ rs,a + Ũ t

s,a(b̂t; δ)− b̂t(s)

= rs,a + p̂ts,ab̂t +

√
2x(δ,N t

s,a)

N t
s,a

||b̂t||∞ − b̂t(s)

≤ rs,a + ps,ab+ (p̂ts,a − ps,a)b+ p̂ts,a(b̂t − b)

+

√
2x(δ,N t

s,a)

N t
s,a

||b̂t||∞ − b̂t(s) + b(s)− b(s)

≤ rs,a + ps,ab− b(s) + ||b− b̂t + b̂t||∞

√
2x(δ,N t

s,a)

N t
s,a

+ ||b̂t − b||∞ +

√
2x(δ,N t

s,a)

N t
s,a

||b̂t||∞ + ||b̂t − b||∞

≤ rs,a + ps,ab− b(s) + ξε+

(
1

4
− 3

2
ξ

)
ε+ ξε+

(
1

4
− 3

2
ξ

)
ε+ ξε

≤ rs,a + ps,ab− b(s) +
1

2
ε

Similarly, we can prove that

rs,a + Lt
s,a − b̂t(s) ≤ rs,a + ps,ab− b(s)− 1

2
ε.

Finally, since b is a solution to the optimal Poisson equation (5), we know that
max

s
max

a
(rs,a + ps,ab− b(s))−min

s
max

a
(rs,a + ps,ab− b(s)) = 0

It follows that

max
s

max
a

(
rs,a + U t

s,a(b̂t; δ)− b̂t(s)
)
−min

s
max

a

(
rs,a + Lt

s,a(b̂t; δ)− b̂t(s)
)
≤ ε

and the stopping condition is met.

Then, we establish a sufficient condition on ξ and t to have E ⊆ E1(ξ, t).

Assume that the event E holds. Let ξ′ = min(ξε, δ1/2). From Lemma 4, if for all s, a we have
||p̂t(s, a)− p(s, a)||1 ≤ ξ′

ΓM
, then ||b− b̂t||∞ ≤ ξ′, which implies E1(ξ, t). Hence, on E , a sufficient

condition for E1(ξ, t) to hold is √
2x(δ,Nt)

Nt
<

ξ′

ΓM
.
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Introducing c(ξ) = 1
2

(
ξ′

ΓM

)2
, this is equivalent to

log(SA/δ) + (S − 1) (1 + log(1 +Nt/(S − 1))) ≤ c(ξ)Nt

and finally to

c(ξ)
Nt

S − 1
− log

(
1 +

Nt

S − 1

)
≥ 1 +

log(SA/δ)

S − 1
. (10)

Next, we establish a sufficient condition on ξ and t to have E1(ξ, t) ⊆ E2(ξ, t). We first remark
that when E1(ξ, t) holds

∥b̂t∥∞

√
2x(δ,Nt)

Nt
≤

(
∥b̂t − b∥∞ + ∥b∥∞

)√2x(δ,Nt)

Nt

≤ (ξε+H)

√
2x(δ,Nt)

Nt

Therefore, a sufficient condition for E2(ξ, t) to hold is√
2x(δ,Nt)

Nt
< min

(
1− 6ξ

4(H + ξε)
ε, 1

)
Introducing c′(ξ) = min

(
1
32

(
1−6ξ
H+ξε

)2
ε2, 1

2

)
, this is equivalent to

log(SA/δ)/(S − 1) + 1 + log(1 +Nt/(S − 1)) < c′(ξ)Nt/(S − 1)

and finally to

c′(ξ)
Nt

S − 1
− log

(
1 +

Nt

S − 1

)
> 1 +

log(SA/δ)

S − 1
. (11)

Finally, we put things together. The conditions (10) and (11) are of similar form. Defining
C(ξ) = min(c(ξ), c′(ξ)), for any ξ ∈ (0, 1/6) the condition

C(ξ)
Nt

S − 1
− log

(
1 +

Nt

S − 1

)
> 1 +

log(SA/δ)

S − 1
(12)

is a sufficient condition on t to have E ⊆ E ∩ E1(ξ, t) ∩ E2(ξ, t). If follows that for t satisfying (12),
the algorithm has stopped before time t, with probability larger than 1− δ.

We observe that the larger C(ξ), the less stringent the condition is on t, but finding the value of
ξ ∈ (0, 1/6) that maximizes C(ξ) leads to tedious calculations. Instead we go for finding a lower
bound on C(1/12), denoted by C, which also provides a valid sufficient condition on t:

C
Nt

S − 1
− log

(
1 +

Nt

S − 1

)
> 1 +

log(SA/δ)

S − 1
.

Using Lemma 6, letting y = 1 + log(SA/δ)
S−1 , this condition is satisfied for

Nt

S − 1
≥ y

C

(
1 +

2C

y
log

(
y + 2

C

))
.

To conclude the proof, we explicit the value of C. We have

C(1/12) = min

[
1

2
,
1

32

(1/2)2

(H + ε/12)2
ε2,

1

2

min[(ε/12)2, (δ1/2)
2]

Γ2
M

]
= min

[
1

2
,

1

128

ε2

(H + ε/12)2
,

ε2

288Γ2
M

,
δ21

8Γ2
M

]
≥ min

[
1

2
,

1

128

ε2

(H + 1)2
,

ε2

288Γ2
M

,
δ21

8Γ2
M

]
= min

[
1

128

ε2

(H + 1)2
,

ε2

288Γ2
M

,
δ21

8Γ2
M

]
,
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where we used twice that ε ≤ 1. Hence a valid lower bound on C(1/12) is

C =
1

288

min(δ1, ε)
2

max(H + 1,ΓM)2
.

E Auxillary results

In this section, we restate some useful result from the literature. The first is a time uniform concentra-
tion result on the transition probabilities that can be obtained as a consequence of Lemma 9 from
[1].
Lemma 5. For all δ ∈ (0, 1), with x(δ, y) = log(SA/δ) + (S − 1) log (e(1 + y/(S − 1))),

P
[
∃n ∈ N : Nn

s,aKL(p̂ns,a, ps,a) > x(δ,Nn
s,a)
]
≤ δ

SA

Furthermore, letting B(n, δ) :=
√

2x(δ,n)
n , the event

E =
(
∀s, a,∀n ≥ 1, ∥p̂ns,a − ps,a∥1 ≤ B(Nn

s,a, δ)
)

holds with probability 1− δ.

Proof. With p̂s,a(m) the empirical estimate of ps,a once m samples have been collected in s, a,
arbitrarily setting p̂s,a(0) as the constant vector 1/S,

P
[
∃n ∈ N : Nn

s,aKL(p̂ns,a, ps,a) > x(δ,Nn
s,a, S)

]
≤ P

[
∃n,m ∈ N : Nn

s,a = m,Nn
s,aKL(p̂ns,a, ps,a) > x(δ,Nn

s,a, S)
]

≤ P [∃m ∈ N : mKL(p̂s,a(m), ps,a) > x(δ,m, S)]

≤ δ

SA

by Lemma 9 from [1]. The second claim stems from a union bound over S,A and Pinsker’s inequality
applied to the first claim.

The second result is an inversion lemma, which allows to get explicit sample complexity bounds.
Lemma 6 (Lemma 15 from [13]). Let n ≥ 1 and a, b, c, d > 0.

If n∆2 ≤ a+ b log(c+ dn) then

n ≤ 1

∆2

[
a+ b log

(
c+

d

∆4
(a+ b(

√
c+
√
d))2

)]
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